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ABSTRACT 

Liver regeneration is a complex process that requires the coordinated expression 

of cytokines and growth factors.  One well-studied model of liver regeneration is partial 

hepatectomy (PH), in which removal of 70% of the liver initiates compensatory 

hepatocyte proliferation.  PH-induced liver regeneration requires the activation of 

resident macrophages (Kupffer cells), which produce cytokines that drive hepatocyte 

proliferation.  Monocyte chemoattractant protein-1 (MCP-1) is a chemokine that is 

known to activate macrophages and recruit monocytes during tissue injury.  The goal of 

this study was to determine how MCP-1 contributes to macrophage activation during 

liver regeneration.  Results indicate that hepatic and plasma MCP-1 levels increased 

within 12 hr after PH and correlated with hepatic recruitment of cells expressing the 

MCP-1 receptor, CCR2.  Nevertheless, hepatocyte proliferation was comparable in MCP-

1 knockout and wild-type mice, as was the expression of Kupffer cell-derived cytokines.  

Furthermore, hepatic recruitment of CCR2+ cells was similar in MCP-1 knockout and 

wild-type mice, which suggests that other chemokines may efficiently recruit CCR2+ 

cells in the absence of MCP-1.  CCR2 appears to be required for optimal regeneration, as 

CCR2 knockout mice had levels of hepatocyte proliferation that were 50% lower than 

wild-type mice 36 hr after PH.  We conclude that MCP-1 is not required for macrophage 

activation during PH-induced liver regeneration.  Future studies should instead focus on 

mechanisms by which CCR2 signaling events and the hepatic recruitment of CCR2-

expressing cells facilitates hepatocyte proliferation during liver regeneration.  
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CHAPTER 1: INTRODUCTION 

Overview 

Liver regeneration is an amazing phenomenon, in which removal of a portion of 

the liver induces remaining cells to proliferate to restore organ mass.  The capacity of the 

liver to regenerate has been recognized for thousands of years.  In fact, it is referenced in 

the Greek myth of Prometheus, who was a titan accused of stealing fire from the gods of 

Mount Olympus.  As punishment for his treachery, Prometheus was tied to a rock, and 

his liver was eaten by an eagle each day only to grow back during the night, thus causing 

perpetual torment (Power & Rasko, 2008). 

While the human liver does not actually regenerate overnight, it does have the 

capacity to restore its mass and function within just a few months after widespread 

damage or tissue loss (Aoki et al., 2011).  The physiology of liver regeneration has been 

extensively investigated, but it is still not completely understood.  For example, the 

precise mechanisms that initiate and terminate regeneration have yet to be identified. 

Furthermore, the identification of these mechanisms is confounded by pathological 

factors, such as inflammation or viral disease, which often accompany human liver 

disease.  

Liver Anatomy and Physiology 

The liver performs several essential physiological functions.  One major function 

of the liver is to synthesize proteins.  In fact, almost all of the major plasma proteins are 
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produced in the liver.  These proteins include albumin, which is essential for maintaining 

osmotic pressure in the circulatory system, as well as transferrin, prothrombin, 

fibrinogen, lipoproteins and complement proteins.  The liver also functions in regulation 

of lipid, protein and glucose metabolism (Tacke, Luedde, & Trautwein, 2009), and it is 

richly populated with immune cells, allowing it to participate in both innate and adaptive 

immune responses (Tacke et al., 2009).  Finally, perhaps the most recognized function of 

the liver is detoxification of exogenous and endogenous compounds via the induction of a 

wide array of xenobiotic metabolizing enzymes, such as the cytochrome P450 enzyme 

family (Hakkola, Tanaka, & Pelkonen, 1998).  

Blood Flow Through the Liver 

The liver is a highly perfused organ.  Nutrient-rich blood from the gastrointestinal 

tract is routed to the liver through the hepatic portal vein, whereas oxygen-rich blood is 

delivered to the liver through the hepatic artery (Fig. 1.1).  Portal blood mixes with 

arterial blood in small, permeable capillaries, known as sinusoids, which permeate the 

liver.  Sinusoids deliver blood to the hepatocytes, enabling them to carry out metabolic 

processes. Blood then empties into central veins that coalesce into the hepatic vein, which 

returns blood to the systemic circulation (Wheatley et al., 1997). 
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Figure 1.1 Blood Flow Through the Liver.  Oxygenated blood is carried to the liver 
through the hepatic artery. Nutrient-rich, oxygen-poor blood is delivered from the 
intestines to the liver though the portal vein.  Blood mixes in small, permeable capillaries 
known as sinusoids. The sinusoids allow blood to flow from the portal triads to the 
central veins, which coalesce and drain into the hepatic vein, which returns blood to the 
systemic circulation. 

Bile Production 

In addition to receiving a dual blood supply, another interesting feature of the 

liver is its role in producing bile.  Hepatocytes use cholesterol to synthesize bile, which 

helps emulsify fats in the small intestine (Chiang, 2009).  Bile is collected from all areas 

of the liver through bile ductules, which coalesce and exit the liver through the common 

bile duct.  The liver architecture is divided into lobules, with each lobule receiving blood 
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and producing bile.  The lobules intersect each other at structures called portal triads, 

which consist of branches of the hepatic portal vein and hepatic artery, as well as a bile 

ductule (Fig. 1.1).  The abundance of portal triads throughout the liver ensures adequate 

perfusion of blood and efficient collection of bile. 

Hepatocytes 

The most common cell in the liver is the parenchymal hepatocyte, which 

comprises 60% of all liver cells and 80% of the liver volume (Ramadori & Saile, 2002).  

Hepatocytes are a specialized type of epithelial cell that stack tightly together to form 

plates that are separated by sinusoids.  Hepatocytes are polarized and have distinct apical, 

lateral, and basal surfaces that aid in uptake and secretion of substances.  The basal 

surface of the hepatocyte faces the sinusoid and contains microvilli that increase surface 

area to facilitate exchange of materials.  The apical surface also has many microvilli and 

faces the bile canaliculi (Ramadori & Saile, 2002).  The lateral surfaces of hepatocytes 

are connected by gap junctions to allow the flow of molecules between cells.  

Hepatocytes perform the bulk of liver functions including detoxification and plasma 

protein production. 

Nonparenchymal Cells 

While the most abundant type of cell in the liver is the parenchymal hepatocyte, 

other non-parenchymal cells exist and are important for liver homeostasis.  Non-

parenchymal cells comprise 35% of all liver cells and include sinusoidal endothelial cells, 

resident macrophages, hepatic stellate cells, and biliary epithelial cells, which are also 

called cholangiocytes (Fig. 1.2).  Other less abundant non-parenchymal cells include 
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immune cells, such as resident T cells and natural killer cells.  Non-parenchymal cells 

contribute to liver homeostasis through diverse mechanisms, such as regulation of blood 

flow, bile transport, vitamin A storage, and immune surveillance.  

Liver Sinusoid Endothelial Cells 

Liver sinusoid endothelial cells line the capillary sinusoids. These cells are highly 

fenestrated, which allows blood to easily exit the capillary lumen and bathe the 

surrounding sheets of hepatocytes, where nutrients and soluble factors are exchanged. 

Following liver injury, these cells are capable of proliferating, and additional progenitors 

are recruited from the bone marrow (DeLeve, 2013).  During liver regeneration, sinusoid 

endothelial cells not only proliferate, but also secrete soluble mediators, such as 

hepatocyte growth factor, which is a mitogen for hepatocyte proliferation. 

Hepatic Stellate Cells 

Hepatic stellate cells (HSC) reside between the LSEC and hepatocytes in an area 

referred to as the space of Disse.  In the healthy liver, HSCs store 80% of the body’s 

vitamin A as retinol esters (Friedman, 2008).  However, liver injury may induce these 

cells to assume a myofibroblast-like phenotype, characterized by the production of 

extracellular matrix proteins, such as collagen type I.  Indeed, HSCs are central to the 

wound healing response, and inappropriate activation of these cells plays a central role in 

the development of liver fibrosis (Kawser, Iredale, Winwood, & Arthur, 1998).  During 

liver regeneration, HSCs are thought to be an abundant producer of hepatocyte growth 

factor (Skrtic et al., 1997). 
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Biliary Epithelial Cells 

Biliary epithelial cells are non-parenchymal cells that line the bile ducts that 

transport bile to the small intestine (Katayanagi, Kono, & Nakanuma, 1998).  These cells 

are cuboidal epithelial cells that have been shown to secrete cytokines (Isse, Harada, & 

Nakanuma, 2007; Katayanagi et al., 1998).  These cells have been shown to proliferate 

and recruit leukocytes during several pathological conditions of the liver (Isse et al., 

2007).  

Immune Cells of the Liver 

Immune cells are an important component of the liver.  Because blood is 

delivered directly from the gastrointestinal tract to the liver, the liver is tasked with 

removing foreign substances and potential pathogens from the blood before it reaches the 

systemic circulation.  Resident immune cells, such as T and B lymphocytes, natural killer 

cells, and macrophages, are crucial for removing pathogens and initiating an adaptive 

immune response, if necessary.  

Resident macrophages in the liver, also known as Kupffer cells (KC), line the 

sinusoids and scavenge particulate debris in blood that enters the liver.  They are derived 

from circulating monocytes.  These cells play a critical role in detoxifying blood from the 

portal circulation.  In fact, large periportal KC are the first cells to encounter pathogens 

that reach the liver through the portal vein.  Upon contact with pathogens, KC become 

activated and secrete soluble mediators, such as tumor necrosis factor-α (TNFα), 

prostaglandin-E2, and interleukin (IL)-1.  Smaller KC are located near the central vein of 

liver lobules (Bilzer, Roggel, & Gerbes, 2006).  Although KC typically reside in the liver 

for up to 14 months, they are capable of replication (Dory et al., 2003).  Also, KC 
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numbers can be replenished when circulating monocytes enter the liver and differentiate 

into macrophages.  During liver regeneration, macrophages are critical sources of IL-6 

and TNFα, which are necessary for hepatocyte proliferation (Selzner et al., 2003). 

 
Figure 1.2 Cells of the Liver. The liver is comprised of several cell types. 
Parenchymal hepatocytes are arranged in sheets that are lined by sinusoidal capillaries. 
The sinusoidal epithelium is highly fenestrated and is lined with endothelial cells. 
Hepatic stellate cells are non-parenchymal cells found in the space of Disse between the 
hepatocytes and sinusoids.  Macrophages known as Kupffer cells line the sinusoidal 
endothelium. 

Regenerative Ability of the Liver 

The liver is constantly exposed to foreign material and potentially toxic 

chemicals, as it receives blood from the stomach and intestines.  Nevertheless, 

mammalian hepatocytes typically have low turnover (Malato et al., 2011).  However, 

hepatocyte proliferation may be induced depending on the severity of the insult.  The 

regenerative capacity of the liver may have evolved as protection against ingested 
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toxicants (Taub, 2004).  This regenerative process appears to depend on a complex 

symphony of soluble mediators and cellular events and has been well studied in animal 

models of partial hepatectomy (PH), in which a substantial portion (usually 70-80%) of 

the liver is resected.  After PH, resident nonparenchymal cells produce soluble mediators 

that signal the hepatocytes, as well as other cells in the liver, to proliferate in a fairly 

synchronized manner and restore liver mass. 

It is a hotly debated issue whether stem cells exist in the liver, and if so, how 

extensively they contribute to regeneration.  Observation of hepatocytes moving from 

periportal to centrilobular locations during maturation has been interpreted by some to be 

evidence of a stem cell population in the periportal region of the lobule (Sigal et al., 

1995).  Despite the continual research to discover a population of stem cells in the liver, it 

has been shown that existing, mature hepatocytes can replicate and restore liver mass 

without the involvement of stem cells (Sharma, Cantz, Manns, & Ott, 2006).  

One model system that demonstrates the proliferative capacity of mature 

hepatocytes is fumarylacetoacetate hydrolase-deficient mice (Overturf, AlDhalimy, Ou, 

Finegold, & Grompe, 1997).  Fumarylacetoacetate hydrolase is an enzyme that catalyzes 

the hydrolysis of 4-fumarylacetoacetate into fumarate and acetoacetate.  Without this 

enzyme, buildup of toxic metabolites leads to progressive liver damage and cell loss.  

When a small number of healthy adult hepatocytes were transplanted into the liver of 

fumarylacetoacetate hydrolase-deficient mice, the cells completely repopulated the liver 

and restored liver function (Overturf et al., 1997).  In fact, it was found that the cells 

could be serially transplanted from one enzyme-deficient mouse to another, which 

demonstrates the nearly limitless proliferative capacity of adult hepatocytes.   
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Liver regeneration following PH is referred to as compensatory regeneration, in 

which cells proliferate to restore lost organ mass. Compensatory hyperplasia occurs when 

large areas of the liver are damaged or physically removed.  A physiologically relevant 

event that could lead to compensatory hyperplasia is widespread liver necrosis due to the 

effects of a toxicant.  However, in the laboratory, surgical resection of the liver is 

typically preferred to chemical-induced necrosis for inducing regeneration because the 

excessive inflammatory response associated with necrosis can be a confounding factor in 

understanding normal regenerative processes.   

Compensatory regeneration should not be confused with two other types of 

regeneration: mitogen-induced hyperplasia and leading edge regeneration.  Mitogen-

induced hyperplasia refers to hepatocyte proliferation that occurs in response to mitogens 

in the absence of tissue injury or loss (Columbano et al., 1990).  In this type of 

hyperplasia, hepatocytes must overcome normal growth control mechanisms to 

proliferate, and under such conditions, the increased liver mass is called “augmentative 

hepatomegaly” (Michalopoulos, 2013). When the mitogen is removed, the original organ 

mass is restored as excess cells undergo apoptosis (Columbano, Leddacolumbano, Lee, 

Rajalakshmi, & Sarma, 1987).  Whereas the liver can undergo compensatory regeneration 

and mitogen-induced hyperplasia, it does not participate in leading-edge regeneration, in 

which only those cells that are positioned along a damaged edge of a tissue are capable of 

dividing.  A classic example of leading edge regeneration is limb regeneration in 

salamanders, in which amputation of the limb results in regrowth of the entire limb. This 

process is also analogous to limb development during embryogenesis (Nacu & Tanaka, 

2011). 
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PH Model of Liver Regeneration 

The 70% PH model has been extensively used to investigate mechanisms of liver 

regeneration (Michalopoulos, 2010).  In mice, 70% PH consists of surgical resecting 

three of the five main liver lobes (Greene & Puder, 2003).  Following resection, 

parenchymal and non-parenchymal cells in the remnant liver proliferate in a fairly 

synchronized manner.  Peak DNA synthesis in hepatocytes occurs within 24 hours in rats 

and 36 hours in mice (Mao, Glorioso, & Nyberg, 2014; Michalopoulos & DeFrances, 

1997).  The precise mechanisms by which liver regeneration is regulated, including the 

onset and termination of regeneration, are poorly understood.  Once the mass of the liver 

is restored, cells presumably receive signals that terminate their proliferation.  The 

proliferative process typically results in a slight overproduction of liver cells but is 

followed by a wave of apoptosis, which restores the liver to within 5% of its previous 

mass (Michalopoulos, 2013). 

Phases of Liver Regeneration 

Liver regeneration can be divided into two phases, referred to as priming and 

progression (Fig. 1.3), both of which are required for complete regeneration (Fausto, 

2000).  Priming refers to a collection of events that culminate in the movement of 

quiescent liver cells into the cell cycle, whereas progression refers to those events that 

facilitate continued progression through the cell cycle, resulting in actual cell division.  

Priming and Progression of Liver Regeneration 

Hepatocyte priming is mediated by the production of TNFα and IL-6 by Kupffer 

cells (Baier et al., 2005). These soluble mediators bind to their cognate receptors on 
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hepatocytes and induce the activity of transcription factors, such as NF-kB, STAT3, AP1, 

and CF/EBP-beta (Kountouras, Boura, & Lygidakis, 2001).  Changes in hepatocyte gene 

expression prepare these cells to respond to growth factors produced during the 

progression phase of regeneration.  For example, hepatocytes upregulate c-Met, which is 

the receptor for hepatocyte growth factor, and EGFR, which is the receptor for epidermal 

growth factor (Su, Guidotti, Pezacki, Chisari, & Schultz, 2002).  During the progression 

phase of regeneration, hepatocyte replication is dependent on the availability of these 

growth factors, as well as other soluble mediators (Fausto, Campbell, & Riehle, 2006).  

Termination of Liver Regeneration 

Termination of liver regeneration is precisely regulated, yet the mechanisms that 

halt hepatocyte proliferation are poorly understood.  Previous research implicated TGF-β 

due to its well known antiproliferative activity, but this has not been definitely proven 

(Macias-Silva, Li, Leu, Crissey, & Taub, 2002).  Recent evidence suggests a possible role 

for caspases, which are cysteine-aspartic proteases important for apoptosis, necrosis, and 

inflammation (Alnemri et al., 1996).  For example, caspase recruitment domain-

containing protein-11 was recently found to be upregulated during termination of liver 

regeneration (Nygard et al., 2012).  Nevertheless, the exact molecular mechanisms of this 

termination phase remain unclear.  
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Figure 1.3 Phases of Liver Regeneration. In the healthy liver, hepatocytes are 
quiescent. Removal of a substantial portion of the liver through PH induces macrophages 
to produce TNFα  and IL-6, which primes the hepatocytes for subsequent progression 
through the cell cycle, which is dependent on growth factors, such as hepatocyte growth 
factor (HGF) and epidermal growth factor (EGF). 

Monitoring Liver Regeneration 

Several methods can be used to monitor progression of liver regeneration.  A 

common measure is liver weight and the liver-body weight ratio.  While this method is 

straightforward, it can be influenced by factors not directly related to regeneration, such 

as glycogen and lipid content in the liver, as well as blood volume.  A commonly used 

approach for measuring liver regeneration is quantifying the number of proliferating 

hepatocytes.  This is often accomplished through the administration of the nucleotide 

analog bromodeoxyuridine (BrdU), which is incorporated into the newly synthesized 

DNA strand in place of thymidine (Assy & Minuk, 1997).  BrdU incorporation indicates 

that a hepatocyte has progressed to S-phase of the cell cycle and has successfully 

duplicated its DNA.  BrdU incorporation is typically quantified in hepatocytes using flow 

cytometry or immunohistochemistry.   
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Role of Macrophages in Liver Regeneration 

Macrophage Numbers Increase Following PH 

In healthy liver tissue, KC make up the largest population of nonparenchymal 

cells.  These liver cells maintain their population by self-renewal and also via recruitment 

of monocytes from the bone marrow or spleen (Naito, Hasegawa, & Takahashi, 1997). 

Following PH, the number of KC in the liver increases within 1 hour (Baier et al., 2005).  

There is another increase in the number of KC 6-12 hr following PH, and this increase is 

comprised mainly of activated cells (Baier et al., 2005).  It has been suggested that the 

early increase in macrophage number is due to the recruitment of monocytes, which are 

macrophage precursors, from the bone marrow (Minamino et al., 2012). The second 

increase is believed to result from proliferation of activated resident macrophages (Ukai 

et al., 1990). 

Macrophages Become Activated After PH 

It is hypothesized that changes in blood flow through the liver may be involved in 

priming hepatocytes after PH (Michalopoulos, 2010; Mochida, Ohta, Ogata, & Fujiwara, 

1992).  After removal of 70% of the liver, blood from the portal vein and hepatic artery is 

still being delivered to the liver at normal flow rates, despite the fact that the organ 

volume is markedly decreased, which results in increased intrahepatic pressure.  

Increased blood flow to the liver enhances the delivery of molecules that can potentially 

activate resident KC, including bacterial lipopolysaccharide (LPS), which is known to 

activate macrophages (Shiratori et al., 1996).  In fact, LPS is a well-known inducer of 

macrophage-derived IL-6 and TNFα, both of which are necessary for priming of 
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hepatocytes immediately following liver regeneration (Fujihara et al., 2003).  Increased 

intrahepatic pressure following PH can also stimulate KC to secrete vasoactive factors, 

such as heme oxygenase (HO)-1 and endothelial nitric oxide synthase (eNOS) 

(Abshagen, Eipel, Kalff, Menger, & Vollmar, 2008).  Kupffer cells are critical for 

regulating vascular permeability in the liver (Abshagen et al., 2008).  When KC are 

depleted, blood flow in liver sinusoids during regeneration is decreased (Abshagen et al., 

2008).  Hence, KC-mediated changes in microcirculation may be critical to initiation of 

liver regeneration via increased intrahepatic pressure or enhanced delivery of LPS. 

Macrophages Mediate the Priming Phase of Liver Regeneration 

Cells of the monocyte-macrophage lineage are necessary for priming hepatocytes 

during liver regeneration through the production of IL-6 and TNFα (Taub, 2004). First, 

TNFα is secreted by KC in response to activation by the bacterial antigen, LPS.  TNFα 

functions in an autocrine fashion to stimulate IL-6 secretion.  IL-6 binds to receptors on 

the cell surface of hepatocytes.  This leads to activation of STAT3, which is a 

transcription factor that drives the expression of immediate early genes that drive 

hepatocyte cell cycle progression.  These events are summarized in Figure 1.4. 

Numerous studies demonstrate that monocyte/macrophage-derived TNFα and IL-

6 are necessary for normal liver regeneration to proceed.  For example, in one study, mice 

were irradiated to destroy their immune cell populations, including monocytes and 

macrophages (Sudo et al., 2008).  Immune cells were repopulated through the transfer of 

bone marrow from wild-type, TNFα knockout, or IL-6 knockout mice, and the mice were 

subjected to PH.  Mice that received bone marrow from TNFα or IL-6 knockout mice had 
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decreased rates of hepatocyte DNA synthesis compared to those that received transplants 

from wild-type mice.  

 
Figure 1.4 KC Prime Hepatocytes to Enter the Cell Cycle. Upon activation, KC 
secrete TNFα, which stimulates the secretion of IL-6.  IL-6 binds to receptors on 
hepatocytes and stimulates expression of genes necessary for hepatocyte cell cycle 
progression. 

Role of MCP-1 in Monocyte Recruitment and Macrophage Activation 

During inflammatory responses, resident macrophages in injured tissue become 

activated, and additional monocytes are recruited from the bone marrow and circulation 

to the injured tissue, where they differentiate into activated macrophages.  Monocyte 

recruitment occurs in response to chemokines, which are proteins that regulate white 

blood cell trafficking as well as inflammation (Mantovani et al., 2004; Rossi & Zlotnik, 

2000).  Chemokines are categorized based on the position of cysteine (C) residues at the 
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N-terminus: CC, CXC, C, and CX3C (Deshmane, Kremlev, Amini, & Sawaya, 2009; 

Mantovani et al., 2004).   

The first human CC chemokine discovered was monocyte chemoattractant 

protein-1 (MCP-1), also known as CC-chemokine ligand-2 (CCL2) (Yadav, Saini, & 

Arora, 2010).  Regulated at the transcriptional level, MCP-1 expression is induced by a 

variety of stimuli, including LPS and changes in blood flow (Taub, 2004; Uguccioni, 

Dapuzzo, Loetscher, Dewald, & Baggiolini, 1995). During liver regeneration, MCP-1 

appears to be primarily produced by Kupffer cells, but it can also be secreted by hepatic 

stellate cells and endothelial cells (Marra, 2002).   

MCP-1 works through a G-protein coupled receptor, CCR2, which is expressed 

on the surface of many leukocytes, including monocytes, T-cells, and NK cells 

(Deshmane et al., 2009). Although at least three MCP-1 receptors exist, CCR2 is the 

primary receptor for MCP-1 in mice (Charo et al., 1994).  CCR2 is expressed on Kupffer 

cells (Deshmane et al., 2009), which can be activated and recruited to sites of 

inflammation by MCP-1 (Boring et al., 1997; Kurihara, Warr, Loy, & Bravo, 1997).   

In the liver, MCP-1 expression is increased during chronic hepatitis, inflammation 

and fibrosis (Czaja, Geerts, Xu, Schmiedeberg, & Ju, 1994; Marra, 2002; Marra et al., 

1998), and inactivation of MCP-1 has been shown to attenuate liver injury by inhibiting 

macrophage recruitment (Imamura, Ogawa, Sasaguri, Chayama, & Ueno, 2005; Zamara 

et al., 2007).  Impaired monocyte migration has also been reported for mice that lack 

CCR2 (Boring et al., 1997).  However, little is known about the consequences of MCP-

1/CCR2 signaling during PH-induced liver regeneration.   
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Hypothesis 

Given the significance of MCP-1 to monocyte recruitment and macrophage 

activation, we hypothesized that this chemokine is important for activating monocytes 

and resident KC during liver regeneration.  We took advantage of the availability of 

transgenic mice to determine how MCP-1 expression and CCR2 expression contribute to 

hepatocyte proliferation during PH-induced liver regeneration.  The specific aims of the 

study were as follows: 

1) To characterize MCP-1 expression during liver regeneration in wild-type mice. 

2) To determine if MCP-1/CCR2 is required for monocyte recruitment, macrophage 

activation, and hepatocyte proliferation during liver regeneration. 
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CHAPTER 2: MATERIALS AND METHODS  

Mice 

Female C57Bl/6 (wild-type), MCP-1 knockout (KO) (strain B6.129S4-

Ccl2tm1Rol/J), and CCR2 KO (strain B6.129S4-Ccr2tm1Ifc/J) mice were purchased from the 

Jackson Lab (Bar Harbor, ME) and used at 8-9 weeks of age.  MCP-1 and CCR2 KO 

mice are fertile and display no gross physical or behavioral abnormalities. Furthermore, 

numbers of macrophages (peritoneal, alveolar, and Kupffer cells) in these KO mice are 

similar to levels found in wild type mice (Boring et al., 1997; Lu et al., 1998).  Mice were 

housed in a temperature-controlled facility on a 12-hr light/dark cycle with unlimited 

access to food and water. Mice were anesthetized with inhaled isoflurane, and 70% PH 

was performed as previously described (Mitchell, Lockhart, Huang, & Elferink, 2006). 

After euthanasia, blood was collected at the axillary plexus, plasma was recovered by 

centrifugation, and remnant liver tissue was collected.  The experimental protocol was 

approved by the Animal Studies Subcommittee and the Research and Development 

Committee of the Boise VA Medical Center (Boise, ID), where the animals were housed.  

All animals received humane care according to the criteria outlined in the "Guide for the 

Care and Use of Laboratory Animals" prepared by the National Academy of Sciences and 

published by the National Institutes of Health. 
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Measurement of MCP-1 Levels 

At each time point, tissues from 3–5 mice were used to measure MCP-1 mRNA 

levels in the liver and MCP-1 protein levels in liver homogenates and plasma.  To 

measure hepatic MCP-1 mRNA levels, total RNA was isolated from frozen liver tissue 

using an RNeasy Mini Kit (Qiagen, Valencia, CA) according to the manufacturer’s 

protocol.  cDNA was synthesized using SuperScript II reverse transcriptase (Invitrogen, 

Carlsbad, CA).  Transcript levels were measured by quantitative real-time PCR (qRT-

PCR) at the Molecular Genomics Core at the University of Texas Medical Branch 

(Galveston, TX).  To measure MCP-1 protein levels in the liver, frozen liver tissue was 

homogenized in PBS containing 0.5% Triton X-100 0.05% sodium azide, and protease 

inhibitors.  MCP-1 levels were measured in liver homogenates by ELISA (Thermo 

Scientific Pierce, Rockford, IL) and expressed as pg per mg liver protein, based on a 

Lowry protein assay (Bio-Rad, Hercules, CA).  Plasma levels of MCP-1 were measured 

using a Cytometric Bead Array (BD Biosciences, San Diego, CA) according to the 

manufacturer’s instructions.  Unpooled plasma samples were run in duplicate.  

Quantification of F4/80+ Cells by Immunohistochemistry 

Paraffin-embedded liver tissue was incubated with proteinase K for 3 minutes to 

retrieve antigen.  Tissue was then incubated overnight with a biotinylated rat-anti-mouse 

F4/80 antibody (Invitrogen, Carlsbad, CA) and visualized using an anti-rat HRP-DAB 

Cell and Tissue Staining Kit (R&D Systems, Minneapolis, MN).  Eight fields of 400X 

magnification were counted from each mouse. 
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Measurement of TNFα and IL-6 Production by ELISA 

Levels of TNFα and IL-6 were measured in unpooled plasma samples using 

sandwich enzyme-linked immunosorbent assay kits (Pierce Biotech, Rockford, IL). The 

assays were performed according to the manufacturer’s instructions, and all samples were 

run in duplicate.  The lower limit of detection for the assays was 50 pg/ml. 

Measurement of Stat3 Activation by Western Blot 

Frozen liver tissue was mechanically homogenized as described elsewhere 

(Mitchell et al., 2006). Cellular debris was pelleted at 10,000 X g, and protein 

concentration was determined by using a Lowry protein assay (Bio-Rad, Hercules, CA).  

Homogenates (25-50 µg protein/lane) were fractionated by SDS-PAGE and transferred to 

polyvinylidene difluoride membranes for western blot analysis with anti-STAT3 and anti-

phosphorylated STAT3 antibodies (Cell Signaling Technology, Danvers, MA).  

BrdU Labeling and Detection 

To measure hepatocyte proliferation, mice were injected intraperitoneally with 50 

mg/kg bromodeoxyuridine (BrdU; Sigma-Aldrich, St. Louis, MO) two hours prior to 

euthanasia.  In a separate experiment, continuous BrdU labeling was achieved by 

administering BrdU in the drinking water (0.8 mg/ml).  Water bottles containing BrdU 

were protected from light and replenished daily until mice were killed 6 days 

postoperatively.  After euthanasia, fresh liver tissue was fixed in UltraLight™ fixative 

(Bi-Biomics, Nampa, ID), paraffin-embedded, and processed for immunohistochemical 

staining.  Tissue sections (5-um) were incubated with a biotinylated anti-BrdU antibody 

(Invitrogen, Carlsbad, CA) followed by avidin-conjugated horseradish peroxidase and the 
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substrate 3,3’-diaminobenzidine (DAB).  Sections were counterstained with hematoxylin.  

For each animal, at least five random 400X fields were examined, and a total of 800-1000 

nuclei were counted.   The number of brown (DAB)-stained nuclei (BrdU+) was 

expressed as a percentage of total number of nuclei. 

Detection of CCR2+ Cells by Immunofluorescence Staining 

Paraffin-embedded tissue sections (5-µm) were processed and cut for 

immunofluorescence staining.  Antigen retrieval was carried out in sodium citrate buffer 

at 95°C for 15 minutes.  Sections were incubated with a rabbit monoclonal anti-CCR2 

antibody (Novus, Littleton, CO) followed by a FITC-conjugated goat anti-rabbit antibody 

(BD Biosciences, San Diego, CA).  CCR2+ cells were visualized using a fluorescent 

microscope. 

Detection of CCR2+ Cells by Flow Cytometry 

Nonparenchymal cells were isolated from the liver and analyzed by flow 

cytometry.  Briefly, livers were perfused with Hank’s Buffered Salt Solution (HBSS) 

containing 50 mM EDTA, transferred to RPMI 1640 with 2.5% FBS, minced into a 

slurry, and poured through a nylon cell strainer.  Samples were centrifuged at 60 x g for 1 

min at room temperature (RT), and pellets containing hepatocytes were discarded. 

Samples were then centrifuged at 500 x g for 10 min at room temperature.  Resulting 

pellets were re-suspended in Percoll in RPMI 1640 without FBS and centrifuged at 850 x 

g, 30 min at room temperature.  Pellets were depleted of red blood cells by hypotonic 

lysis, and remaining cells were resuspended in PBS containing 1% fetal bovine serum.  

Cells were then incubated with Fc-Receptor Block (BD Biosciences, San Jose, CA) for 10 
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min before staining with a rabbit monoclonal anti-CCR2 antibody (Novus, Littleton, CO) 

followed by a FITC-conjugated goat anti-rabbit antibody (BD Biosciences, San Diego, 

CA).  Stained cells were analyzed on an Accuri C6 flow cytometer (Ann Arbor, MI).  At 

least 50,000 events (viable cells) were collected from unpooled samples and analyzed 

using Accuri CFlow Plus software.  

Statistical Analysis 

Data were analyzed using Prism (version 4.0, GraphPad Software, San Diego, CA).  

Data were evaluated by one-way ANOVA followed by a Dunnett’s post-hoc test, or by 

two-way ANOVA and Bonferroni post-hoc test.  Data were considered significantly 

different at p ≤ 0.05.  
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CHAPTER 3: RESULTS 

MCP-1 Levels Increase After PH 

To examine MCP-1 production after PH, MCP-1 mRNA levels were quantified in 

the remnant liver, and protein levels were measured in liver homogenates and plasma. 

Hepatic MCP-1 mRNA levels peaked 90 minutes after PH (Fig. 3.1A), followed by 

increased MCP-1 protein expression in the regenerating liver 4 hr and 6 hr after PH (Fig. 

3.1B).  A four-fold increase in circulating MCP-1 was detected in the plasma 12 hr after 

PH (Fig. 3.1C).  

 
Figure 3.1 MCP-1 Levels Increase After PH.  A: MCP-1 mRNA levels in the 
regenerating liver at the indicated times after PH.  MCP-1 mRNA levels (mean +/- SEM) 
are expressed as fold-induction relative to expression of 18S rRNA in the same samples 
(n=3).  B: MCP-1 protein levels in the liver after PH.  MCP-1 levels (mean +/- SEM) in 
liver homogenates were normalized to the total amount of protein in each sample (n=3-5).  
C: MCP-1 protein levels (mean +/- SEM) in the plasma after PH (n=3-6).   * P < 0.05 
when compared to 0-hr group based on one-way ANOVA followed by Dunnett’s test. 

MCP-1 is Not Required for Recruitment of Hepatic F4/80+ Macrophages 

It has been demonstrated that hepatic-derived MCP-1 stimulates the expansion and 

egress of a population of F4/80+ monocytes in the bone marrow (Crane, Hokeness-

Antonelli, & Salazar-Mather, 2009). Hence, we hypothesized that MCP-1 is important for 

 



24 

recruiting bone marrow-derived monocytes to the regenerating liver and that numbers of 

hepatic macrophages would be decreased in the absence of MCP-1. Using wild type and 

MCP-1 knockout (KO) mice, we performed a cursory examination of liver macrophages 

based on expression of F4/80 antigen. Contrary to our hypothesis, no changes in F4/80 

expression were detected in the regenerating liver of wild type and MCP-1 KO mice (Fig. 

3.2).  

 
Figure 3.2 Number of Macrophages is Similar in the Liver of Wild Type and 
MCP-1 KO Mice.  Data represent average number of F4/80+ cells (+/- SEM) in the 
regenerating liver of wild type and MCP-1 knockout mice at the indicated times after PH.  
The number of F4/80+ cells was counted in 8 separate 40x fields per mouse from 3-5 
mice per treatment group.  

MCP-1 is Not Required for TNFα or IL-6 Production During Liver Regeneration 

During the priming phase of liver regeneration, the production of TNFα and IL-6 is 

attributed to activated Kupffer cells (Taub, 2004).  Kupffer cells express the MCP-1 

receptor, CCR2, and have been shown to become activated in response to MCP-1 in other 

model systems (Marra, 2002).  Hence, we hypothesized that MCP-1 may influence the 

production of Kupffer cell-derived cytokines during liver regeneration.  However, 
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measurement of plasma cytokine levels revealed no difference in TNFα or IL-6 production 

between wild type and MCP-1 KO mice (Fig. 3.3).  Hepatic mRNA levels of these 

cytokines were below the limit of detection (data not shown). 

 
Figure 3.3 Levels of Kupffer Cell-Derived Cytokines are Similar in Wild Type 
and MCP-1 KO Mice.  Data represent plasma levels (mean +/- SEM) of TNFα and IL-6 
in wild type and MCP-1 KO mice at the indicated times after PH.  Cytokines were 
measured in unpooled plasma samples by ELISA (n=3-5) and run in duplicate. 

MCP-1 is Not Required for Priming of Hepatocytes During Liver Regeneration 

The production of TNFα and IL-6 by Kupffer cells is implicated in priming 

hepatocytes for cell cycle progression (Aldeguer et al., 2002). Upon binding to its cognate 

receptor on hepatocytes, IL-6 activates Stat3 signaling pathways, leading to gene 

expression that facilitates hepatocyte proliferation.  Hence, Stat3 activation is a pivotal 

step in regeneration that is likely to be dependent on macrophage activation.  Our results 

indicate that hepatic levels of phosphorylated Stat3 increased 6 and 12 hr after PH in both 

wild type and MCP-1 KO mice, suggesting that MCP-1 is not necessary for hepatocyte 

priming during liver regeneration (Fig. 3.4).   
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Figure 3.4 MCP-1 is Not Required for Stat3 Activation During Liver 
Regeneration. Representative western blot analysis of Stat3 and phosphorylated-Stat3 
proteins in the regenerating liver of wild type and MCP-1 KO mice at the indicated times 
after PH (20 µg protein/lane). 

MCP-1 is Not Required for Hepatocyte Proliferation After PH 

Finally, we investigated the ramifications of MCP-1 production on the regenerative 

capacity of the liver.  No differences in liver-body weight ratios were detected between 

wild type and MCP-1 KO mice (Fig. 3.5A).  Pulse labeling with BrdU revealed that robust 

hepatocyte proliferation occurred 36 and 48 hr after PH in wild-type mice and was not 

suppressed in MCP-1 KO mice (Fig. 3.5B).  Likewise, continuous BrdU administration 

revealed no overt differences in BrdU incorporation in the regenerating liver of wild type 

and MCP-1 KO mice 6 days post-PH (Fig. 3.5C and 3.5D). 
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Figure 3.5 MCP-1 is Not Required for Hepatocyte Proliferation After PH.  A: 
Liver-body weight ratios (mean +/- SEM) of wild type and MCP-1 KO mice at the 
indicated times after PH (n=4-10). B: Percentage (mean +/- SEM) of BrdU+ hepatocyte 
nuclei from wild type or MCP-1 KO mice at the indicated times after PH.  Mice were 
pulsed with BrdU 2 hr prior to euthanasia at the indicated time points (n=6-10).  C: 
Representative BrdU incorporation in regenerating liver tissue from wild type and MCP-
1 KO mice 6 days after PH; BrdU was added to the drinking water continuously for 6 
days.  D: Cumulative BrdU incorporation in the regenerating liver of wild type and MCP-
1 KO mice administered BrdU in their drinking water for 6 days post-PH.  Data represent 
the percentage (mean +/- SEM) of BrdU+ hepatocyte nuclei from 4 mice per treatment 
group.   

MCP-1 is Not Required for Recruitment of CCR2+ Cells to the Regenerating Liver 

In addition to activating resident macrophages, MCP-1 may also recruit cells, such 

as bone-marrow-derived monocytes, to the damaged liver (Liaskou et al., 2012).  To 

investigate the possibility that cell recruitment was diminished in the absence of MCP-1, 

the prevalence of CCR2+ cells in the regenerating liver was measured.  
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Immunofluorescence staining revealed equivalent numbers of CCR2+ cells in the liver of 

wild-type and MCP-1 KO mice 12 hr after PH (Fig. 3.6A).  This finding was confirmed 

using flow cytometry, which revealed no changes in either the percent or total number of 

CCR2+ non-parenchymal cells in wild-type and MCP-1 KO mice (Fig. 3.6B).  

 
Figure 3.6 MCP-1 is Not Required for Recruitment of CCR2+ Cells to the 
Regenerating Liver.  A: Fluorescence microscopy was used to identify CCR2 expression 
in the liver of wild type and MCP-1 KO mice 12 hr after PH.  B: Flow cytometry was 
used to measure CCR2 expression in non-parenchymal cells isolated from the 
regenerating liver of wild type and MCP-1 KO mice 12 hour after PH.  Data represent the 
mean percentage and number (±SEM) of CCR2+ cells (n=4).  

Hepatocyte Proliferation is Suppressed in CCR2-Deficient Mice 

While MCP-1 is the most potent ligand of CCR2, there is redundancy in 

chemokine signaling such that MCP-3 and MCP-5 also bind this receptor, which could 

explain why liver regeneration was not impaired in the absence of MCP-1. To investigate 

the collective contribution of all CCR2 chemokines to regeneration, we compared PH-

induced hepatocyte proliferation between CCR2 KO and wild-type mice.  As shown in 
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Figure 3.7, levels of BrdU incorporation were reduced by about 40% in CCR2 KO mice 

36 hr after PH, although no statistically significant suppression was observed at 48 hr 

Reduced hepatocyte proliferation at 36 hr did not coincide with diminished liver-body 

weight ratios, which remained similar in CCR2 KO and wild-type mice at every time point 

tested. 

 

 
Figure 3.7 Hepatocyte Proliferation is Suppressed in CCR2-Deficient Mice.  A: 
Percentage (mean +/- SEM) of BrdU+ hepatocyte nuclei from wild type or CCR2 KO 
mice at the indicated times after PH.  Mice were pulsed with BrdU 2 hr prior to 
euthanasia at the indicated time points (n=3-4).  B: Liver-body weight ratios (mean +/- 
SEM) of wild type and CCR2 KO mice at the indicated times after PH.  * p<0.05 when 
compared to wild-type mice at same time point. 

A 

B 
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CHAPTER 4: DISCUSSION 

Macrophage activation is a crucial component of the early phase of liver 

regeneration following PH (Taub, 2004).  Given the well-characterized role of MCP-1 in 

activating macrophages and promoting macrophage infiltration, we hypothesized that 

MCP-1 would be important for macrophage activation during PH-induced liver 

regeneration.  However, data presented herein refute this hypothesis and demonstrate 

that, despite increased hepatic levels of MCP-1 after PH, this chemokine is not required 

for the production of macrophage-derived inflammatory cytokines or for hepatocyte 

proliferation. 

Increased MCP-1 expression has been observed in numerous models of liver 

injury and disease, such as administration of concanavalin A, carbon tetrachloride, and 

acetaminophen (Ajuebor, Hogaboam, Le, & Swain, 2003; James et al., 2005; Zamara et 

al., 2007).  Our results indicate that MCP-1 transcript levels increased just 90 min after 

PH, which confirms another report (Su et al., 2002).  Peak plasma levels of MCP-1 were 

detected at 12 hr in our study and were only slightly above basal levels.  It is unlikely that 

robust expression of MCP-1 occurs in the plasma before this time, as a recent report by 

Sgroi et al. demonstrates only scant levels of MCP-1 4 hr post-PH (Sgroi et al., 2011). 

Although Kupffer cells are a known source of MCP-1, it is likely that multiple cellular 

sources of MCP-1 exist in the regenerating liver (Hildebrand et al., 2006).  For instance, 

in a rat model of PH-induced liver regeneration, elevated MCP-1 mRNA levels were 

detected in hepatocytes, biliary epithelial cells, sinusoidal endothelial cells, Kupffer cells, 
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pit cells, and hepatic oval cells (Chen, Xu, Zhang, & Ma, 2010).  It is also possible that 

MCP-1 production could be attributed to inflammatory cells that infiltrate the liver after 

PH, such as bone marrow-derived monocytes/macrophages.  In fact, an intriguing report 

by Crane et al. (2009) indicates that F4/80+ bone marrow cells are an abundant source of 

MCP-1, as well as MCP-3 and MCP-5, during infection with murine cytomegalovirus 

(Crane et al., 2009).  Hence, during PH-induced liver regeneration, bone-marrow-derived 

monocytes could be an important source of MCP-1 in the bone marrow, during transit to 

the liver, or upon infiltration into hepatic tissue.   

MCP-1 expression has been shown to directly correlate with the number of 

infiltrating monocytes and macrophages in the liver (Marra et al., 1998), and inactivation 

of MCP-1 reportedly attenuates liver injury by inhibiting macrophage recruitment 

(Imamura et al., 2005; Marra et al. 2008, Zamara et al., 2007).  However, we found no 

difference in expression of the macrophage marker F4/80 in wild-type and MCP-1 

knockout mice.  Furthermore, plasma levels of TNFα and IL-6 were also similar, which 

indicates that macrophage activation was likely unaffected by the absence of MCP-1.  IL-

6 has been studied extensively as an important initiator of hepatocyte proliferation after 

PH, as regeneration is impaired and survival is reduced in IL-6-deficient mice subjected 

to PH (Blindenbacher et al., 2003; Kovalovich et al., 2000). Studies with IL-6 bone 

marrow chimeric mice demonstrate that, during liver regeneration, IL-6 is produced by 

bone marrow-derived, resident macrophages, rather than bone-marrow-derived stem cells 

that enter the liver and differentiate into parenchymal cells (Aldeguer et al., 2002). This 

leads us to conclude that MCP-1 is probably not required for Kupffer cell activation after 

PH.   
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During the priming phase of regeneration, IL-6 activates the signal transducer and 

activator of transcription-3 (STAT3) pathway, which upregulates immediate-early gene 

expression in hepatocytes and promotes responsiveness to growth factors (Li, Liang, 

Kellendonk, Poli, & Taub, 2002; Terui & Ozaki, 2005).  Given that levels of STAT3 

phosphorylation were similar in wild-type and MCP-1 knockout mice, it stands to reason 

that hepatocyte priming proceeds sufficiently despite the absence of MCP-1.  

Furthermore, continuous and pulse BrdU labeling revealed similar levels of hepatocyte 

proliferation in wild-type and MCP-1 knockout mice, which confirms that MCP-1 is 

dispensable for liver regeneration. 

Results from this study demonstrate comparable numbers of CCR2+ cells in the 

liver of wild-type and MCP-1 knockout mice.  We speculate that this was due to the 

activity of other CCR2 ligands, such as MCP-3 or MCP-5, which could essentially 

compensate for the absence of MCP-1.  However, the observation that liver regeneration 

was not overtly suppressed in CCR2 knockout mice renders this notion somewhat 

irrelevant.  In CCR2 KO mice, hepatocyte proliferation was suppressed 36 hr post-PH.  

However, this did not coincide with decreased liver-body weight ratios, and BrdU 

incorporation was comparable between CCR2 KO and wild-type mice at 48 hr post-PH.  

The suppression at 36 hr may result from diminished macrophage activity in the absence 

of CCR2, either through decreased monocyte recruitment to the liver or reduced 

activation of resident Kupffer cells.  Crane et al. (2009) demonstrated that CCR2 

activation in the bone marrow initiates the egress of CCR2+ monocytes into the 

circulation and to the liver.  Furthermore, they demonstrated that the CCR2+ Ly6Chigh 

inflammatory subpopulation of monocytes/macrophages accumulated in the bone marrow 
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during MCMV infection, and that the number of inflammatory monocytes/macrophages 

was diminished in CCR2-deficient mice.  Hence, it is possible that monocyte recruitment 

and/or macrophage activation is reduced in CCR2 knockout mice, leading to a transient 

suppression of hepatocyte proliferation.  Results from this study highlight the need to 

further investigate CCR2 signaling, as well as other chemokines receptors expressed in 

the bone marrow, as this could be a driving force that initiates the release of 

inflammatory monocytes/macrophages that are destined for the regenerating liver.  

Future studies could include elucidating the role of CCR2+ cells in the 

regenerative process by isolating them and studying gene expression at various times 

following PH.  Furthermore, the heterogeneity among this CCR2+ population can be 

further characterized using flow cytometry to determine if a specific subpopulation is 

critical to the regenerative process. Results from this project further our understanding of 

MCP-1/CCR2 signaling as it relates to inflammation and injury in the liver. This is an 

important endeavor for advancing our knowledge of liver disease and developing new 

therapeutic strategies to enhance recovery from liver disease. 
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