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ABSTRACT

VPEvolve is a free and open source application that utilizes a Visual Programming

Environment (VPE) for the setup of the Genetic Algorithm (GA), for optimization

of computational models. Specifically, the User Interface uses connected glyphs to

represent the genetic operators of mutation, reproduction, fitness and selection. These

glyphs give the user an intuitive way to set the parameters for the GA, and better

visualization of the population’s flow through these operators.

VPEvolve is currently being developed alongside research being done in Biocom-

puting to create models of cellular regeneration based on the regenerative properties

of Planaria or flatworms. Since these models are difficult to produce by hand, GAs

can be particularly useful to facilitate the process of model creation and validation.

VPEvolve is a client-side application that allows the user to setup the parameters for

the GA, runs a search using the GA, utilizes a modeling platform, such as CellSim

(Cellular Simulator), to perform simulations, evaluates the fitness of each individual

with user-defined fitness evaluators and presents the fitness values of the individuals

in a population to the user as the evolutionary search is performed.
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CHAPTER 1

INTRODUCTION

The use of advanced laboratory techniques, such as high-throughput screening, cause

an accumulation of massive amounts of data describing complex systems. This data

is exponentially increasing due to the advancement of these laboratory techniques

and has the tremendous potential to accelerate and aid scientific inquiry, and reveal

insights into how complex systems operate in a way that has heretofore been impos-

sible. However, there are significant challenges that must be overcome in order to

realize this potential. The volume and complexity of the data is so great that an

unaided human has little chance to assimilate it to the degree necessary to reliably

deduce higher-order, governing principles. As an example of this challenge, robotic

microarray systems are used for pharmaceutical drug screenings to test thousands

of molecules. The test data are then accumulated for analysis. Similar experiments

conducted by an unaided human would be impossible to accomplish in the same

amount of time.

Software tools can provide a way to overcome the challenges with data. Software

tools can be used by researchers to be more productive with their work by aiding

them with identifying correlations and causal factors, analyzing and visualizing data,

and suggesting further experiments. For example, calculation-based tools can speed

up the process of analyzing data and creating summaries; clustering tools can find
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new, meaningful groupings of data; and visualization tools can present data in ways

that make it easier to understand. In addition to these types of software tools, there

are also more advanced tools that can aid researchers in simulating complex systems.

For example, software simulations can be run using models that range from single-cell

biochemical reactions to multi-cellular environments that simulate tissues, organs or

even whole organisms. Such simulations have the potential to be extremely powerful

tools for wet-bench researchers, enabling them to develop and validate models that are

hypothesized from experimental data, and even to use such models as the predictive

basis for further experimentation.

For example, a perfect computational model of the influenza virus, one that

reacted just as the virus would to every possible perturbation, could be used to

identify drug targets for inhibiting the reproduction of the virus in the body, or to

prevent infection. However, developing models that fully explain how these types of

systems work is an imposingly difficult task. Even relatively simple biological systems

can be astoundingly complex in their interactions, with highly non-linear responses,

and complex self-regulatory feedback loops. Moreover, these systems are difficult

to elucidate, requiring large amounts of experimental data gathered under varying

conditions in order to fully characterize them. This is particularly true when trying

to model whole cells or groups of cells, where there are elaborate biochemical path-

ways and interactions, including processes that maintain homeostasis, extra-cellular

signaling, and cell division.

We believe that data driven software tools can facilitate model derivation of

complex systems. These tools can help researchers derive models by leveraging the

massive amounts of data produced from experiments and simulations, performing

what has traditionally been the work of humans (i.e. developing theories and model
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derivation), and automate this process. Automated model derivation has the potential

to clarify currently unexplained problems, unveil unknown processes, and lead to new

biological discoveries.

Embryogenesis is an area of research where automated model derivation could

help clarify the mechanism which describes how an embryo forms and develops.

This process begins as a single cell, which develops into separate lineages over a

number of cellular divisions. These groups continue to develop and eventually become

specific tissues and organs such as the central nervous system, digestive system, and

musculature. Throughout this process each cell must determine whether to maintain

its pluripotent potential or differentiate into particular cell type using information

location and neighbors based upon short and long-range cellular communication [11].

Many of the mechanisms that organisms use to guide the process of embryogenesis

are used in a similar manner to manage the process of cellular regeneration (i.e. tissue

repair in response to damage). Planaria, more commonly known as flatworms, are

model organisms in this area of research. Planaria have the impressive ability to

regenerate large amounts of damaged or missing cells and tissues, due in part to

the abundant stem cell population throughout the organisms [1]. Their regeneration

potential is impressive considering that Planaria are complex organisms possessing

bilateral symmetry, musculature, an intestinal tract, and a central nervous system

including a brain [21, 19]. Remarkably, an excised piece of a flatworm no larger than

0.4% the size of the whole organism can regenerate and regrow into a fully-functioning

flatworm including all of the differentiated tissue removed during the excision [14].

This is demonstrated in Figure 1.1, where an intact worm has been dissected into

seven independent pieces as a result of six lateral cuts. Between a period of one and

two weeks, each fragment independently responds to the perturbation and reshapes
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its morphology to produce smaller replicas of the adult worm that can then grow into

larger versions akin to the original worm. An astounding feature of this regeneration

is that the worm appears to maintain the original head and tail orientation following

regeneration, even when the excised region no longer contains either head or tail tissue.

These creatures and their impressive regenerative capabilities have fascinated and

perplexed biologists for centuries [16]. Despite being the subject of many regenerative

experiments, including drug treatments [15, 5], amputations [19], irradiation, and gene

ablation or silencing using RNA interference [17, 20, 18, 24, 23],there are major gaps

in our understanding of the mechanisms underlying this regenerative potential [2].

Even after hundreds of years and extensive experimentation and research there is still

a limited understanding of planarian regeneration and no comprehensive model has

been found that can explain more than one or two aspects of this regenerative ability

[13].

A number of pathways have been identified that have complementary roles in

regeneration. For example, regeneration occurs normally upon elimination of either

direct cellular communication (i.e., gap junctions) or neuronal signaling, but not

both. Such complementary and complex signaling mechanisms make it challenging to

understand regeneration processes and to model their behavior, particular if the mod-

els are developed manually. Our team has developed various simple computational

regeneration models to explore the strengths and limitations of their use in explaining

planarian regeneration. One model uses a molecular concentration gradient extending

longitudinally throughout the worm to provide head and tail orientation to the virtual

organism. Another model attempts to identify whether or not a head or tail region

is present in current worm by essentially responding to a ping sent to the head and

tail, respectively. A third model develops polarity at the cellular level based upon
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Figure 1.1: Planaria 6-cut Experiment

the orientation of head and tail in the intact worm. Upon excision, it “knows” which

side of the cell is oriented towards the head and which side orients towards the tail,

much as a bar magnet “knows” the orientation of its poles after being cut into smaller

pieces. Each of these models provides valuable information to the virtual organism,

but they all have short-comings that limit their ability to respond to a large dataset

of experimental outcomes.

Our ultimate goal is to develop a model that can faithfully simulate many, if not

all, of the available experiments performed on this organism over the past centuries,

with the hope that it can provide predictive capabilities. To aid in this process, we

are looking to develop and use automated search to find suitable models. The search
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is based upon a powerful agent-based cell modeling platform, CellSim, which allows

simulation of multicellular organisms. The current version of this software contains

a number of useful features to support this endeavor, which includes a 3-D interface

for visualization as well as tools for performing experimental manipulations within

the client-server architecture. I have developed an evolutionary search application,

VPEvolve, to enable model discovery using an automated search process. The design,

implementation, and use of which will be the focus of this thesis.
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THESIS STATEMENT

VPEvolve is a software tool that can be used by researchers for automated model

derivation and can be an integral part in their experimental research. VPEvolve

utilizes a visual programming environment (VPE) that provides a simple and intuitive

way to create a genetic algorithm (GA) setup and is implemented in a generic way

that allows any problem space to be explored. These features make VPEvolve an

applicable tool for researchers in disciplines other than biology.
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CHAPTER 2

BACKGROUND

This chapter provides an introduction to computational modeling, the use of modeling

in the biological sciences, the role of evolutionary search, and the potential benefits

of visual programming environments when developing software tools.

2.1 Computational Modeling

Computational modeling is used to study the behavior of complex systems by uti-

lizing mathematics, physics and computer science, to run computer simulations.

Researchers can use the results of simulations to make better predictions about

what will happen in real systems that are being studied in response to changing

conditions. Therefore, research can be expedited with computational modeling by

allowing scientists to create and run thousands of simulated experiments in parallel, in

order to identify which wet-bench experiments will be most likely to produce valuable

information for the problem being studied.

Furthermore, computational modeling allows experiments to be repeated again

exactly the same. The experiments can also be forked at any point, which allows a

researcher to change a parameter then proceed with both options or even rewind and
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change a parameter. Computational modeling also allow the system to be inspected

in detail during the experimentation process, where inspection of a biological system

often perturbs its progression. Moreover, operational theories of the model can be

derived from these computational experiments.

Computational models are generally complex nonlinear systems, and therefore

intuitive, direct, analytical solutions are not readily available. This model complexity

means that there are a number of parameters that characterize the system being

studied. Therefore, model discovery often requires adjusting the parameters of the

system, and studying the differences in the results of the experiments, instead of

mathematically deriving an analytical solution to the problem.

Since biological models are often simulating the actions and interactions of au-

tonomous agents, agent-based modeling (ABM) is well suited to create these com-

putational models. ABMs are composed of interacting intelligent agents within an

environment. Therefore, they can be used to solve problems that are difficult or

impossible for an individual agent or a monolithic system to solve. The goal of

an ABM is to search for explanatory insight into the collective behavior of agents,

which do not necessarily need to be intelligent, typically in natural systems and

obeying simple rules. Figure 2.1 is derived from a computation model of a region of

double-stranded DNA. Each atom, listed and colored, is an autonomous agent whose

interactions are simulated based upon a set of biochemical rules. Specifically, the

bars connecting each atom represent a covenant bond, and the “ladder” rungs of the

DNA molecule are held in place by Hydrogen bonds.
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Figure 2.1: Multi-agent Computational Model of a DNA Chain

2.2 Biological Modeling

Multi-cellular systems biology is an emerging field aiming at a mechanical under-

standing of the processes of physiology, pathology, and development, which is done

by studying the multi-scale interactions at the subcellular, cellular and tissue levels.

In order to explore and predict a system’s behavior and to integrate quantitative

data, there is an increasing need for computational simulation.

The aim of multi-scale modeling is to represent the behavior of complex systems

across a wide range of spatial and temporal scales. This requires the use of cost-

effective and efficient computational techniques. Over the past decades, several multi-

scale methods have been developed in other fields of science to meet this requirement.
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Recently, a number of modeling and simulation platforms have become available

that facilitate the construction and simulation of multi-scale models of multi-cellular

systems. There is a range of multi-scale modeling methods that could potentially

be employed in systems biology. Shah and Wambaugh have classified these methods

as either continuous or discrete methods, based on the strategy the methods use

to integrate the various scales [22]. These models simulate cellular behavior in a

multi-cellular context. Cellular behavior is modeled with process diagrams using

deterministic and/or stochastic model elements.

Creating a model that explains cellular behavior and cellular interaction is complex

enough even without introducing the fact that tissues encompass a number of different

cell types that behave differently. Moreover, the model definitions themselves for

such a system can be complicated since each cellular process needs to be noted and

explained. It makes manual attempts intractable.

2.3 Evolutionary Search

Evolutionary search helps automate definition, testing, and modification of these

complicated models. Evolutionary searches employ a genetic algorithm (GA), which

is a heuristic solution-search or optimization technique, originally motivated by the

Darwinian principle of evolution through (genetic) selection. A GA uses an abstract

version of evolutionary processes to find solutions to given problems, by operating

on a population of artificial individuals. Each individual represents a solution to a

problem and has a fitness, a real number which is a measure of how good a solution

it is for the particular problem.
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The beginning of an evolutionary search starts off with a randomly generated

population of individuals. Then to produce a successor population, a GA carries

out a process of fitness-based selection and recombination, which creates the next

generation. Parent individuals are selected and their descriptions are recombined

to produce child individuals during recombination. These child individuals then pass

into the successor population. Through this iterative process, a sequence of successive

generations evolves and the average fitness of the individuals tends to increase until

some stopping criterion is reached. In this way, a GA evolves a best solution to a

given problem.

The development and success of GAs have greatly contributed to a wider interest in

computational approaches based on natural phenomena and it is now a major strand

of the wider field of Computational Intelligence, which encompasses techniques such

as Particle Swarm Optimization, Neural Networks, Artificial Immunology and Ant

Colony Optimization [10].

2.4 Visual Programming Languages

Visual programming languages (VPL) can provide benefits to understanding the

definition of a GA by providing a more intuitive visual indication of the parame-

ter setup of the GA in a graphical user interface (GUI). A VPL is used within a

visual programming environment (VPE) where the user can manipulate the program

elements visually instead of defining them textually. A VPL has a different convention

of programming where tokens are defined in a VPE, using more than one dimension,

as any potentially significant object or relationship and expressions are defined as
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a combination of one or more tokens. This convention is in contrast to the more

traditional approach of textual programming languages that use a single dimension

(top to bottom) and where the tokens are defined as words. There are a number of

examples of visual expressions in VPLs, such as demonstrations of actions performed

by graphical objects, diagrams, icons, or even hand-drawn sketches. Additionally,

many VPLs are based on the design of screen objects such as boxes, treated as

entities and connected by connections such as lines, arcs or arrows, representing the

relationship of the entities [8].

It might be argued that traditional textual programming languages employ two di-

mensions in defining the code syntax and semantics where the x-dimension represents

the language as a strings and the y-dimension is used to make distinction between code

sections and statements. This description can only be considered multi-dimensional in

a limited way, since the spatial representation in the y-dimension doesn’t actually add

to the languages syntax and semantics, but specifically allows clearer understanding

of the language through that separation. This extra dimension can be remove and

the language can be written on a single line without any loss of syntax or semantics,

although it would be very difficult to write and read at that point [9].

The use of visual expressions in a VPE allow an editing or creation shortcut

which can generate code that may or may not have syntax differing from that written

textually. Today VPEs are used commercially to help professional programmers by

providing tools, referred to as Integrated Development Environments (IDE), that ease

the creation and maintenance of traditional textual languages. IDEs allow program-

mers to use textually languages that they are already used to and know, but gives a

graphical interface that helps increase productivity through code completion from the

documented APIs, or adding boiler plate code that is easily created automatically.
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Use of VPEs for textual languages help to further research in VPLs, and provide a

conduit to putting research into practice, which can provide a gradual migration to

using VPLs.

2.5 Previous Work

The earliest work in visual programming was in two directions: visual approaches

to traditional programming languages (e.g., executable flowcharts), and approaches

that deviated significantly from traditional approaches (such as programming by

demonstrating the desired actions on the screen). There were advantages that many

of these early systems had, which seemed exciting and intuitive on demonstrated

example programs, however when attempts were made to extend them to programs

that were more realistically sized, it caused a number of problems. These problems

caused many to believe that visual programming was unsuited to real work, that

it was just an academic exercise, leading to an early disenchantment with visual

programming.

To solve these problems, visual programming researchers began to develop ways

to use visual programming for only selected parts of software development, thereby

increasing the number of projects in which visual programming could help. By

following this approach, straightforward visual techniques were widely incorporated

into programming environments that support textual programming languages, to

visually combine textually-programmed units to build new programs, to support

electronic forms of software engineering diagrams for creating and/or visualizing

relationships among data structures, and to replace unwieldy textual specification
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of GUI layout. Since then there have been many successful VPEs released and

used in the commercial industry of programming including, VisualWorks, which

supports the Smalltalk language, and Visual Basic for the programming language

Basic [6], while other VPEs have instead focused on coarse programming, such as the

Computer-Aided Software Engineering (CASE) tools. These tools support having

a visual specification, by way of diagrams and relationships among the program

modules, which allow it to automatically generate composition code [9].

Other visual programming researchers took the approach to develop domain-

specific visual programming systems, which would increase the kinds of projects

suitable for visual programming. Through this approach, the number of projects that

could be programmed visually increased as each new supported domain was added.

This approach quickly produced a number of successes both in research and in the

marketplace. Today there are commercial VPLs and VPEs available in many domains;

examples include programming laboratory data acquisition (National Instruments’

LabVIEW), programming scientific visualizations (Advanced Visual Systems’ AVS),

programming telephone and voice-mail behavior (Cypress Research’s PhonePro), and

programming graphical simulations and games (Stagecoach Software’s Cocoa) [9]. A

number of software-agent generators are creating allowances for macros that assist

with repetitive tasks to be inferred from end-user manipulations, and are starting to

become embedded in personal computing software as well.
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CHAPTER 3

VPEVOLVE

3.1 Motivation

VPEvolve is a client user interface that utilizes a visual programming environment

(VPE) that allows setup of the GA parameters, manages the evolutionary search,

and gathers and summarizes the progression of the search. Some motivations for

VPEvolve were to create an application that could identify computation models

in an automated fashion, use computer resources, such as network bandwidth and

computational calculations, efficiently and have an interface that is simple and easy

to use for researchers. Since creating complicated models is such a difficult manual

task, VPEvolve uses evolutionary search to identify models that explain specific real

world experiments. VPEvolve also utilizes distributed solutions to perform the search

efficiently and with high resource utilization.

VPEvolve uses a VPE that was inspired by Cantata, which was developed by

Kubica for the Khoros system [25]. Previous work [12] shows that VPEs are more

intuitive to use by non-software engineers when applied to a system-dependent en-

vironment. This is especially important because most users of VPEs will belong to

the same category of not be software domain professionals. As shown in Figure 3.1,
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Figure 3.1: Cantata VPE

Cantata uses components called glyphs that are connected together to provide its

work-flow, which was used in a similar way in VPEvolve. Specifically, VPEvolve has

an emphasis on glyphs and inter-connectivity, which is used to manage the genetic

operator work-flow of the evolutionary search. A glyph based VPE reduces the

time for new users to become proficient with the user interface (UI) as well as give

experienced users a better understanding of their genetic operator work-flow through

visualization. In summary, this type of VPE provides a more intuitive environment

to design and set up an evolutionary search.

An additional motivation for VPEvolve was to develop an application with sig-

nificant improvements in usability, flexibility, and resource management compared
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with the python-based evolutionary search application (CSGA) that was designed as

a companion to Cellsim, and was unable to work with any other modeling platforms.

3.2 Design Features

The mentioned motivations were considered heavily when designing the implementa-

tion for VPEvolve. The programming language used was Java, a compiled language,

to stream-line its run-time efficiency. VPEvolve was created using the NetBeans IDE

and GUI builder, which enables user interface customization at the source code level

[7]. Additionally, this customizable interface also allows users to save their client

desktop environment (window layout, locations, etc.) according to their preferences

and desired work-flow. The decision to use NetBeans and Java makes the client source

code simpler, which improves tasks of future maintenance and development.

VPEvolve was designed as a general platform for initializing, managing and mon-

itoring an evolutionary search. This generality is attributed to the modular architec-

ture of the application, which theoretically allows it to be used as an evolutionary

search application in any problem space. Another aspect of VPEvolves modularity is

the weak coupling between the user interface code and the core logic that manages

the GA.

VPEvolve was designed as a collection of modules to allow re-implementation

of either specific GUI components, the console-mode, or genetic algorithm imple-

mentation with minimal effect to any other modules. Such architecture specifically

allows another implementation of the genetic algorithm setup substituted in place

of the current implementation. Additionally, the current genetic operators can be

re-implemented for another modeling platform.
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3.2.1 Visual Programming Environment

VPEvolves main window is the VPE, where the genetic operator components are

created, connected and the GA parameters are set. The connected components (i.e.,

glyphs) are used to represent the genetic operators of the GA. Since a GA includes

the application of genetic operators to individuals from a population over a given

generation, the VPE window is organized to highlight this workflow (Figure 3.2).

Figure 3.2: VPEvolve VPE

There is a list of genetic operators in the VPE window, which use the drag and

drop feature to pick up and place the operators in any arrangement that specifies
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the desired genetic operator work-flow. If used with CellSim, as the simulation

server, there are four available operators to begin with, namely Selection, Mutation,

Reproduction, and Fitness. Each of these operators have input and output points.

Connections can be made between the output of one glyph and the input of another.

In particular the Mutation operator allows the user to choose it to be a Nested

Mutation, where the user can pick more than one mutation to apply at that point in

the genetic operator work-flow. The user interface was designed to allow easy removal

of glyphs or their connections by choosing the delete option following a right mouse

click.

Glyphs are initially given a unique numbered name, which allows them to be

identified in the operator network. These names can be changed at anytime through

the pop-up menu, making them easier to identify. Additionally, mutation operators

also display which part of the individual description to be mutated for quick differ-

entiation. Upon starting an evolutionary search, VPEvolve does a simple validation

to check that all components are connected, (i.e., there exists a path form Source to

Sink). If this condition is violated then the tool reports the violating glyph’s name,

so the glyph with the error can be quickly found in the VPE and the error corrected.

The VPE window also contains both a Source and a Sink. The Source is where

the new generation of individuals begin when the genetic operator application starts

and the Sink is where all the individuals for a single generation end up after all the

operators have been applied. When a fork, where the output of one glyph connects

to the input to more than one other glyph, occurs in the operator network the output

individuals of one glyph are copied to the next glyph(s), which can cause the number of

individuals in a population to grow quickly. However, populations across generations

should remain the same size and to accommodate this a Sink operator is used. The
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Sink operator uses a cramming function that will prune the number of individuals

down to the predetermined population size before moving to the simulation and fitness

evaluation phases. This new set of individuals represents the population for the

subsequent generation.

3.2.2 Configuration File

The configuration for VPEvolve file is in XML format, and contains two main sections,

Core and GUI. The Core portion is requested from GA logic code, which will be

further explained in Section 3.3.2. Meanwhile the GUI portion contains the relative

locations for all the glyphs and their inter-connectivity.

3.2.3 Genetic Algorithm Parameter Setup

The parameters for each genetic operator are defined prior to performing an evolu-

tionary search. Since glyphs in VPEvolve represent genetic operators and are visual

components, double-clicking any of them creates a temporary window that slides out

from the right. Depending on which operator is selected, editable parameter settings

will be displayed. For example as shown in Figure 3.3, the VPE is the section in the

middle containing gridlines. The left side of the application contains a toolbox of 4

glyphs (Mutation, Selection, Reproduction, and Fitness, respectively), which can be

added to the VPE with drag and drop functionality to construct the genetic operator

network. Double-clicking on the mutation glyph in Figure 3.3 brings up the Genetic

Operator Editor as shown in the right panel. For the mutation operator this window

displays the entire schema for the individual in a tree structure. By clicking on any
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Figure 3.3: Genetic Operator Parameter Setup Window

of the nodes of the tree, the panel to the right of the tree is populated with either

editable parameter fields or a selection box that allows you to add a specific type of

mutation that applies to the node selected. For example, if the Effect node under

the Genome node is selected, which describes the amount of promotion a molecule

will have on a gene assembly, a selection box is populated with Numeric Mutations

because effect is the data type float. By using the selection box, a mutation operator

such as NormalMutation can be chosen and added, which will show the editable

parameters for that mutation. Once focus is lost on the Genetic Operator Editor

window, by clicking somewhere outside of its bounds, the window slides to the right

and disappears so that the VPE can be clearly seen.

A simple text editor was included in VPEvolve to make certain operations such

as editing the individual description file or a custom Python fitness evaluator more

fluid while using the VPEvovle application. This text editor allows edit operations
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to be done to files without having to leave the application and make edits in another

application. The individual description consists of an xml that defines properties such

as where cells are located, gene assemblies, chemistry equations and the molecule

catalog. In VPEvolve, the individual XML file can be imported and edited in

the internal text editor to make desired changes. This editor highlights syntax for

convenience of editing and complying with correct XML syntax (Figure 3.4).

Figure 3.4: XML Editor for Individuals

Arguably, the most important components of a GA are the fitness evaluator(s) or

fitness function(s). Before the GA can select individuals for the next generation,

each individual needs to be compared with the expected outcome of the actual

planarian regeneration, by evaluating the individual’s fitness after the most recent

genetic operation. This is accomplished through the evaluation of a fitness function.
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These fitness functions need to be supplied to VPEvolve, which are very specific to

the algorithm used and how it is calculated based on the individual description.

Fitness evaluators are very specific to the system and problem under consideration.

Due to its wide acceptance and use by biologists, fitness evaluators are user-defined

and coded in Python, that is easy to learn and a flexible programming language.

Contributing to its flexibility is its ability to invoke library functions from higher

performing compiled languages like C and C++. Therefore, a Python file import

option is provided in VPEvolve, as well as an editor to make any necessary changes

(Figure 3.5). Prior work in our lab has led to development of a number of fitness eval-

uators implemented as C libraries accessible from Python. These include evaluators

such as Difference Distribution, Overlay Distribution and Graph Edit Distribution.

3.2.4 Evolutionary Search Status View

After the GA parameters are defined, the experiment can be started from another

tabbed window referred to at the Status Window as shown in Figure 3.6. This window

displays the results of the GA as it runs and has options to start the GA, more the GA

forward by one generation, pause the GA after it has been started, and restart the GA.

If the user clicks the start button, the genetic operator network is validated followed

by creation of a configuration file that saves the glyph locations, connectivity, and

genetic operator parameters for each glyph. The main portion of the status window

consists of two tables. The upper table displays a list of the individuals that comprise

the population of the specified generation. The lower table displays a list of all the

offspring that are created in the genetic operator application process.
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Figure 3.5: Custom Python Fitness Evaluator Editor

At the start of an experiment the individual description file is used to generate

the appropriate number of initial individuals as specified by the population size

parameter. The fitness values for the initial population are then calculated. After this

initial startup phase, each generation is processed in a similar manner, consisting of

application of genetic operators followed by a simulation and fitness evaluation until

convergence is reached (e.g., a fitness of 1.0 is found). The status window displays

both a list of the current generation’s individuals and the list of individuals that have

been altered by the genetic operators so the progression of the fitness evaluations can

be seen (Figure 3.7).
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Figure 3.6: Evolutionary Search Status Window

3.2.5 Console Mode

Since VPEvolve uses a GA as its underlying method of performing evolutionary

searches, a considerable benefit can be gained by doing some processing and cal-

culations in parallel on a computer cluster, especially when large population sizes

are specified for running the GA. Fitness evaluators are one of the most expensive

operations when running the GA, and since the evaluator needs to be run for each

individual at every generation, there can be a significant bottleneck at this phase of

the search. However since the fitness of one individual does not depend on another

individual, each individual’s fitness can be evaluated separately and in parallel.
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Figure 3.7: VPEvolve Evolutionary Search in GUI

To take advantage of this distributed solution, VPE was designed to be loosely

coupled between the GUI and GA logic. The GA logic doesn’t need to know anything

about the GUI to complete an evolutionary search. Moreover, a console only mode was

developed in VPEvolve where only a configuration file and output directory need to be

provided to run an evolutionary search. This was designed be straightforward with a

distributed solution. For example, by logging into a computer cluster via the console,

VPEvolve can start from that node and take full advantage of the clusters processing

power. Since most remote computer clusters use a console interface, this design makes

VPEvolve more versatile, because it can perform evolutionary searches without the
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need to forward a GUI, which often makes interaction slow or unresponsive. Moreover,

all the same status information provided in the GUI is displayed to the console except

a table format (Figure 3.8).

Figure 3.8: VPEvolve Evolutionary Search in Console Mode

Additionally, the GUI mode can be used on a local workstation to create and

edit the GA configurations, parameters, and individual specification, which can be

saved to disk, then transferred over to a remote system (i.e. computer cluster), after

which VPEvolve can use that configuration to conduct the evolutionary search on the

remote system in console only mode.
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3.2.6 Integration with a Modeling Platform Through Middleman Soft-

ware

Since VPEvolve starts processes on separate nodes of a computer cluster, therefore it

was advantageous to delegate as much work to the compute nodes and keep GA logic

processing the same node as VPEvolve. The diagram in Figure 3.9 shows the process

of starting the middleman software on a separate node, doing a model simulation of

a single individual, calculating the fitness value and sending it back to VPEvolve.

Since VPEvolve was designed to be generic and be able to use any platform to run

simulations, middleman software was needed to correctly integrate with CellSim. The

middleman software interacts with CellSim as the simulation is in process, and once

the simulation is completed it calculates the fitness of the individual with the specified

fitness evaluator. This separation of functionality allows the simulation and fitness

evaluation, the most expensive calculations, to be done on a different node than

VPEvolve. Therefore, VPEvolve needs to simply create the new individuals for each

generation by applying the genetic operators, collect the fitness values, and report on

the progress of the search.

Once VPEvolve reaches the phase where it calculates the fitness values for the

individuals, it uses Swarm, a program that sends jobs to other nodes. These jobs start

a separate process of the middleman software at a specified node with an XML file

location that contains the description of the individual, the description of the fitness

evaluator, and the IP address and port where VPEvolve is running and waiting to

receive the calculated fitness values from the middleman software. The middleman

software then starts a CellSim instance and passes the individual description which

runs a specified simulation. CellSim will take one or more snapshots of the individual,
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Figure 3.9: VPEvovle Client-Server Individual Processing

which are used by the middleman software in the fitness evaluator to calculate the

fitness value. The middleman software then sends the fitness value for that individual

back to VPEvolve. If VPEvolve identifies the fitness value to be unique, it tells the

middleman software to save both the snapshot and individual description in a shared

folder for later analysis.

3.2.7 Evolutionary Search Checkpointing

As the evolutionary search progresses VPEvolve will save a list of individual de-

scriptions that comprise the population at the end of that generation and the GA

configuration in XML format, which is called a checkpoint, at specified intervals.

The default checkpoint operation in VPEvolve is every generation, however this in

configurable. These checkpoint files are useful if an evolutionary search needs to be

restarted at a particular point.
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When using the open operation in VPEvolve, either a GA configuration file can

be chosen which will load the setup parameters for the GA, or a checkpoint file

can be used to load both the GA configuration and the starting population where the

correct information about generation and population is preserved. During this process

of loading the file, VPEvolve will detect which file is being used and load the search

appropriately. The individual descriptions for our experiments typically consist of

a sheet of about 120 cells, which take up about 100KB of disk space. Therefore, a

typical GA setup with a population size of 100 individuals, each checkpoint file will

be about 10MB, and over 100 generations it will grow to 1GB of disk space. This is

obviously a problem if disk space is limited, so the user can specify at what generation

interval to checkpoint or choose to disable check pointing all together.

3.3 Architecture

3.3.1 Modular Design

VPEvolve was designed and implemented as a modular application, to ensure that the

GA logic and GUI are loosely coupled and to allow each module to be a stand-alone

portion of the interface. Moreover, because of this modularity, each module can

be replaced with another implementation of similar logic. For example, the main

window contains the VPE component, which was created as its own module; therefore,

a different implementation of the visual representation can be created and used in

its place. A ConsoleMode module was also created so that VPEvolve can run an

evolutionary search on a remote computer cluster where either graphical forwarding

is disabled or network bandwidth cannot support a GUI. Additionally, VPEvolve
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could be deployed on a remote system without any of the GUI modules which would

save disk space.

Figure 3.10 shows the critical modules that are used in VPEvolve where lines

represent internal dependencies. For simplicity and readability of the figure, some

Figure 3.10: VPEvolve Module Diagram

modules were left out, such as the Utilities module, because most of the modules

depend on it. In Figure 3.10 the UI is partitioned into distinct modules according

to their functionality. This abstraction makes maintenance more convenient and less

expensive, and module swapping for any of these components can easily be done.

An important note is that the ConsoleMode module has no dependencies to the UI

modules. Specifically, the ConsoleMode module and UI modules are only indirectly
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connected through the GeneticAlgorithmCore module, which in turn doesn’t depend

on any UI modules either. The GA logic actually runs self-contained and broadcasts

notifications of its progress to any processes waiting for those notifications.

3.3.2 Implementation of Genetic Operators

The Genetic Algorithm Core module contains the GA logic used in an evolutionary

search and describes how the genetic operators are applied and how communication

between VPEvolve and the middleman software is done. The implementation of the

genetic operators is contained in its own module. This separation of logic definition

and implementation allows new genetic operators to be implemented and added as

needed. If new operators are needed the GeneticOperator abstract class should be

implemented and be placed in the GeneticOperatorImpl module. When VPEvolve is

first opened, it searches this module for all the source files and registers them with

their appropriate factories in the GeneticAlgorithmCore module. Afterwhich, any

operator can be requested and returned from the operator’s factory. This factory

design pattern allows VPEvolve to contain and support new implementations of the

genetic operators without needing to change how the GA or VPE component code

works.

To allow integration and use with CellSim, the same genetic operators used in

CSGA are also implemented in VPEvolve, such as AddListMutation, TargetFitness-

Selection, and CrossoverReproduction, etc. Figure 3.11 shows the class architecture of

the Mutation genetic operator used in the CellSim implementation. Normal Mutation,

Range Mutation, and Relative Mutation, are a few currently implemented operators

that belong to the Mutation genetic operator category. These mutations define how
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Figure 3.11: VPEvolve Class Diagram

numeric values in the individual description are changed. The Mutation Operator is

a subclass of the Genetic Operator class, so that once an evolutionary search is run it

performs a single operation of applying all specified genetic operators in the operator

network. This approach allows the search to be run without the search understanding

all the definitions of subclass operators.

These genetic operators are implemented specifically to make modifications to the

scheme used by CellSim. This scheme file is used to identify the location for editing

the individual and for genetic operator category, there is a do<category>Operation

method, which directly edits xml tags of the individual description. By designing

VPEvolve in a modular way, other modeling platforms can be used in place of CellSim.

In order to use with another problem space, there are a few steps to follow:
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1. provide a scheme file in xml format that describes the individual (i.e., what the

components and properties it has)

2. provide genetic operators that describe how an individual should be manip-

ulated, implemented in Java and implement the corresponding GeneticAlgo-

rithmCore Class

3. provide a way to translate the individual from the xml format used in VPEvolve

(i.e., the provided scheme file) to the platform being used for simulation if the

scheme file format is incompatible

4. provide fitness evaluator(s) that will determine the fitness value of the individual

5. provide a middleman piece of software that is used to start the simulation

platform given an individual from VPEvolve, run the fitness evaluator and

report that result back to VPEvolve

Even though VPEvolve currently uses genetic operators that were designed specif-

ically for CellSim, most of the genetic operators are generic and based on the the data

type used for a specific individual property (e.g. integer, float, list, boolean, etc.).

Therefore, these operators could be easily repurposed to use for other problem spaces.
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CHAPTER 4

RESULTS

4.1 Comparison

This section provides a comparison between VPEvolve and CSGA. The following

areas will be covered, user interface, architecture, computer resource usage and per-

formance. VPEvolve uses a VPE for its user interface, which provides significant

benefit over parameter input in CSGA, since VPEvolve allows the user to visually

evaluate how the genetic operators are be applied. In contrast, CSGA only provides

a primitive interface to setup the GA, which requires that users specify the genetic

operators in tabbed views (Figure 4.1). This can lead to confusion about ther order

of operator application, especially since the tabbed views can be reordered and the

default order isn’t the actual order the operators are applied during the evolutionary

search. VPEvolve on the other hand shows precisely where operator application be-

gins (Source operator), how individuals flow through operator application and where

it ends (Sink operator), in a visually understandable way. Furthermore, VPEvolve

also provides additional flexibility for experiment setup.

Since part of VPEvolve’s motivation was to be a replacement for the CSGA

client and since the Andersen lab has done extensive research work using CSGA
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Figure 4.1: CSGA GA Parameter Setup View (Replacement Operator)

to study cellular regeneration in planaria, the ability to accurately convert the GA

configurations from previous evolutionary searches from the CSGA format to the

VPEvolve format was necessary. Otherwise any incompatibility between the CSGA

evolutionary search configuration file and the configuration file of VPEvolve would

lead to redoing the GA setup configuration for any revisited evolutionary searches.

For this reason, and the fact that the the genetic operator network in VPEvolve is

represented in a considerably different fashion than CSGA, a parser and translator

were also created. The parser and translator takes the CSGA configuration file and

extrapolates the connectivity, which is linear or one-dimensional for CSGA. This

linearity in CSGA is because each category of genetic operator (i.e. reproduction) can

only be set once, after which CSGA will process each category one by one. VPEvolve

assigns the appropriate glyphs for each operator, then they are assigned locations

that represent the linear position of the genetic operator work-flow (Figure 4.2). This
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Figure 4.2: CSGA Translated Evolutionary Search

one-dimensionality of the CSGA genetic operator workflow, is in contrast to the

flexibility of VPEvolve, which allows a multi-dimensional genetic operator work-flow.

This type of work-flow allows VPEvolve to create genetic algorithm setups with

greater complexity and that promote to explore parts of a search space that were

previously not possible.

VPEvolve also provides a clean console only mode, which was only recently

provided in CSGA. However the information provided in CSGA is difficult to read,

and is printed to the screen in a list that has unclear information, which lacks in

clarity comparing to VPEvolve. Thus Figure 3.8 shows how CSGA can lead to
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misunderstanding about the state of the search process when compared to Figure 4.3

because individuals aren’t identified in any way.

Figure 4.3: CSGA Console Mode

VPEvolve’s implementation uses computer resources more efficiently. In particular

it provides a significant computational and network bandwidth usage advantage,

due to the architecture used in VPEvolve. Figure 4.4 shows a comparison of the

architecture design of how the management of running the experiment and deriving

a fitness value for an individual is done for both CSGA and VPEvolve. As can be

seen CSGA only uses the separate nodes of the cluster to run the CellSim simulation.

Next, CSGA is sent the snapshot of the individual and perform the fitness evaluations

of each individual sequentially on the node CSGA is running. In contrast VPEvolve

uses the cluster node to run both the experiments and the fitness evaluation for

an individual. This means that the most time consuming tasks for processing one
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(a) CSGA

(b) VPEvolve

Figure 4.4: Client-Server Individual Processing

individual can be run separate from the main software, taking advantage of parallel

computation.

Because of this architecture, VPEvolve provides more efficient use of network

bandwidth. In both CSGA and VPEvolve the individual description needs to be
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sent to run the experiment, which has been about 100KB in size. However, CSGA

must be sent an individual snapshot from CellSim at least once for each individual,

which can depend on the experiment being performed. The studies being done in

the Andersen lab generate snapshots that are about 3MB in size. Therefore with

a population size of 1,000 network traffic could peak at 3GB if there are enough

nodes to run all simulations for the 1000 individuals in parallel. If CSGA is running

on a computer cluster this bandwidth would amount to inter-node traffic, in which

case there are a number of high-speed connections available such as InfiniBand which

could handle that amount of traffic, but such solutions require expensive equipment.

Comparatively, VPEvolve moves the fitness evaluation logic out to the same node as

experiment simulation. Therefore, the individual snapshot never needs to be sent back

to VPEvolve. After the fitness calculation, VPEvolve will receive a 64-bit number, the

fitness value. Therefore, for a population size of 1,000 individuals VPEvolve would

use 100MB of network bandwidth compared to at least 3GB for one snapshot per

individual with CSGA which is an order of magnitude improvement.

The other area where VPEvolve provides improvement over CSGA is in com-

putational efficiency. Since CSGA only uses parallel processing to run the CellSim

simulations, after it receives the snapshot for each individual it must calculate the

fitness value for each individual sequentially on the same node that CSGA is running.

Therefore, with population size of 100, there is a considerable bottleneck at the end

of each generation to calculate fitness values for each individual. Larger populations

of 1,000 or more become impractical, since the searches run in the studies performed

in the our lab generally take at least 100 generations to converge to a 1.0 fitness.

VPEvolve provides a significant improvement over CSGA, as shown in Table 4.1,

since the fitness calculations for each individual are done in parallel along with the
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simulation before communicating the result back it to VPEvolve. The average times

Runtime Comparison

Population Size VPEvolve CSGA (CSGA / VPEvovle)

5 8.665 31.214 3.60

10 16.923 34.667 2.00

25 33.473 57.889 1.73

50 60.359 117.899 1.95

100 116.496 185.067 1.59

250 276.577 486.286 1.76

500 556.069 941.791 1.70

Table 4.1: Average Time Elapsed for One Generation in Seconds (over 1000 runs)

shown in Table 4.1 were gathered using a small computer cluster with 8 compute

nodes, not including the master node, where each compute node has four 4-core

processors. As shown in the fourth column of the table, the ratio of time decreases and

converges around 1.7. This convergence happens because at population sizes larger

than the number of available cores to run in parallel, the cluster became saturated

and the distributed design solution used in VPEvolve stopped being beneficial. In

theory, if unlimited resources were available, VPEvolve would run in constant time

in relation to the population size because no matter the size of the population, the

simulations and fitness calculations could all be run in parallel. Whereas CSGA would

be dominated by the fitness evaluation calculation.
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4.2 Experiments

In order to derive a comprehensive model of planarian cellular regeneration, simula-

tions are being done in the Andersen lab using CellSim, where the worms are simulated

as shown in Figure 4.5, consisting of a simple sheet of cells having a head region

(purple) and a tail region (blue). The models in Figure 4.6, are able to reproduce

Figure 4.5: Wild-Type Worm

wet-bench experimental results from a single lateral cut as shown in Figure 4.7a.

After the single cut the worm is able to regenerate the missing tail on the portion left

with the head and vice versa as shown in Figure 4.7b.

(a) Gradient Based (b) Polarity Based

Figure 4.6: Planarian Cellular Models

Figure 4.6a is a model that uses a molecular concentration gradient to signal to

cells what cell type needs to be regenerated in the event of cell death. When the

single lateral cut is made, the side with the head (purple) knows that it needs to
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(a) Before Regeneration (b) After Regeneration

Figure 4.7: Single Lateral Cut Experiment

generate tail near the cut, because it still has the head molecular concentration and

the tail concentration has decayed away. Figure 4.6b depicts a model that has two

cellular subunits. One subunit points towards the head of the worm, and is labeled

with head polarity, and the other subunit points towards the tail and is labeled with

tail polarity. In this case, when the single lateral cut happens the correct regions of

head and tail are regenerated correctly because the cells along the cut know their

orientation and can turn into the correct cell type.

In another experiment where a “shark-bite” portion is removed from the side of

the worm, shown in Figure 4.8, the regeneration of neither a head region nor a tail

region is expected because the worm is still considered whole. However, both the

gradient and polarity models are not able to reproduce the wet-bench experimental

results (Figure 4.8) for this experiment, which means there are critical mechanisms

missing from either model that keep them from accurately representing planarian

cellular regeneration.

To show the ability of VPEvolve to automatically find models of cell regeneration

a new experimental setup was used which combines both the gradient and polarity

models.The experiment begins by removing the “shark-bite” of cells from the worm,

then the worm is allowed to achieve stability. Afterwhich, the worm is completely cut
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Figure 4.8: “Shark-bite” Cut Target Worm

in half laterally, where a line of cells are removed and then again allowed to achieve

stability. For this experimental setup the expected outcome would be the following:

After the “shark-bite” cut there should be no regeneration of head or tail because the

worm is considered to still be whole, but after the single lateral cut the side portion

with the head should regeneration a new tail region and the portion with the tail

should regeneration a new head region. When VPEvolve was used to run the GA for

this setup a model was was found that produced a 1.0 fitness, meaning it was able to

reproduce the wet-bench experimental results for both the “shark-bite” experiment,

and the single later cut experiment in tandem as shown in Figure 4.9.

Figure 4.9: 1.0 Fitness Worm Produced by VPEvovle
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CHAPTER 5

CONCLUSIONS

VPEvolve is a desktop application aimed to facilitate initialization, running, and

monitoring the progress of an evolutionary search. It was created as a free and open

source application, which utilizes a VPE to make GA setup more convenient and

efficient. Specifically, glyphs and connections are used to represent how individuals

flow through the genetic operator application of the GA, which is an intuitive visual

representation of how this work-flow proceeds.

VPEvolve offers improvements over a currently used GA setup implementation in

the Andersen lab (CSGA), which allow evolutionary searches to be carried out faster

and in a more efficient manner. Additionally, these improvements allow VPEvolve

to scale better when more resources are available for an evolutionary search with 1)

computational power and 2) network bandwidth. This is because VPEvolve manages

the calculations for fitness evaluations on the nodes of a computer cluster and send

the minimal amount of data over the network.

5.1 Future Directions

A few future directions where VPEvolve can be extended and other features added

are outlined below:
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Customizable Glyphs

Selection of a set of glyphs in the UI could give an option to create a custom glyph

that contains the glyphs and connections of the selection. This would allow sections

of repeating glyphs and connections to be more concise. The additional benefit would

be that the glyphs and interconnections could be better organized and labeled more

concisely, which would make the setup easier to understand.

GUI Hooking and Unhooking

Since the GA logic is completely separate from the UI, a feature could be intro-

duced to allow detaching the evolutionary search from either the console or the GUI.

After which you could log out of the remote machine, then login from somewhere

else, and reattach the GUI or console to the GA process running on the remote

machine. This would allow more flexibility as to how an evolutionary search could be

monitored. Allowing researchers to start an evolutionary search at one device, then

check the status of the search from another device or location (e.g., home/work).

Proof of Concept and Guide for Using Modeling Platforms

Because researchers might have a preference for a particular platform, or they

might want to compare two or more platforms’ results, VPEvolve was developed to

be loosely connected to CellSim or any modeling platform; therefore, users have the

option to choose not only CellSim, but any other modeling platforms for cellular

simulations. VPEvolve uses XML to describe an individual, which is what most

modeling platforms require to run their simulations. A proof of concept for how this

would work with a second modeling platform, and step-by-step guide would improve

implementation approachability.
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