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ABSTRACT

In the mid 1980s, it was realized that solutions to what is known as the Knizhnik-

Zamolodchikov equation, or KZ equation, provided a pathway to representations of

the braid group Bn on n strands, with early mathematical treatments of the topic by

Kohno and Drinfel’d. Such representations are typically referred to as monodromy

representations of the braid group along solutions of the KZ equation. These linear

representations are of great interest within topology, integral to the construction of

isotopy invariants of knots and links, such as the well known Jones polynomial. More

current discussions of the KZ equation and the associated monodromy representations

are available in [6] and [9]. The former provides extensive algebraic background, while

assuming a broad knowledge of differential geometry and eschewing certain calculable

details of an explicit monodromy representation. The latter is more elementary, while

containing nontrivial gaps and irregularities in the presentation. The following is

intended to be a complement to both. Chapter 3 provides details of the argument by

which solutions of the KZ equation induce representations of the braid group Bn for

arbitrary n. Chapter 4 solves the KZ equation in the cases of n = 2, 3 and carries out

explicit calculation of the monodromy representation on generators of the respective

braid groups. From the work of Sections 3.1, 3.2, and 4.2.1, it is observed that the

representation property of the KZ representations may be reduced to the uniqueness

of solution to a particular initial value problem.
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CHAPTER 1

INTRODUCTION

1.1 Classical Monodromy

The following discussion is intended to hint at the overall concepts used in the

paper by pointing out a few analogous notions in a more familiar context, such

as functions defined on the complex plane. Consider f(z) = log z restricted by

arg z ∈ (−π, π]. Constructing an analytic continuation of f along a loop γ in C

running once (counterclockwise) around the origin yields a multivalued function,

simply meaning f does not return to f(z) as the path returns to z. Rather f now

differs by 2πi at z, by virtue of the fact that

∫
γ

dz

z
= 2πi,

which holds for any closed path taken once around the origin in C. The study of such

multivalued behavior falls under the heading of monodromy. To further elaborate

on our example from another perspective, consider the universal cover exp: C →

C \ {0} of the punctured complex plane with fiber Fz = exp−1(z), where exp−1

can be considered the (multivalued) log function. Given the aforementioned loop

γ : I → C \ {0} based at z, consider the unique lift γ̃, beginning at γ̃(0) = z̃ ∈ Fz

and ending at γ̃(1) ∈ Fz, which we also denote suggestively by γz̃. It may be that
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γ̃(0) 6= γ̃(1). It can be shown that such a construction defines the monodromy action,

a well-defined action of the fundamental group π1(C\{0}) on the fiber Fz via z̃ 7→ γz̃.

The induced homomorphism π1(C \ {0}, z) → Aut(Fz) is the monodromy of the

covering, capturing the nonsingular behavior latent within the covering. Key to

these introductory remarks is observing that the base space C \ {0} is homotopy

equivalent to a configuration space (see [5]) of two points in C. Viewing the base

space from this perspective, the preceding construction may be extended to a more

general configuration space X of n distinct points in C. In this setting, the KZ

equation extends the associated action of the permutation monodromy to an action

on V ⊗n, where V is a Lie algebra representation of a finite dimensional semi-simple

Lie algebra. A path γ in X will be lifted along multivalued solutions W : X → V ⊗n of

the KZ equation, yielding a map W (γ(0)) 7→ W (γ(1)), typically refered to as parallel

transport. Structure unique to the Lie algebra (see [9, Lemma 5.1]) plays an important

role in establishing the homotopy invariance of the parallel transport, which in turn

induces a homomorphism, or monodromy representation, π1(X) → Aut(V ⊗n). It is

also worth pointing out the similarity between the KZ equation in the case n = 2 and

the integral formula giving the number of twists in a braid on two strands. Solutions

to the KZ equation can in general be presented in integral form, albeit using iterated

integrals. By virtue of the KZ equation’s higher dimensionality and communication

of additional braid group information, the KZ equation can be seen as a far reaching

generalization of such a formula.
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1.2 Braid Relatives

It would be remiss not to briefly mention the close relationship between braids and

links. It is known from a theorem of W. A. Alexander that every oriented link in R3

is isotopic to the closure of a braid [7, pg. 59]. Isotopic braids close up to isotopic

links. The converse does not necessarily hold. Two braids have isotopic closure if

and only if they are equivalent under so called Markov moves [7, pg. 68]. Using

specific normalizations of traces of the endomorphisms associated to braids by our

representations, isotopy invariants of links like the well known Jones polynomial can

be defined. See [6] and [9] for further details.

1.3 Useful Topics

It may be worthwhile for the reader, before going further, to briefly mention some of

the requisite mathematics discussed in the paper, and possible sources of reference.

For discussions of braids and configuration spaces, consult [5] and [7]. Introductory

material on Lie algebras, universal enveloping algebras, and their representations may

be found in [4]. For background covering complex manifolds and complex valued

differential forms, as well as bundle structures, see [11]. Extensions to vector-valued

and algebra-valued forms can be found in [2]. We would like to remind the reader

that a differential form on a complex manifold M with values in an algebra A assigns

to each point of M and tangent vector at that point an element of A, where the form

is complex linear on the tangent space.
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CHAPTER 2

THE KZ EQUATION

2.1 Braids and Configuration Spaces

Let

Xn = {(z1, ..., zn) ∈ Cn | zi 6= zj for all i 6= j},

be the configuration space of (ordered) n-tuples of distinct points in C, or the set of

(ordered) configurations of n distinct points of C.

In the following, the unit interval [0, 1] is denoted by I. For a C∞, or smooth

configuration path γ : I → Xn defined by

γ(t) = (z1(t), ..., zn(t)),

the set
n∐
i=1

(⋃
t∈I

(zi(t), t)

)
⊂ C× I,

i.e., the disjoint union of n strands each diffeomorphic to I, is the (geometric) braid

defined by the configuration path. A homotopy of the configuration path yields an

isotopy of the corresponding braid.

If γ is a loop in Xn, that is to say, if zi(0) = zi(1) for 1 ≤ i ≤ n, then the

corresponding braid is called a pure braid. Then, the pure braid group Pn on n
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strands is defined by the fundamental group π1(Xn, b) where the base point b is the

n-tuple (1, ..., n) ∈ Xn.

The symmetric group Sn acts freely on Xn by permutation of the coordinates. This

yields the orbit or quotient space Xn/Sn. The braid group Bn on n strands is then

the fundamental group π1(Xn/Sn, q), where the base point q is the set {1, ..., n} ⊂ C.

Let si ∈ Sn be the simple transposition (i, i + 1), and σi ∈ Bn a braid generator

(see Figure 1). There exists a unique group homomorphism π : Bn → Sn defined by

π(σi) = si for 1 ≤ i ≤ n − 1. As the simple transpositions generate Sn, the map is

well defined and surjective. We have Pn = Kerπ, and the two fundamental groups

are then related by the short exact sequence

1→ Pn
ι−→ Bn

π−→ Sn → 1,

where ι : Pn → Bn is the inclusion.

OO

1

. . .

OO OO OO

i i+ 1

OO

. . .

OO

n

Figure 2.1: The braid generator σi of Bn

2.2 The Algebra U(g)⊗n

Let g be a finite dimensional C-vector space with a bilinear map [ , ] : g × g → g,

called the Lie bracket, satisfying the following two conditions for all x, y, z ∈ g:

(1) (antisymmetry, equivalent to alternating [x, x] = 0)
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[x, y] = −[y, x]

(2) (Jacobi identity)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

Then g quipped with such a Lie bracket is a Lie algebra. The adjoint representation

ad: g → End(g) is defined by adx(y) = [x, y]. The symmetric bilinear Killing form

B : g ⊗ g → C is defined by B(x, y) = trace(adxady). If the Killing form is non-

degenerate, g is called a semi-simple Lie algebra.

As g is a complex vector space g has orthonormal basis {Iµ} with respect to the

Killing form. See [4, Lemma 16.14].

The Lie algebra g embeds into the universal enveloping algebra U(g) of g, defined

to be the associative algebra over C with multiplicative unit 1, generated by a basis

{Xi} of g satisfying the relations XiXj − XjXi = [Xi, Xj]. It is known that this

algebra does not depend on the choice of basis {Xi}. See [4, exercise 15.8] .

The Lie algebra action of g on a finite dimensional vector space V extends to an

action of U(g) on V . See [4, Definition 7.2 and Lemma 15.10]. This action can then

be extended to a component-wise action of U(g)⊗n on V ⊗n by defining

(x1 ⊗ · · · ⊗ xn)(v1 ⊗ · · · ⊗ vn) = x1v1 ⊗ · · · ⊗ xnvn,

for xi ∈ U(g) and vi ∈ V . In particular, this defines the action (via linear extension)

of such elements as
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τij =
∑
µ

1⊗ · · · ⊗ 1⊗ Iµ ⊗ 1⊗ · · · ⊗ 1⊗ Iµ ⊗ 1⊗ · · · ⊗ 1 ∈ U(g)⊗n

on V ⊗n, where Iµ appears in the ith and jth factors of the tensor product U(g)⊗n,

with 1 ≤ i 6= j ≤ n.

2.3 The 1-form τn

Define on Xn the differential system

dW =
~

2π
√
−1

∑
1≤i<j≤n

τij
dzi − dzj
zi − zj

W, (2.1)

with complex parameter ~, referred to as the Knizhnik-Zamolodchikov equation, or

KZ equation. A solution is a smooth function W : Xn → V ⊗n satisfying (2.1). The

right hand side of (2.1) contains the 1-form

τn =
~

2π
√
−1

∑
1≤i<j≤n

τij
dzi − dzj
zi − zj

on Xn, taking values in U(g)⊗n. This 1-form defines a connection (see [8]) d− τn on

the trivial vector bundle Xn × V ⊗n. An arbitrary connection Γ is said to be flat if it

satisfies dΓ− Γ ∧ Γ = 0.

Remark. For α ∈ Ω1(Xn, U(g)⊗n), and v, w ∈ TpXn for some p ∈ Xn the standard

wedge product gives (α ∧ α)(v, w) = α(v)α(w) − α(w)α(v). See [2, pgs. 1-11] for

standard facts on forms. As α is operator or matrix-valued by virtue of the action of

U(g)⊗n on V ⊗n, α(v) and α(w) do not necessarily commute in the operator algebra.

Consequently, α ∧ α may be nonzero.

In particular, it is the flatness of d−τn that permits construction of the monodromy

representations of π1(Xn) = Pn, and ultimately Bn, the full braid group. In general,
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a representation can be constructed from any given flat connection on Xn. It is this

more general setting that we address first.
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CHAPTER 3

MONODROMY REPRESENTATION OF THE BRAID

GROUP

This chapter is devoted to the construction and verification of certain properties of

the so called parallel transport map, properties that allow us to subsequently define a

map on homotopy classes [γ] of paths γ in Xn and Xn/Sn. Assigning homotopy classes

of paths to a corresponding parallel transport map induces the desired monodromy

representations. Proposition 3.1.1 will be used in demonstrating Lemma 3.1.2 of

Section 3.1. The proof of Proposition 3.1.1 is addressed in Section 3.2. The statement

of Proposition 3.1.1 first is a matter of expositional choice.

3.1 Parallel Transport and Path Composition

Proposition 3.1.1. Given a smooth manifold X and a non-commutative algebra A

acting on a complex vector space V ′, let α ∈ Ω1(X,A). If the connection d−α is flat,

then for functions W : X → V ′, the differential equation (d− α)W = 0 (note the KZ

equation is of this form) with arbitrary initial condition v = W (x0) has a unique local

solution W in a neighborhood of any point x0 ∈ X .

The following lemma requires defining the parallel transport map on the fibers V ′

of the trivial bundle X×V ′ → X. This definition requires the following constructions.

Consider a path γ : I → X connecting the point x0 with an arbitrary point x in a



10

neighborhood of x0, i.e., γ(0) = x0 and γ(1) = x. A 1-form on the unit interval

I can be obtained from α via the associated pullback γ∗α. This defines a function

wγ : I → A, by γ∗αt = wγ(t)dt, with wγ(t)dt ∈ Ω1(I, A). Note that wγ(t) = α(γ∗
∂
∂t

)t.

Consider the differential equation

df

dt
= wγf, (3.1)

for functions f : I → V ′. Let f vγ (t) denote the solution with f vγ (0) = W (x0) = v. Also

define f vγ (1) = W (x). We can now define the parallel transport map µγ : V ′γ(0) → V ′γ(1)

as follows:

µγ(v) = f vγ (1),

or

µγ : f vγ (0) 7→ f vγ (1),

where γ(0) = x0, and γ(1) = x. Also V ′γ(t) indicates the fiber over any point γ(t) ∈ X

with V ′γ(t) equal to V ′.

V ′

X

v

µγ(v)

The lift of γ

x0

γ

Figure 3.1: The graph of W
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Lemma 3.1.2. Given a path γ : I → X,

(a) The map µγ is linear, i.e.,

µγ(v + w) = µγ(v) + µγ(w),

and

µγ(λv) = λµγ(v).

for λ ∈ C.

(b) Given η, γ : I → X such that η(1) = γ(0), then

µγη = µγ ◦ µη.

(c) If γ ' η then µγ = µη. In particular, if γ−1γ ' ∗ then

µγ−1γ = µ∗ = idV ′ .

The map µγ is also sometimes referred to as the holonomy operator along γ.

Proof. (a) It needs to be shown that fλvγ (1) + fλwγ (1) = λf v+wγ (1). Given that

(3.1) is a homogeneous differential equation, the solution space is a linear space.

Given two solutions fλvγ and fλwγ of (3.1), their sum is then a solution as well, with

initial condition λ(v + w). This solution is precisely λf v+wγ . Thus µγ is linear (by

construction).

(b) For two paths η, γ : I → X, define the composite path
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γη(t) =


η(2t) if 0 ≤ t ≤ 1

2
,

γ(2t− 1) if 1
2
≤ t ≤ 1.

The aim is to show

f vγη(t) =


f vη (2t) if 0 ≤ t ≤ 1

2
,

f
fvη (1)
γ (2t− 1) if 1

2
≤ t ≤ 1.

(3.2)

Then

µγη(v) = f vγη(1) = f
fvη (1)
γ (1) = µγ(f

v
η (1)) = µγ(µη(v))

for all v ∈ V ′, showing the parallel transport map is well defined with respect to path

composition.

For t ∈ [0, 1
2
],

wγη(t)dt =(γη)∗αt

=η∗α2t

=wη(2t)d(2t)

=2wη(2t)dt.

Thus

wγη(t) = 2wη(2t). (3.3)

Since f vγη(t) solves
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df

dt

∣∣∣∣
t

= wγη(t)f(t), with f(0) = v,

from (3.3) it also solves

df

dt

∣∣∣∣
t

= 2wη(2t)f(t), with f(0) = v. (3.4)

Let g(t) = f vη (2t). Then

dg

dt

∣∣∣∣
t

=2
df vη
dt

∣∣∣∣
2t

=2wη(2t)f
v
η (2t)

=2wη(2t)g(t).

As g(0) = v, g solves (3.4). Thus f vγη(t) and f vη (2t) agree on [0, 1
2
].

For t ∈ [1
2
, 1],

wγη(t)dt =(γη)∗αt

=γ∗α2t−1

=wγ(2t− 1)d(2t− 1)

=2wγ(2t− 1)dt.

Thus

wγη(t) = 2wγ(2t− 1). (3.5)

Since f vγη(t) solves

df

dt

∣∣∣∣
t

= wγη(t)f(t), with f

(
1

2

)
= f vη (1),
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from (3.5) it also solves

df

dt

∣∣∣∣
t

= 2wγ(2t− 1)f(t), with f

(
1

2

)
= f vη (1). (3.6)

Let g(t) = f
fvη (1)
γ (2t− 1). Then

dg

dt

∣∣∣∣
t

=2
df

fvη (1)
γ

dt

∣∣∣∣
2t−1

=2wγ(2t− 1)f
fvη (1)
γ (2t− 1)

=2wγ(2t− 1)g(t).

As g
(
1
2

)
= f vη (1), g solves (3.6). Thus f vγη(t) and f

fvη (1)
γ (2t − 1) agree on [1

2
, 1]. This

proves (3.2) and thus (b) holds.

(c) This follows from Proposition 1.

3.2 Homotopy Invariance of Parallel Transport

This section provides a proof of Proposition 3.1.1, which is a standard result. See

e.g. [8, Chapter 9].

Using the same constructions as the Lemma 1, consider a path φ : I → X con-

necting the point x0 with an arbitrary point x in a neighborhood of x0, i.e., φ(0) = x0

and φ(1) = x. For arbitrary v in the fiber V ′x0 , define the map

fφ(t) : v 7→ f vφ(t).

Then fφ(t) ∈ Aut(V ′). Thus the automorphism fφ(t) corresponds to a family of

solutions satisfying (3.1), effectively indexed by the initial condition v. Thus
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df(t)

dt
= α

(
φ∗
∂

∂t

)
t

f(t) (3.7)

has solution fφ(t), with fφ(0) = idV ′ .

Let θ0 and θ1 be two paths connecting x0 and x lying within a neighborhood

of x0. As local paths they are homotopic. Hence, between them there exists a

homotopy ψ : I × I → X such that θ0([0, 1]) = ψ(({0} × [0, 1]) ∪ ([0, 1] × {1})) and

θ1([0, 1]) = ψ(([0, 1]× {0}) ∪ ({1} × [0, 1])). The associated pullback

ψ∗α = p(x, y)dx+ q(x, y)dy,

defines a one form ψ∗α ∈ Ω1(I × I, A). Define the differential equations

∂P (x, y)

∂x
= p(x, y)P (x, y), P (0, y) = idV ′ (3.8)

∂Q(x, y)

∂y
= q(x, y)Q(x, y), Q(x, 0) = idV ′ . (3.9)

Let P (x, y) and Q(x, y) denote the respective solutions. Define three paths I → I× I

as follows:

ι : t 7→ (t, 0)

γT : t 7→ (T, t)

ρ : t 7→ (t, 1).

Define the composite path τT : [0, 2]→ I × I by
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τT (t) =


ι(t) if 0 ≤ t ≤ T,

γT (t− T ) if T ≤ t ≤ T + 1,

ρ(t− 1) if T + 1 ≤ t ≤ 2.

(3.10)

Then

fψ◦ρ(0) = fψ◦γT (0) = fψ◦ι(0) = idV ′ .

Notice that Im θ0 = Im (ψ ◦ τ0) and Im θ1 = Im (ψ ◦ τ1).

ι

I × I

γT

ρ

(T, 0)

(T, 1)

•

•

Figure 3.2: The path τT on the unit square

The aim is to show that given ψ ◦ τT : [0, 2]→ X,

fψ◦τT (2)

does not depend on T .

From previous notation is the equality µφ = fφ(1). Used throughout is the com-

patibility of path composition with composition of the corresponding automorphisms.

That is to say, given appropriately compatible paths γ, η : I → X,
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µγη = µγ ◦ µη,

which was shown previously. Alternatively,

fγη(a+ b) = fγ(a) ◦ fη(b),

with γ : [0, a]→ X and η : [0, b]→ X.

For the path ψ ◦ ι in X, the associated pullback is

(ψ ◦ i)∗α = i∗(ψ∗α)

= (p ◦ i)i∗dx+ (q ◦ i)i∗dy.

As i has unit speed, i∗
∂
∂t

= ∂
∂x

. Thus i∗dx = dt and i∗dy = 0. This gives

dfψ◦ι(t)

dt
= (p ◦ i)(t)fψ◦ι(t)

= p(t, 0)fψ◦ι(t), fψ◦ι(0) = idV ′ .

From (3.8), it’s clear that P (t, 0) satisfies this identical differential equation with

respect to t. In particular, fψ◦ι(T ) = P (T, 0).

In a similar fashion, it can be shown that fψ◦γT (t) = Q(T, t), and fψ◦ρ(t) = P (t, 1).

Lemma 3.2.1.

fφ−1(1) = fφ(1)−1

Proof. Define the inverse path φ−1

φ−1(t) = φ(1− t).
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Since

dφ−1

dt

∣∣∣∣
t

= −dφ
dt

∣∣∣∣
1−t

and α is linear on the tangent bundle TX, it follows that

wφ−1(t) = −wφ(1− t).

Let g(t) = fφ(1− t). Then

dg

dt

∣∣∣∣
t

= − dfφ
dt

∣∣∣∣
1−t

(3.11)

= − wφ(1− t) ◦ fφ(1− t) (3.12)

= wφ−1(t) ◦ fφ(1− t). (3.13)

Further, define h(t) = fφ(1− t) ◦ fφ(1)−1. From (3.11-3.13), it follows that

dh

dt

∣∣∣∣
t

= − dfφ
dt

∣∣∣∣
1−t
◦ fφ(1)−1

= − wφ(1− t) ◦ fφ(1− t) ◦ fφ(1)−1

= wφ−1(t) ◦ fφ(1− t) ◦ fφ(1)−1

= wφ−1(t) ◦ h(t).

As h(0) = idV ′ , it’s clear that h satisfies (3.7) with respect to φ−1. Thus fφ−1(t) =

fφ(1− t) ◦ fφ(1)−1. In particular, Lemma 3.2.1 holds.

Resuming the proof of Proposition 3.1.1, as fψ◦ρ(T ) = P (T, 1), Lemma 2 gives
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f(ψ◦ρ)−1(T ) =fψ◦ρ(T )−1

=P (T, 1)−1.

Then

fψ◦ρ(1)fψ◦ρ(T )−1fψ◦γT (1)fψ◦ι(T ) = P (1, 1)P (T, 1)−1Q(T, 1)P (T, 0). (3.14)

The invariance of the right side of (3.14) with respect to T is shown in Appendix C.

(Note it is only there that the flatness of d− α is used.) It remains to show (3.13) is

equal to fψ◦τT (2).

From (3.10), it follows that

wψ◦τT (t) =


wψ◦ι(t) if 0 ≤ t ≤ T,

wψ◦γT (t− T ) if T ≤ t ≤ T + 1,

wψ◦ρ(t− 1) if T + 1 ≤ t ≤ 2.

It then follows from (3.7) that

fψ◦τT (t) =


fψ◦ι(t) if 0 ≤ t ≤ T,

fψ◦γT (t− T )fψ◦ι(T ) if T ≤ t ≤ T + 1,

fψ◦ρ(t− 1)fψ◦γT (1)fψ◦ι(T ) if T + 1 ≤ t ≤ 2.

In particular,

fψ◦τT (2) = f(ψ◦ρ)|[T,1](1)f(ψ◦γT )|[0,1](1)f(ψ◦ι)|[0,T ]
(T ).

As
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f(ψ◦ρ)|[T,1](1)f(ψ◦ρ)|[0,T ]
(T ) = f(ψ◦ρ)|[0,1](1),

it is immediate that

f(ψ◦ρ)|[T,1](1) = f(ψ◦ρ)|[0,1](1)f(ψ◦ρ)|[0,T ]
(T )−1.

This equates (3.14) and fψ◦τT (2). This establishes the proposition.

For verification that the connection d − τn is flat, and consequently Proposition

3.1.1 is applicable to the KZ equation, see [6, pg. 452] or [9, pg. 106]. Consequently,

for a closed path γ : I → Xn, Lemma 1 defines the parallel transport map µγ : V ⊗nγ(0) →

V ⊗nγ(1). As a homotopy class of γ corresponds to a pure braid in Xn, this combines

with the established properties of µγ to induce the monodromy representation of the

pure braid group via the assignment [γ] 7→ µγ. In short, this assignment induces a

homomorphism

Pn → Aut(V ⊗n).

Theorem 3.2.2. The assignment above defines a homomorphism.

m : Bn → Aut(V ⊗n).

Proof. Consider the left action given by

s(v1 ⊗ · · · ⊗ vn) = vs−1(1) ⊗ · · · ⊗ vs−1(n)

for s ∈ Sn and v1, ..., vn ∈ V . It is then possible to define a right action of Sn on the

trivial vector bundle Xn × V ⊗n given by
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(z1, ..., zn; v)s = (zs(1), ..., zs(n); s
−1v) (3.15)

for s ∈ Sn, (z1, ..., zn) ∈ Xn, and v ∈ V ⊗n. The resulting quotient space (Xn ×

V ⊗n)/Sn is a (nontrivial) vector bundle over Xn/Sn, where the composition

Xn × V ⊗n
p−→ Xn

q−→ Xn/Sn

is constant on the equivalence classes of (Xn×V ⊗n)/Sn, where p is the projection and

q is the quotient map. For a closed path γ : I → Xn/Sn based at [x0] = [(z1, ..., zn)],

a given s ∈ Sn determines a lift γ̃ : I → Xn with γ̃(0) = x0 and γ̃(1) = sx0 =

(zs(1), ..., zs(n)). (The action of Sn on V ⊗n is employed in the next section.) The same

construction of parallel transport µγ̃ : f vγ̃ (0) 7→ f vγ̃ (1) defines a linear map on the fiber

(still identified with V ⊗n) of the nontrivial bundle (Xn×V ⊗n)/Sn. Alternatively, it is

clear that the KZ equation is invariant under the action of Sn, and consequently d−τn

descends to a (flat) connection on Xn/Sn. From either perspective, as a closed path

in Xn/Sn corresponds to an arbitrary braid in Bn, the assignment [γ̃] 7→ µγ̃ induces a

homomorphism Bn → Aut(V ⊗n). A more explicit definition will be provided for the

case n = 3 in Section 4.1.1.



22

CHAPTER 4

SOLVING THE KZ EQUATION

The purpose of this chapter is to solve the KZ equation in the cases n = 2, 3 and

explicitly compute the monodromy representation for generators of the braid groups

B2 and B3. This in effect computes the representation in general, as automorphisms

are multiplied, or composed, just as braid generators are multiplied. As a repre-

sentation is a group homomorphism, in particular the braid relations will persist

in Aut(V ⊗n). To that end, we compute the monodromy along paths that (up to

homotopy) correspond to the braid generators.

4.1 The Case n = 2

When n = 2, the KZ equation (2.1) reduces to

dW =
~τ12

2π
√
−1

dz1 − dz2
z1 − z2

W.

Placing Arg(z2 − z1) ∈ (−π, π], the solution

W (z1, z2) = (z2 − z1)~τ12/2π
√
−1v

is single-valued, with W (0, 1) = v ∈ V ⊗ V . See Appendix A for verification of

the solution wherein we define zA as exp(A log z) and briefly discuss Was a multi-
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valued (non)function. The braid generator σ of B2 can be represented by the path

γ(t) = (z1(t), z2(t)) for t ∈ I, where

z1(t) =
1

2
(3− eπ

√
−1t) and z2(t) =

1

2
(3 + eπ

√
−1t).

This gives

W (γ(t)) = e~τ12t/2v.

Note that γ(t) defines a loop in X2/S2, starting and ending at the point [1,2]. Re-

stated, the simple transposition s1, which generates S2, determines the lift γ(t) ∈ X2

of [γ(t)] ∈ X2/S2. As (3.15) explicitly states, the aforementioned right action of Sn

on the trivial vector bundle Xn × V ⊗n means within the nontrivial vector bundle

(Xn × V ⊗n)/Sn is the equality

(2, 1; v1 ⊗ v2) = (1, 2; v2 ⊗ v1). (4.1)

Subsequent to the monodromy action of σ on v1 ⊗ v2 ∈ V ⊗ V given by

v1 ⊗ v2 7→ e~τ12/2(v1 ⊗ v2),

realized by taking t from 0 to 1, (4.1) calls for a permutation P : V ⊗ V → V ⊗ V of

the resulting entries. The representation for σ is then given by

m(σ)(v1 ⊗ v2) = P
(
e~τ12/2(v1 ⊗ v2)

)
.
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4.2 The Case n = 3

When n = 3, the KZ equation (2.1) appears as

dW = h
(
τ12d log(z1 − z2) + τ13d log(z1 − z3) + τ23d log(z2 − z3)

)
W, (4.2)

with h = ~/2π
√
−1. For G̃ : X3 → V ⊗3, define

W (z1, z2, z3) = (z3 − z1)h(τ12+τ13+τ23)G̃(z1, z2, z3) (4.3)

to affect a change of variable. Exterior differentiation of (4.3) combines with (4.2) to

give

dG̃ = h
(
τ12d log

z2 − z1
z3 − z1

+ τ23d log
(z2 − z1
z3 − z1

− 1
))
G̃. (4.4)

Making the change of variable z = (z2− z1)/(z3− z1) defines G̃(z1, z2, z3) = G(z) and

from (4.4) results the linear differential equation

dG =
1

2π
√
−1

(
Ad log z +Bd log(z − 1)

)
G, (4.5)

where G(z) belongs to C〈〈A,B〉〉, the ring of formal series in non-commuting variables

A and B. Appendix B verifiesG(z) is a solution of the above if and only ifW (z1, z2, z3)

is a solution of the KZ system (4.2), with A = ~τ12 and B = ~τ23.

Lemma 4.2.1. There exist unique solutions G0 and G1 of (4.5) such that
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G0(z) = f(z)zA/2π
√
−1 (4.6)

G1(z) = g(1− z)(1− z)B/2π
√
−1, (4.7)

where f and g are respective analytic continuations in respective neighborhoods of 0

and 1 in C, with f(0) = g(0) = 1 ∈ C〈〈A,B〉〉. Both zA/2π
√
−1 and (1− z)B/2π

√
−1 are

well defined on C \ ( ]−∞, 0] ∪ [1,∞[ ).

Proof. Consider the second formula of the lemma. Let A = A/2π
√
−1 and B =

B/2π
√
−1. Exterior differentiation of (4.7) gives

dG1

dz
= −dg

dz

∣∣∣∣
1−z

(1− z)B − g(1− z)
B(1− z)B

(1− z)

= −dg
dz

∣∣∣∣
1−z

(1− z)B + g(1− z)
B(1− z)B

(z − 1)

=

(
−dg
dz

∣∣∣∣
1−z

+ g(1− z)
B

(z − 1)

)
(1− z)B. (4.8)

As G1 is of a single variable z, (4.5) can be expressed as

dG1

dz
=

(
A

z
+

B

z − 1

)
G1. (4.9)

Setting (4.8) equal to (4.9) gives
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−dg
dz

∣∣∣∣
1−z

=
A

z
g(1− z) +

Bg(1− z)

z − 1
− g(1− z)B

z − 1

=
A

z
g(1− z) +

1

z − 1
[B, g(1− z)]

=
A

z
g(1− z)− 1

1− z
[B, g(1− z)]. (4.10)

We construct a formal power series solution to (4.7) first by letting

g(1− z) = 1 +
∞∑
k=1

gk(1− z)k,

which gives

−dg
dz

∣∣∣∣
1−z

=
∞∑
k=1

kgk(1− z)k−1. (4.11)

Equating (4.10) and (4.11) gives

∞∑
k=1

kgk(1− z)k−1 =
A

z
g(1− z)− 1

1− z
[B, g(1− z)]

=
A

z

(
1 +

∞∑
i=1

gi(1− z)i

)
− 1

1− z

[
B, 1 +

∞∑
m=1

gm(1− z)m

]

=
∞∑
n=0

A(1− z)n

(
1 +

∞∑
i=1

gi(1− z)i

)
−
∞∑
m=1

[B, gm](1− z)m−1.

(4.12)

Equating coefficients of (1− z)k−1 in (4.12) gives

kgk = A(1 + g1 + · · ·+ gk−1)− [B, gk],

or in terms of the operator k id + ad(B),
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(k id + ad(B))(gk) = A(1 + g1 + · · ·+ gk−1). (4.13)

Since

(
k id + ad(B)

)−1
=

1

k id + ad(B)

=
1

k

 1

id−
(
−ad(B)

k

)


=
1

k

∞∑
i=0

(
−ad(B)

k

)i
=
∞∑
i=0

(−1)iad(B)i

ki+1
,

gk is uniquely determined (iteratively or recursively) by g1, . . . , gk−1, and the inverse

operator
(
k id + ad(B)

)−1
applied to (4.13) gives

gk =
∞∑
i=0

(−1)i

ki+1
ad(B)i

(
A(1 + g1 + · · ·+ gk−1)

)
.

Refer to [10] for details assuring the convergence of g(1− z) in C〈〈A,B〉〉.

A solution for (4.6) can be obtained in a similar fashion. See [6, pg. 464] for

details.

For example,

g1 =
∞∑
i=0

(−1)iad(B)i(A)

= A− [B,A] + [B, [B,A]]− [B, [B, [B,A]]] + · · · ,



28

and

g2 =
∞∑
i=0

(−1)i

2i+1
ad(B)i(A+ g1)

=
1

2
(A+ g1)−

1

4
[B,A(1 + g1)] +

1

8
[B, [B,A(1 + g1)]]

− 1

16
[B, [B, [B,A(1 + g1)]]] + · · · .

As G0 and G1 are both non-zero solutions of (4.7), they differ by an invertible

element in C〈〈A,B〉〉. We define such an element as the formal series ΦKZ(A,B) ∈

C〈〈A,B〉〉, relating the two solutions by

G0 = G1ΦKZ(A,B). (4.14)

The element ΦKZ(A,B) is referred to as the Drinfel’d associator, which is of interest

beyond the present context. See [3, pg. 837] where ΦKZ(A,B) is expressed in terms

of Riemann’s zeta function.

Recalling our change of variable, where G̃(z1, z2, z3) = G(z), from (4.3) we have

induced solutions of the KZ system (4.2) appearing as

W0(z1, z2, z3) = (z3 − z1)h(τ12+τ13+τ23)G0(z)

= (z3 − z1)h(τ12+τ13+τ23)f(z)zhτ12

= f

(
z2 − z1
z3 − z1

)(
z2 − z1
z3 − z1

)hτ12
(z3 − z1)h(τ12+τ13+τ23) (4.15)

= f

(
z2 − z1
z3 − z1

)
(z2 − z1)hτ12(z3 − z1)h(τ13+τ23) (4.16)

and



29

W1(z1, z2, z3) = (z3 − z1)h(τ12+τ13+τ23)G1(z)

= (z3 − z1)h(τ12+τ13+τ23)g(1− z)(1− z)hτ23

= g

(
z3 − z2
z3 − z1

)(
z3 − z2
z3 − z1

)hτ23
(z3 − z1)h(τ12+τ13+τ23) (4.17)

= g

(
z3 − z2
z3 − z1

)
(z3 − z2)hτ23(z3 − z1)h(τ12+τ13), (4.18)

where (4.15-4.18) follow from the commutativity of β = τ12 + τ13 + τ23 with both τ12

and τ23. As W0 = (z3 − z1)hβG0(z) and W1 = (z3 − z1)hβG1(z), from (4.14) we have

W0 = W1ΦKZ(~τ12, ~τ23). (4.19)

4.2.1 Explicit Representation for the Case n = 3

In order to determine m : B3 → Aut(V ⊗3), we first calculate the monodromy repre-

sentation for the pure braid group P3. Consider the path γ(t) = (0, εe2π
√
−1t, 1) ∈ X3,

representing the pure braid generator σ2
1 when t is running from 0 to 1. From (4.16)

is

W0(γ(t)) = f(εe2π
√
−1t)(εe2π

√
−1t)~τ12/2π

√
−1 (4.20)

= f(εe2π
√
−1t)ε~τ12/2π

√
−1e~τ12t, (4.21)

where (4.21) follows from (4.20) per the discussion in Appendix A. This gives

W0(γ(0)) = f(ε)ε~τ12/2π
√
−1

and
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W0(γ(1)) = f(ε)ε~τ12/2π
√
−1e~τ12 .

This determines the parallel transport µγ : f(ε)ε~τ12/2π
√
−1v 7→ f(ε)ε~τ12/2π

√
−1e~τ12v

given v ∈ V ⊗3. Consequently,

m(σ2
1) = f(ε)ε~τ12/2π

√
−1e~τ12

[
ε~τ12/2π

√
−1
]−1

[f(ε)]−1 . (4.22)

Let the pure braid generator σ2
2 be represented by a composition of paths beginning

with the real valued path γ1 from (0, ε, 1) to (0, 1 − ε, 1), followed by γ2 = (0, 1 −

εe2π
√
−1t, 1), and finished by γ3, a real-valued path from (0, 1− ε, 1) back to the base

point (0, ε, 1).

Parametrizing γ1(t) = (0, (1− 2ε)t+ ε, 1) for t ∈ [0, 1] from (4.16) is

W0(γ1(t)) = f((1− 2ε)t+ ε)((1− 2ε)t+ ε)~τ12/2π
√
−1.

This gives

W0(γ1(0)) = f(ε) exp

[
~τ12

2π
√
−1

log(ε)

]
= f(ε)ε~τ12/2π

√
−1,

and similarly,

W0(γ1(1)) = f(1− ε)(1− ε)~τ12/2π
√
−1.

From (4.14) is the equality

f(1− ε)(1− ε)~τ12/2π
√
−1 = g(ε)(ε)~τ23/2π

√
−1ΦKZ(~τ12, ~τ23).
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The monodromy along the path γ1 is then

g(ε)(ε)~τ23/2π
√
−1ΦKZ(~τ12, ~τ23)

[
ε~τ12/2π

√
−1
]−1

[f(ε)]−1 .

To compute the monodromy along γ2 from (4.16) is

W0(γ2(t)) = f(1− εe2π
√
−1t)(1− εe2π

√
−1t)~τ12/2π

√
−1

= g(εe2π
√
−1t)(εe2π

√
−1t)~τ23/2π

√
−1ΦKZ (4.23)

= g(εe2π
√
−1t)ε~τ23/2π

√
−1e~τ23tΦKZ ,

where ΦKZ = ΦKZ(~τ12, ~τ23), and (4.23) follows from (4.19). This gives

W0(γ2(0)) = g(ε)ε~τ23/2π
√
−1ΦKZ

and

W0(γ2(1)) = g(ε)ε~τ23/2π
√
−1e~τ23ΦKZ .

The monodromy along the path γ2 is then

g(ε)ε~τ23/2π
√
−1e~τ23

[
ε~τ23/2π

√
−1
]−1

[g(ε)]−1 .

Since γ3 and γ1 are inverse paths, and as m(g) ∈ Aut(V ⊗3) for g ∈ B3, the monodromy

along γ3 is the inverse of the monodromy along γ1. The monodromy along the

composite path γ3γ2γ1 is then

m(σ2
2) = f(ε)ε~τ12/2π

√
−1Φ−1KZe

~τ23ΦKZ

[
ε~τ12/2π

√
−1
]−1

[f(ε)]−1 . (4.24)
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Definition 4.2.2. Two linear representations ρ1 , ρ2 : G→ Aut(V ) of a group G are

equivalent if and only if there exists f ∈ Aut(V ) such that ρ1(g) = f−1ρ2(g)f for all

g ∈ G.

We redefine the representation given by (4.22) and (4.24) with a global conjugation

in Aut(V ⊗3). Let m : P3 → Aut(V ⊗3) be given by

m(σ2
1) = e~τ12

m(σ2
2) = Φ−1KZe

~τ23ΦKZ ,

where m is more precisely regarded as the simplest representative from an equivalence

class of representations, monodromy representations being unique up to global con-

jugation, where a change of base point in X3 affects a conjugation within Aut(V ⊗3).

It is worth noting that, just as tr : Aut(W ) → C is invariant under similarity, the

isotopy invariants derived from monodromy representations via (modified) traces are

invariant under conjugation as well.

Consider the pure braid generator σ2
1 represented by the loop γ : [0, 2]→ X3 with

basepoint (0, ε, 1), such that [γ(t)] = [γ(1 + t)] ∈ X3/S3 for t ∈ [0, 1]. For t ∈ [0, 1], γ

is a path in X3 from (0, ε, 1) to (ε, 0, 1), which projects to a loop in the quotient space

X3/S3 with basepoint [0, ε, 1]. Likewise, for t ∈ [1, 2], γ is a path in X3 from (ε, 0, 1) to

(0, ε, 1), which again projects to the same loop in the quotient space X3/S3. Running

the complete path γ amounts to running through the projected loop twice in the same

direction within the quotient space X3/S3. We already know the monodromy of this

path (in the ordered space) is e~τ12 . Thus e~τ12 should simply be the square of the

monodromy given by running along either path which projects to a single navigation

of the loop in X3/S3. Thus
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[
monodromy along γ|[0,1]

]2
=
[
monodromy along γ|[1,2]

]2
= e~τ12 .

It is also clear that the braid generator σ1 is equally well represented by γ for t ∈ [0, 1]

as well as for t ∈ [1, 2], i.e., by a path in X3 which projects to the loop in X3/S3. Thus

the monodromy action of σ1 on v1⊗v2⊗v3 ∈ V ⊗3 is given by v1⊗v2⊗v3 7→ e~τ12/2(v1⊗

v2 ⊗ v3), not taking into account the permutation P12 : v1 ⊗ v2 ⊗ v3 7→ v2 ⊗ v1 ⊗ v3 of

the tensor factors induced by lifting.

Proposition 4.2.3. Define m(γ) = sim(γ̃), where γ̃ ∈ X3 is the lift of the loop

γ ∈ X3/S3 induced by the permutation si = π(σi) where σi is the braid generator

represented by the loop γ ∈ X3/S3. This defines a representation

m : B3 7→ Aut(V ⊗3).

Sketch of proof. Let γ and η be loops in X3/S3 with the same basepoint, with γ̃, η̃ ∈

X3 their respective lifts induced by the respective permutations s1, s2 ∈ S3. The lift

of the composite path ηγ is given by η̃γ = s1(η̃)γ̃ induced by the permutation s2s1.

Using the definition,

m(ηγ) = s2s1m(s1(η̃)γ̃)

= s2s1m(s1(η̃))m(γ̃)

= s2s1s
−1
1 m(η̃)s1m(γ̃)

= s2m(η̃)s1m(γ̃)

= m(η)m(γ),

where the second equality follows from the fact that we have a homomorphism for
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arbitrary paths in X3. The third equality follows from a comparison of respective

monodromies for a path in X3/S3 and its lift in X3. Using the symmetry of the KZ

equation with respect to permutations, the argument uses the same overall construc-

tions as in the pure braid case, as the claim deals exclusively with a path in X3.

Specifically, a 1-form (s1(η̃))∗α defines an ODE on the unit interval as in (3.7).

The full monodromy action of σ1 is then given by v1 ⊗ v2 ⊗ v3 7→ P12(e
~τ12/2(v1 ⊗

v2 ⊗ v3)).

The analogous argument applies in the case of the braid generator σ2 and the

corresponding permutation P23 : v1 ⊗ v2 ⊗ v3 7→ v1 ⊗ v3 ⊗ v2. The monodromy

representation m : B3 → Aut(V ⊗3) is then defined by

m(σ1) = P12e
~τ12/2

m(σ2) = P23Φ
−1
KZe

~τ23/2ΦKZ .
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APPENDIX A

THE SOLUTION W FOR N = 2 AND
MULTIVALUEDNESS

Here we verify the solution W in the n = 2 case, and briefly discuss restrictions
on W . We define for z ∈ C and operator (or matrix) A

zA ··= exp(A log z) (A.1)

and

eA ··=
∑ 1

k!
Ak.

Together these define

exp(A log z) =
∞∑
k=0

(log z)k

k!
Ak.

It follows that

d(zA) = d(exp(A log z)) = d

(
∞∑
k=0

(log z)k

k!
Ak

)

=
∞∑
k=0

Ak

k!

d

dz
(log z)kdz

= A

(
∞∑
k=1

Ak−1

(k − 1)!
(log z)k−1

)
dz

z

= A exp(A log z)
dz

z
= AzAd log z. (A.2)

From this result we verify that

W (z1, z2) = (z2 − z1)~τ12/2π
√
−1v (A.3)
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solves

dW =
~τ12

2π
√
−1

dz1 − dz2
z1 − z2

W,

where Arg(z2−z1) ∈ (−π, π], and W (0, 1) = v ∈ V ⊗V . Applying (A.2) to (A.3)
gives

dW = d(z2 − z1)~τ12/2π
√
−1

=
~τ12

2π
√
−1

(z2 − z1)~τ12/2π
√
−1d log(z2 − z1)

=
~τ12

2π
√
−1

dz1 − dz2
z1 − z2

W

which verifies the solution.

Restricting Arg of W is acknowledging the log of a complex number is not a
function. It is multivalued. See [1, pgs. 46-52] for discussion and examples of
multivalued functions. Similarly, in general

(εe2π
√
−1t)~τ12/2π

√
−1 6= ε~τ12/2π

√
−1e~τ12t.

The result of (A.2) requires choosing a branch of the log, in which the above
equality follows from

(εe2π
√
−1t)~τ12/2π

√
−1 = exp

[
~τ12

2π
√
−1

log(εe2π
√
−1t)

]
= exp

[
~τ12

2π
√
−1

(log ε+ log(e2π
√
−1t))

]
= exp

[
~τ12

2π
√
−1

[log ε+ 2π
√
−1t]

]
= exp

[
~ log ε

2π
√
−1

τ12 + ~τ12t
]

(A.4)

= exp

[
~ log ε

2π
√
−1

τ12

]
exp [~τ12t] (A.5)

= exp
[
log ε

~τ12
2π
√
−1

]
exp [~τ12t]

= ε~τ12/2π
√
−1e~τ12t.

Here (A.5) follows from (A.4) as λ1τ12 and λ2τ12 commute for λ1, λ2 ∈ C.
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APPENDIX B

COMPATIBILITY OF SOLUTIONS UNDER CHANGE
OF VARIABLE FOR N = 3

We want to verify that G(z) is a solution of (4.5) if and only if W (z1, z2, z3)
is a solution of the KZ system (4.2), with A = ~τ12 and B = ~τ23. Let β =
τ12 + τ13 + τ23. As G is dependent on a single variable z, (4.5) may be expressed
as

dG

dz
=

(
A

z
+

B

z − 1

)
G

= h

(
τ12
z

+
τ23
z − 1

)
G(z). (B.1)

Since

dW = h
(
τ12d log(z1 − z2) + τ13d log(z1 − z3) + τ23d log(z2 − z3)

)
W (B.2)

=
3∑
i=1

∂W

∂zi
dzi,

assuming W is a solution to the KZ system (B.2) means, in particular, that

∂W

∂z2
= h

(
τ12

z2 − z1
+

τ23
z2 − z3

)
W

= h

(
τ12

z2 − z1
+

τ23
z2 − z3

)
(z3 − z1)hβG(z), (B.3)

where the second equality follows from W (z1, z2, z3) = (z3−z1)hβG(z). Also from
this comes

∂W

∂z2
= (z3 − z1)hβ

G′(z)

z3 − z1
, (B.4)

and equating (B.3) and (B.4) gives
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0 = (z3 − z1)hβ
G′(z)

z3 − z1
− h

(
τ12

z2 − z1
+

τ23
z2 − z3

)
(z3 − z1)hβG(z)

= (z3 − z1)hβ
[
G′(z)

z3 − z1
− h

(
τ12

z2 − z1
+

τ23
z2 − z3

)
G(z)

]
(B.5)

= (z3 − z1)hβ
[
G′(z)− h

(
τ12

z3 − z1
z2 − z1

+ τ23
z3 − z1
z2 − z3

)
G(z)

]
= (z3 − z1)hβ

[
G′(z)− h

(
τ12
z

+
τ23
z − 1

)
G(z)

]
,

where (B.5) follows from the commutativity of β with both τ12 and τ23. Thus
G satisfies (B.1). The converse is left to the reader. It may be helpful to use

G(z) =
[
(z3 − z1)hβ

]−1
W (z1, z2, z3).
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APPENDIX C

T INVARIANCE

The aim is to show fψ◦τT (2) does not depend on T , or

d

dT

[
P (1, 1)P (T, 1)−1Q(T, 1)P (T, 0).

]
= 0 (C.1)

Proof. All differentiation is done component-wise, where P,Q, p, q ∈ End(V ′)
have matrix representations. Since

∂P (x, y)−1

∂x
= −P (x, y)−1

∂P (x, y)

∂x
P (x, y)−1,

in particular, from (8) it follows that

dP (T, 1)−1

dT
= −P (T, 1)−1

dP (T, 1)

dT
P (T, 1)−1

= −P (T, 1)−1p(T, 1). (C.2)

Recall
ψ∗α = p(x, y)dx+ q(x, y)dy

defines the one-form ψ∗α ∈ Ω1(I × I, A). The connection d− α is flat, meaning
dα− α ∧ α = 0. Consequently

ψ∗(dα−α∧α) =

(
q(x, y)(p(x, y)− p(x, y)q(x, y) +

∂q(x, y)

∂x
− ∂p(x, y)

∂y

)
dxdy = 0,

From the above, we have

−qp =
∂q

∂x
− ∂p

∂y
− pq. (C.3)

Also note
∂2Q(x, y)

∂x∂y
=
∂2Q(x, y)

∂y∂x
. (C.4)
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Define

f(x, y) =
∂Q(x, y)

∂x
− p(x, y)Q(x, y) +Q(x, y)p(x, 0).

Differentiating both sides with respect to y, and using (3.9), (C.3), and (C.4), it
can be shown that

∂f

∂y
= qf.

It follows from (3.9) that f(x, 0) = 0. Thus, f(x, y) = 0. Thus,

∂Q(x, y)

∂x
= p(x, y)Q(x, y)−Q(x, y)p(x, 0),

and in particular,

dQ(T, 1)

dT
= p(T, 1)Q(T, 1)−Q(T, 1)p(T, 0). (C.5)

The equalities (3.8), (3.9), (C.2), and (C.5) are sufficient to show (C.1).


