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ABSTRACT 

Redband Trout (Oncorhynchus mykiss gairdneri), a native subspecies of Rainbow 

Trout residing east of the Cascade Mountains, USA, are a popular sport fish in much of 

its range. Bluegills (Lepomis macrochirus) are one the most important recreational fishes 

in North America, and are also sought by anglers in many Idaho waters. There is 

extensive confusion surrounding the timing and interpretation of otolith zones, 

specifically, which zone represents fast growth and which represents slow growth. 

Further, otoliths are a lethal sampling method and regardless of population status, many 

fisheries biologists prefer to use no lethal sampling methods. To determine if the zonation 

confusion is a species-related difference, I calculated monthly growth rates and 

investigated otolith zonation for a cold-water (Redband Trout) and a warm-water 

(Bluegill) species, in two Southern Idaho streams and three ponds. I also compared the 

assigned age and precision of sagittal otoliths, pectoral fin rays, and scales for these two 

species. Redband Trout showed their fastest growth during the month of June, with 

continuation of growth through September. The opaque zone started to form in March; by 

June 100% of the Redband had formed an opaque outer edge on the otolith. As with 

Redband Trout, the fastest growth rates for Bluegill were during late spring and early 

summer. This fast growth coincided with the formation of the translucent zone, which 

was observable in 95% of Bluegill by the month of May. Similar to Redband Trout, 

100% of Bluegill had begun forming their fast growth zone by June. Based on edge 

analysis the otolith zonation pattern for Bluegill is translucent-forming during summer 
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months and opaque-forming in fall to spring. Conversely, the otolith zonation pattern for 

Redband Trout is opaque-forming during summer months and translucent-forming in 

winter. Our findings suggest that Redband Trout and Bluegill do indeed form opposite 

appearing otolith zones during their respective periods of fast somatic growth. Although 

we have limited data for other warm and cold-water species in our study waters, we 

observed similar patterns for other species in these two groups. In addition, the otoliths 

for the first two age classes of both species were validated as forming one annulus per 

year. These findings have implications for both experienced and novice biologists 

conducting ageing studies. Lacking water-specific validation, the annulus for temperate 

warm-water centrarchids should be considered the opaque zone. Conversely, the annulus 

for temperate cold-water trout should be considered the translucent zone. Otoliths of 

Redband Trout were the most precise at both locations, followed by fin rays with scales 

being the least precise. I found no difference in the assigned age of fin rays and otoliths at 

Mores Creek.  However, I found a statistical difference between assigned ages of otoliths 

and fin rays, with fin rays producing lower age estimates, specifically on older fish at 

Harris Creek. Scales ages were less precise and had lower age estimates than that of 

otoliths or fin rays at both locations.  Though, our findings showed a difference in 

assigned age, at Harris Creek, and precision at both locations. I feel that fin rays produced 

an acceptable age estimate for montane Redband Trout.  These findings, along with those 

that have shown that fin ray removal did not affect growth and survival, leads us to 

suggest that fin rays may be  an acceptable, non-lethal, ageing structure for Redband 

Trout in montane streams. We suggest this with caution and suggest further research be 

completed. Conversely, we do not recommend the use of scales, given the fact that scales 
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are less precise and produced lower age estimates. Otoliths of Bluegill were found to be 

the most precise at both water bodies. Scale and fin ray age estimates differed in 

precision depending on water body. Scale age estimates were more precise at Atwood’s 

Pond while fin ray age estimates were more precise at Bruneau Dunes Pond. Pairwise 

regression comparisons showed that scale age estimates significantly underestimate the 

age of fish when compared to that of otoliths, at both locations. There was not a 

significant difference between the assigned age of otoliths and fin rays at either location. 

We do not recommend the use of scales or fin rays as the primary aging structure for 

Bluegill. Although, we did not find assigned ages of otoliths and fin rays to differ, 

estimates of the latter demonstrated far less precision. The difference in precision 

concerns us. We suggest a study be undertaken to validate fin rays prior to them being 

used as a primary ageing structure for Bluegill in Idaho waters. 
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PREFACE 

Age is the basis for calculating many of the population dynamics used to manage 

fish populations, which make it vitally important to be able to accurately and precisely 

assign an age to a morphological structure. There have been numerous structures used to 

age fish. Interestingly, the most widely used ageing structure, otoliths, have a 

considerable amount of confusion surrounding them. Specifically which zone forms 

during fast somatic growth?  Further, otoliths are a lethal sampling method, and many 

fisheries biologists, regardless of population status, prefer to use non-lethal ageing 

techniques. Throughout the course of this study we investigated the timing of otolith zone 

formation of a warm-water fish, Bluegill, and a cold-water fish, Redband Trout. These 

two species were chosen due to their recreational fishing popularity and because they are 

examples of the species at the heart of the confusion surrounding otolith zone formation. 

We also compared three structures, otoliths, pectoral fin rays and scales, to determine if 

the three structures produced similar age estimates for these two species.  

Redband Trout, a native subspecies of Rainbow Trout in both high dessert and 

montane streams in the western USA, is a popular sport fish in much of its range. 

Montane stocks residing in larger river systems such as the Payette and Boise rivers, and 

their tributaries receive considerable angling pressure and thus good ageing structures are 

needed to produce dynamic rate functions for management.  
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Bluegill are one of the most popular recreational fishes in North America, and are 

found in 49 states and 6 Canadian providences. They are also sought after in many Idaho 

waters.  The recreational and economic importance of Bluegill makes it vitally important 

to correctly manage this species.  

The three ensuing chapters investigate the confusion surrounding otolith zonation 

and whether there is a quality non-lethal ageing method for these two important Idaho 

recreation sport fishes. To facilitate future publication of this work, each of the chapters 

was written as a stand-alone journal article, and for this reason are written in plural form. 

Given the similarity in field and laboratory methods there is some unavoidable repetition 

of writing style in the introduction and method sections. 

Chapter one is a comparison of the zonation patterns of Bluegill and Redband 

Trout to determine if this difference is species specific. It has been suggested by many 

authors who study salmonids that the opaque zone is related to fast somatic growth. 

Conversely, most authors who study warm water species suggest the translucent zone 

forms during fast somatic growth. We calculated monthly growth rates and compared this 

to edge analysis; which allowed us to determine the time of year that fast somatic growth 

was occurring, and which otolith zone coincided with the highest rate of growth. Monthly 

samples also allowed us the opportunity to use marginal incremental analysis to validate 

otoliths as forming one annulus per year in the first two age classes, for both species in all 

five water bodies.  

Though otoliths were validated in our study sites and have been shown to be quite 

precise and accurate; they are a lethal sampling method. Chapters two and three 
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investigate whether there is a difference in precision between otoliths, pectoral fin rays 

and scales. This is accomplished for each species independently.  
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CHAPTER 1: OTOLITHS AND THE CONFUSION SURROUNDING THE 

INTERPRETATION OF ZONATION: A COMPARISON OF REDBAND TROUT 

(Oncorhynchus mykiss gairdneri) AND BLUEGILL (Lepomis macrochirus) 

Abstract 

There is extensive confusion surrounding the timing and interpretation of otolith 

zones, specifically, which zone represents fast growth and which represents slow growth. 

To determine if this confusion is a species-related difference, we calculated monthly 

growth rates and investigated otolith zonation for a cold-water (Redband Trout: 

Oncorhynchus mykiss gairdneri) and a warm-water (Bluegill: Lepomis macrochirus) 

species, in two Southern Idaho streams and three ponds. Redband Trout showed their 

fastest growth during the month of June, with continuation of growth through September. 

The opaque zone started to form in March; by June 100% of the Redband had formed an 

opaque outer edge on the otolith. As with Redband Trout, the fastest growth rates for 

Bluegill were during late spring and early summer. This fast growth coincided with the 

formation of the translucent zone, which was observable in 95% of Bluegill by the month 

of May. Similar to Redband Trout, 100% of Bluegill had begun forming their fast growth 

zone by June. Based on edge analysis the otolith zonation pattern for Bluegill is 

translucent-forming during summer months and opaque-forming in fall to spring. 

Conversely, the otolith zonation pattern for Redband Trout is opaque-forming during 

summer months and translucent-forming in winter. Our findings suggest that Redband 

Trout, and Bluegill do indeed form opposite appearing otolith zones during their 
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respective periods of fast somatic growth. Although we have limited data for other warm 

and cold-water species in our study waters, we observed similar patterns for other species 

in these two groups. In addition, the otoliths for the first two age classes of both species 

were validated as forming one annulus per year. These findings have implications for 

both experienced and novice biologists conducting ageing studies. Lacking water-specific 

validation, the annulus for temperate warm-water centrarchids should be considered the 

opaque zone. Conversely, the annulus for temperate cold-water trout should be 

considered the translucent zone. 

Introduction 

Fish are one of the most aged organisms with over a million, and most likely 

closer to two million, aged worldwide in 1999 (Campana and Thorrold 2001). There are 

two reasons for the widespread ageing of individual fish. First fish do not have a 

maximum size at maturity, and may grow and mature at different sizes and rates within 

different habitats (Casselman 1987; Weatherly and Gill 1987; Campana 2001). When fish 

exceed approximately four years of age there is no clear distinction of age at a specific 

size, and there is a considerable amount of length overlap between differing age classes 

(Casselman 1987). The second reason relates to the recreational and commercial 

exploitation of fish stocks. Extensive exploitation of fish makes it vitally important to 

understand key population dynamics; factors such as mortality, growth rate and 

recruitment; each of which requires knowledge of age. Without an understanding of 

these, and other demographic parameters individual populations may be at risk for 

overexploitation and population decline (Casselman 1987). 
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Of the structures used to age fish, otoliths are widely used in part to their 

accuracy, but also due to their precision and ease of removal (Casselman 1987; Secor et 

al. 1992). Otoliths grow by adding concentric rings of calcium carbonate and proteins. 

Small, seasonal differences in the concentration of proteins result in the rhythmic growth 

patterns (Alvarez et al. 2008). These patterns appear as translucent or opaque zones 

wherein the translucent band allows light to pass through while the opaque zone blocks 

light, which gives each zone a distinct appearance. The study of these zones has been 

termed zonation (Casselman 1987). 

For many decades there has been, and remains, confusion as to the time of year 

when the different otolith zones form (Beckman and Wilson 1995; Schill 2009; Schill et 

al. 2010), and which zone represents fast growth and which represents slow growth 

(Pannella 1980). This conflict may be due, in part, to seasonal differences between warm 

and cold-water fish growth rates (Daniel J. Schill, Idaho Department of Fish and Game, 

personal communication). Though many warm and cold-water species coexist in the 

same water body, the distinguishing difference between the two groups is the optimal 

temperature at which each grows (Casselman 2002). Most cold-water biologists typically 

view the opaque zone as the fast growth zone (Jerald 1983; Schill et al. 2010), while 

warm-water fish researchers tend to view the translucent zone as the fast growth zone 

(Schramm 1989; Devries and Frie 1996; Hales and Belk 1992). It has been suggested that 

the differences are species-specific (Schramm 1989; Beckman and Wilson 1995).  

Schill (2009) suggested such differences may not be real, and advanced the 

hypothesis that such differences are not family or species-specific. Such family-related 

differences simply could be due to illumination methods, sample preparation or reader 
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interpretation (Beckman and Wilson1995; Campana 2001; Schill 2009). For example, the 

type of light used to view these zones can alter their appearance. Reflected light on a 

black background causes the opaque zone to appear light colored, if not white, and the 

translucent zone to appear dark. Transmitted light will cause the opposite appearance of 

the zones; i.e. opaque zones appear dark and translucent zones appear light (Casselman 

1967). Pannella (1974) noted that “one is left to wonder whether some of the confusion 

around zones is semantic or observational.” To address this issue, Pannella (1980) 

suggested that the otolith zonation for different species within a similar area should be 

studied concurrently.   

Along with the confusion surrounding the meaning of the two otolith zones, 

uncertainty as to the timing of fish growth within individual populations may further 

cloud the issue. Generally it is believed that fish grow during the warm summer months, 

with a decrease, if not a cessation, of growth in the colder winter months (Gerking 1967; 

Weatherly and Gill 1987; Cada et al. 1987). This view is not unfounded and fish growth 

often occurs during the warmer summer months (Mortensen 1982; Neves et al. 1985; 

Rypel 2009). However, other studies found that some fish species have a bimodal growth 

pattern with most growth occurring in the spring/fall period (Brown 1945; Kaeding and 

Kaya 1978; Railsback and Rose 1999; Meeuwig et al. 2004, Schill et al. 2010). Reported 

differences among studies could reflect differences in species, or habitat, and could also 

be due in part to the temporal scale at which growth has been commonly investigated. In 

general, few studies of monthly growth patterns exist in the literature. The vast majority 

estimate annual growth and most authors make assumptions about seasonal growth. 
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Casselman (1987) and Campana (2001) recommended that ageing structures 

should be validated for each species, and further suggest validation for a given species 

residing in separate geographic regions. The three most widely used validation techniques 

are chemically marking the structure and doing a mark-and-recapture study, marginal 

incremental analysis (MIA), and by using known-age fish (Beamish and MacFarlane 

1983; Campana 2001). Because of the difficulty of identifying the first annulus 

(Campana 2001), these authors also consider measurement of the distance from the 

focus-to-the-first annulus another feature of successful age validation.  

The primary goal of this study was to evaluate whether species-specific difference 

could explain some of the confusion surrounding the interpretation of otoliths zones. To 

this end, in this study a single biologist compared the timing of fish growth and otolith 

zone formation for both a cold-water species, (steno-thermic species: Redband Trout 

Oncorhynchus mykiss gairdneri), and a warm-water species, (eu-thermic species: 

Bluegill Lepomis macrochirus), with the same illumination methods. The specific 

objectives of this study were: 1) determine what otolith zone forms during periods of fast 

somatic growth (translucent vs. opaque), and whether the zone differs between Bluegill 

and Redband Trout; 2) determine what time of year fast somatic growth occurs, and does 

this season differ between Bluegill and Redband Trout; 3) validate whether or not otoliths 

of Redband Trout and Bluegill form one annulus per year in our study waters. 

Sample Site Description 

We sampled fish from two habitat types: 2 lotic waters (Harris Creek and Mores 

Creek), and 3 lentic waters (Attwood’s Pond, Crane Falls Lake and Bruneau Dunes State 

Park Pond, from here on out Bruneau Dunes Pond) (Figure 1:1). Harris Creek is a second 
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order tributary to the Payette River, in Boise County, Idaho. Our sample site started at an 

elevation of 1130 m and ended at an elevation of 1250 m. We sampled approximately 2.5 

km of stream throughout the study period. Harris Creek has a mean width of 2.5 m and a 

mean depth of 0.18 m during the summer and fall months. Spring runoff flows, can be 

highly variable, at Harris Creek and during this period has a mean depth of 0.91 m, and a 

mean width of 3.2 m. 

Mores Creek is a second order tributary to the Boise River, in Boise County 

Idaho.  Our sample site started at 1465 m in elevation and ended at an elevation of 1500 

m. We sampled approximately 3.5 km of stream over the course of the study. During 

summer and fall base flows, Mores Creek has a mean width of 3.6 m and a mean depth of 

0.53 m. During spring runoff, high flows, the mean width was 5.8 m with a mean depth 

of 1.1 m. 

Atwood’s Pond is a privately owned pond that is located next to the Payette River 

in Payette County, Idaho. The pond is a reclaimed gravel pit and is fed by hyporheic 

water from the nearby Payette River. It has a maximum depth of 4.9 m and covers 

approximately 9.3 ha. The depth of Atwood’s Pond fluctuates with the fluctuation of the 

Payette River flows. 

Crane Falls Lake, located in Owyhee County, Idaho, is a natural lake which 

formed following the construction of C.J. Strike dam and the ensuing irrigation of 

agriculture land on the plateau above (Jeff Dillon, Idaho Department of Fish and Game, 

personal communication). The lake is fed by hyporheic water from the Snake River. 

Crane Falls Lake has a mean depth of 5.5 m and covers approximately 45.5 ha, and 

remains at a relatively stable depth throughout the year. 
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Bruneau Dunes Pond is located inside of Bruneau Dunes State Park, in Owyhee 

County, Idaho. Bruneau Dunes Pond is a manmade pond that is filled by pumping water 

from the Snake River into the pond through the winter months, generally November-

March. The mean depth is 4.2 m and covers approximately 15.8 ha. Water levels at 

Bruneau Dunes decreases slightly throughout the summer months and then increases 

during the winter months, which corresponds to the time of pumping. 

Methods 

We sampled the five water bodies for 15-17 months, depending on the water 

body. Atwood’s pond and Harris Creek were both sampled from June 2011-Oct 2012. 

Crane Fall Lake, Bruneau Dunes State Park Pond, and Mores Creek were sampled from 

Aug 2011-Oct 2012.  During the months of December and January the lentic waters were 

ice covered. The ice was too thick to allow boat access but not thick enough to safely 

allow us to angle through the ice. We did attempt to angle from docks and the bank to no 

avail. Due to these conditions we were unable to obtain a sample from Atwood’s Pond 

and Crane Falls Lake during those two months. Bruneau Dunes pond was not sampled 

during December due to ice, however we were able to sample there in January. Water 

temperature was measured continually with, Onset USA tidbit, thermographs. Within the 

lotic systems the thermograph was attached to an easily distinguishable structure in the 

center of the thalweg. Within the lentic waters thermographs were attached .3 meters 

below a floating buoy, which was anchored to the bottom. 

Within the lentic waters we sampled primarily Bluegill, but also collected a small 

sample of Largemouth Bass (Micropterus salmoides), Pumpkinseed Sunfish (Lepomis 

gibbosus), Warmouth (Lepomis gulosus), Black Crappie (Pomoxis nigromaculatus), and 
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Yellow Perch (Perca flavescens). These other species were collected to asses if otolith 

zonation and timing is uniform across multiple warm water species.  

Lentic sampling consisted of electrofishing with a Smith-Root electrofishing boat 

and, throughout the months of April-September, towing a 1 x 2 m floating neuston net of 

1mm bar mesh. The purpose of the neuston net was to capture young-of-the-year larval 

Bluegill. Due to the inefficiencies  of electrofishing during the winter (December- 

March), we also set 2, 13 mm treated black mesh with 0.9 x 1.8 m frame and a 22.9 m 

lead trap nets, and a 45 m X 1.8 m clear monofilament sinking experimental gill nets with 

6 panels composed of 1.9, 2.5, 3.2, 3.8, 5.1, and 6.4 cm bar mesh in each pond; both net 

types were soaked for 24 hours. The change of sampling techniques was not an issue 

since we were not concerned with catch rate; our goal was to obtain a qualitative sample 

for age and growth examination. To avoid repeated electroshocking of the same fish, we 

sampled in a rotational clockwise pattern. This pattern allowed us to sample the entire 

pond over the course of a year. We never sampled a specific area more than once a year 

and we never sampled any location more than twice throughout the study period. 

Streams were sampled using backpack electrofishing equipment, where we 

targeted Redband Trout. Incidental samples of Brook Trout (Salvelinus fontinalis), and 

Sculpin Cottus sp. were also collected at Mores Creek to determine if otolith zonation 

and timing was uniform across several cold water species. We avoided electroshocking 

the same fish repeatedly by sampling in a contiguous fashion upstream, which allowed us 

to sample a different location each month. Mores Creek, being higher in elevation, was 

predominantly covered in ice through the winter months which made acquiring a sample 

challenging. In the spring of the year during high flows both creeks were difficult to 
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sample, but we were able to collect, at least some, fish from both waters every month of 

the year. 

After sampling, fish were sacrificed with an overdose of peppermint oil, returned 

to the laboratory, and kept frozen until dissected. After defrosting each fish was weighed 

to the nearest tenth of a gram, measured to the nearest millimeter, and sex and maturity 

were determined using the approach of Downs et al. (1997). Larval fish weighing less 

than a tenth of a gram were weighed to the nearest hundredth of a gram. Sagittal otoliths 

were removed, cleaned of any soft tissue, dried, and stored in 1.5 ml centrifuge tubes.  

Digital images of whole otoliths were taken using a Leica DC 500 camera 

mounted on a Leica DM400B compound microscope using 12-100x magnification, 

depending on size of the otolith. Images of dry whole otoliths were taken, the otolith was 

then submerged in water and images were taken again. This allowed us to compare and 

contrast the edge during edge analysis. We captured approximately 25,000 images 

throughout this study. The images were then analyzed using Image Pro Insight. The 

clearest images were used for edge analysis, marginal incremental analysis (MIA), and 

ageing.  

Edge analysis consisted of determining whether the edge of each otolith was 

opaque, partially opaque, or translucent. We used a modified version of both Casselman 

(1987) and Yosef and Casselman (1995) methods. Instead of different symbols, otolith 

edge was qualified as O-opaque, T-translucent, and PO-partially opaque. Anything with 

25% or less of the edge transitioning to a new zone was described as partially opaque, 

this description was used as the transition zone for both transition periods: i.e. translucent 
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to opaque or opaque to translucent. The wet and dry images were both evaluated to assess 

the edge condition. Edge analysis was conducted by only one reader (Schill et al. 2010). 

Edge analysis was used in conjunction with monthly instantaneous growth rate 

calculations to identify the otolith zone formed during the period of fastest somatic 

growth. Monthly instantaneous growth rate (G), based on weight, was calculated using 

the formula (G) = (ln (W2)-ln (W1))/ (T2-T1) (Busacker et al. 1990) where W2 is the mean 

weight  of an age class from month two, W1 is the mean weight of the same age class 

from the previous month, and T2-T1 (the number days between sampling periods).  

We used MIA (Maceina and Betsill 1987; Beckman et al. 1988; Hyndes et al. 

1992) to validate age on the first two age classes. Young-of-the-year otoliths were 

measured, in microns, from the center of the otolith (focus) to the distal edge of the 

postrostrum. We continued this throughout the year until the point when a new annulus 

had formed.  Measurements of the first age class from August 2011 were used to 

determine the mean focus to first annulus distance for Bluegill as this was the month that 

the zones transitioned. The measurements from September 2011 were used for this 

purpose in Redband Trout, as this was when a majority of the first age class had 

transitioned zones. Otoliths already containing one observable annulus were measured 

from the distal edge of the otolith to the edge of the last complete annulus. The monthly 

samples allowed us to follow the formation of the annulus throughout the year 

(Casselman 1987). These measurements were averaged and plotted for each month. To 

aid in our confidence of age and growth estimates, a sub sample of otoliths were aged by 

two readers, and the between-reader coefficient of variance (CV) was calculated (Chang 

1982). 
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Results 

Edge Analysis and Growth 

Mean water temperature varied throughout the study period and between sites 

(Figure 1:2). We generally had larger sample sizes during the summer months than 

during winter months. Though, sample sizes varied throughout the study and between 

sites (Tables 1:1 and 1:2), we collected a total of 2,699 Bluegill and Redband Trout for 

this study. Atwood’s Pond and Harris Creek produced the most complete data on older 

age classes due to the larger sample size each month (Tables 1:1 and 1:2).  

Bluegill otoliths in Atwood’s pond had 100% translucent edge during the first two 

months of sampling (June-July 2011).  By August the percentage of Bluegill otoliths with 

translucent edge had dropped to a range of 16-63% depending on fish age (Figure 1:3). 

All Bluegill sampled in September had an opaque edge. The edge of the Bluegill otoliths 

remained opaque until May at which time the percentage of Bluegill with a translucent 

edge ranged from 50-95% depending on age. Bluegill otoliths in June of 2012 again 

showed 100% translucent edges. However, July results were different than the previous 

year. Only age one Bluegill had 100% translucent in July; the other age classes ranged 

from 37-50% translucent (Figure 1:3).  Bluegill from Bruneau Dunes Pond had the same 

general pattern, except the translucent zone started forming in April and the outer edge of 

one year old Bluegill were 100% opaque by August (Figure 1:4). Bluegill from Crane 

Falls Lake had a similar pattern as the other two water bodies. However, Crane Falls 

Lake shows 15% of age two fish still having a translucent edge into September (Figure 

1:5). Based on our edge analysis the annul otolith zonation pattern for Bluegill is 
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translucent forming during spring to summer months and opaque-forming in fall to 

spring. 

Instantaneous growth rates were calculated for the first three age classes. We did 

not calculate growth for older age classes due to small sample size. Age-one and age-two 

Bluegill from Atwood’s pond showed the highest rate of growth during June and July in 

2011. However the highest rate of growth for 2012 occurred during May (Figure 1:6). 

Age three Bluegill showed variable growth, but followed a similar pattern as that of the 

first two age classes: fast growth during spring and early summer. This same pattern was 

observed at all three warm water sample sites (Table 1.3). We graphically present growth 

rates and the transition of zone formation for age-one Bluegill from Atwood’s pond to 

depict the timing of zone formation in relation to instantaneous growth. The highest rate 

of somatic growth for Atwood’s Pond Bluegill occurred during the initiation of a 

translucent zone, during the month of May. However, growth at a lower rate appears to 

continue through the transition from translucent to opaque (Figure 1:7). 

Our sample size was not sufficiently large enough to calculate growth for the 

other warm water species that were sampled. However, edge analysis indicated that the 

timing of translucent zone formation of all warm-water species we sampled was similar 

to that of Bluegill, i.e. translucent formed spring-summer and opaque fall-spring 

(Appendix). 

All Redband Trout otoliths from Harris Creek had an opaque edge for the first 

two months of sampling (June-July 2011). The opaque edge proportion persisted at 85% 

or higher until October of 2011. Only the first three age classes had any opacity in 

November, and by December 100% of all otoliths had a translucent edge (Figure 1:8). All 
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Redband Trout from Harris Creek remained translucent until March 2012 at which point 

37% and 44% of the Redband Trout in the first two age classes had an opaque edge. By 

June 2012 all otoliths had an opaque edge which remained through August 2012 in older 

age classes. Similar to 2011, the opaque zone transitioned into translucence from August 

to October in 2012 (Figure 1:8).  

Mores Creek otolith zonation and timing was very similar to that of Harris Creek.  

We found that during August of 2011 100% of the otoliths had an opaque edge, by 

November only 50% of age one Redband Trout otoliths retained an opaque edge at Mores 

Creek (Figure 1:9). Like Harris Creek all otoliths showed a translucent edge in December 

2011. The formation of the opaque zone started in May 2012, slightly later than in lower 

elevation Harris Creek, and it persisted in many fish until October 2012 at sampling 

cessation (Figure 1:9). Thus, the otolith zonation pattern for Redband Trout appears to be 

opaque forming during spring and summer months with the translucent zone forming 

during fall to winter months. 

Redband Trout from Harris Creek showed the highest rate of somatic growth 

during late spring and early summer, specifically May-July (Figure 1:10). Growth slowed 

in late fall (October) and did not increase again until spring (May 2012). There was a 

spike of growth in January 2012 (Figure 1:10), however we do not believe this to be a 

true increase in growth but likely a function of small sample sizes of one and two fish 

(Table 1:2). A similar pattern of fast growth in the late spring/early summer months with 

a slowing during winter months was observed at Mores Creek (Table 1.4). Comparison of 

instantaneous growth rates and edge analysis allowed us to determine that the highest rate 
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of somatic growth occurred during the formation of the opaque zone for Redband Trout 

in Harris Creek (Figure 1:11). 

Although Brook Trout and Sculpin were also collected at Mores creek; we did not 

have a large enough sample to calculate growth for these two species. However, we did 

perform edge analysis on these species. The annual otolith zonation patterns for Brook 

Trout and Sculpin were similar to that of Redband Trout: in general spring-summer was 

opaque; fall-winter was translucent (Appendix). 

Based on our edge analysis and the monthly instantaneous growth rate data we 

found that Bluegill and Redband Trout were both growing fastest during late spring and 

early summer; at virtually the same time of year. However, the otolith zone that is 

associated with this growth was reversed. Bluegill were growing fast, predominantly, 

during the formation of a translucent zone though growth appears to continue through the 

transition from translucent to opaque while Redband Trout were growing rapidly during 

the formation of an opaque zone. Redband Trout appear to more definitive with the 

formation of the opaque zone being tightly associated with somatic growth (Figure 1:11). 

Conversely, Bluegill appears to be more variable, with the translucent zone being formed 

during the highest rate of somatic growth. However, growth continues through the 

transition period (transition from translucent to opaque) and is still occurring during the 

formation of the opaque zone (Figure 1:7).   
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Marginal Incremental Analysis (MIA) 

MIA was completed on the first two age classes of fish from each of the five 

sample sites. The marginal increment of Bluegill from Atwood’s Pond continued to 

increase from June 2011until April 2012. At this point the marginal increment started to 

slightly decrease, and then declined drastically in May 2012 (Figure 1:12). This decrease 

coincides with the formation of the annulus which, in the case of Bluegill, is the 

completion of the opaque zone. The mean distance to the first annulus for Bluegill at 

Atwood’s pond was 925µm (±41µm). The marginal increment of (age 0-1) Bluegill from 

Bruneau Dunes showed a similar pattern to that of Atwood’s Pond (Figure 1.13). The 

mean distance to the first annulus for Bluegill at Bruneau Dunes Pond was 964 µm (± 40 

µm). Crane Falls Lake Bluegill also formed one annulus per year with the marginal 

increment increasing from August 2011 through May 2012. There was a decrease in the 

marginal increment for age 1 Bluegill in October 2011, we believe this to be a sample 

size issue (n=2) (Table 1:1). The annulus was completely formed by April 2012 (Figure 

1:14). The mean distance to the first annulus for Bluegill at Crane Falls Lake was 627µm 

(±78µm). We thus validated the use of whole otoliths for the first two age classes of 

Bluegill in all three of our study waters. The timing of annulus formation was slightly 

variable between the three water bodies. However, in all three water bodies the annulus 

was completed by June or earlier. 

The marginal increment for Redband Trout from Harris Creek increased from 

June 2011 through March 2012 at which time it declined slightly. May of 2012 showed a 

drastic single decline (Figure 1:15) which signifies the formation of an annulus, which in 

the case of Redband Trout is the completion of the translucent zone. The mean distance 
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to the first annulus for Redband Trout at Harris creek was 519µm (±27µm). The marginal 

increment of Redband Trout in Mores Creek increased from August 2011 through March 

of 2012. The annulus was completely formed by April, which can be seen by a very 

distinct drop in the marginal increment distance (Figure 1:16). The mean distance to the 

first annulus for Redband Trout at Mores Creek was 517µm (±46µm). 

Discussion 

We found that both species grew at similar times of year but growth was 

evidenced by opposing zone formation. Fast somatic growth of Redband Trout occurred 

during spring and summer months and was associated with the formation of an opaque 

zone. Bluegill grew rapidly during a similar time period but the highest rate of growth 

was related to the formation of the translucent zone, though growth, at a lower rate, 

continued through the transition from translucent to opaque in the fall of the year. We 

also found, via MIA, that Bluegill and Redband Trout formed one annulus per year on 

sagittal otoliths of age zero and one fish. 

Bluegill formed the translucent zone during the highest rate of somatic growth, 

though growth, at a decreased rate, continued in the fall when the otolith edge was 

opaque. These results, though different from what the other studies have suggested 

(Beckman and Wilson 1995), it is not unprecedented as a number of researchers have 

concluded that warm-water species form the translucent zone during the highest rate of 

somatic growth (Schramm 1989; Taubert and Tranquilli 1982; Maceina and Betsill 1987; 

Blackwell and Kaufman 2012). Further it has been shown in laboratory studies that 

Bluegill will grow in variety of temperatures 25-32 C˚ (Lemke 1977, Beitinger and 

Magnuson 1979). The Bluegill in the present study showed the highest rate of growth 
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during May-July depending on the water body. These months had a mean temperature of 

20-28 C˚ depending on month and water body. The time of year we found Bluegill to be 

growing is also consistent with what has been previously reported, which suggests 

Bluegill have a “spurt of growth in the spring” followed by a slowing of growth through 

the summer and fall (Gerking 1966). Given our data and that of others we believe that 

other warm-water species form the translucent zone during the season of highest somatic 

growth.  

In contrast, Redband Trout formed an opaque zone during the highest rate of 

somatic growth, which also occurred during spring and summer. The zonation pattern of 

spring-summer opaque and fall-winter translucent held true for Brook Trout and Sculpin. 

These findings agree with the majority of studies on otolith zone formation. Most 

research shows the highest rate of somatic growth occurs during the formation of the 

opaque zone (Beckman and Wilson 1995), though there is some variation in the timing of 

the opaque zone between years (Williams et al. 2005) and with latitude (Hoie et al. 2009). 

However, it should be noted that the two previously mentioned studies were determined 

by studies in salt water environments. 

Our findings hopefully explain some of the literature confusion surrounding 

which zones are forming during fast somatic growth. We found that Bluegill, a 

centrarchidae, is forming the translucent zone during periods of fast somatic growth. This 

is in agreement with research that suggested the translucent zone formed during fast 

growth in centrarchids (Taubert and Tranquilli 1982; Maceina and Betsill 1987; 

Schramm 1989; Beckman and Wilson 1995). Centrarchids do not appear to be the only 

assemblages with a translucent zone forming during fast somatic growth. Several studies 
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have suggested translucent zones form during fast somatic growth in both fresh and 

saltwater fishes: Yellow Perch (Blackwell and Kaufman 2012), Red Drum (Sciaenops 

ocellatus) (Fuiman and Hoff 1995), Sole (Sole a vulgaris), and Brill (sole a rhombus) 

(Arneri et al. 2001).  

MIA for Redband Trout showed that the first two age classes formed one annulus 

per year. This validates the use of otoliths as a reliable ageing structure for the first two 

age classes of Redband Trout residing in montane streams. During the course of the 

sampling period we sampled fish up to five years of age, and found that all age classes 

sampled formed the same zone at relatively the same time of year, although sample sizes 

for older fish were too small to conduct MIA. Some researchers have warned against 

making the assumption that validating younger fish does not necessarily validate the 

same ageing structure for older fish (Beamish and McFarlane 1983, Campana 2001). 

However, our results and other Redband Trout age validation studies (Hining et al. 2000; 

Schill et al. 2010) suggest that whole and sectioned otoliths can be used to age older 

Redband Trout.  In addition, Beckman and Wilson (1995) used edge analysis as an otolith 

validation method for adults. 

MIA for Bluegill also showed that the first two age classes formed one annulus 

per year in their sagittal otoliths. Though it has been suggested that latitude may cause 

fluctuations in annulus formation (Beckman and Wilson 1995; Hoie et al. 2009); our 

results for Bluegill show the annulus, opaque zone, forms at nearly the same time of year 

as Bluegill in Florida (Mantini et al. 1992). Although MIA was used to validate only the 

first two age classes we did perform edge analysis on all ages sampled. Edge analysis 

showed that all age classes have a similar seasonal pattern of otolith zonation, which can 
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be used as a validation method (Beckman and Wilson 1995). Given this data we suspect 

that Bluegill in these waters are forming one annulus per year for older age classes, and 

believe ages of older fish can be used, albeit with caution.   

Given the difference between warm and cold-water fish otoliths we have reported 

in the current study, and disparate findings of other studies (Taubert and Tranquill 1982; 

Maceina and Betsill 1987; Schramm 1989; Beckman and Wilson 1995, Fuiman and Hoff 

1995, Arneri et al. 2001, Blackwell and Kaufman 2012), we feel it is vitally important to 

understand the timing and zonation patterns for otoliths in other fresh water fish. Ageing 

a fish by starting to count the wrong zone as the annulus could cause an error of up to one 

year of age (Williams and Bedford 1973; Campana 2001). On a long lived species this 

perhaps may not be a crucial issue. However, Campana (2001) suggests that an error of 

even one year on younger fish would introduce an unacceptable error in age 

determination, and the ensuing growth estimate. For example, when calculating the 

growth of a short lived fish, (e.g. an age 3 Black Crappie), the growth estimate would be 

off by one third. Therefore, we agree with the recommendation of Casselman (1987), that 

validation of ageing structures on all species in all geographic locations is desirable, and 

agree with Williams and Bedford (1973) that knowledge of zone timing is also crucial. 

If such efforts are not possible, then some guidelines for ageing warm vs. cold-

water fish within the temperate freshwater regions of North America are needed. Based 

on the present research and the literature (Taubert and Tranquill 1982; Maceina and 

Betsill 1987; Schramm 1989; Beckman and Wilson 1995), warm-water fish form the 

translucent zone during the highest rate of somatic growth which is spring and early 

summer. Lacking water-specific data we suggest, the opaque zone, which forms during 
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slow somatic growth (usually fall-spring), should be considered the annulus for these 

freshwater fish. Conversely, cold-water species form the opaque zone during the highest 

rate of somatic growth, which typically forms during spring to summer. The translucent 

zone, formed during periods of slow somatic growth in fall-winter, should be considered 

the annulus for these species. We also agree with Casselman (1987) and others (Campana 

2001) in that the most difficult aspect of ageing a fish is determining where the first 

annulus begins. The mean focus-to-first-annulus distance that we reported for Bluegill 

and Redband Trout are good references to assist other South Idaho biologists determine 

the location of the first annulus on these species. The focus-to-first-annulus we reported 

for Crane Falls Lake was considerably smaller than that of Atwood’s Pond or Bruneau 

Dunes Pond. We believe this is due to the minimal growth rates observed at that location. 

This leads us to suggest using this guideline with caution, especially within stunted 

populations.  Further, we do not recommend using this guideline in broadly different 

habitats or other geographic locations. 

Many agencies do not have time or resources to do such extensive research into 

the otoliths they are using to estimate age. However, we strongly urge that more research 

be completed on this subject, especially studies to evaluate which species grow during 

opaque zone formation and which grow during translucent zone formation. Based on the 

species we have found in the literature (Taubert and Tranquill 1982; Maceina and Betsill 

1987; Schramm 1989; Beckman and Wilson 1995, Fuiman and Hoff 1995, Arneri et al. 

2001, Blackwell and Kaufman 2012), the split is highly variable and extends not only 

freshwater but also saltwater species. We encourage similar follow up zonation studies by 
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other researchers on more species in more geographic locations, as originally suggested 

by Pannella (1980). 

A second consideration for future research is to determine the mechanism behind 

the apparent difference in otolith zone formation. Knowing that the growth zones are 

different for different species leads to the question why?  There has been much research 

on the microchemistry of otoliths, most of which has tried to correlate temperature and 

zonation as well as using otoliths to reconstruct life history (Kalish 1992; Campana 1999; 

Elsdon et al. 2004). Microchemistry of the otolith does not necessarily match that of the 

environmental conditions (Kalish 1989; Kalish 1992; Campana 1999; Campana and 

Thorrold 2001). The endolymphatic fluid, which is where the otolith is formed, is highly 

controlled by the endocrine system (Kalish 1989; Campana 1999; Alvarez et al. 2008).  

Mosegraad et al. (1988) showed that growth may be decoupled from otolith zonation and 

suggested the zones are actually a product of metabolic rates. This and our findings 

which show that Bluegill grow through the transition of zones, may hint that the 

mechanisms behind the warm-water: cold-water zone reversal we reported in the present 

study could be driven by the endocrine system and metabolic rates. Further, it was 

observed that the zonation patterns of otoliths and fin rays of Bluegill appeared reversed 

(Chapter 3). However this phenomenon did not seem apparent in Redband Trout (Chapter 

2). This leads us to suggest that otoliths are highly variable in the timing of zone 

formation, which has been documented in the literature (Taubert and Tranquill 1982; 

Maceina and Betsill 1987; Schramm 1989; Beckman and Wilson 1995, Fuiman and Hoff 

1995, Arneri et al. 2001, Schill 2009, Schill et al. 2010, Blackwell and Kaufman 2012). 

We further suggest that though environmental conditions affect whole otolith chemistry, 
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the endolymphatic fluid and hormones may be controlling the timing of zone formation 

and an otoliths unique mode of calcification (Payan et al. 1997; Campana 1999; Campana 

and Thorrold 2001). Future research should investigate how metabolic rates and what 

hormones are effecting otolith zone formation. Further, chemical analysis should be 

undertaken to determine the difference between the timing and composition of the 

different zones on species that show a reversal of the otoliths zones, e.g. Redband Trout 

and Bluegill. 

Conclusions 

A primary goal of this study was to determine which zone was forming relative to 

the time of year Redband Trout and Bluegill were growing. We found that both species 

are growing rapidly at relatively the same time of year but this growth results in different 

otolith zones. Assuming this finding is correct, and can be corroborated by others, it has 

important implications for both experienced and novice biologist conducting ageing 

studies. Lacking water-specific validation, the annulus for temperate warm-water 

centrarchids should be considered the opaque zone. Conversely, the annulus for 

temperate cold-water trout should be considered the translucent zone. 
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Figure 1:1: Map depicting the sampling locations within Southwestern Idaho 

Atwood’s Pond 
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Figure 1:2: Monthly temperature (C˚) for each sample site (Mean ± 1 SD). 
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Table 1:1: Bluegill Sample size of all age classes that were sampled from all three of the Bluegill sample sites. Dashes 
represent a sample size of zero for that age and month. Crane Falls Lake and Bruneau Dunes Pond were not sampled in June 
and July of 2011. Ponds were not sampled in December and January due to ice. Sample period is from June 2011 through 
October 2012. 
  Atwood's Pond   Crane Falls Lake   Bruneau Dunes Pond 

cohort 0 1 2 3 4 6   0   1 2 3 4 5 6 7 8 9   0 1 2 3 4 5 6 7 8 

Month 

                            June - 20 19 4 1 - 

 

- 
 

- - - - - - - - - 

 

- - - - - - - - - 

July 15 20 25 4 - - 

 

- 
 

- - - - - - - - - 

 

- - - - - - - - - 

August 18 35 36 2 - - 

 

9 
 

6 10 35 3 3 1 - - - 

 

18 23 17 2 1 - 1 - - 

September 16 31 20 2 - - 

 

10 
 

4 16 30 5 2 - - - - 

 

14 11 6 
 

- - - - - 

October 6 3 12 8 - - 

 

2 
 

7 17 5 - - - - - - 

 

16 3 1 1 1 - - - - 

November 16 29 - - - - 

 

3 
 

5 13 10 4 4 3 1 4 - 

 

8 11 15 1 1 - - - - 

December - - - - - - 

 

- 
 

- - - - - - - - - 

 

- - - - - - - - - 

January - - - - - - 

 

- 
 

- - - - - - - - - 

 

- - 1 1 - 4 - - - 

February 11 7 7 2 - 1 

 

- 
 

2 6 - 2 3 2 
 

4 1 

 

- - 4 3 2 1 - - 1 

March 6 17 3 1 - 1 

 

- 
 

- 9 4 3 9 3 2 2 - 

 

- - 1 1 - 2 2 - - 

April 5 18 18 5 1 - 

 

6 
 

8 1 - - - - - - - 

 

- 1 - - - 1 - - - 

May 14 20 8 4 1 - 

 

3 
 

12 11 15 2 4 1 1 - - 

 

- - 2 1 1 - - - - 

June 8 27 18 3 1 - 

 

- 
 

12 13 4 1 2 1 3 - - 

 

1 18 6 1 - - - 1 - 

July 15 23 8 2 - - 

 

6 
 

14 27 13 2 1 - - - - 

 

13 8 - - - - - - - 

August 23 23 5 1 - 1 
 

13 
 

10 18 10 - - - - - - 
 

- 5 1 - - - - - - 

September 26 22 6 2 - - 

 

1 
 

15 19 7 1 - - - - - 

 

6 12 3 1 - - - - - 

October 21 14 1 1 - 1 
 

8   2 17 13 1 - 1 1 - - 
 

1 26 4 1 - 1 - -   
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Table 1:2: Monthly sample size of Redband Trout from Harris Creek and Mores 
Creek. Dashes represent a sample size of zero for that age class and month. Samples 
are from June 2011 through October 2012. Mores Creek was not sampled in June 
and July 2011. 

  Harris Creek   Mores Creek 

Age 0 1 2 3 4 5   0 1 2 3 4 

Month 

            June - 20 18 7 8 2 
 

- - - - - 
July - 15 11 7 4 2 

 

- - - - - 
August 10 41 21 8 3 - 

 

3 20 16 13 1 

September 15 20 13 3 4 - 

 

9 17 8 6 1 

October 2 5 18 3 2 - 

 

3 13 15 7 1 

November 11 9 4 2 2 3 

 

2 7 5 4 1 

December 4 5 5 2 - - 

 

- 2 1 - - 

January 1 2 - - - - 

 

- 1 1 - - 

February 11 15 2 4 1 - 

 

- 1 1 - - 

March 9 8 2 1 3 - 

 

3 1 2 - - 

April - 4 - 1 - - 
 

1 1 - - - 
May 8 2 4 1 - - 

 

- 1 - - - 

June 20 17 11 2 1 - 

 

- 4 2 - - 

July 19 14 8 4 - - 

 

5 2 7 2 1 

August 19 13 11 2 - - 

 

18 10 5 1 1 

September 23 15 13 - 1 - 

 

26 10 5 5 - 

October 23 13 8 1 - -   13 12 5 1 - 
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Table 1.3: Monthly instantaneous growth rates for the first three age classes from Atwood’s Pond, Bruneau Dunes Pond, 
and Crane Falls Lake. ln(W2)-ln(W1)/(T2-T1). Asterisks indicate a sample size of less than 3. Minus sign represents no sample. 
Empty cells are representation of the inability to perform the calculation due to samples not being continuous. Samples are 
from June 2011 through October 2012. Bruneau Dunes and Crane Falls were not sampled in June and July 2011. 

  Atwood's Pond   Crane Falls Lake   Bruneau Dunes Pond 

Month Age 0 Age 1 Age 2   Age 0 Age 1 Age 2   Age 0 Age 1 Age 2 

June 

 

0.016 0.01 

 

- - - 

 

- - - 

July 0.033 0.01 -0.001 

 

- - - 

 

- - - 

August 0.028 0.004 0.006 

 

0.01 0.005 0.001 

 

0.048 0.021 0.009 

September -0.005 -0.007 0.013 

 

0.004 0.009 -0.015 

 

-0.023 0.008 0 

October 0.025 -0.001 - 

 

0.010* -0.015 0.007 

 

0.02 -0.017 0.003* 

November - - - 

 

- - - 

 

- - - 

December - - - 

 

- - - 

 

- - - 

January - - - 

 

- - - 

 

- - -0.005* 

February -0.002 -0.008 -0.023 * 

 

- 

 

0.002 

 

- - 0.012* 

March -0.015 0.009 0.022* 

 

- 0.001 -0.008 

 

- - - 

April 0.037 0.002 0 

 

0.004 0.007 0.027* 

 

- * - 

May 0.011 0.017 0.007 

 

- 0.022 0.008 

 

- - -0.008 

June 0.016 0.007 0.002 

 

- 0.001 0.008 

 

-0.029* -0.001 - 

July 0.014 0.006 0.001* 

 

0.006 0.01 0.002 

 

- 0.002 - 

August 0.008 0.006 0.014* 

 

-0.012 -0.008 -0.009 

 

0.003 0.01 0.003* 

September -0.002 0.003 0.019*   0.021* -0.004* 0.01   -0.003* 0.007* -0.004 
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Figure 1:3: The percentage of Bluegill each month from Atwood’s pond that had 
a translucent otolith edge. The edge was determined to be opaque, partially opaque 
or translucent. Areas without data represent those months where 100% of otoliths 
have an opaque edge, except January and December when we were unable to 
sample due to ice. 
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Figure 1:4: The percentage of Bluegill each month from Bruneau Dunes pond 
that had a translucent otolith edge. The edge was determined to be opaque, partially 
opaque or translucent. Areas without data represent those months where 100% of 
otoliths have an opaque edge, except December when we were unable to sample due 
to ice. 
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Figure 1:5: The percentage of Bluegill each month from Crane Falls Lake that 
had a translucent otolith edge. The edge was determined to be opaque, partially 
opaque or translucent. Areas without data represent those months where 100% of 
otoliths have an opaque edge, except January and December when we were unable 
to sample due to ice. 
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Figure 1:6: Instantaneous growth rate for the first three age classes of Bluegill 
from Atwood’s pond (mean ± 1 SE). The equation (G) = (ln(W2)-ln(W1))/(T2-T1) was 
used for calculating instantaneous growth rate.  
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Figure 1:7: Age one Bluegill from Atwood’s pond with instantaneous growth 
depicted with the monthly cycle, starting in June of 2011, of zonation. The black 
dotted bars are translucent the gray dotted bars are opaque and the hash marked 
bars are partially opaque, which is based on edge analysis. The black line and right 
Y axis are instantaneous growth rate (mean ± 1 SE). The highest percentage of fish 
have translucent zone forming during the spring and summer months. This is also 
the time of highest somatic growth.  
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Figure 1:8: The percentage of Redband Trout each month from Harris Creek 
that had an opaque otolith edge. The edge was determined to be opaque, partially 
opaque or translucent. Areas without data represent those months where 100% of 
otoliths have a translucent edge.  
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Figure 1:9: The percentage of Redband Trout each month from Mores Creek that 
had an opaque otolith edge. The edge was determined to be opaque, partially 
opaque or translucent. Areas without data represent those months where 100% of 
otoliths have a translucent edge. 
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Figure 1:10: Instantaneous growth rates for the first two age classes from Harris 
Creek (mean ± 1 SE). The equation G= (ln(W2)-ln(W1))/(T2-T1) was used to 
calculate instantaneous growth rates. 
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Table 1.4: Monthly instantaneous growth rates for the first three age classes 
from Harris Creek and Mores Creek. ln(W2)-ln(W1)/(T2-T1) Asterisks indicate a 
sample size of less than 3. Minus sign represents no sample. Empty cells are 
representation of the inability to perform the calculation due to samples not being 
continuous.  Samples are from June 2011 through October 2012. 

  Harris Creek   Mores Creek 

  Age 0 Age 1 Age 2   Age 0 Age 1 Age 2 

June - 0.031 0.018 

 

- - - 
July - 0.006 -0.002 

 

- - - 
August 0.025 0.002 0.001 

 

0.041 0.009 0.009 

September 0.001 0.004 0.002 

 

0.009 0.001 -0.013 

October 0.001* -0.007 -0.004 

 

0.033 -0.013 0.008 

November -0.003 0.001 0.007 

 

* -0.009 0.012 

December 0.013 0.002 - 
 

- 0.027* -0.015* 

January -0.010* -0.000* - 
 

- 0.018* -0.003* 

February -0.002 -0.008 0.019* 

 

-0.001 -0.019* 0.005* 

March - 0.004 * 
 

-0.041* -0.008* * 
April - 0.001 - 

 

- -0.025* - 
May 0.0123 0.032 0.016 

 

- 0.028* - 
June 0.0099 -0.001 0.003 

 

0.018 0.006 0.018 

July 0.0024 0.005 0.000 

 

0.031 0.018 -0.011 

August 0.0002 -0.006 -0.005 

 

0.004 0.012 -0.006 

September 0.0059 0.006 0.006   0.016 -0.003 0.019 
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Figure 1:11: Age one Redband Trout from Harris Creek. The black dotted bars 
are the % of otoliths each month that have a translucent edge. The grey dotted bars 
are % of otoliths with an opaque edge per month and hash marked bars are the % 
of otoliths with a partially opaque edge. The black line and right Y axis are 
instantaneous growth rate (mean ± 1 SE). The highest somatic growth is occurring 
during an opaque zone.  

  

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0

25

50

75

100

J J A S O N D J F M A M J J A S O

Te
m

pe
ra

tu
re

 C
˚ 

%
 E

dg
e 

Co
nd

iti
on

 

Opaque

Partially Opaque

Translucent

Instantaneous Growth

2011 2012 

 



47 
 

 

 

 
Figure 1:12: Marginal incremental analysis for Atwood’s Pond Age 0 and 1 
Bluegill (mean ± 1 SE). The rapid decrease indicates the formation of a new 
annulus.  

  

0

100

200

300

400

500

600

700

800

900

1000

J J A S O N D J F M A M J J A S O

In
cr

em
en

t W
id

th
 (m

ic
ro

ns
) 

Age 0

Age 1

2011 2012 

Ic
ed

 O
ve

r 

 



48 
 

 

 

 
Figure 1:13: Marginal incremental analysis for Bruneau Dunes Pond Age 0 and 1 
Bluegill (mean ± 1 SE). The rapid decrease indicates the formation of a new 
annulus.  
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Figure 1:14: Marginal incremental analysis for Crane Falls Lake Age 0 and 1 
Bluegill (mean ± 1 SE). The rapid decrease indicates the formation of a new 
annulus.  
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Figure 1:15: Marginal incremental analysis for Harris Creek Age 0 and 1 Redband 
Trout (mean ± 1 SE). The rapid decrease indicates the formation of a new annulus.  
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Figure 1:16: Marginal incremental analysis for Mores Creek Age 0 and 1 Redband 
Trout (mean ± 1 SE). The rapid decrease indicates the formation of a new annulus. 
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CHAPTER 2: A COMPARISON OF ASSIGNED AGE AND PRECISION OF 

SCALES, PECTORAL FIN RAYS, AND OTOLITHS OF MONTANE REDBAND 

TROUT (Oncorhynchus mykiss gairdneri) 

Abstract 

Redband Trout, a native subspecies of Rainbow Trout residing east of the 

Cascade Mountains, USA, are a popular sport fish in much of its range. We sampled two 

montane streams in southwestern Idaho, to collect Redband Trout of different age classes 

from young-of-the-year to the oldest age classes, and compared estimates of age and 

associated precision for sagittal otoliths, pectoral fin rays, and scales. We found no 

difference in the assigned age of fin rays and otoliths at Mores Creek; however fin rays 

ages were less precise than that of otoliths at both locations. Further we found a statical 

difference between assigned ages of otoliths and fin rays, with fin rays producing lower 

age estimates, specifically on older fish. Scales ages were less precise and had lower age 

estimates than that of otoliths or fin rays at both locations.  Though, our findings showed 

a difference in assigned age, at Harris Creek, and precision at both locations. We feel that 

fin rays produced an acceptable age estimate for montane Redband Trout.  These 

findings, along with those that have shown that fin ray removal did not affect growth and 

survival, leads us to suggest that fin rays may be  an acceptable, non-lethal, ageing 

structure for Redband Trout in montane streams. We suggest this with caution and 

suggest further research be completed. Conversely, we do not recommend the use of 

scales, given the fact that scales are less precise and produced lower age estimates. 
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Introduction 

Fish in different habitats grow and mature at different rates, making it difficult to 

generalize about fish age at a given size (Campana 2001). This is problematic given that 

age is the basis for many of the population dynamics used to manage fish populations. 

Therefore, it becomes important to be able to precisely assign an age based on a 

morphological structure (Campana 2001) and measure associated periodic growth 

increments in them. Although the same approach can be applied to a wide variety of 

living organisms, fish are one of the most frequently aged organisms in the world 

(Campana 2001).  

Given the immense number of fish aged it should come as no surprise that there is 

a large range of morphological structures used. These include: vertebrae (Brown and 

Gruber 1988), opercular bones (Baker and Timmons 1991), cleithra (Casselman 1990), 

scales (Gerking 1966, Schill et al. 2010), fin rays (Herbst and Marsden 2011), spines 

(Turner 1980), and otoliths (Hales and Belk 1992; Soupir et al. 1997; Campana and 

Thorrold 2001; Schill et al. 2010). Of these, internal calcified bone appear to be the most 

accurate aging structures, with otoliths the most widely used due to the ease of dissection 

(Casselman 1987,  Secor et al.1992). Two other commonly used structures are scales and 

fin rays (Maceina et al. 2007). 

Each of the latter three morphological structures have strengths and weaknesses 

that appear to fluctuate across species and locale. Scales, which are non-lethal and easy to 

remove, tend to be inaccurate, imprecise, and underestimate the age of fish, especially in 

the older year classes (Soupir et al. 1997; Campana 2001; Metcalf and Swearer 2005; 

Schill et al. 2010; Herbst and Marsden 2011). The under-estimation in older fish is due to 
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the circuli being too closely spaced together to distinguish annuli (Beamish and 

MacFarlane 1983; Casselman 1987), scale loss and regeneration (Cooper 1951; Bereiter-

Hahn and Zylberberg 1993), or resorption of old or damaged scales (Persson et al. 1995). 

However, for some species, scales can be as precise as otoliths (e.g. Black Crappie 

Pomoxis nigromaculatus, Kruse et al. 1993; White Bass Morone chrysops, Soupir et al. 

1997). 

Age estimates with otoliths have been shown to be accurate, precise, and they are 

easy to remove using several approaches (Secor et al.1992). However, the use of otoliths 

as an ageing structure is a lethal sampling method (Metcalf and Swearer 2005). Due to 

this lethality, otoliths make a less desirable choice for species of concern, especially if 

other accurate options are available. In addition, for endangered species a non-lethal 

sampling method could allow for a larger sample size; which in turn could lead to 

improved results and coinciding management plan (Metcalf and Swearer 2005).  

Fin Rays are a non-lethal sampling method that has been gaining interest and 

support (Koch et al. 2008; Herbst and Marsden 2011). Fin ray removal seems to have no 

significant impact on growth or mortality rates (Zymonas and McMahon 2006). 

However, fin rays have mixed reviews in precision and accuracy. Fin ray age estimates 

have been shown to be more precise than that of otoliths (Walsh et al. 2008), as well as 

being less precise than that of scales (Maraldo and MacCrimmon 1979). Further, periodic 

sampling has shown that fin rays do not always form an annulus each year (Buckmeier et 

al. 2012) 

Otoliths, fin rays and scales have been used to age a variety of salmonid species 

(Maceina et al. 2007). Otoliths have been shown to be accurate and precise for ageing 
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high dessert populations of Redband Trout (Oncorhynchus mykiss gairdneri), while 

scales seriously underestimated their age (Schill et al. 2010).  However, the high mid-

winter water temperatures reported by Schill resulted in an unusual growth pattern for the 

high desert population, and these results may not apply to montane stocks residing in 

much colder water. Although fin rays have not been examined as an ageing structure on 

Redband Trout, they have been shown to be accurate and precise on other salmonid 

species (e.g. Chinook Salmon (Oncorhynchus tshawytscha), Copeland et al. 2007, and 

Bull Trout (Salvelinus confluentus), Zymonas and McMahon 2009). Conversely, other 

authors have found it difficult to detect annuli, and as a result, the age estimates for some 

salmonids using fin rays have sometimes been underestimated (e.g. Brook Trout 

(Salvelinus fontinalis), Stolarski and Hartman 2008, and Dolly Vardin (Salvelinus 

malma), Stolarski and Sutton 2013). 

Redband Trout a native subspecies of Rainbow Trout in both high dessert and 

montane streams in the western USA is a popular sport fish in much of its range (Behnke 

1992; Meyer et al. 2014). Angler exploitation has been documented to be low in high 

desert populations (Schill et al. 2007). However, montane stocks residing in larger river 

systems such as the Payette and Boise rivers, and their tributaries receive considerably 

more angling pressure and thus good ageing structures are needed to produce dynamic 

rate functions for management (Daniel J. Schill, Idaho Department of Fish and Game, 

personal communication). Regardless of population status many salmonid biologists 

prefer to use non-lethal sampling (Maceina et al. 2007).  

Therefore, it would be beneficial to find a non-lethal, quality, ageing structure for 

montane Redband Trout. Comparing otoliths, which have been partially validated in our 
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sample sites (Chapter 1), to non-lethal ageing structures will allow us to determine which 

of these structures, if any, are as precise as otoliths. We are unaware of any studies that 

have attempted to find a high quality, non-lethal, ageing method for montane stocks of 

Redband Trout.  

The purpose of this study were three fold: 1) determine if otoliths, pectoral fin 

rays and scales produce similar age estimate for Redband Trout in montane streams, 2) 

compare the precision of otoliths, pectoral fin rays and otoliths of Redband Trout, and 3) 

determine if there is a precise non-lethal ageing structure for Redband Trout. 

Methods 

We sampled two montane Redband Trout streams, Harris Creek and Mores 

Creek, over a 17 month period. Harris Creek is a second order tributary to the Payette 

River, in Boise County, Idaho. Our sample site started at an elevation of 1130 m and 

ended at an elevation of 1250 m. We sampled approximately 2.5 km of stream throughout 

the study period. Harris Creek has a mean width of 2.5 m and a mean depth of 0.18 m 

during the summer and fall months. Spring runoff can be quite variable at Harris Creek 

and the mean depth is 0.91 m. The mean width during spring flows is 3.2 m. 

 Mores Creek is a second order tributary to the Boise River, in Boise 

County, Idaho.  Our sample site started at an elevation of 1465 m and ended at an 

elevation of 1500 m. We sampled approximately 3.5 km of stream over the course of the 

study. During summer and fall base flows, Mores Creek has a mean width of 3.6 m and a 

mean depth of 0.53 m. During spring runoff, high flows, the mean width is 5.8 m with a 

mean depth of 1.1 m. 
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We used backpack electrofishing equipment to sample Redband Trout.  Fish were 

sacrificed with an overdose of peppermint oil, returned to the laboratory, and kept frozen 

until dissection. In the laboratory, each fish was defrosted, measured to the nearest 

millimeter, weighed to the nearest tenth of a gram and sex and maturity were determined 

using the general method of Downs et al. (1997). We removed scales, sagittal otoliths, 

and both pectoral fin rays. The fish used in this study were a sub-sample from a larger 

otolith validation study (Chapter 1). The fish were chosen, non-randomly, based on 

otolith age from throughout the 17 month sampling period, with a goal of seven fish 

(arbitrarily set) per age class from each sampling location. For some of the older age 

classes we were unable to meet our target sample size of seven fish (Table 2:1). We also 

took a tissue sample from the adipose fin to determine if the fish in our sample sites had 

any introgression with hatchery released Rainbow Trout. These samples were analyzed 

by the Eagle Fish Genetics Laboratory, Idaho Department of Fish and Game. 

In the laboratory scales were removed from the right side of the body midway 

between the dorsal fin and the lateral line (Quist et al. 2013), and then stored in coin 

envelopes to dry. Pectoral fin rays were removed at the point where the pectoral fin 

articulates with the pectoral girdle (Koch et al. 2008), and then stored in coin envelopes 

to dry. We also removed both sagittal otoliths with the use of the guillotine method 

(Secor et al. 1992). Otoliths were cleaned of soft tissue, dried, and stored in 1.5 ml 

centrifuge tubes.  

Scales were mounted between two microscope slides and then digitally imaged at 

12-40X depending on the size of the scale, using a Leica DC 500 camera mounted on a 
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Leica DM 400B compound scope. Scales were aged by two readers, independent of one 

another, and without knowledge of length, or assigned age of other structures.  

The three leading fin rays were embedded in Buehler epothin, a clear epoxy, and 

sectioned with a Buehler low speed Isomet saw. Samples were sectioned serially (0.6 mm 

thickness 4 sections) starting at the proximal edge, and digitally imaged at 100x 

magnification using the same equipment as above. Fin rays were aged by two readers 

independent of one another, and without knowledge of length or the age assigned of the 

other structures. Both readers were trained but inexperienced at ageing fin rays.  

Whole otoliths were placed in a depression slide, sulcus groove down, submerged 

in water and digitally imaged, with the same equipment as above, at 25-40X 

magnification, depending on size. Otoliths were aged by two readers independent of one 

another, without knowledge of length, or assigned age of other structures.  

To determine if there was a difference in the precision of the age estimate 

between the different structures; we calculated exact percent agreement (PA0), within 

one year percent agreement (PA1) (Beamish and Fournier 1981), and between reader 

coefficient of variance (CV) (Chang 1982) for all three structures. We then compiled age 

bias plots to visually discern the variation (Campana et al. 1995). 

Pair wise comparisons using linear regression were used to determine if assigned 

age differed significantly between structures. This was accomplished by building age 

plots and using simple regression to compare the slope of the regression line to a slope of 

one (Isermann et al. 2003). We used otoliths as our standard for comparison with the 

other structures; because otoliths tend to be very precise and accurate for salmonids 

(Hining et al. 2000; Zymonas and McMahon 2009; Schill et al. 2010), further otoliths 
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have been validated for two age classes of Redband Trout in our sample sites (Chapter 1) 

as well as for all ages up to nine in high dessert population within Idaho (Schill et al. 

2010).  

Results 

We found that otoliths had the highest exact percent agreement, and the lowest 

between readers coefficient of variation, followed by fin rays. Scales had the lowest exact 

percent agreement and the highest between readers coefficient of variation (Table 2:2).  

However, all three structures had 100% within one year percent agreement. This pattern 

appeared at both sampling locations. The age bias plots allowed us to visually discern any 

bias in the assigned ages between readers and between structures. We found that the 

between reader precision was remarkably high for otoliths and fin rays, and reasonable 

for scales, though there was a positive trend of an increase in variation as age increased 

for both sample sites (Figures 2:1-2:2).  

Pairwise comparisons for Harris Creek structures showed that scales 

underestimated age when compared to otoliths (F (0.05) 1, 39 = 43.777 p =7.23x10-08), and 

fin rays (F (0.05) 1, 39 = 22.983 p=2.39x10-05). In addition, we found that fin rays 

underestimated age when compared to otoliths (F (0.05) 1, 39 = 2.1569 p=0.0171) (Figure 

2:3). Pairwise comparisons from Mores Creek structures showed similar results with 

scales underestimating age when compared to otoliths (F (0.05) 1, 32 = 15.844 p=0.0003) and 

fin rays (F (0.05) 1, 32= 29.129, p=6.26x10-06). However, fin ray assigned age did not differ 

statically from that of otoliths (F (0.05) 1, 32= 0.675, p=0.4175) (Figure 2:4).  

Genetic analysis showed that Harris Creek had a negligible amount of 

introgression with hatchery Rainbow Trout (1.6-2.1%) while Mores Creek had low levels 
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of introgression (16.3-18.4%), unpublished data (Matthew Campbell, Idaho Department 

of Fish and Game, personal communication). Thus our results apply to two pure or nearly 

pure montane Redband Trout stocks. 

Discussion 

Ageing structures for montane Redband Trout demonstrate a difference in 

precision, and possibly accuracy, though we did not directly evaluate accuracy during this 

study. We found that age estimates from otoliths are the most precise followed by fin rays 

and then scales, and assuming otoliths provide accurate age estimates, scales appear to 

significantly underestimate the age of older fish. The Redband Trout we collected had a 

maximum age of five (otolith assigned age), and scale age estimates generally began to 

fall below those of otoliths and fin rays by age three. These findings agree with Schill et 

al. (2010) and Hining et al. (2000) who both found that scale age estimates were lower 

than that of otoliths by age two in high desert Redband Trout, and Rainbow Trout in 

Appalachian streams, respectively. Underestimates of even one year in the short lived 

populations we studied could heavily influence an estimate of growth, survival and age at 

maturity (Campana 2001). While otoliths have been validated for all age classes of 

Redband Trout in high dessert streams (Schill et al. 2010) and ages up to two in montane 

streams (Chapter 1); scales have been shown to be unreliable even in young ages in our 

study sites (Figures 2.3 and 2.4) as well as in high desert Redband Trout (Schill et al. 

2010).  We therefore do not recommend their use for this subspecies. 

No prior authors have attempted to validate fin rays for Redband Trout and the 

present study should not be misconstrued as a true validation either. Further, the 

inconsistent agreement between the age estimates of otoliths, which have been previously 
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validated, and fin rays (Figures 2.3 and 2.4) do not allow for complete confidence in our 

age estimates for fin rays. Our findings also show that age estimates from fin rays are less 

precise (about 50% less) as that for otoliths based on CV (Table 2.2), a finding that 

conflicts with other ageing studies on salmonid species (Zymonas and McMahon 2009).  

However, the decreased between-reader precision and underestimation could be a result 

of both readers in the present study having had considerable experience ageing fish with 

otoliths, but none using fin rays. This may be evidenced by the appearance that one year 

was consistently added to fin rays at Mores Creek (Figure 2.4), though this pattern was 

not observed at Harris Creek (Figure 2.3). 

The ability to non-lethally age a species would be a great addition to the tools 

managers have at their disposal when evaluating fisheries. Age estimates from otoliths 

appear to produce the highest quality age estimates but require lethal sampling. Thus, 

based on our results and the literature they would appear to be the best choice for medium 

to large populations.  Scales do not require lethal sampling, but performed poorly during 

this study and others on Redband Trout and their close relatives Rainbow Trout (Hining 

et al 2000; Schill et al. 2010). We therefore do not recommend their use, even for small 

populations.  Though we found age estimates of fin rays and otoliths to differ; fin rays, 

both in terms of non-lethal sampling and producing a reasonably precise age estimate, 

may be a suitable ageing structure. However, additional work is needed before fin rays be 

considered a preferred aging structure for the sub-species.    

Confidence in the age assigned to a structure is an important aspect of any 

technique. Therefore, like Spiegel et al. (2010) we suggest giving each structure aged a 
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confidence rating in the future. This would allow researchers to more objectively describe 

how challenging a structure was to age. 

Conclusions 

Based on precision and results of our studies, otoliths appear to be the superior 

ageing structure of the three compared. Our findings along with those of Zymonas and 

McMahon (2009) that fin ray removal did not affect growth and survival, lead us to 

suggest that fin rays could be an acceptable, non-lethal, ageing structure for Redband 

Trout in montane streams. Additional research which formally validates fin rays as 

forming one annulus per year for Redband Trout should be conducted prior to fin rays 

being routinely used as a primary ageing structure. Due to age estimates of scales being 

less precise, and producing lower age estimates relative to that of otoliths, which have 

been validated for Redband Trout (Schill et al. 2010; Chapter 1); we do not recommend 

the use of scales as an ageing method for Redband Trout. 
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Table 2:1: Sample size for each age class for Harris Creek and Mores Creek. Age 
is based on assigned otolith age.  

Age Mores 
Creek   Harris 

Creek 

0 4 
 

7 

1 7 
 

7 

2 7 
 

7 

3 7 
 

7 

4 7 
 

7 

5 2   6 
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Table 2:2: The exact percent agreement (PA-0), within one year Percent 
agreement (PA-1), and the between reader coefficient of variance (CV) for Redband 
Trout from Harris Creek and Mores Creek. Assigned age is based on the pairwise 
regression analysis, and different letters represent statical differences in the between 
structure comparison of assigned age. 

Harris Creek 

Structure PA 
0 PA 1 CV Precision Assigned Age 

Otoliths 93% 100% 0.71 A A 

Fin Rays 90% 100% 1.32 A B 

Scales 80% 100% 3.71 A C 

Mores Creek 

Otoliths 97% 100% 0.42 A A 

Fin Rays 94% 100% 1.18 A A 

Scales 76% 100% 6.88 B B 
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Figure 2:1: Age comparison for Mores Creek Redband trout, comparing the 
precision between two readers in estimating age using each structure. Diamonds 
equals means ± (95% CI) between brackets. Dashed line is hypothetical perfect 
agreement between readers; solid line is actual agreement between readers. 
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Figure 2:2: Age comparison for Harris Creek Redband trout, comparing the 
precision between two readers in estimating age using each structure. Diamonds 
equals means ± (95% CI) between brackets. Dashed line is hypothetical perfect 
agreement between readers; solid line is actual agreement between readers. 
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Figure 2:3: Pairwise regression comparisons of otoliths, fin rays and scales from 
Harris Creek. Solid line is the regression line for the age comparison. Dashed line is 
a hypothetical 1:1 relationship. P value represents a regression compared to a slope 
of one. Numbers in data points = n.  
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Figure 2:4: Pairwise regression comparisons of otoliths, fin rays and scales from 
Mores Creek. Solid line is the regression line for the age comparison. Dashed line is 
a hypothetical 1:1 relationship. P value represents a regression compared to a slope 
of one. Numbers in data points = n. 
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CHAPTER 3: A COMPARISON OF ASSIGNED AGE AND PRECISION OF SCALES, 

PECTORAL FIN RAYS, AND OTOLITHS OF BLUEGILL (Lepomis macrochirus) 

Abstract 

Bluegill are one the most important recreational fishes in North America, and are 

also sought by anglers in many Idaho waters. We sampled two lentic water bodies in 

southwestern Idaho, USA, to collect Bluegill of different age classes from young-of-the-

year to the oldest age classes and compared age and precision estimates for sagittal 

otoliths, pectoral fin rays, and scales. Otoliths were found to be the most precise at both 

water bodies. Scale and fin ray age estimates differed in precision depending on water 

body. Scale age estimates were more precise at Atwood’s Pond while fin ray age 

estimates were more precise at Bruneau Dunes Pond. Pairwise regression comparisons 

showed that scale age estimates significantly underestimate the age of fish when 

compared to that of otoliths, at both locations. There was not a significant difference 

between the assigned age of otoliths and fin rays at either location. We do not 

recommend the use of scales or fin rays as the primary aging structure for Bluegill. 

Although, we did not find assigned ages of otoliths and fin rays to differ, estimates of the 

latter demonstrated far less precision. The difference in precision concerns us. We 

suggest a study be undertaken to validate fin rays prior to them being used as a primary 

ageing structure for Bluegill in Idaho waters.  
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Introduction 

 Fish are one of the most aged organisms with well over a million aged worldwide 

in 1999 (Campana and Thorrold 2001). Demographically, age and growth data are 

extremely important to fisheries managers for two reasons. First, fish do not have a 

maximum size at maturity, subsequently their growth is indeterminate. Fish also grow 

and mature at different rates in different habitats. The second reason is due to the 

economic and recreational exploitation of many fish stocks. The ability to age a 

population allows managers to determine production or harvest quotas and assess the 

effectiveness of management strategies. 

Many structures have been used to study the age dynamics of fish populations: 

vertebrae (Brown and Gruber 1988), opercular bones (Baker and Timmons 1991), 

cleithra (Casselman 1990), scales (Gerking 1966, Schill et al. 2010), fin rays (Herbst and 

Marsden 2011), spines (Turner 1980), and otoliths (Hales and Belk 1992; Soupir et al. 

1997; Campana and Thorrold 2001; Schill et al. 2010). Finding the structure that yields 

the best age estimate for the species, and stock, can be a challenge. By far, the two most 

commonly used of these structures are scales and otoliths (Maceina et al. 2007).   

Scales have been shown to produce lower age estimates for most fish, especially 

in older individuals (Soupir et al. 1997; Campana 2001; Metcalf and Swearer 2005; Schill 

et al. 2010; Herbst and Marsden 2011). Nonetheless, they are still used on a regular basis 

as the primary ageing structure for many management agencies in North America in part 

because they do not require lethal sampling (Maceina et al. 2007). However, use of scales 

may be justified for Bluegill (Lepomis macrochirus), since a few older studies have 

validated their use (Regier 1962; Gerking 1966).  
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Otoliths are often shown to be accurate and precise (Casselman 1987), and have 

been validated for Bluegill in various geographic locations (e.g. Florida, Mantini et al. 

1992; South Carolina, Hales and Belk 1992; Idaho, Chapter 1), but require lethal 

sampling.   

 This has led to recent interest in fin rays as a non-lethal ageing structure (Koch et 

al. 2008; Herbst and Marsden 2011). Some researchers have found that rays may be as 

precise and accurate as otoliths (Mills and Chalanchuk 2004). However, fin rays have a 

tendency to miss the first year class of some fish if not removed correctly (Metcalf and 

Swearer 2005).  We are unaware of any prior studies evaluating Bluegill fin rays as an 

ageing structure. 

Bluegill are one of the most popular recreational fishes in North America, and are 

found in 49 states and 6 Canadian providences (Quinn and Paukert 2009). They are also 

sought after in many Idaho waters.  The recreational and economic importance of 

Bluegill makes it vitally important to correctly manage this species.  Bluegill are prone to 

stunting in smaller sizes (under 150 mm) (Otis et al. 1998; Aday et al. 2002) and over 

exploitation of the larger fish (over 150 mm) in the same water body (Schneider and 

Lockwood 1997).  This occurs when there is heavy fishing pressure on large Bluegill, 

while younger age classes have high recruitment, causing a bottleneck of resources 

available to the smaller fish (Schneider and Lockwood 1997). 

 Knowing the age distribution of a species experiencing stunting makes it critical 

to produce quality age estimates (Hall 1991; Hoxmeier et al. 2001). Because a majority of 

fisheries biologists prefer to sample fish non-lethally for ageing studies, despite the 

general superiority of otoliths, evaluation of prospective non-lethal ageing structures 
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could promote more ageing work (Maceina et al. 2007). If fin rays or scales provide 

estimates similar to otoliths previously validated, this would provide a valuable tool in 

the age tool kit for managers. 

Our objectives during this project were: 1) determine if otoliths, pectoral fin rays 

and scales produce similar age estimate for Bluegill, 2) compare the precision of otoliths, 

pectoral fin rays and otoliths of Bluegill, and 3) determine if there is a precise, non-lethal 

ageing structure for Bluegill. 

Methods 

We sampled two lentic waters, Atwood’s Pond and Bruneau Dunes Pond, over a 

17 month period. Atwood’s Pond is a privately owned pond that is located next to the 

Payette River in Payette County, Idaho. The pond is a reclaimed gravel pit and is fed by 

hyporheic water from the Payette River. It has a maximum depth of 4.9 m and covers 

approximately 9.3 ha. The depth of Atwood’s Pond fluctuates with the variation in 

Payette River flows. Bruneau Dunes Pond is located inside of Bruneau Dunes State Park, 

in Owyhee County, Idaho. Bruneau Dunes Pond is a manmade structure that is filled by 

pumping water from the Snake River through the winter months, generally November-

March. The mean depth is 4.2 m and covers approximately 15.8 ha. The water level 

decreases slightly throughout the summer months and then increases throughout the 

winter months, time of pumping. 

We used a Smith-root electrofishing boat for sampling purposes, but also towed a 

1 x 2 m floating neuston net of 1mm bar mesh for sampling young-of-the-year fish. 

Collected fish were sacrificed, returned to the laboratory, and kept frozen until dissection. 

In the laboratory, each fish was thawed, measured to the nearest millimeter, weighed to 
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the nearest tenth of a gram, and sex and maturity were determined, using the general 

method described in Downs et al. (1997). We removed scales, sagittal otoliths, and both 

pectoral fin rays. The fish used in this study were a sub-sample from a larger otolith 

validation study (Chapter 1). The fish were chosen, non-randomly, based on otolith age 

from throughout the 17 month sampling period, with a goal of seven fish (arbitrarily set) 

per age class from each sampling location. For some of the older age classes we were 

unable to meet our target sample size of seven fish (Table 3:1). 

Scales were removed from the right side of the body midway between the dorsal 

fin and the lateral line (Quist et al. 2013). Scales were then stored in coin envelopes to 

dry. Pectoral fin rays were removed at the point where the pectoral fin articulates with the 

pectoral girdle (Koch et al. 2008) and stored in coin envelopes to dry. We also removed 

both sagittal otoliths with the use of the guillotine method (Secor et al. 1992). Otoliths 

were cleaned of soft tissue, dried and stored in 1.5 ml centrifuge tubes.  

Scales were mounted between two glass microscope slides and digitally imaged at 

12-40X depending on the size of the scale, using a Leica DC 500 camera mounted on a 

Leica DM 400B compound microscope. Scales were aged by two readers, independent of 

one another, and without knowledge of length, or assigned age of other structures.  

The three leading edge fin rays were embedded in Buehler epothin, a clear epoxy, 

and sectioned with a Buehler low speed Isomet saw. Samples were sectioned serially (0.6 

mm thickness 4 sections) starting at the proximal edge, and digitally imaged at 100x 

magnification. Fin rays were aged by two readers independently, without knowledge of 

length, or the age assigned to the other structures.  
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Whole otoliths were placed in a depression slide, sulcal groove down, submerged 

in water and digitally imaged, using the same equipment as above, at 12-40X 

magnification, depending on size of otolith. Otoliths were aged by two readers 

independently, without knowledge of length, or assigned age of other structures.  

To determine if there was a difference in the precision of the age estimates 

between the three structures, we calculated exact percent agreement (PA0), within one 

year percent agreement (PA1) (Beamish and Fournier 1981), and between reader 

coefficient of variance (CV) (Chang 1982) for all three structures. We then compiled age 

bias plots to visually discern the variation between readers (Campana et al. 1995).  

Pairwise comparisons using linear regression were also used to determine if 

assigned age differed significantly between structures. This was accomplished by 

building age plots and comparing the slope of the regression line to a slope of one using 

simple regression (Isermann et al. 2003). We used otoliths as our standard for comparison 

with the other structures; this due to otoliths being shown to be accurate and validated  

for Bluegill up to age two in our sample sites (Chapter 1) as well as for adults in other 

geographic locations (Schramm 1989; Mantini et al. 1992).  

Results 

We found that otoliths had the highest exact percent agreement, within one year 

agreement and the lowest between reader CV for both locations (Table 3:2). Scales were 

found to have a slightly higher exact percent agreement and within one year agreement as 

well as a lower between reader CV when compared to fin rays at Atwood’s Pond (Table 

3:2). The opposite was true at Bruneau Dunes where fin rays were found to have higher 

percent agreements and between reader CV than that of scales (Table 3:2). The age bias 
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plots generally corroborated these results. Pectoral fin rays at Atwood’s Pond and scales 

at Bruneau Dunes show considerable more variation than that of otoliths (Figure 3:1 and 

3:2).  

Pairwise comparison at Atwood’s Pond showed that scales produced statistically 

different age estimates when compared to that of otoliths (F (0.5)1, 41 = 10.56, p=0.002) or 

fin rays (F (0.5)1, 41 = 44.07, p=5.34x10-8). Scales showed a trend of producing lower age 

estimates by age 4 when compared to fin rays, and by age 5 when compared to otoliths. 

Assigned age estimates did not differ significantly when comparing fin rays and otoliths 

(F (0.5)1, 41 = 0.20, p = 0.66) (Figure 3:3).   

Pairwise comparisons for Bruneau Dunes showed that assigned ages for scales 

were statistically different than that of otoliths (F (0.5)1, 50 = 5.85, p = 0.02) and fin rays (F 

(0.5)1, 50 =0.98, p =0.03); with scales producing lower age estimates of fish 7 and older. 

Otoliths and fin rays did not differ on assigned ages (F (0.5)1, 50 = 0.77, p = 0.39) (Figure 

3:4). 

Discussion 

Our results are in agreement with many other studies which found scales to 

produce less precise age estimates than that of otoliths for Bluegill (Hoxmeier et al. 2001; 

Edwards et al. 2005) as well as various other species (Sikstrom 1983; Muir et al. 2008; 

Zymonas and McMahon 2009; Schill et al. 2010). Further, we found scales to be more 

precise than fin rays at Atwood’s Pond, while the opposite was true at Bruneau Dunes. 

The difference in precision of fin rays between our sample sites is not unexpected as fin 

rays have received mixed reviews in regard to both precision and accuracy. These range 

from being similar in precision to that of otoliths (Sikstrom 1983; Muir et al. 2008; 
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Zymonas and McMahon 2009) to be considered a poor choice or not forming an annulus 

each year (Besler 1999; Buckmeier et al. 2012). Additionally, we found fin rays to be 

considerably more difficult to read, particularly when attempting to discern true versus 

false annuli (Yosef and Casselman 1995). For example, a fish from Bruneau Dunes (fish 

31) from June 2012, was aged at 4 and 5 using otoliths and scales respectively, and aged 

as 9 years old by both readers using fin rays. Further, some fin rays appeared to have a bi-

annulus.  During this study only one fish was not aged, this was due to the inability to 

discern the difference between true and false annuli on the fin rays.  

 Scales produced a statistically lower age estimate when compared to both otoliths 

and fin rays in the current study. This lower age estimate appears to become more 

prevalent as the assigned age reaches and exceeds seven years. Our findings are in 

agreement with other studies of various species which have shown scales produce lower 

age estimates of older fish when compared to otoliths (Metcalf and Swearer 2005; Schill 

et al. 2010; Herbst and Marsden 2011).  

We are confident in our age assignments using otoliths; but not so using fin rays 

or scales. Spiegel et al. (2010) suggested applying a confidence rating to each ageing 

structure as it is aged. We did not do this, but it would have proven helpful by allowing 

us to subjectively determine if one structure provided us with more, or less, confidence in 

our age assignments. One reason for the increased confidence in ageing using otoliths 

over fin rays and scales may be that both readers had considerably more ageing 

experience using otoliths than fin rays or scales. This may have led to a bias towards 

better otolith precision (Figures 3:1 and 3:2). However, we believe the bias to be small as 

many other studies comparing these structures, on a variety of species, have also found 
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otoliths to be more precise than fin rays and scales (e.g. Largemouth Bass (Micropterus 

salmoides), Maraldo and MacCrimmon 1978; Arctic Grayling (Thymallus arcticus), 

Sikstrom 1983; Catostomids and Cyprinids, Quist et al. 2007; and Dolly Varden 

(Salvelinus malma), Stolarski and Sutton 2013).  

Though, we did not validate Bluegill fin rays or scales during this investigation, 

several prior authors have. Despite our poor results with scales in the present study, 

Regier (1962) and Gerking (1966) validated scales for this species. Otoliths of fish up to 

age two have been validated in our sample sites (Chapter 1) as well as other geographic 

locations (Schramm1989; Mantini et al. 1992). However, we are unaware of any studies 

that validated fin rays for Bluegill.  

Interestingly we observed that the zonation patterns of Bluegill otoliths and fin 

rays appeared to be reversed. Otoliths had a wide translucent zone which is the growth 

zone (Chapter 1), while fin rays had a wide opaque zone, presumably the growth zone. 

Such a shift in the zoning pattern was not observed in the cold-water Redband Trout 

(Chapter 2). This difference is intriguing and may explain some of the confusion in age 

estimates. Considerably more research should be undertaken. These results should be 

confirmed with a chemical mark and recapture study. One possible explanation for this 

reversal may be that otoliths reside in the endolymphatic fluid, which is heavily 

controlled by the endocrine system (Kalish 1989; Campana 1999; Alvarez et al. 2008), 

while the fin rays are supported by the circulatory system. This difference in controlling 

systems may play a role in the reversal of these zones on the two structures.  
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Conclusions 

Our results showed that the assigned age of fin rays and otoliths did not differ 

significantly from one another. However, we do not suggest the use of fin rays or scales 

for the ageing of Bluegill. Though otoliths are lethal, they appear far more precise. 

We agree with Spiegel et al. (2010) that assigning a confidence rating to each 

structure would lead to a better understanding of ageing structures. If future researchers 

desire to use fin rays to age Bluegill, a study should be undertaken to validate fin rays as 

forming one annuls per year on Bluegill, as all structures to be used for ageing purposes 

should be validated (Beamish and McFarlane 1983). We suggest such an effort be 

completed prior to fin rays being used as a primary ageing structure for Bluegill. 

The three structures compared during the course of this investigation have been 

compared for many different species in various geographic locations (Quist et al 2007; 

Stolarski and Hartman 2008; Herbst and Marsden 2011; Buckmeier et al. 2012).  We 

found that otoliths are the most precise, and scales produce lower relative age estimates, 

especially for older fish, which is in agreement with other studies (Soupir et al 1997; 

Campana 2001). Based on the overall results of this study, we recommend that otoliths be 

used for ageing Bluegill in South Idaho waters. 
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Table 3:1: Sample size per age group for Atwood’s Pond and Bruneau Dunes, 
dashes represent no sample for that age class. Age is based on otolith ages. 

    
Age Bruneau 

Dunes   Atwood’s 
Pond 

0 7 
 

7 

1 7 
 

7 

2 7 
 

7 

3 7 
 

7 

4 7 
 

7 

5 3 
 

3 

6 7 
 

- 

7 2 
 

3 

8 1 
 

- 

9 3 
 

- 

10 1   - 
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Table 3:2: The exact percent agreement (PA-0), within one year Percent 
agreement (PA-1), and the between reader coefficient of variance (CV) for Bluegill 
from Atwood’s Pond and Bruneau Dunes Pond. Assigned age is based on the 
pairwise regression analysis, and different letters represent statical differences in 
the between structure comparison of assigned age. 

     Structure PA-0 PA-1 CV Assigned Age 

Atwood’s Pond 

Otoliths 98% 100% 0.5 A 

Fin Rays 65% 91% 11.4 A 

Scales 67% 95% 8.3 B 

Bruneau Dunes 

Otoliths 88% 98% 1.8 A 

Fin Rays 60% 92% 6.7 A, B 

Scales 58% 92% 13.1 B 
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Figure 3:1: Age (years) comparisons for Atwood’s Pond Bluegill. These plots 
compare the ageing precision between two readers for each structure. Diamonds 
equals means ± (95% CI) between brackets. Dashed line: hypothetical perfect 
agreement, solid line: actual agreement between readers. 
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Figure 3:2: Age (years) comparisons for Bruneau Dunes Pond Bluegill. These 
plots compare the ageing precision between two readers for each structure. 
Diamonds equals means ± (95% CI) between brackets. Dashed line: hypothetical 
perfect agreement, solid line: actual agreement between readers. 
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Figure 3:3: Pairwise regression comparisons of otoliths, fin rays and scales from 
Atwood’s Pond. The numbers in the data points are n. Solid line is the regression 
line for the age comparison. Dashed line is a hypothetical 1:1 relationship. P value 
represents a regression compared to a slope of one. Numbers in data points = n. 
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Figure 3:4: Pairwise regression comparisons of otoliths, fin rays and scales from 
Bruneau Dunes Pond. The numbers in the data points are n. Solid line is the 
regression line for the age comparison. Dashed line is a hypothetical 1:1 
relationship. P value represents a regression compared to a slope of one. Numbers in 
data points = n. 
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CONCLUSIONS 

In order to correctly age a fish the biologist must understand the zonation of the 

ageing structure they are using. Given our results we found that when working with 

montane Redband Trout otoliths the translucent zone is formed during the winter and 

should be counted as the annulus. Conversely, Bluegill otoliths in our study sites formed 

the opaque zone during fall-spring and should therefore be counted as the annulus. The 

zones of the two fishes are indeed reversed. These findings help address some of the 

confusion surrounding the interpretation of otoltih zonation. The reason there is 

differences in interpretation of otoltih zonation stems from the fact that the zones are 

forming at opposite times of the year, when Redband Trout and Bluegill are compared.  

We found otoliths to be the most precise for both species in all water bodies. Our 

finding showed that assigned age of pectoral fin rays were similar to that of otoliths. 

However, we found fin rays to be less precise for both species in all locations. Though we 

found fin ray ages to be less precise than that of otoliths, the difference was small. Given 

this date we feel pectoral fin rays may be an acceptable non-lethal ageing structure for 

montane Redband trout. However, this is suggested with caution and we highly suggest a 

study be undertaken to validate fin rays as forming one annulus per year prior to them be 

used as a primary ageing structure.  

We do not suggest the use of pectoral fin rays as an ageing structure for Bluegill 

due to the high variability we found. Further, we do not suggest the use of scales as an 

acceptable ageing structure for either species. Scale age estimates were statistically lower 
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than those of otoliths and were also considerably more variable for both species in all our 

sample sites. Based on our results we feel otoliths are the superior ageing structure when 

compared to fin rays or scales and highly suggest their use for Bluegill in South Idaho 

waters. 
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FUTURE RESEARCH 

The mechanisms controlling otoliths zone reversals we showed in the current 

study should be investigated further. Also the intriguing observation that the zones of fin 

rays and otoliths in Bluegill appear to be reversed, but Redband Trout do not show this 

phenomenon need to be corroborated and studied further.  Specifically, a study using 

chemical analysis should be undertaken to determine the difference between the timing 

and composition of the different zones on species that show a reversal of the otolith 

zones, e.g. Redband Trout and Bluegill. This chemical mark should include otoliths and 

fin rays. In addition we suggest future research investigate the mechanisms behind this 

variation. Specifically, what hormones are controlling the endolymphatic fluid, and is 

there a difference in what is being expressed during different times of the year between 

species with otolith zone reversals. We encourage others to follow up with work on 

various other species in other geographic locations to verify our current findings. Beyond 

the zonation confusion; we strongly urge that a study be undertaken to validate pectoral 

fin rays as forming one annulus per year before they are used as the primary ageing 

structure. This should be undertaken for both Redband Trout and Bluegill.  
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APPENDIX 

Percent of Otoliths That Had an Opaque Edge Starting in June 2011 Through 

October 2012
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Table A1: Percent of otoliths from Bluegill with an opaque edge starting in September 2011 through October 2012. Dashes 
represent no sample for that species during that month of sampling. Sample size is generally less than five per month for each 
species, and all age classes are combined for these calculations. 

  Atwood's Pond   Crane Falls Lake   Bruneau Dunes 

 

Black 
Crappie 

Largemouth 
Bass Pumpkinseed Warmouth 

 

Black 
Crappie 

Largemouth 
Bass Pumpkinseed 

Yellow 
Perch 

 

Largemouth 
Bass 

June 0 - - - 

 

- - - - 

 

- 

July 0 - - - 

 

- - - - 

 

- 

August 42 31.25 25 60 

 

- - - - 

 

50 

September 100 87.5 100 

  

0 50 100 100 

 

55 

October 100 100 - 50 

 

- 50 100 0 

 

90 

November 100 100 - 100 

 

100 100 100 100 

 

100 

December - - - - 

 

- - - - 

 

- 

January - - - - 

 

- - - 100 

 

100 

February 100 100 - 100 

 

100 100 100 100 

 

100 

March 100 100 - 100 

 

100 50 - 100 

 

100 

April 100 100 - 100 

 

- 50 100 100 

 

57 

May - 40 - 100 

 

- 50 67 0 

 

75 

June 0 17 33 0 

 

- 33 50 0 

 

20 

July 0 0 0 - 

 

0 0 0 0 

 

0 

August 0 0 

 

0 

 

33 0 0 0 

 

17 

September 100 43 100 100 

 

100 20 40 0 

 

70 

October 100 100   100   0 83 0 50   86 
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Table A2: Percent of otoliths from Redband Trout with an opaque edge starting 
in September 2011 through October 2012. Dashes represent no sample for that 
species during that month of sampling. Sample size is generally less than five per 
month for each species, and all age classes are combined for these calculations. 

  Mores Creek 

 

Brook 
Trout Sculpin 

June - - 

July - - 

August - - 

September 100 14.28571429 

October 0 0 

November 0 0 

December - 0 

January - 0 

February - 0 

March 0 0 

April - 0 

May - 100 

June - 100 

July 100 100 

August 50 100 

September 100 40 

October 0 20 
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