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ABSTRACT 

Continued scaling of memory devices has produced many issues for the current 

foremost non-volatile memory—the flash memory—leading to the emergence of a wide 

variety of alternative memory solutions. Redox Conductive Bridge Memory (RCBM) is 

one such solution that has shown great promise in recent years. However, the 

performance of these devices under radiation conditions has not been explored in detail. 

This work investigates the effects of x-rays and electron bombardment on chalcogenide 

glasses and RCBM devices based on these materials. 

RCBM devices are a form of Resistance Change Memory, which rely on two 

distinct resistive states to represent the binary ‘0’ and ‘1’ memory conditions. The 

functionality of the RCBM devices is based on the growth and dissolution of a 

conductive filament through an insulating medium sandwiched between two metal 

electrodes. The presence of the filament represents the on state, while the absence 

represents the off state. 

In this work, we studied RCBM devices fabricated utilizing amorphous Ge-Se 

films as the active medium. Various compositions of Ge-Se films were studied in order to 

fully understand the effect of radiation over their properties and determine the most stable 

system. Various compositions of Ge-Se films in contact with an Ag source were studied 

as well to simulate the exact processes occurring in the RCBM devices under radiation. 

Several different material characterization methods were utilized in order to perceive all 
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of the effects occurring in the systems comprising the RCBM devices. The major 

characterization methods include Energy Dispersive Spectroscopy to determine the exact 

compositions, Raman spectroscopy for analyzing the structural properties, and x-ray 

diffraction to identify the molecular compounds. Both electron beam radiation and x-ray 

radiation were found to affect the variety of chalcogenide glass compositions and 

structures containing Ag in different manners, with each radiation type having a specific 

impact signature. Correspondingly, radiation exposure also affected the performance 

parameters of the RCBM devices. The performances of these devices under the influence 

of both forms of radiation were strongly related to the composition of the film within the 

device. 
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CHAPTER 1: IONIZING RADIATION 

The increased need for scaling of memory devices has led to the emergence of 

alternative memory solutions. In many circumstances, these memory devices may be 

required to perform in extreme environmental conditions, for which performance data has 

not been disseminated. An example of such a circumstance is the application of these 

devices in space exploration. This work investigates the influence of radiation by x-rays 

and electron beam on the Redox Conductive Bridge Memory (RCBM) devices. 

Forms of Ionizing Radiation 

There are many types of radiation, of which there are two primary categories: 

ionizing and nonionizing radiation. Ionizing radiation is classified as any form of 

radiation energy composed of photons or particles with enough kinetic energy to remove 

an electron from the valence band of an atom. The energy typically required to remove an 

electron from an atom is 4-25 eV [1].  

There are two different forms of ionizing radiation: directly ionizing radiation and 

indirectly ionizing radiation. Directly ionizing radiation is composed of charged particles 

that ionize the atoms by directly interacting with the atoms [1]. Forms of directly ionizing 

radiation include the following: electrons, positrons, ions, α-particles, and β-particles. In 

order to ionize the atom, each of these particles must have high enough kinetic energy 

(i.e., high velocity) to excite an electron in the valence band of the atom. Indirectly 

ionizing radiation, on the other hand, is composed of uncharged particles, like photons or 
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neutrons, which transfer their energy to charged particles in the material upon which it is 

incident. The photoelectric effect occurs when an incident photon interacts with an 

electron and transfers all of its energy to the electron. If the photon transfers sufficient 

energy to the electron to release the electron from the bonding site, then this interaction 

results in the ionization of the atom. Depending on the amount of energy transferred, the 

excited electron can interact with other atoms and excite another electron deeper within 

the material.  

Certain types of electromagnetic radiation are classified as indirectly ionizing 

radiation, including γ-rays, x-rays, ultraviolet light, and visible light for some materials. 

An ionizing photon with energy of 4 eV would have a corresponding wavelength of 300 

nm. Conversion between the photon frequency and the photon energy was theorized by 

Max Plank [2]. This relationship between the energy (E) of the particle and the 

wavelength (λ) is described by the following equations, in which h is Planck’s constant 

(4.136 x 1015 eV·s ), c is the speed of light (2.998 x 108 m/s ), and f  is the frequency of 

the electromagnetic wave. 

� = ℎ� (1) 

� = �
� (2) 

� = 	ℎ��  (3) 

Generation of X-Rays 

X-rays are a form of electromagnetic radiation with photon energies ranging from 

100 eV to 100 keV with wavelengths ranging from 10 pm to 10 nm. X-rays can be 
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generated using three different methods: the Bremsstrahlung process, shell emission, or 

synchrotron radiation.  

The Bremsstrahlung x-rays are generated when an electron passes through the 

electric field of a nucleus, causing the velocity of the electron to decrease. Due to the law 

of conservation of energy, the difference in energy from the electron entering and exiting 

the electric field is present in the form of a photon [3, 4]. This process is also known as 

the inverse photoelectric effect because kinetic energy from a moving electron is 

converted to an electromagnetic wave [3]. The wavelength of the resulting photon is 

described by the following equation, in which Ei is the energy of the electron as it is 

entering the electric field and Ef is the energy as it exits. 

� = ℎ�
E	 − E� 

(4) 

Bremsstrahlung x-rays are produced using an apparatus similar to the diagram 

shown in Figure 1. Current passes through the heated filament (cathode) and emits 

electrons through thermionic emission [3, 5]. The beam of electrons is accelerated using a 

strong electric field and then focused onto the cathode. The potential difference between 

the cathode and anode is typically on the order of 35 kV [3].  The positively charged 

anode attracts the generated electrons from the cathode and the electrons are directed 

towards a heavy metal target (typically made of tungsten) [3, 5].  The velocities of the 

electrons significantly decrease when they collide with the tungsten target and therefore 

they emit x-rays. The cathode and anode are contained inside an evacuated envelope or 

tube in order to avoid scattering of the electrons by air [3]. Additionally, the envelope 

must be transparent to x-rays in order to emit the x-rays towards the target situated 

outside of the envelope.  



4 
 

 
 

The Bremsstrahlung process produces x-rays in a wide spectrum of wavelengths; 

for this reason, Bremsstrahlung x-rays are also called an x-ray continuum, depicted in 

Figure 2. A single crystal target will produce a monochromatic and strongly collimated x-

ray beam. However, by using a higher exciting potential, the relative range of 

wavelengths can be highly minimized at the expense of having a broad tail in the 

spectrum. The effect of the tail can be significantly diminished by placing filters on the 

outside of the envelope. 

Cu Anode

High 
Voltage 
Source

+ -

Tungsten 
Anode

Tungsten Cathode

Filament

X-rays

Evacuated Tube

Electrons

 
Figure 1. Schematic diagram representing the x-ray tube where x-rays are 

produced by the Bremsstrahlung process 
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Figure 2. Spectra of Bremsstrahlung x-rays with various electron exciting 

potential gradients [3] 

During the production of Bremsstrahlung x-rays, another event known as shell 

emission, which also produces x-rays, may occur. According to the Bohr model of an 

atom, electrons occupy orbits, or shells, at discrete distances from the nucleus. During 

shell emission, x-rays are generated when electrons in a higher energy shell transition to a 

lower energy shell [5]. The transition produces a photon with an energy equivalent to the 

difference in that of the shells [5]. The most common form of this event is Kα shell 

emission, in which electrons transition into the innermost and lowest energy K shell from 

the adjacent L shell. X-rays produced from shell emission are known as characteristic x-

rays since they have energies characterized by the atomic energy levels. Characteristic x-

rays are denominated by the shell in which the electrons land in and a Greek letter (α, β, 

γ, δ, etc.) that signifies the difference in the energy levels before and after the transition. 

For example, electrons that transition from the n=2 energy level to the n=1 energy level 

emit Kα x-rays, while electrons that transition from the n=3 energy level to the n=1 

energy level emit Kβ x-rays.  
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The apparatus for generating characteristic x-rays is similar to the apparatus for 

generating Bremsstrahlung x-rays. Electrons are ejected from the filament through 

thermionic emission and directed towards the anode, which holds the target. In this 

process, the incident electrons excite electrons from the K shell of the target atoms. 

Consequently, an electron from an outer shell of this atom transitions to a lower energy to 

fill the empty K shell; the difference in energy materializes in the form of a photon. The 

interaction between the incident electrons and the target atoms will produce both 

Bremsstrahlung x-rays and characteristic x-rays. However, the relative intensities 

between the K shell emission x-rays and the Bremsstrahlung x-rays will be very large, 

thus ensuring that the output x-rays are primarily K shell emission x-rays. X-rays 

produced from the K shell emissions have a much higher intensity, higher wavelength 

and narrower range of wavelengths than the Bremsstrahlung x-rays [3]. An example of 

the K shell emission x-ray spectrum produced using a molybdenum target is shown in 

Figure 3. 

 
Figure 3. Characteristic x-rays Kα and Kβ as produced by K shell emissions 

from a molybdenum target [3] 
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A synchrotron source is a more sophisticated and modern method than the 

Bremsstrahlung tube and K shell emission for producing x-rays. With the aid of a 

synchrotron source, the most intense x-rays can be manufactured. In this method for x-

ray generation, electrons are constantly accelerated radially around a large storage ring, 

illustrated in Figure 4, maintaining a nearly constant energy. In a modern synchrotron 

source, electrons are generated with a thermionic gun, and then accelerated using a linear 

particle accelerator (linac). The energized electrons are injected from the linac into the 

smaller ring, called the booster ring, as illustrated in Figure 4.  

The electrons from the booster ring supply the larger storage ring. Once the 

synchrotron is in full operation, electrons from the booster ring are periodically injected 

into the storage ring in order to maintain the specified electron current [6]. Injection of 

electrons with energies other than the target energy into the storage ring causes strong 

disturbances in the electrons’ orbit and therefore interruptions of the experiments; 

consequently, the booster ring and storage rings are maintained at the same energies. 

Additionally, a constant electron current in the storage ring is maintained by frequently 

injecting electrons from the booster ring that ‘top-up’ the current when it drops below a 

small error window of approximately 1 mA [6].  

The storage ring is actually a series of straightaways, containing insertion devices, 

and curves, which contain bending magnets to maintain a closed path. This ring supplies 

the electrons and/or radiation for any experiment and thus it is a crucial segment of the 

entire synchrotron operation. To ensure that the electron velocity is maintained 

throughout the storage ring, a radio frequency (RF) power supply restores energy to the 

electrons that are lost to synchrotron radiation emission [6]. The electrons lose energy as 
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they approach the bending magnets and emit synchrotron radiation. This radiation is 

primarily x-rays generated through the Bremsstrahlung x-ray generation process. The 

difference between these x-rays and the Bremsstrahlung x-rays is the intensity and the 

ability to selectively determine the wavelengths, which is a function of the electron 

velocity and the strength of the bending magnets. 

 
Figure 4. Schematic diagram outlining major components of a modern 

synchrotron source [6] 

Connected to the storage ring are beamlines, which are tangentially connected to 

the storage ring, situated at each bend of the storage ring. The beamline is composed of 

three major components: front end, optics, and the experimental hutch. The front end of 

the beamline serves several functions. It isolates the beamline vacuum from the storage 

ring vacuum, blocks x-rays, and Bremsstrahlung radiation (when necessary), selects the 

acceptable angular range radiation, and filters out the synchrotron radiation that is too 

low in energy [6]. The optics portion of the beamline serves to select the desired energies, 
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focus the photons, and optimize the energy resolution of the beam [6]. Finally, the 

synchrotron x-rays reach the experimental hutch where the sample to be irradiated is 

located.  

Formation of Electron Beams 

Another type of radiation source is known as an electron beam. Electron beam (e-

beam) technology is used in a wide variety of applications, including electron beam 

welding for industrial purposes, electron beam furnace for refining rare or refractory 

metals, electron beam lithography for producing semiconductor nanotechnology devices, 

and Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy 

(TEM) for imaging microstructures.  

The most crucial component for generating an electron beam is the electron gun. 

Two types of electron beam guns will be described here: thermionic emission and high 

field emission. The first form, the thermionic emission electron gun, is the most common 

form of electron gun used in SEM imaging. In the process of thermionic emission, 

electrons escape the surface of the heated material by acquiring thermal energy. The most 

deterministic factor in this process is the work function of the heated material, which is 

the minimum amount of kinetic energy required for electrons to escape from the material. 

For an electron gun, the ideal work function would be very small in order to minimize the 

amount of energy required to generate electrons and maximize efficiency of the 

equipment. Tungsten has a work function of 4.55 eV and is commonly used in electron 

guns. The maximum current density of the beam can be approximated using the 

Richardson-Dushman equation, in which T is the Temperature (K), Φ is the work 
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function (eV), k is Boltzmann’s constant (8.617 x 10-5 eV/K), and A is a material constant 

with an ideal value of 120 A/cm2 [6].  

� = 
��������� (5) 

High field emission is another method for generating electrons, most commonly 

used in the early forms of electron microscopy. Electrons are generated by the application 

of a strong electric field between two fine-point electrodes. Electrons escape the surface 

of the cathode through Fowler-Nordheim tunneling [7].  The current density at the point 

of the electrode is given by Equation (6), where E is the electric field intensity at the 

emitter, Φ is the work function of the emitting material, and K is a constant 

approximately equal to 1 [7]. The miniscule surface area of the emitter limits the amount 

of the electron current produced. The number of emitter sites can be increased and 

arranged into an array in order to increase the total amount of current produced. 

However, this type of arrangement may lead to a non-Gaussian distribution in the 

electron beam.  

Interaction of Ionizing Radiation with Matter 

Whether the form of ionizing radiation is directly or indirectly ionizing, it will 

react with solid materials in the same manner: displacement of an electron from the atom. 

The difference arises in the manner in which the radiation source interacts with the 

material to create an ionized atom. Directly ionizing radiation and indirectly ionizing 

radiation interaction with material are described separately due to their unique properties 

and effects. 

� = 1.54 × 10�� ��
� ����. !×"#$�

% &⁄
( )*

 
(6) 
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Electromagnetic Radiation 

As mentioned previously, electromagnetic forms of ionizing radiation are 

indirectly ionizing because photons are uncharged particles that transfer energy to 

charged particles in the material. In turn, these newly energized charged particles ionize 

atoms in the material through Coulombic interactions. Depending on the wavelength, and 

subsequently the energy, electromagnetic radiation can affect solid materials differently. 

Most solid materials are transparent to larger wavelength radiation like microwaves, 

which have wavelengths between 1 mm and 1 meter and corresponding photon energies 

between 1.24 meV and 1.24 µeV. Thus, radiation with long wavelength (i.e. λ > 10-3 m) 

and concurrently low photon energy passes through most solid materials without losing 

energy or affecting the materials. 

Electromagnetic radiation with shorter wavelengths (i.e., ultraviolet, x-ray, γ-ray) 

have higher energy. In fact, these forms of radiation have enough energy to eject an 

electron from the valence shell of an atom, ionizing the atom. Therefore, ultraviolet, 

x-ray, and γ-ray radiation are classified as ionizing radiation. For this reason, only the 

forms of radiation with high energies are explored in this study. Figure 5 illustrates the 

various categories of radiation that contribute to the electromagnetic spectrum with their 

corresponding wavelengths and photon frequencies.  
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Figure 5. Electromagnetic spectrum describing the wavelengths and 

corresponding photon frequencies. 
Reprinted with permission from [8] © 2012 Elsevier. 

When a photon is incident upon an atom, an electron of that atom may absorb all 

of the photon’s energy. If the amount of energy absorbed is greater than the binding 

energy of the electron, then the electron will have enough energy to escape the atom, 

effectively ionizing the atom. Most commonly this will occur with an electron from the 

valence shell. Since this electron was part of a bond with another atom, after excitation 

from this state, the bond is now broken. The photoelectric effect is the observation of an 

ejected electron after absorbing all of a photon’s energy [3, 5]. The photoelectric effect is 

most commonly observed with visible light incident on metallic materials, which have 

low ionization energies [3]; however, it can also be observed in semiconductor materials 

when higher energy photons are used (e.g., x-rays). 

The other type of interaction between photons and materials is known as the 

Compton Effect. The Compton Effect is prominent when the energy of the incident 

photon is much larger than the binding energy of the electron. The Compton Effect is an 

inelastic scattering of a photon incident upon a charged particle, most commonly an 

electron [3, 5]. In the Compton Effect, only a fraction of the photon’s energy is 
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transferred to a stationary electron, which is then ejected from the location after the 

interaction with light [5]. The interaction of the photon with the electron results in the 

formation of an energetic electron and a remnant photon. Due to the law of conservation 

of energy, the resultant photon energy must equal the difference between the incident 

photon energy and the kinetic energy of the ejected electron. After the inelastic collision, 

the resulting photon will have less energy and a longer wavelength. If the resultant 

photon has enough energy, it may ionize a secondary atom through the photoelectric 

effect. Otherwise, the remnant photon is absorbed by another electron, exciting the 

electron to a higher energy level. 

Electron Beam Radiation 

Electron beam radiation is a form of directly ionizing radiation. Interaction 

between an electron beam and a solid material can cause a wide range of events, depicted 

in Figure 6, including the following: generation of backscattered electrons; generation of 

secondary electrons; electron hole pair recombination; electron transmission; and 

Bremsstrahlung and characteristic x-ray generation. The energy of the incident electrons 

will determine which events transpire. In most cases, multiple different forms of events 

will occur. 

A backscattered electron is a consequence of an elastic interaction, meaning no 

energy is transferred, between a beam electron and the nucleus of the specimen. In this 

interaction, the electron is scattered back out of the surface of the specimen. The electron 

is attracted to the nucleus of the atom by the Coulomb force, as described by 

Equation (7), in which e is the elementary charge, Q2 is the charge of the nucleus, and r is 

the distance between the two charges. 
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Figure 6. Generalized illustration representing products of electron 

bombardment; secondary electrons and Auger electrons remain near the surface 
while backscattered electrons and characteristic x-rays exit the sample 

+ = −�,�4-.�  
(7) 

The equation for Coulomb force reveals that the force is stronger for atoms with 

higher atomic number Z. Therefore, atoms with higher Z will generate more 

backscattered electrons than atoms with lower Z, due to the relative number of protons in 

the nuclei. In scanning electron microscopes, backscattered electrons can be used to 

detect different compositions, grain boundaries, and phase boundaries.  

An inelastic interaction of an electron bounded to an atom with a beam electron or 

a backscattered electron will result in the formation of a secondary electron [9]. The 
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incident electron will transfer kinetic energy to the bounded electron, providing enough 

energy for this electron to escape the valence shell of the atom.  

Electron hole pair recombination within the material can result in numerous 

outcomes including characteristic x-rays, Auger electrons, and cathodoluminescence. 

Characteristic x-rays, as described previously, emerge when an electron from an outer 

shell falls into an empty shell closer to the nucleus. The difference in energy between the 

two shells manifests as an x-ray photon. Auger electrons are formed in a manner similar 

to characteristic x-rays with the exception that the energy from the electron is transferred 

to another electron in the outer shell [5, 9]. The excited electron is then ejected from the 

outer shell. The final product of electron hole pair recombination is cathodoluminescence 

and occurs in semiconductor materials. An interaction between a beam electron and an 

electron in the valence band of the semiconductor excite the electron into the conduction 

band, leaving behind a hole. This energetically unstable state leads to the electron hole 

pair recombination and the discharge of a photon with the difference in energy [9]. 

Cathodoluminescence only occurs in semiconductors because the energy bandgap is 

within the energy range of visible light.  

Bremsstrahlung x-rays were previously described in detail. In this case, the 

Bremsstrahlung x-ray is the photon product of an inelastic interaction of a beam electron 

or backscattered electron with a nucleus within the specimen. It is also possible for an 

electron to transmit from the beam source completely through the specimen without 

interacting with any of the atoms. This is known as electron transmission and is most 

commonly utilized in Transmission Electron Microscopy (TEM).  
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This chapter detailed the methods for generating two different forms of ionizing 

radiation. As previously described, the distinguishing properties of electromagnetic 

radiation and electron beam radiation influence how each form of radiation will interact 

with matter. The following chapter will characterize the particular material of interest for 

this study. 
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CHAPTER 2: CHALCOGENIDE GLASSES 

Chalcogen elements are those that compose Group VIA of the periodic table, 

most notably, sulfur (S), selenium (Se), and tellurium (Te). Materials that contain these 

elements are distinguished as chalcogenides. Chalcogenides have a wide range of uses, 

including applications in solar cells, memory storage, and inorganic photolithography. 

This chapter will detail chalcogenide glasses, a specific class of these materials, and their 

unique properties. 

Material Classifications 

Solid materials take one of three forms: crystalline, polycrystalline, or amorphous. 

Crystalline materials exhibit long range order where a unit cell is replicated and repeated 

periodically throughout the entire solid. In these types of materials, once the exact 

location of an atom and its nearest neighbors are known, the placement of any other atom 

throughout the crystal can be predicted. Polycrystalline materials are composed of 

multiple different crystallites or grains varying both in size and orientation. The third type 

of solid is amorphous material, e.g. fused silica (SiO2), which exhibit the greatest amount 

of disorder. Because of the flexibility of their structure, these materials offer versatile 

applications, one example of which is as an active medium in resistive-change memory 

devices. 
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Glass Preparation 

Glasses compose a large segment of amorphous materials. The traditional method 

of glass formation involves melting the materials from pebble or powder form, then 

cooling the material at a rapid quench rate [10]. The glass synthesis process is 

summarized in a graph in Figure 7, with further details to follow. 

 
Figure 7. Evolution of material viscosity during glass preparation process Ge-Se 

Chalcogenide Glasses; the graph shows glass transition temperature (Tg), melting 
temperature (Tm), and quenching temperature (TQ) 

Initially, the raw materials in pebble form are precisely measured in order to 

achieve the exact ratio of elements. These materials are vacuum sealed into a fused silica 

ampoule to avoid oxygen and other contaminants.  The sealed ampoule is placed into a 

specialized rocking furnace, which slowly increases the temperature to the melting 

temperature (Tm), described as Step 1 in Figure 7. Once the melt reaches Tm, it 

experiences a dramatic change in viscosity (Step 2). At this point of the synthesis, the 

furnace, with the ampoule, is rocked to ensure uniform mixture of all elements 

throughout the melt. Heating and mixing of the melt continues (Step 3) until it reaches a 

specified quenching temperature (TQ), at which point it is cooled (Step 4). If the melt is 

V
is

c
o

s
ity

Δ
V

Temperature

1

2

3

4

5

TmTg TQ



19 
 

 
 

allowed to cool slowly, indicated by the dotted line in Figure 7, the material structure will 

transform towards the lowest entropy state, which is crystalline. The temperature at 

which the glass transitions from a solid to a supercooled liquid is known as the glass 

transition temperature (Tg). To maintain the amorphous nature of the melt in the 

solidified material, the ampoule is swiftly removed from the furnace and quenched in air, 

water, or an ice bath, which forces the material to quickly surpass Tg, preventing 

crystallization and maintaining a high viscosity (Step 5). Depending on the required 

quench rate, the quench time can range between milliseconds and hours [11]. Glasses can 

be created using any system of elements with variable stability, but in different systems 

there are only certain compositions, known as glass forming regions, in which stable 

glasses can be formed.  

Chalcogenide Glasses 

Chalcogenide glasses are covalently bonded glasses that contain at least one of the 

chalcogen elements. In chalcogenide glasses, the chalcogen elements can be combined 

with other elements for various applications. For instance, GeSe4 has demonstrated 

applicability in NO2 gas sensors [12, 13]; GeSbTe has been used widely in rewritable 

optical discs as a form of phase-change memory [14]. This study will focus on Ge-Se 

glasses due to properties that are favorable for resistive-memory devices in harsh 

radiation environments. 

Germanium (Ge) containing chalcogenide glasses are chosen over Arsenic (As) 

containing chalcogenide glasses primarily for the higher coordination number, which 

leads to a higher glass transition temperature. Ge is four-fold coordinated while As is 
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only three-fold coordinated. For example, the transition temperature of As30S70 is 100 °C 

while that of Ge30S70 is 400 °C, as determined from the data in Figure 8a and b.  

 
Figure 8. Glass transition temperature for (a) AsxS1-x (b) GexS1-x, and GexSe1-x. 

(a) Reprinted with permission from [15] © 1966 the Japan Society of Applied 
Physics (b) Reprinted with permission from [16] © 1997 the American Physical 

Society 

 
Figure 9. Glass forming regions of binary chalcogenides; Se glasses have the 

largest glass forming region. Reprinted with permission from [11] © 2011 Springer 
and Springer eBook 
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The pairing of the different chalcogen atoms (S, Se, or Te) with germanium, 

forming the binary Ge-chalcogen glass system, offers distinct properties. Sulfur and 

selenium containing glasses have similar properties that are ideal for certain types of 

resistive memory devices. However, selenium containing glasses have some advantages 

over sulfur containing glasses in radiation environments. Firstly, Ge-Se systems have a 

larger glass forming region than Ge-S systems, as displayed in Figure 9 [11]. The smaller 

glass forming region in Ge-S glasses is attributed to the phase separation of sulfur, which 

easily occurs in sulfur containing glasses. In the case of phase separation, rings of eight 

sulfur atoms with bond angles of 105° form, which become completely disconnected 

from the rest of the glass network [17]. Comparatively, selenium containing glasses form 

hexagonal chains, which run parallel to each other and have bond angles of 103.1° [18]. 

The bonding forces between the chains are van der Waals forces, which makes these 

glasses much more flexible; therefore, phase separation is less likely to occur [18]. 

Additionally, Ge-Se bonds have a longer bonding length (2.135 Å) and smaller bonding 

energy (485 kJ/mol) than those of Ge-S bonds (2.012 Å, 534 kJ/mol) [19]. 

The significantly weaker bonds and narrow bandgap common in telluride glasses 

cause dissimilar electrical and optical performances when compared to the other two 

chalcogen systems [20, 21]. Additionally, telluride glasses have a small glass forming 

region, shown in Figure 9, which limits the flexibility to study different compositions 

offering unique structures that are easily achievable in the other chalcogen systems. 

Elemental Te cannot form a glass, but Te containing glasses have the lowest Tg of the 

chalcogenide glasses. For example, in Ge20Se80 glass, the Tlg is 160 °C [22] compared to 
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the Tg of Ge20Te80 at 147 °C [23, 24]. For applications in harsh radiation environments, 

glasses with higher Tg materials are desirable in order to avoid crystallization.  

Structural Units of Ge-Se Glass  

Since the structure of the disordered materials is of major importance for their 

performance and is studied in detail in this work, the fundamentals of the structure of the 

Ge-Se glasses are presented here. They consist of a basic unit cell: a GeSe4 tetrahedron, 

shown in Figure 10. It contains a single Ge atom at the center surrounded by four 

covalently bonded Se atoms, each at a bond angle of 109.5°.  

 
Figure 10. Basic GeSe4 tetrahedron unit; Ge atom at the center of four 

equidistant Se atoms 

The formation of the tetrahedron is due to the sp3 hybridization of the Ge atom. 

According to the valence bond theory, the ground state electron configuration of Ge is 

[Ar] 3d104s24p2 with the 4s2 orbital full and the two 4p2 electrons ready to react with their 

neighbors, as depicted in the left side of Figure 11. However, since the 4s and 4p energy 

levels are quite close, when Ge comes in contact with other atoms, interaction results in 

the four orbitals ψ(3s),  ψ(3px), ψ(3py), and  ψ(3pz), mixing together to form four new 

hybrid orbitals. Because the same amount of energy is required to remove each electron 

from the valence shell of Ge, there cannot be two different energy levels. Thus, the 

hybrid orbital is formed at energy lower than the 4p orbital and higher than the 4s orbital. 
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This orbital is called the sp3 hybridized orbital because it is formed from one s orbital and 

three p orbitals. The sp3 hybridized orbital is the reason that Ge is typically observed in a 

tetrahedral structure.  

 
Figure 11. sp3 hybridization of Ge valence shell; all four electrons have the same 

energy 

Amorphous Ge-chalcogenide materials are composed of several basic structural 

units: corner-sharing tetrahedral (CS) structures, edge-sharing tetrahedral (ES) structures, 

ethane-like structures of Ge-Ge bonds (ETH), chalcogen chains (Se-Se or S-S), and 

distorted rock salt structures [25].  

There are two structural units that are each composed of two unit cell tetrahedra: 

corner-sharing and edge-sharing tetrahedral structures. The corner-sharing tetrahedral 

structure, shown in Figure 12, consists of two unit cell tetrahedra that share one 

chalcogen atom, which is situated at the corner of both unit cells. The bonds that the 

corner Se atom shares with two Ge atoms fill the valence shell of the Se atom and satisfy 

the 8-N rule [3]. This structure contains a 2:7 ratio of Ge:Se atoms. The edge-sharing 

tetrahedral structure, shown in Figure 13, consists of two unit cell tetrahedra that share 

two Se atoms to form an edge in the structure. In the edge-sharing, structure there is a 2:6 

ratio of Ge:Se atoms.  

The ethane-like bonding structure, shown in Figure 14, consists of two Ge atoms, 

each Ge atom bonded with three different Se atoms. In this structure, the two Ge atoms 
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are covalently bonded together, which fills the last sp3 hybrid orbital to satisfy the 8-N 

rule. Glasses containing high Ge content (i.e., ≥ 40%) will sometimes contain another 

structure in which both Ge and Se atoms are three-fold coordinated. This structure only 

occurs when there are insufficient Se atoms present to satisfy the 8-N requirement of a 

Ge atom. This Ge atom will form a dative bond with the lone pair electrons of a Se atom, 

thereby satisfying its valence shell.  

 
Figure 12. Corner-sharing bond 

tetrahedral structure 

 
Figure 13. Edge-sharing bond 

tetrahedral structure 

 
Figure 14. Ethane-like Ge-Ge 

bonding structure 

 
Figure 15. Distorted rock salt 

layered structure 

 
Figure 16. Layered Rock Salt structure [25] 
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CHAPTER 3: RADIATION-INDUCED EFFECTS IN CHALCOGENIDE GLASSES 

The structural units of Ge-Se glasses were described in Chapter 2. The ways in 

which these structural units are connected together form the backbone of the glass and 

determine the flexibility of the glass network. This chapter will explore the effect of two 

different forms of radiation on Ge-Se glasses: electromagnetic and electron beam. As 

previously mentioned with respect to materials in general, these forms of radiation will 

interact with chalcogenide glasses in different manners due to the difference in nature of 

photons and charged particles. Electromagnetic radiation interaction with chalcogenide 

glasses will be divided into two different groups: (1) sub-bandgap photons and (2) high 

energy photons. 

Electromagnetic Radiation 

Absorption Edge 

Most materials are transparent to radiation with longer wavelengths (i.e., radio 

waves and microwaves) and absorb radiation with shorter wavelengths (i.e., x-rays and γ-

rays). However, the transparency of a material to radiation with intermediate wavelengths 

(i.e., visible light and ultraviolet light) is more ambiguous. A material-specific parameter 

known as the absorption edge identifies the wavelength at which the material becomes 

transparent to the incident radiation. The absorption spectra for amorphous As-Se and 

Ge-Se in Figure 17 indicate the absorption edges beginning at 395 nm and 490 nm, 

respectively. Based on this data, it is approximated that the absorption edge of amorphous 
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Ge-Se films ranges from 500 nm to 575 nm, which corresponds to photon energies 

ranging between 2.15 eV and 2.48 eV [26]. Chalcogenide glasses are highly transparent 

for wavelengths greater than 575 nm and highly applicable for fiber optic applications 

[27, 28]. Photons with energies greater than 2.48 eV are absorbed and affect the structural 

performance and properties of the Ge-Se glass, which makes these materials highly 

applicable for this research.  

 
Figure 17. Absorption spectra of amorphous As-Se and Ge-Se; the glasses do not 

have a straight absorption edge which is centered around 550 nm.  
Reprinted from with permission from [26] © 2008 Elsevier. 

Sub-Bandgap Photons 

Two prominent effects have been discovered as resulting from the interaction of 

visible and ultraviolet light with Ge-Se glasses. These two effects are known as 

photobleaching, an increase in the transparency, and photodarkening, a decrease in the 

transparency of the material. Photobleaching of a material corresponds to the absorption 

edge shifting towards lower wavelengths (i.e., blue shift). Conversely, the absorption 

edge of a photodarkened material will shift towards higher wavelengths (i.e., red shift). 

Photobleaching and photodarkening effects in amorphous chalcogenide materials are 

utilized in a variety of applications, including memory storage, dense holographic 
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recordings, optomechanical transducers, etc. [29-33]. In some amorphous chalcogenide 

materials, such as a-GeSe materials, a dual role of both photobleaching and 

photodarkening was observed [34-36]. However, over longer time periods, 

photobleaching is more dominant [37].  

 
Figure 18. Time evolution of transparency in GeSe2 film with switching light 

source; photodarkening (decreasing T/To) occurs in initial 110 secs; after 120 secs 
photobleaching (increasing T/To) starts  

 Reprinted with permission from [38] © 2011 Elsevier 

Studies on Ge-As-chalcogenide glasses have demonstrated the coexistence of 

both photobleaching and photodarkening, where photodarkening will occur immediately 

with radiation exposure. After an initial period, photobleaching will become more 

dominant over photodarkening [35, 36]. The switching from photodarkening to 

photobleaching is evident in the inset graph of Figure 18. It is hypothesized that this 

transient photodarkening is due to the formation of intermediate states between the 

ground state and the photo-excited states energies of electrons [38]. This type of result is 

attributed to breaking bonds and subsequent molecular rearrangement. The destruction of 

bonds causes the rearrangement of traps within the bandgap of the material, thus 

effectively decreasing the bandgap of the material. There are two theories explaining 
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photodarkening, the first of which states that the broadening of the valence band changes 

the bandgap [39-45]. The other theory suggests that the extended intermediate states 

affect the change in the bandgap due to excited charge carriers [39-45]. These two 

theories are based on the formation of defects, which originate from the breakage of 

bonds. The specific defects that contribute to photodarkening are located within the 

bandgap of the material and act as localized states. Increasing the number of defects, the 

bandgap of the material reduces since there are an abundant number of defect sites in 

near proximity for an electron to hop from one defect to another.  

The other dominating effect is photobleaching of the Ge-chalcogenide glasses, 

which is also attributed to two different mechanisms. The first mechanism is photo-

oxidation of Ge near the surface of the film. Photobleaching due to photo-oxidation has 

been studied by comparing the transmission spectra of GeSe2 and Ge2Se3 films in air and 

vacuum [37]. The results of this study suggest that in Ge-rich films, 40 at. % Ge, 

photobleaching is dominated by the photo-oxidation mechanism [37]. In lower Ge-

content films, photobleaching is dominated by the second mechanism, changes in the 

structural ordering [37]. The structural reordering is generalized as a conversion of 

homopolar bonding structures to heteropolar bonding structures. More specifically, the 

ethane-like structures, which contain a Ge-Ge bond, and the Se-Se chains reorganize to 

form structures with Ge-Se bonds (i.e., GeSe4 tetrahedra that can be connected by either a 

corner or an edge) [36]. The bond conversion is described by chemical reaction in 

Equation (8)  [36]. 

/� − /� + 1� − 1� + ℎ2 ⟹ 2/� − 1� (8) 
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Photodarkening and photobleaching were observed under sub-bandgap light, but 

similar structural changes and defect formations have also been studied in chalcogenide 

glasses exposed to high energy photons. 

High Energy Photons 

Chalcogenide glasses exposed to high energy photons will experience the same 

effects as when exposed to sub-bandgap photons, in addition to changes associated solely 

to the high energy photons. The effects of high energy photons can be further categorized 

as dynamic and static changes in the structural network of the glass. Dynamic changes 

are those that will decay over a period of time after radiation exposure is stopped (e.g., 

electron-hole pair generation). In the case of dynamic changes, the structure may revert 

back to its original state (e.g., electron-hole pair recombination). On the other hand, static 

changes are those changes that remain after radiation exposure has ceased, such as bond 

breaking and molecular rearrangement. 

Radiation-Induced Dynamic Effects 

Electron-hole pair generation is a dynamic effect of photon radiation. In this 

event, an atom absorbs the energy of a photon. An electron within the atom becomes 

excited enough to exit the atom, leaving a hole in its place. A study on a-Se systems has 

demonstrated the dynamic electronic charge neutralization of defects in the network by 

electrons and holes generated during photon illumination [46]. Initially, the positively 

charged, over-coordinated Se atoms will trap electrons, while the holes will be trapped 

around the singly bonded, under-coordinated, and negatively charged Se atoms, 

effectively neutralizing the electric charge of these atoms [46]. Eventually, the 

neutralized defects will reach an equilibrium, which allows the charge carriers to move 
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freely within the network without being trapped [46]. This study also observed that the 

decreasing amount of defects led to a shift in the Fermi level towards the valence band, 

which increased the conductivity of the p-type semiconductor [46]. It is believed that the 

observed effects are due to charge trapping rather than electron-hole pair recombination, 

because the charged defects revert to their original state after the termination of photon 

illumination [46]. 

Radiation-Induced Static Effects 

The majority of the changes in the structural network of the glass are primarily 

related to the radiation-induced static changes. A broken bond resulting from the 

absorption of a photon forces the surrounding network to rearrange in order to fulfill the 

8-N rule for each atom. The details of which particular bond is formed are dependent 

upon the atoms involved in the broken bond as well as the possible defects situated 

adjacent to the broken bond. The amorphous nature of the network provides a wide range 

of possibilities in bond transformations, as illustrated in Figure 17 for the binary As-S 

system. One possibility, known as destruction-polymerization, is the destruction of a 

homopolar bond in favor of a heteropolar bond, as illustrated in No. 1-4 in Figure 19, or 

the destruction of a heteropolar bond in favor of a homopolar bond, No. 9-12. [47].  

Additionally, the rearrangement of the network may occur with a broken bond 

being replaced by the same type of bond. That is, the breaking of one heteropolar bond 

may result in the formation of a new heteropolar bond involving a different atom, No. 13-

16. Analogously, a new homopolar bond may form from a broken homopolar bond, No. 

5-8.  
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Figure 19. Possible structural changes in a-As2S3 with As-○ and S-●  

Reprinted with permission from [47] © 2004 Elsevier and Elsevier Books 

The static structural changes described in Figure 19 are governed by a set of 

principles that have been defined by Shpotyuk et al. for the interaction of γ-rays with 

amorphous chalcogenide glasses [47]. These principles will apply to interactions between 
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amorphous chalcogenide glasses and γ-rays as well as x-rays, due to the similar photon 

energies relative to the bonding energies within the glasses. Photon radiation-induced 

static effects must comply with the following principles [47]: 

1. All statistically possible transformations must be considered, which can be 

described by a single generalized equation: broken	bond → created	bond 

Additionally, a single broken bond can only result in the formation of another 

single bond. 

2. The interaction of high energy radiation with the amorphous network may 

result in the formation of weaker ‘wrong’ bonds over the stronger bonds. This 

transformation of a previously strong bond into a bond consisting of a lower 

bonding energy causes a low-energetic shift of the absorption edge leading to 

the decrease in the bandgap of the system. 

3. High energy radiation with the amorphous network may result in the 

formation of strong bonds over wrong bonds. The formation of strong bonds 

will lead to a high-energetic shift in the absorption edge and an increase in the 

bandgap of the system. 

4. In a close packed glass network with high atomic density, only 

transformations with high energy differences may occur. This rule does not 

apply to amorphous chalcogenide glasses with low density due to the 

abundance of voids within the network. 

Electron Beam Radiation 

The effects of electron beam radiation interacting with chalcogenide glass are 

primarily dependent upon the energy of the electrons. The energy of an electron beam is 
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typically greater than 1 keV, which is in the same energy range as x-rays and γ-rays. 

Therefore, some similarities are expected between the interactions of electron beam 

radiation with chalcogenide glass and the interactions of x-rays and γ-rays with 

chalcogenide glass.  

The similarities between the effects on chalcogenide glass due to high energy 

electrons and high energy photons include electron-hole pair generation and static 

structural changes in the glass network. The primary difference between these two types 

of radiations is the type of particle that delivers the radiation. Photon particles may be 

completely absorbed by particles within the glass after interactions. On the other hand, 

electrons will remain within the glass after interactions with the material unless there is a 

conductive path that allows them to escape. The buildup of negative charges within the 

glass is called charging [48]. For this reason, specimens in scanning electron microscopes 

are grounded through the sample holder.  

In electron beam radiation, high energy electrons travel into the chalcogenide 

glass and interact with the structure of the material. These incident electrons collect at 

localized sites within the glass [49]. The collection of newly introduced electrons creates 

a localized and negatively charged electric field [49, 50]. The different sites where 

electrons are collected interact with each other through electrostatic forces [49, 50]. One 

study models the network as a layered network to demonstrate the interaction of 

negatively charged sites [50]. The negatively charged sites will experience repulsion and 

force the surrounding amorphous network to accommodate the electric fields, as 

illustrated in Figure 20 [50].  
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Figure 20. Interaction of negatively charged sites through a double layered 
model of the glass network (a) electrons accumulate at sites in the network (b) 

negatively charged sites repel each other creating voids within the network 
Reprinted with permission from [50] © 2002 AIP Publishing LLC. 

The layers of structural units are connected by van der Waal’s forces, but the 

electrostatic forces from charging at different localized sites overwhelm these van der 

Waal’s forces. These repulsive electrostatic forces cause a localized expansion of the 

amorphous network, which leads to the formation of low pressure regions [51]. Within 

the low pressure regions, voids and new pathways are formed that allow the diffusion of 

ions within the glass. The network also experiences compressions in the opposing regions 

that cause the formation of high pressure and high density regions in the network [51]. 

The diffusion of mobile ions will be restricted in the regions of high pressure, which may 

lead to slower saturation of the ions in the glass. 
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CHAPTER 4: Ag-CONTAINING CHALCOGENIDE GLASSES AND MEMORY 

APPLICATIONS 

Up to this point, chalcogenide glasses as well as the effects of radiation on these 

glasses have been described in detail. The incorporation of silver (Ag) into the 

chalcogenide glass enhances the optical, electrical, and mechanical properties of these 

glasses for their application in sensors, batteries, optical recordings, and memory devices 

[52-58]. The mechanisms of ion diffusion into the glass and some of the applications of 

these materials will be described further.  

Mechanisms of Ag Diffusion into Chalcogenide Glass 

Structural defects are inherently present within the network, such as dangling 

bonds, due to the amorphous nature of the glass. Other structural defects result from 

radiation exposure, such as charged defects, electric fields, voids, and structural and 

molecular changes [47-51]. Structural defects inherently present in the glass network 

along with defects created as a result of radiation exposure will increase the diffusion of 

ions, e.g. Ag+, into the glassy network.  

Ag Diffusion 

The diffusion of Ag into chalcogenide glass will first be described with the 

absence of an external energy source (i.e., radiation). Although the dynamics of Ag 

diffusion from a concentrated silver source into the chalcogenide glass are not fully 

understood, it is believed to be a multiple step process, which is primarily motivated by 
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the principles of Fick’s first and second laws [58]. At the interface between the Ag source 

and the chalcogenide glass, Ag atoms readily bond with chalcogen atoms from the glass, 

producing non-crystalline compounds [58-61]. The solid state chemical reaction between 

Ag and Se, and its corresponding Gibbs free energy (∆G0
298), that occurs at this interface 

for the As-Se system is provided in Table 1 [58]. The ∆G0
298 of each of these reactions 

are negative, allowing the reaction to occur in the absence of external energy [58]. 

Following this chemical reaction, a thin region of Ag-doped chalcogenide glass resides 

between the Ag source and the undoped chalcogenide glass. 

Table 1. Chemical reactions occurring at the interface of Ag and As-Se glass 
[58] 

Chemical Reaction @ABCDE 	FGH/JKLM 
2Ag + Se → Ag�Se −25.13 

The interface between the Ag-doped chalcogenide glass and the undoped 

chalcogenide glass stimulates the formation of holes, in addition to the holes present in 

the p-type chalcogenide glass [58, 59]. The holes migrate towards the Ag source and the 

Ag atom captures the charge carrier, as described in the following equation.  

Ag + hS → AgS (9) 

Finally, the Ag+ ions diffuse into the chalcogenide glass according to Fick’s laws 

from the silver doped to the undoped region. Furthermore, the diffusion of silver in 

chalcogenide glasses resembles a step-like concentration profile [58].  
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Ag Diffusion with External Forces 

Silver diffusion into chalcogenide glass may be expedited with the presence of a 

catalyst, which can be in the form of thermal energy, electromagnetic energy, electron 

beam radiation, or electric field gradient. Exposure to heat provides thermal energy to the 

system and promotes the generation of electron-hole pairs in the glass [62]. In the 

presence of thermal energy, Ag diffusion is expedited by the accelerated formation of 

holes, surpassing the chemical reaction in Table 1. Following the generation of holes, Ag 

ionizes and diffuses into the glassy medium, according to the process previously 

described. 

 
Figure 21. Comparison of photodiffusion and thermal diffusion of Ag in Ge20Se80 
glass; saturation of Ag occurs faster with photo diffusion and also introduces more 

Ag into the glass than thermal diffusion  
Reprinted with permission from [63] © 2004 Elsevier 

 

Electromagnetic energy (i.e., photons) induced diffusion of Ag is called 

photodiffusion. It has been demonstrated that photodiffusion of Ag into Ge-Se glass 

occurs faster and introduces more Ag than thermal diffusion of the same system, as 

shown in Figure 21 [63]. The difference in the diffusion rates can be explained by the 
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influence of photons on the Ag atoms and the glass network. Similar to the circumstances 

with thermal energy, photons incident upon the glass network will cause electron-hole 

pair generation. The photons may also interact with the Ag, generating Ag+ ions, which 

will then diffuse into the glass. Additionally, photons may cause defects within the glassy 

network in the form of broken bonds. The electric charge associated with these broken 

bonds will attract the Ag+ ions.  

The influence of electron beam radiation over Ag diffusion into chalcogenide 

glass is similar to that of electromagnetic radiation. The primary difference is due to 

charging of the glass. The collection of electrons at defect sites within the glass creates an 

electric field that attracts Ag+ ions. Therefore, Ag diffusion in chalcogenide glass under 

the influence of electron beam radiation is the aggregate of all diffusion mechanisms that 

have been described: electron-hole pair generation in the glass; interactions with Ag 

leading to Ag+ ions; interactions with the glass leading to broken bonds; and negatively 

charged sites within the glass that attract Ag+ ions. The interplay of these diffusion 

mechanisms due to electron beam radiation may contribute to enhanced Ag diffusion 

compared to thermal Ag diffusion. 

The final method for influencing the diffusion rate of Ag is through the 

application of an electric field gradient.  This mechanism is the basis for the functionality 

of redox conductive bridge memory devices, which will be discussed later in this chapter. 

Structures of Ag-Doped Chalcogenide Glass 

After the diffusion of Ag into the Ge-Se glass network, Ag can either remain as a 

Ag atom or react with atoms within the glass network. Studies of Ag diffusion in the a-Se 

system have demonstrated the formation of two different crystallized phases of the binary 
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compound. The first phase is β-Ag2Se, which is stable at room temperature. The β-phase 

has an orthorhombic crystal lattice and a conductivity of 9.8 x 10-6 (Ω-1 cm-1) [53]. The 

second phase formed in the Ag-Se system is α-Ag2Se, which is only stable at 

temperatures greater than 133 °C. The α-phase has a body centered cubic crystal lattice 

and a conductivity of 3.1 (Ω-1 cm-1) [64]. In addition to the binary phase, a secondary 

diffusion product can be formed, also referred to as the ternary phase, which consists of 

Ag-Chalcogen-Ge structures (e.g., Ag8GeSe6). The conductivity of this phase is purely 

that of a semiconductor. 

The presence of these various phases alters the conductivity of the film. 

Additionally, by controlling the movement of Ag within the glass, the conductivity can 

be set between distinct conductivity states. Mechanisms for introducing and removing Ag 

from the glass can be exploited through the application of an external electric field. This 

idea is the basis for one type of resistance change memory. 

Basics of Resistance Change Memory 

Resistance change memory (RCM) is an emerging solution as a replacement of 

the current leading technology in nonvolatile memory. Nonvolatile memory is a category 

of memory storage that maintains the stored data after the power supply has been 

removed. The basic qualification for RCM requires the device to store binary data in the 

form of two different resistive states. The binary states of ‘0’ and ‘1’ are defined by the 

high resistance state (HRS) and low resistance state (LRS), respectively. The HRS and 

LRS are also known as the off-state resistance and on-state resistance, respectively. 

There are various types of materials and devices that are classified as RCMs. 

Current emerging forms of RCM devices include ferroelectric capacitors, phase-change 
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devices, and redox conductive bridge devices. These devices can be placed into a matrix 

of word lines and bit lines, which form the circuit design for Resistive Random Access 

Memory (RRAM). RRAM can be more specifically identified by the storage device 

within the matrix: ferroelectric random access memory, phase-change random access 

memory, and redox conductive bridge random access memory.  

Ferroelectric Memory 

The concept of ferroelectric memory is based upon the permanent presence of 

dipoles within ferroelectric materials. The polarization of the dipoles, which can be 

controlled through the application of an electric field, affects the resistivity to the films 

[65]. Ferroelectric memory devices have the structural form of a ferroelectric layer 

sandwiched between two metal electrodes, which control the electric field. Therefore, 

two distinctly different resistive states (HRS and LRS) can be created in the device. 

When the electric field is removed, the dipoles maintain their orientation. These devices 

are commonly called ferroelectric capacitors. The most common material used in these 

ferroelectric capacitors is lead-zirconium-titanate (PZT). 

A single ferroelectric random access memory (FeRAM) cell is composed of a 

select transistor and a ferroelectric capacitor of the design illustrated in Figure 22. In the 

cell, the gate terminal of the transistor is connected to the word line and the drain 

terminal to the bit line. The state of the capacitor is measured by applying a small read 

voltage either to the bit or word line. Unfortunately, reading the device erases the 

memory state as well, so the cell must be re-programmed after every read cycle. 
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Figure 22. FeRAM cell design includes 1 access CMOS transistor and 1 

ferroelectric capacitor 
Reprinted with permission from [66] © 1988 IEEE  

Phase-Change Memory 

Phase-change memory (PCM) is based on the differences in reflectivity and 

resistance between the amorphous and crystalline phases of chalcogenide materials. The 

amorphous phase demonstrates high resistance and low reflectivity, while the crystalline 

phase demonstrates the opposite. A PCM device contains a top electrode, a chalcogenide 

layer, and a heating element. The amorphous phase is formed by applying a high current 

in a short period (~10 ns), which heats the chalcogenide past the melting temperature and 

rapidly cools it. The crystalline phase is formed by applying a smaller current, which 

maintains the temperature of the chalcogenide close to the melting point for a longer 

period (~1 µs) [67]. The phase-change mechanism has been widely used in re-writable 

CD and DVD technology. The HRS for PCM is typically on the order of 100x greater 

than the LRS. The cell design of phase-change random access memory is similar to that 

of FeRAM. The cell consists of a PCM device and a select transistor connected in the 

same manner as a FeRAM cell. A major disadvantage of PCM is the high current 

required to form the amorphous phase, which leads to a high power consumption. 
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The last form of RCM will be characterized in greater detail, since it is the subject 

of this study.  

Redox Conductive Bridge Memory 

Redox conductive bridge memory (RCBM) devices are based on the design of a 

metal-insulator-metal (MIM) structure, similar to the storage devices in ferroelectric 

memory and phase-change memory. The structural design of these devices includes one 

electrochemically inert electrode, which functions as the cathode, and one 

electrochemically active electrode, which functions as both the anode and the ion source 

in forward bias mode. Between these two electrodes resides the solid electrolyte 

insulating layer, which is the medium for ion conduction and bridge formation. This 

general structural design is illustrated in Figure 23, which shows the bridge formation. 

 
Figure 23. Basic design of RCBM device with conductive bridge in place; the 

device shown is in the ON-state or LRS; a forward bias is being applied 

Switching Mechanisms in RCBM 

The RCBM devices demonstrate bipolar resistive switching, which means the 

switching occurs asymmetrically. The polarity of the voltage required to write to the 

device is the reverse of that which is required to erase the device. The current-voltage 

characteristics of bipolar switching RCBM are presented in Figure 24. The stages where 

the device is in the off-state/HRS are highlighted in red. After a certain threshold during 
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forward bias, the device switches, indicating the set/write voltage. The current through 

the device is limited by the compliance current (cc). Application of the compliance 

current prevents excess current flow through the RCBM device, which can burn out the 

device. As the voltage approaches 0 on the reverse sweep, an ohmic relationship is 

observed between current and voltage. The inverse of this slope indicates the on-state 

resistance of the device. At some point during the reverse bias, the device switches off, 

indicating the reset/erase voltage. The off-state resistance of the device is given by the 

inverse slope of the red graph. 

 
Figure 24. Bipolar resistive switching in RCBM: (1) a negative bias is applied 

and the device remains in the OFF-state; (2) as the bias increases positively, it 
eventually reaches VTh; (3) device switches to ON-state and the current is limited by 

CC; (4) as the bias approaches 0, an ohmic relationship occurs; (5) when the 
negative bias reaches VEr , the device switches off [68] 

Reduction-Oxidation Mechanisms in RCBM 

The present devices are called redox conductive bridge memory because the 

bridge formation occurs through the oxidation and reduction of the metallic ions. The 

evolution of the bridge growth in a RCBM device based on a Ag-chalcogenide glass-W 

stack is illustrated in Figure 25. During the initial forward bias, shown in Figure 25 (i), 

the anodic atoms (Ag) experience oxidation (i.e., Ag loses electrons and forms positively 
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charged ions). The positively charged ions migrate towards the negatively charged 

cathode (Figure 25 (ii)). With increasing forward bias, the ions saturate the electrolyte 

region nearest to the cathode. Nucleation of the ions occurs at the cathode (Figure 25 

(iii)) and the ions experience reductions in their oxidation states (i.e., gain electrons) due 

to the negative charge of the cathode. The filament growth continues in this manner with 

increasing forward bias, until the conductive bridge is complete (Figure 25 (iv)). 

 
Figure 25. Oxidation-reduction bridge forming process during forward bias [69] 

The device can be reset through the reverse of the bridge formation process. In the 

reverse bias mode, a negative voltage bias is applied to the electrochemically active (Ag) 

electrode while a positive voltage bias is applied to the electrochemically inert electrode. 

The reverse bias causes the oxidation of atoms that comprise the conductive bridge, 

resulting in the formation of ions. These newly formed ions drift towards the 

electrochemically active electrode, dissolving the bridge, where they become reduced at 

the electrode interface. Disruption of the conductive bridge returns the memory device to 

its original high resistive state. 
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The bridge formation and bridge dissolution processes enable the selection 

between a low or high resistive state. The state of the device is maintained after the 

withdrawal of the voltage bias. This qualifies RCBM devices as a form of nonvolatile 

memory. 

The storage state of the device is determined by applying a small bias (read 

voltage) and simultaneously measuring the current. The amount of resistance, and 

therefore the resistive state, is easily calculated using the current-voltage relationship of 

Ohm’s Law, shown in the following equation. 

T = U/V ( 10 ) 

Since the read bias is significantly smaller than the write bias and erase bias, the 

device can maintain its storage state even after being read, making RCBM advantageous 

over ferroelectric memory. The major advantage of RCBM over PCM is the considerably 

lower power consumption, which is always a concern in our increasingly energy-

conscious society. Other advantages of RCBM include faster write and erase times 

(~50 ns) and a high potential in scalability [67]. 
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CHAPTER 5: EXPERIMENTAL PROCEDURE 

So far, different forms of radiation have been discussed, as well as their effects on 

chalcogenide glasses. Electromagnetic radiation, which is indirectly ionizing, can cause 

photodarkening/photobleaching, structural modification, and electron-hole pair 

generation. Electron beam radiation, which is directly ionizing, can also cause these 

effects in addition to charging and structural rearrangements. Electromagnetic radiation 

influences the conductivity of Ag-containing chalcogenide glasses through 

photodiffusion. These photodiffused films are highly applicable as an active medium in 

redox conductive bridge memory (RCBM). Since radiation promotes the diffusion of Ag 

in chalcogenide glasses, the exposure of a-GexSe100-x based RCBM devices to radiation is 

expected to change the device performance parameters. 

In this work, various studies on GexSe100-x films were conducted in order to fully 

characterize their behavior in the presence of radiation. Following material 

characterization studies, RCBM devices were fabricated using GexSe100-x films as the 

active medium through which the conductive bridge forms. The performances of the 

RCBM devices were characterized before and after radiation exposure. The following 

chapter describes the film and device fabrication methods as well as the characterization 

methods, and experimental conditions used throughout the experimental studies. 
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Film Fabrication 

Amorphous GexSe100-x Films 

Structural characterization studies due to the effects of x-rays and electron beam 

were conducted on thermally deposited bare films onto a p-type Si wafer substrates with 

a 200 nm thick thermally grown wet-SiO2 insulator. The low partial pressure of Ge 

relative to Se caused a faster deposition rate in Se. Therefore, bulk glasses of the desired 

film compositions were placed into a tungsten (W) crucible with a semi-Knudsen cell 

design, illustrated in Figure 26. The semi-Knudsen cell equalized the pressure so that the 

deposition rates of Ge and Se atoms were equal and the deposited film compositions were 

close to that of the bulk glass. 

The films were deposited using a Cressington 308R evaporation system at 

pressure of 1x10-6 mbar. The deposition rates of the films were monitored using a 6 MHz 

quartz crystal resonator. The substrate was placed directly above the crucible and slowly 

rotated to ensure uniform distribution of the film thickness across the substrate. The films 

were deposited at a rate of ~3 nm/min. The thicknesses of the films used for the material 

characterization studies were 75 nm for these two radiation studies. 

 
Figure 26. Design of semi-Knudsen cell crucible used for thermal evaporation of 

amorphous GexSe100-x films; the mesh pattern of the cover equalizes the partial 
pressures of Ge and Se in order to achieve ideal film compositions 

Material characterization studies on the visible light induced effects were 

conducted on films thermally deposited onto Indium-Tin-Oxide (ITO) coated microscope 

Crucible Source

Crucible Cover
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slides. These studies required the use of a transparent substrate in order to monitor the 

transparency of the films. Deposition of films for these studies was conducted in the same 

manner with the same equipment; however, these films were 1.0 µm in thickness. 

Ag Source Formation 

 
Figure 27. Shadow mask utilized in formation of thermally deposited Ag sources; 

white dots were sealed so only a single row of Ag dots were deposited (shown in 
green) 

Studies characterizing Ag diffusion and the subsequent diffusion products were 

conducted on a-GexSe100-x films with a circular Ag source. The a-GexSe100-x film was 

deposited using thermal evaporation per the process described previously. Ag was 

deposited using the same method; however, Ag pebbles were placed into an open 

tantalum (Ta) crucible, rather than the W semi-Knudsen cell used for chalcogenides. The 

formation of the Ag source was achieved through the use of a shadow mask, which is 

illustrated in Figure 27. After deposition of the 75 nm thick chalcogenide film, the 

shadow mask was placed atop the thermally deposited film. Subsequently, 100 nm of Ag 

was thermally deposited onto the chalcogenide film. The resulting Ag source dots were 2 

mm in diameter with 1 mm spacing between. A single row of Ag source dots were 

deposited, as indicated by the green dots. The white dots represent locations where the 

silver was prevented from depositing onto the chalcogenide film. This mask was used in 

order to provide a large distance of Ag diffusion in one direction (towards the white 
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circles), allowing the freedom to study a range of radiation doses and different types of 

radiation.  

RCBM Device Fabrication 

The fabricated RCBM devices were based on a W/a-GexSe100-x/Ag vertical stack, 

in which W was the electrochemically inert electrode, a-GexSe100-x was the medium in 

which the conductive bridge could form, and Ag was the electrochemically active 

electrode, which provided the ions for the formation of the conductive bridge. The 

fabrication of these devices involved nine processing steps, including three 

photolithography steps, all of which are outlined below and illustrated in Figure 28, with 

specific details to follow. 

1. Sputtering of W electrode and SiO2 device isolation layers 

2. 1st photolithography step (via formation) 

3. Wet etch of SiO2 forming the via 

4. Thermal evaporation of GexSe100-x and Ag 

5. Ag photo diffusion 

6. 2nd photolithography step (Ag electrode) 

7. Thermal evaporation of Ag for the electrode 

8. 3rd photolithography step (W electrode) 

9. Wet etch SiO2 forming the W electrode 
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Figure 28. Process flow for W/a-GexSe100-x/Ag RCBM devices 
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Substrate Preparation 

The RCBM devices were fabricated on a 4-inch, 380 µm thick, boron doped (p-

type), single-side polished Si wafer with <100> orientation. Initially, a 200 nm insulating 

layer between the device and substrate was formed through the wet-oxidation process. 

This and all subsequent photolithography and wet etching processes were performed in a 

Class 1000 cleanroom. 

Sputtering of W and Field Isolation SiO2 

The electrochemically inert W electrode is located at the bottom of the device 

stack. In the fabricated RCBM devices, all W electrodes are electrically shorted together 

through a continuous W film. The W film was deposited using an AJA Orion 5 Sputter 

Machine (Model No. ATC ORION 5 Sputtering System). All sputtered materials were 

deposited at a vacuum pressure of 6x10-6 mbar. Deposition of the W layer was achieved 

using a DC input power of 200 W at a deposition rate of 1.20 Å/second. Immediately 

following W deposition, a 100 nm layer of insulating SiO2 was sputtered onto the 

substrate. The SiO2 was deposited using an RF power source, in order to avoid charge 

build up on the target, at a rate of 0.66 Å/second. Multiple guns within the sputter tool 

allow for consecutive film deposition without breaking the chamber vacuum, eliminating 

interlayer contaminants.  

Photolithography 

All three photolithography steps follow the same recipe. The 1st photolithography 

step, in the device formation, exposes small areas in the SiO2 layer, which will later be 

etched to form the device vias. This procedure has been optimized specifically for the 

fabrication of these RCBM devices, and is summarized in the flowchart of Figure 29. 
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Step (a), which is not applicable to the 1st photolithography step, requires heating the 

1165 Microposit Remover to 65 °C, in order to remove the photoresist from the previous 

photolithography step.  The wafer was placed into the solution for 2 minutes, with 

continuous agitation in order to avoid photoresist re-deposition. In Step (b), about 5 ml 

Hexamethyldisilazane (HMDS), which improves photoresist adhesion and aids the liftoff 

process, was applied to the wafer. Following this, the wafer was spun using a Headway 

Spin Coater (Model: PWM 32-PS-R 790) at 5000 rpm for 35 seconds to evenly distribute 

the HMDS.  In Step (c), 15 ml of SPR 220 3.0 photoresist was applied to the wafer and 

spun at 6000 rpm for 35 seconds. Step (d) was a pre-exposure bake of the photoresist at 

115 °C for 90 seconds, which removes excess moisture from the photoresist. The 

photoresist was exposed to high intensity UV light (22mW/cm2) for 9 seconds using a 

Quintel Contact Aligner (Model: Q-4000). Finally, the wafer was submerged in the 

MF26A developer for 90 seconds, completing the photolithography process and 

producing a patterned wafer.  

 
Figure 29. Photolithography process developed for RCBM devices using SPR 220 

photoresist 
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Wet Etching of SiO2 

Wet etching of SiO2 was performed twice, with the same procedure, in this device 

fabrication process: first to form the via and second to expose the W pad. Etching of SiO2 

was achieved using 20:1 Buffered Oxide Etch (BOE), which was a solution of 20 parts 

Ammonium Fluoride to 1 part Hydrofluoric acid. The etch rate of SiO2 was 8 Å/second. 

Correspondingly, the wafer was submerged in the etchant for 2 minutes to remove 100 

nm of SiO2. After the first etching step, a cross-sectional view of the device will be 

similar to the illustration in Figure 28c.  

Thermal Evaporation of Ge-Se Active Layer 

After the via was formed, it was filled with 75 nm of a-GexSe100-x thin film, as 

illustrated in Figure 28d, using thermal evaporation. Without breaking vacuum, a small 

15 nm layer of Ag was deposited over the chalcogenide film. The process of thermal 

evaporation was described in a previous section (page 47). The deposition of Ag at this 

stage is an important detail critical to the device formation. Chalcogenide glass will 

dissolve in a basic solution (i.e., the MF26A developer). Consequently, a thin protective 

Ag layer over the chalcogenide film prevents its dissolution during the subsequent 

photolithography steps. 

Following the deposition of the thin Ag layer, the Ag was photodiffused into the 

chalcogenide filled via using a UV light source with an intensity of 1.5 W/cm2. The 

reasoning for this is two-fold. First, the photodiffused Ag increases the strength of the 

chalcogenide against dissolution in the developer. Second, photodiffusion of Ag greatly 

increases the reliability and endurance of the devices [70]. 
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Ag Pad and W Pad Formation 

The remaining process steps are a combination of processes that have already 

been described in detail. After the via was filled with the chalcogenide and Ag thin films, 

the formation of the Ag pad, which will act as the electrochemically active anode was the 

next process step. Formation of the Ag pad was initiated by the 2nd photolithography step 

using the second mask for Ag pad formation. Silver was thermally deposited over the 

patterned photoresist with thickness of 100 nm (Figure 28g). Next, the final 

photolithography step begins with lift-off, revealing the fully formed Ag anode (Figure 

28h). After the 3rd photolithographic process, openings in the photoresist layer (Figure 

28j) provided access to the SiO2 layer. The SiO2 was etched, revealing the underlying W 

film that forms the electrochemically inert cathode. The final fabrication step was to 

remove the remaining photoresist. The resulting cross-sectional view of the device 

structure is illustrated in Figure 28m.  

Film Characterization Methods 

Thermally deposited bare and silver source containing films were characterized 

using various methods including Raman spectroscopy, Energy Dispersive Spectroscopy 

(EDS), and X-ray Diffraction (XRD). The scientific value and settings of these methods 

are described in this section. 

Raman Spectroscopy 

The amorphous nature of the Ge-Se films creates some uncertainty in the 

structural organization the network. Raman spectroscopy studies provide valuable 

information regarding the presence of various structures within the film as well as the 

manner in which these structures react in the presence of an external force (i.e., 
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radiation). Raman spectroscopy studies were conducted using a Horiba Jobin Yvon 

T6400 triple monochromator with liquid-nitrogen-cooled multichannel coupled-charge-

device (CCD) detector. Films were excited with a 514.5 nm green laser with power of 

90 mW. Measurements were conducted at a temperature of 100 K and pressure of 

10-3 Torr to avoid photoinduced changes in the studied film by the laser light. Each 

Raman spectrum was acquired over a period of 120 seconds with multiplicity of 3 in 

order to eliminate noise observed in the spectrum. Additionally, since the distribution of 

structural units may vary throughout a single sample, multiple spectroscopy 

measurements were taken at various locations on the sample in order to obtain an 

accurate representation of each film. 

The experimental Raman spectra were fitted with the sum of multiple Gaussian 

distributions centered at specific wavenumbers, which correspond to the vibrational 

modes of the various structures. The Gaussian peak positions of each structure within 

chalcogenide glasses have been previously determined through modeling studies [71, 72]. 

Further descriptions of these vibrational modes are provided with the presentation of the 

Raman data. Prior to fitting the Gaussian curves, each spectrum was fitted to a baseline 

and normalized to an intensity of 1.0 ascribed to the corner-shared peak height, which 

isolates the characteristic vibrational modes and permits comparison between spectra. 

The relative quantities of the structures observed are ascertained through comparison of 

the integrated areas of the Gaussian distributions.  

Energy Dispersive Spectroscopy (EDS) 

The exact compositions of the Ge-Se films have been determined through Energy 

Dispersive Spectroscopy. Due to errors inherent in the thermal evaporation process, the 
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composition of a deposited film is not equivalent to that of the source bulk glass. The 

exact composition of a film is valuable information when characterizing any of its 

properties. Therefore, EDS studies are necessary for every film that is characterized. 

Energy Dispersive Spectroscopy was conducted using a Hitachi S-3400N II Scanning 

Electron Microscope with an Oxford Instruments Energy + EDS system. These 

measurements were conducted at working distance of 10 mm and 2000x magnification 

with a 90 second collection time. Each sample was measured at five different locations to 

obtain an accurate average and standard deviation. 

Additionally, mapping profiles of Ag diffusion in the Ge-Se films were obtained 

using the same equipment. The mapping of Ag diffusion was performed on a-GexSe100-x 

films with a thermally deposited circular Ag source, which was previously described (see 

page 48). The mapping profile is a compilation of 20-25 frames. Each frame was 

measured with an accumulation time of 90 seconds at a working distance of 10 mm, 

achieving an appropriate contrast level (0-10 arbitrary counts). The resulting diffusion 

profile provides an insight into the diffusion rate of Ag with radiation exposure. 

X-ray Diffraction (XRD) 

Silver bonding with chalcogen elements results in the formation of crystalline 

structures, which can be measured through x-ray diffraction (XRD). The XRD patterns of 

the diffused Ag were measured using a Bruker AXS D8 Discover X-ray Diffractometer 

equipped with a NaI(Tl) scintillation detector and Cu-Kα x-ray source (λ =0.1506 nm).  

The XRD Commander software was utilized in locked-coupled scan mode with 2θ 

ranging from 15° to 90° (0.05° step size and 1.2 seconds/step). The resulting XRD 

patterns contained spikes in the intensity at specific 2θ values, which correspond to the 
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particular molecular compounds and phases present within the film. Accordingly, a 

perfectly amorphous film will provide an XRD pattern with an overall low intensity and 

no spikes. 

Device Characterization Method 

A major factor in the competition for the next generation memory solution is the 

endurance of the device. The current leader in memory technology (i.e., Flash) is required 

to withstand at least 103-107 switching cycles. Therefore, determining the effects of 

radiation on the endurance of the proposed devices will indicate if they are a viable 

candidate for the next generation memory solution in radiation-prone environments.  

The fabricated a-GexSe100-x based RCBM devices were characterized using an HP 

4146 parameter analyzer. The probe station used for device characterization was 

equipped with gold probes and a Faraday cage, which isolated it from external sources of 

noise and diminished charge buildup within the measuring cables. The devices were 

characterized with a DC voltage bias sweep, ranging from -0.75 to 2.0 V across the W 

and Ag electrodes, while simultaneously recording the current. In order to achieve 

105 switching cycles within a reasonable amount of time, a signal generator was utilized 

in addition to the parameter analyzer. The signal generator was programmed to supply a 

square waveform with a minimum of -0.75V, a maximum of 2.0V, and a period of 5 ms. 

The signal generator was interrupted at several times during the testing, in order to record 

the current-voltage characteristics at various cycles. The current-voltage characteristics 

obtained during the endurance testing were analyzed and performance indicators, such as 

write voltage, erase voltage, on-state resistance, and off-state resistance, were extracted to 

characterize the devices.  
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CHAPTER 6: INFLUENCE OF SUB-BANDGAP LIGHT  

ON CHALCOGENIDE GLASS 

Before studying the effects of ionizing radiation over the Ge-Se glasses, 

experiments were conducted using low energy photons (visible light). The nature of the 

effects under such radiation is, to a great extent, well defined and understood. The 

motivation for this experiment was to bear knowledge from these types of effects and 

apply it to the unexplored subject of ionizing radiation.  

The effects of low energy photons on a-GexSe100-x films were studied for the 

compositions of Ge29.2Se70.8, Ge32.1Se67.9, and Ge39.5Se60.5. Insight into the origin of 

transient and metastable sub-bandgap light-induced effects in a-GexSe100-x systems across 

the glass forming region are presented further in this chapter. The crossover from 

transient photobleaching (PB) in compositions close to GeSe2 to the mixture of both 

transient photodarkening (PD) and metastable PB in the Ge-rich composition was 

experimentally observed with the two-laser beam technique.  

Radiation Exposure Conditions 

The photo-induced changes in the films were observed by the two-laser beam 

transmittance method [38]. In this method, a low intensity 0.29 mW/cm2 ‘probing’ laser 

diode with a wavelength of 655 nm (above the absorption edge) was continuously used to 

monitor changes in the transmittance (T) and a high-intensity 200 mW/cm2 ‘pumping’ 

laser, emitting light with a wavelength of 405 nm, was employed to produce PD/PB 
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effects. The pumping laser operated in an on/off switching cycle, in which the on-period 

is also called the pumping period and the off-period is called the rest period. The total 

time of one pumping and rest cycle was 800 seconds, and the total accumulation time was 

4,800 seconds. Both beams were focused on the same area of the sample, with the pump 

completely overlapping probe light. The samples were measured under atmospheric 

pressure and room temperature conditions. As a result, relative changes in the 

transmittance T/To as a function of time were calculated.  

Results 

Transparency and Raman spectroscopy measurements were performed to 

characterize the photoinduced effects. The transparency measurements for Ge29.2Se70.8 are 

shown in Figure 30. Additionally, the measurements in transparency for the Ge32.1Se67.9 

and Ge39.5Se60.5 compositions are presented in Figure 31. 

 
Figure 30. Time evolution of Ge29.2Se70.8 film transparency showing transient 
photobleaching (increased T/To during pumping cycles and returning to original 

state during rest cycles) 

The transparency measurements demonstrate a difference in the photo-induced 

effects that are observed for a-GexSe100-x glasses depending on the compositional 
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variation. There is a critical Ge concentration, which is essential for the regarded 

processes. It was determined to be around 30%.  Below this content, for x=29.2% only, 

the transient effect was present, above it, for x = 32.1% and x = 39.5%, metastable effects 

emerged. Therefore, when Ge29.2 Se70.8 was illuminated with the pumping beam, its 

relative transmittance rapidly increased by 3% and saturated, as seen in Figure 30. During 

the following rest period, transmittance reverted back to 1.0 and the effect dissipated. 

After continued on/off cycling, this behavior remained unchanged.  

 
Figure 31. Time evolution of Ge32.1Se67.9, and Ge39.5Se60.5 film transparency 
showing transient photodarkening (decreased transparency) and metastable 

photobleaching (permanently increased transparency) 

Films exceeding the critical Ge concentration demonstrated a combination of 

transient photodarkening (during the pump period) and metastable photobleaching 

(during the rest period) effects, as illustrated in Figure 31. Furthermore, increasing the Ge 

content in the films increased the magnitude of both transient and metastable changes. In 

the case of Ge32.1Se67.9, a decrease in the transmittance by 2.5% was observed upon light 

irradiation. During the resting period, a rapid increase in the transparency was observed. 

In fact, a 0.9% increase in transmittance was observed, implying the effects of PB. 
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Gradual increases in the PB were observed with every switching cycle, resulting in an 

increase in the transmittance by 1.5% after five total cycles. A similar trend of crossover 

from transient PD to metastable PB was seen in the Ge39.5Se60.5 composition, with a more 

pronounced magnitude of the effect. Thus, overall metastable PB attained a 7% increase 

in the transmittance above the initial level.  

 
Figure 32. Raman spectra of films before and after light exposure: a) Ge29.2Se70.8, 

b) Ge32.1Se67.9, c) Ge39.5Se60.5 

Structural changes in a-GexSe100-x films exposed to sub-bandgap light were 

characterized using Raman Spectroscopy. The Raman spectra of films before and after 

light exposure are displayed for all compositions in Figure 32a, b, and c. The Raman 

spectra verify the presence of four different structural units: ethane-like bonding (ETH) 

structures (Se3-Ge-Ge-Se3) average vibrational mode at 175 cm-1, corner-sharing (CS) 
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tetrahedral structures (Ge-Se-Ge) average vibrational mode at 195 cm-1, edge-sharing 

(ES) tetrahedral structures at 213 cm-1 [73-76], Se-Se chains and rings are present at 265 

cm-1 [77, 78], and the final band that is observed in the Raman spectra at 307 cm-1  is 

attributed to the asymmetric vibration of the same edge-shared tetrahedral previously 

mentioned [78-80].  
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Figure 33. Structural changes observed from Raman spectra: a) ratio of ES areal 

intensity to CS areal intensity, b) areal intensity of Se-Se chains, and c) areal 
intensity of ETH structures 

Deconvolution of the Raman spectra reveals changes in the relative quantities of 

the ES, CS, Se-Se, and ETH structural units. This information, presented in Figure 33a, b, 

and c, is obtained by integrating each of the fitted Gaussian curves to calculate to total 

area of each curve. According to Raman analysis of the Ge39.5Se60.5 films, the ES/CS ratio 

increased from 0.42 to 0.91. The concentration of ETH and Se-Se structures decreased 

from 9.8 to 7.9 and from 14.6 to 10.2, respectively. Negligible changes in the structural 
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units were detected in the films with lower Ge content. Any of the observed changes are 

within the error of the Raman measuring system.  

Discussion 

First, the changes observed in the films of compositions Ge29.2Se70.8 and 

Ge32.1Se67.9 are considered. The variety of these effects are attributed to the high 

flexibility of the glassy matrix due to the high Se concentration, which becomes more and 

more restricted with increasing Ge content. The flexibility of the glasses in this 

concentration region and the dominance of Se in their composition suggest that the 

photo-excitation clearly follows the pathway well-known in a-Se, namely it involves the 

lone pair electrons of Se atoms [81]. Because of the floppiness of the system in this 

composition, one could also expect some structural changes like flipping of the Se chains 

or intermolecular reactions like changes to the van der Waals distances due to Coulomb 

interactions of created defects at light illumination. However, their experimental 

identification is difficult. On the other hand, the changes in the transmittance of the 

Ge32.1Se67.9 suggests that due to the slightly higher Ge content in these films, in materials 

with Ge content greater than 30%, the early stages of material modifications emerge, 

leading to the rise of the PB with increasing light illumination. 

For the Ge39.5Se60.5 film composition, the experimental data demonstrate a 

mixture of the transient PD and metastable PB effects that was also reported by other 

research groups [38]. The Raman analysis provides some insight into the metastable 

changes: the homo-polar bonds, i.e. ETH and Se-Se, are converted into the tetrahedral 

Ge-Se bonding. The photo-excitation in the Ge39.5Se60.5 system is found to induce 

breakage of the Ge-Ge chains and as a result many dangling bonds at the Ge atoms are 



64 
 

 
 

generated. Because of deficiency of the lone pair states at the Se atoms, the dangling 

bonds cannot be saturated. Therefore, the defect states appear in the band gap causing the 

band gap shrinkage by ~0.2 eV, which manifests in the transient PD effect during the 

light exposure. The increase in PD amplitude with growing Ge content is related to 

further suppression of the concentration of the Se lone pair states.  

In the post-excitation regime, we observe an appearance of the newly formed 

heteropolar CS and ES bonds and a subsequent reduction in the homopolar ETH and Se-

Se bonds. The heteropolar bonds are more energetically favored compared to the 

homopolar ones [82]. The increase in ES/CS ratio with a simultaneous decrease in ETH 

and Se-Se structures suggest that large quantities of Ge-Ge bonds and corresponding Se-

Se bonds are broken and converted predominantly to ES tetrahedral units as a result of 

relaxation in the post-light-exposed period. The reversibility of the PB effect also 

supports the hypothesis that its nature is mainly a function of structural reorganization 

and not of oxidation.  

Conclusion 

Photo-induced changes in GexSe100-x films were experimentally studied by the 

two-laser beam technique, where a high powered laser was used to produce 

photodarkening (PD)/photobleaching (PB) and operated in an on/off regime with a period 

of 800 sec. A weak-power laser with a higher wavelength light was continuously used to 

monitor the changes in the sample transmittance. Photodarkening (red shift of the 

absorption edge) and photobleaching (blue shift of the absorption edge) were observed in 

the different film compositions: reversible PB on Ge29.2 Se70.8; reversible PD on Ge32.1 

Se67.9, which diminished after the optical excitation was removed. Additionally, a 
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combination of the reversible PD and irreversible PB effects was observed in Ge39.5Se60.5. 

It can be stated that the selenium atom influences the PD effects with corresponding 

mechanisms, similar to the results reported in [83, 84]. Raman spectroscopy was 

performed to collect data about the structural changes accompanying the optical effects. 

The photobleaching is a result of light-induced bond transformation from homo-Ge-Ge, 

Se-Se to hetero-Ge-Se bonds. On the contrary, the reversible effects are related to the 

formation of defects, corresponding to the occurrence of lone-pair electrons on the 

chalcogen atoms. This experiment proved that in films with a high Se concentration, the 

PD effect is governed by the presence of lone-pair electrons associated with Se. In films 

with a higher Ge concentration, related effects occur. That is to say, the concentration of 

the chalcogen element and the presence of the lone-pair electrons govern the effects that 

appear, and the rigidity of the structure is of a secondary importance. 
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CHAPTER 7: X-RAY INDUCED EFFECTS IN THIN Ge-Se FILMS  

AND RCBM DEVICES  

Similar to visible light, x-rays are electromagnetic waves that affect the 

chalcogenide glass films and the RCBM devices containing such films in an analogous 

way. The effects of x-rays on a-GexSe100-x thin films and a-GexSe100-x films in contact 

with an Ag source were studied. Results from these studies were then related to the 

performances of RCBM devices after x-ray exposure.  

Radiation Exposure Conditions 

 
Figure 34. Experimental setup of x-ray irradiation 

X-ray irradiation experiments were conducted on a Bruker AXS D8 Discover X-

Ray Diffractometer with Cu Kα1 radiation (λ=1.5406 Å) functioning as a source of x-

rays. The x-ray beam was configured in parallel beam geometry after passing through a 

Göbel mirror. The beam intensity was 8.7×108 counts per second using an accelerating 

voltage of 40 kV and electron beam current of 40 mA. The dimensions of the beam were 
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6 mm in height and ~4 in wide. The sample holder was aligned to the edge of the 

motorized stage. The motorized stage itself was moved to the closest position to the beam 

exit (x at position 40). The setup is shown in Figure 34. The precise location of the 

irradiated area was observed by using a florescent paper. The dose rate in this set-up was 

determined experimentally to be 6.0 krad/hour using a RADFET device. The samples that 

were studied included 100 nm a-GexSe100-x films (see page 47), 100 nm a-GexSe100-x films 

in contact with a Ag source (see page 48), and RCBM devices (see page 49). 

Film Characterization 

Structural changes in a-GexSe100-x films were characterized using Raman 

Spectroscopy. The Raman spectra of three different films (x=22.6, 32.4, 44.4) were 

measured after being exposed to five different doses of x-rays (0, 12, 24, 36, and 60 

krad). The Raman spectra of films exposed to 0 krad and 60 krad for Ge22.6Se77.4, 

Ge32.4Se67.6, and Ge44.4Se55.6 are displayed in Figure 35a, b, and c, respectively. The 

Raman spectra verify the presence of four different structural units: ethane-like bonding 

(ETH) structures (Se3-Ge-Ge-Se3) average vibrational mode at 178 cm-1, corner-sharing 

(CS) tetrahedral structures (Ge-Se-Ge) average vibrational mode at 200 cm-1, edge-

sharing (ES) tetrahedral structures at 216 cm-1 [73-76], and Se-Se chains and rings are 

present at 270 cm-1 [77, 78]. The final band that is observed in the Raman spectra is 

attributed to the asymmetric average vibration of the edge-shared tetrahedral at 308 cm-1 

[78-80].  

Deconvolution of the Raman spectra provides information on the relative 

quantities of each of the structures within the films. This data, as a function of the 

radiation dose, is presented in Figure 36. The changes in the ratio of edge-sharing 



68 
 

 
 

tetrahedra to corner-sharing tetrahedra are graphed in Figure 36a. In the range from 0 to 

24 krad, the ES/CS ratio of the Ge22.6Se77.4 and Ge44.4Se55.6 films follow a similar trend 

with x-ray exposure. In the same dose range, relatively no changes were observed in the 

Ge32.4Se67.6 ES/CS ratio. 

 
Figure 35. Raman spectra of x-ray control and highest dose (60 krad) exposed 

films for a) Ge22.6Se77.4, b) Ge32.4Se67.6, and c) Ge44.4Se55.6 

For the Ge22.6Se77.4 and Ge44.4Se55.6 films, the radiation effects are characterized 

with both a decrease in the ES/CS ratio and, accordingly, a decrease in the Se-Se chains. 

Between 24 and 36 krad, both Ge22.6Se77.4 and Ge44.4Se55.6 experienced an increase in the 

ES/CS ratios and Se-Se chains. At radiation over 36 krad, both of the films demonstrated 
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decreasing ES/CS ratios again and the Ge44.4Se55.6 film exhibited a corresponding 

decrease in the Se-Se chains. Only the Ge44.4Se55.6 films illustrated the presence of 

enough ETH structures to be registered in the curve fitting. In the Ge44.4Se55.6 films, 

increasing the radiation dose from 0 to 36 krad resulted in the increase in ETH structures, 

and their amount remained constant at radiation above 36 krad.  

 
Figure 36. Areas of Gaussian curves fitted to Raman spectra: a) ratio of areas of 

ES curves to areas of CS curves, b) Areas of Se-Se band curves, and c) Areas of 
ETH band curves 
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The products of Ag diffusion in GexSe100-x (Ag2Se and Ag8GeSe6) cannot be 

observed through Raman spectroscopy. Therefore, the presence of these compounds was 

detected by X-ray diffraction (XRD). XRD measurements provided information on the 

molecular compounds formed after Ag introduction. The XRD patterns of Ge25.6Se74.4, 

Ge36.2Se63.8, and Ge44.3Se55.7 films with a silver source are shown in Figure 37a, b, c, 

respectively. In the Ge25.6Se74.4 film, β-phase Ag2Se was observed at 2θ=33° in the 

control sample as well as after 12 krad and 24 krad of x-ray exposure [85]. No changes 

were observed in the XRD pattern of Ge36.2Se63.8 film; however, in the Ge44.3Se55.7 film, 

formation of β-Ag2Se was observed after 24 krad of x-ray exposure.  

 
Figure 37. XRD patterns of films with Ag source exposed to x-rays show 

development of β-Ag2Se a) Ge25.6Se74.4, b) Ge36.2Se63.8, and c) Ge44.3Se55.7 
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RCBM Device Performance 

Redox Conductive Bridge Memory (RCBM) devices based on three different 

compositions of GexSe100-x (x=24.8, 36.2, and 44.3) were tested for their IV 

characteristics and endurance before and after x-ray exposure. Each device endured a 

minimum of 105 switching cycles. Figure 38 illustrates the cumulative distributions of the 

write voltage (VTh), erase voltage (VEr), On-State Resistance (LRS), and Off-State 

Resistance (HRS) for the three different composition devices before and after irradiation.  

The general trend of the HRS values across all compositions appears to be 

decreasing with increasing Ge content. Across all dose exposures, the HRS values of the 

Ge24.8Se75.2 devices appeared to be the highest. Correspondingly, the Ge24.8Se75.2 devices 

also had the largest standard deviation in HRS, which can be seen by the wide 

distribution in Figure 38b. The VTh across all compositions appear to be relatively close 

in values, with the exception of one outlier in Ge36.2Se63.8. 

The median value of a cumulative distribution is the value at which the 

cumulative probability is 50%. Mostly non-linear changes were observed in the median 

VTh of the devices with x-ray exposure. In the Ge24.8Se75.2 devices, VTh changed from 

0.75 V to 1.02 to 0.72 for the control, 12.0 krad, and 24.0 krad doses, respectively. 

Median VTh in the Ge36.2Se63.8 devices originally increased from 0.24 V to 1.3 V after 

12.0 krad exposure, then decreased back to 0.24 V after 24.0 krad of exposure.  
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Figure 38. Distribution of write/erase voltages (green) and on/off-state 

resistances (red) for GexSe100-x (x=24.8, 36.2, and 44.3) RCBM devices exposed to 0, 
12.0 krad, and 24.0 krad of x-rays 
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Since the changes in the VTh from the control devices to both 12 krad and 24 krad 

exposed devices are less than 0.5 V and nonlinear with dose, variations in VTh are also 

considered to result from differences inherent in the devices, rather than resulting from 

radiation exposure. One device with composition of Ge36.2Se63.8 (12 krad) demonstrated a 

much larger VTh relative to all other devices in the same composition as well as in the 

other compositions. This large difference in VTh is considered to be an artifact of 

variations in the device fabrication process.  

Looking more closely at changes observed in each composition with x-ray 

exposure, the performances of Ge24.8Se75.2 and Ge44.3Se55.7 based RCBM devices both 

demonstrated an increase in the median HRS from the control dose, 0 krad, to 12.0 krad. 

The median HRS of Ge24.8Se75.2 devices increased from 2.13x104 Ω to 7.78x104 Ω 

(Figure 38b), and that of the Ge44.3Se55.7
 devices increased from 1.08x103 Ω to 

3.84x103 Ω (Figure 38f), after 12.0 krad of irradiation. The Ge24.8Se75.2 and Ge44.3Se55.7
 

devices also demonstrated a further, albeit small, increase in the median HRS values to 

1.13x105 Ω and 5.91x103 Ω, respectively.  

The memory window of a RCBM device is the difference in resistance between 

HRS and LRS. The median memory windows for each device, corresponding to the 

exposure dose, are presented in Figure 39. The Ge24.8Se75.2 devices demonstrated the 

largest memory before irradiation, as well as the largest increase after irradiation. The 

memory windows of Ge44.3Se55.7 devices also demonstrated a linear increase with 

irradiation, while that of the Ge36.2Se63.8 devices appeared to remain relatively constant. 
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Figure 39. Median memory windows for RCBM devices exposed to x-rays 

The endurance performance data (i.e., VTh, VEr, LRS, and HRS) after various 

switching cycles, ranging from 100-105, of the Ge24.8Se75.2 devices after 0, 12, and 24 krad 

x-ray exposure are shown in Figure 40. The same data for Ge36.2Se63.8 devices and 

Ge44.3Se55.7 devices are shown in  

Figure 41 and  

Figure 42, respectively. The inset of each graph provides the same data (i.e., Vth 

and VEr or LRS and HRS) after 105 switching cycles. These graphs demonstrate that all 

compositions of devices were able to function at least 105 switching cycles. After 12 krad 

and 24 krad of x-ray exposure, all compositions of the RCBM devices maintained an 

endurance of 105 switching cycles.  
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Figure 40. Endurance testing data for 105 cycles on Ge24.8Se75.2 RCBM devices exposed to 0, 12 krad, and 24 krad of x-rays 
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Figure 41. Endurance testing data for 105 cycles on Ge36.2Se63.8 RCBM devices exposed to 0, 12 krad, and 24 krad of x-rays 
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Figure 42. Endurance testing data for 105 cycles on Ge44.3Se55.7 RCBM devices exposed to 0, 12 krad, and 24 krad of x-

rays 
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Discussion 

Raman spectroscopy studies on Ge22.6Se77.4 bare films reveal substantial structural 

rearrangements in the form of decreased ES/CS area ratios, between 0 to 24.0 krad 

(Figure 36a).  A decreased ES/CS ratio indicates the conversion from ES to CS 

structures, ergo the collapse of voids within the structural network, as seen in Figure 43. 

Density of the amorphous material increases with the reduction of these voids, thereby 

enhancing the material’s ability to resist leakage current. This in turn, will increase the 

HRS of the device, since the off-state resistance and the leakage current are inversely 

proportional. The formation of CS structures, which requires one more Se atom than ES 

structures, within the network is supported by the decreasing amount of Se-Se chains 

observed between 0 and 24.0 krad. 

 
Figure 43. Conversion of ES to CS structures within the Ge-Se network 
Reprinted with permission from[86] © 2011 American Chemical Society 

XRD measurements on films of composition Ge25.6Se74.4 adjacent to a Ag source 

reveal the presence of β-Ag2Se in the control and x-ray exposed samples. The presence of 

β-Ag2Se in the control sample is due to the low packing fraction of the structural 

network, in addition to the affinity of Ag atoms to the Se chains. A previous study found 

the packing fraction Ge25.6Se74.4 to be relatively low compared to that of Ge35.6Se63.8, as 

can be seen in Figure 44. Therefore, during the deposition process, the energetic Ag 
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atoms can easily diffuse through the Ge25.6Se74.4 matrix and bond with the abundantly 

available Se atoms forming β-Ag2Se. 

 

Figure 44. Packing fraction of GexSe100-x 

The structural changes observed from the Raman data indicate a destruction of 

voids and an increase in the density of the network. These structural changes limit the 

growth of β-Ag2Se crystals, which is supported by the decreasing intensity of the peak in 

the XRD data of Figure 37a. Decreased β-Ag2Se crystal sizes, in combination with the 

destruction of voids within the network, led to increased HRS values in the RCBM 

devices, which is seen in Figure 38b. 

In the Ge32.4Se67.6 films, no significant structural changes were observed from the 

Raman spectra. The ES/CS ratio remained relatively constant, averaging at 0.3 (arbitrary 

units). The lack of structural changes observed is attributed to the film composition, 

Ge32.4Se67.6, which is in close proximity to the stoichiometric composition (i.e., GeSe4/2). 

In these films, the heteropolar bonds, which are stronger than homopolar bonds, are 

abundant and nearly saturated. Furthermore, XRD patterns (Figure 37b) of the 
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Ge36.2Se63.8 films with an Ag source showed no development in Ag containing 

compounds, which is justified by the limited amount of free Se chains. In addition, the 

packing fraction of Ge36.2Se63.8 is relatively high (Figure 44), which also limited the 

amount of Ag diffusion in the films. 

Considering the results obtained through Raman spectroscopy and XRD, the 

radiation-induced changes in Ge36.2Se63.8 devices are expected to be minimal. Indeed, 

minimal changes were observed in the Ge36.2Se63.8 devices. The HRS increased initially, 

from 5.70x103 Ω in the control device, to 1.17x104 
Ω in the 12.0 krad exposed device. 

The Ge36.2Se63.8 device exposed to 24.0 krad of x-rays demonstrated an HRS value of 

6.47x103 Ω, which is closer to the control than the 12.0 krad device. Therefore, the 

observed changes are attributed to variations in the fabrication process rather than the 

radiation. 

Similar to the bare films studies on Ge22.6Se77.4, films of Ge44.4Se55.6 composition 

demonstrated a decreased ES/CS ratio, in the dose range from 0 to 24.0 krad. As 

described previously, decreases in the ES/CS ratio implies conversions from ES 

structures to CS structures and collapse of voids in the network. XRD patterns on 

Ge44.3Se55.7 films illustrate the emergence of the β-Ag2Se phase after 24.0 krad. 

Analogous to the XRD results on Ge25.6Se74.4 films, the development of the β-Ag2Se 

phase was hindered by the structural rearrangements.  Similar to the Ge24.8Se75.2 devices, 

Ge44.3Se55.7 devices demonstrated increased HRS after 12.0 and 24.0 krad radiation. The 

increased HRS is attributed to the structural changes that caused the film to be more 

resistant to leakage current. 
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Conclusion 

High energy x-ray photons affect the a-GexSe100-x films and therefore a-GexSe100-x 

based RCBM devices in different manners depending on the film compositions. Films 

and devices based on the stoichiometric composition of GeSe4/2 exhibited minimal 

changes. Devices and films largely deviating from the stoichiometric composition, either 

Se rich or Se deficient, exhibited changes due to irradiation. The films revealed decreases 

in the voids of the network, which suppressed diffusion in the chalcogenide matrix. 

Therefore, the devices deviating from the stoichiometric composition demonstrated 

increased resistance, and as a result of this increased memory window, with x-ray 

exposure. 
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CHAPTER 8: ELECTRON BEAM INDUCED EFFECTS IN THIN Ge-Se FILMS  

AND RCBM DEVICES 

The effect of directly ionizing radiation was studied by observing the influence of 

electron beam radiation on a-GexSe100-x thin films. The results of these studies were used 

to interpret the changes in performance of RCBM devices. 

Radiation Exposure Conditions 

Irradiation experiments were conducted using a LEO 1430VP Scanning Electron 

Microscope as an electron beam source. A voltage bias was applied across a tungsten 

filament, which generated a large number of electrons that passed through an electric 

field with an accelerating voltage of 30 kV. This stream of electrons was adjusted using 

beam aligners and apertures creating a beam current of 1 nA directed at the films and 

devices. These thin films and devices were placed 20 mm from the base of the stage 

where the electron beam diameter was 1.3 mm. Application of these various settings 

generated an electron flux of 2.496 x 1014 electrons per second. An image of the electron 

irradiator is shown in Figure 45. 

 
Figure 45. Electron beam radiation system 
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Film Characterization 

Structural changes due to electron beam (e-beam) irradiation on a-GexSe100-x films 

(x= 22.6, 26.1, 32.4, 42.2, as determined by EDS) were studied using Raman 

spectroscopy. Raman spectra are presented in Figure 46. From the Raman spectra, four 

characteristic structural units are observed: ethane-like bonding (ETH) structures average 

vibrational mode at 176 cm-1, corner-sharing (CS) tetrahedral structures average 

vibrational mode at 198 cm-1, edge-sharing (ES) tetrahedral structures at 215 cm-1 [73-

76], and Se-Se chains and rings are present at 280 cm-1 [77, 78], and the final band that is 

observed in the Raman spectra is attributed to the asymmetric average vibration of the 

edge-shared tetrahedral at 308 cm-1 [78-80].  

 
Figure 46. Deconvoluted Raman spectra of a) Ge22.6Se77.4, b) Ge26.1Se73.9, and c) 

Ge42.2Se57.8
 exposed to 0 and 1.05x1012 rad of e-beam radiation 
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Figure 47. Area ratio of ES/CS from deconvoluted Raman spectra 

 
Figure 48. Area of ETH from deconvoluted Raman spectra 

 
Figure 49. Area of Se-Se curve from deconvoluted Raman spectra 
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ratio ES to CS structures (ES/CS), shown in Figure 47, reveals a local minimum for each 

composition film. This local minimum is most pronounced in the Ge42.2Se57.8 film. 

Ethane-like structures were only detected in the higher Ge-content films Ge32.4Se67.6 and 

Ge42.2Se57.8 [73, 87, 88]. In both of these compositions, a general increase in the amount 

of ETH structures, as illustrated in Figure 48, was observed with increasing e-beam dose 

until a critical dose of 6.3x1011 rad, where a decrease in the amount of ETH structures 

was observed. From Figure 49, the amount of Se-Se chains increases, reaching a 

maximum at 6.3x1011 rad, followed by a decrease. Similar trends in the vibrational bands 

of Se-Se chains were observed in the other films. However, in these films, the maximum 

of these chains shifts to higher radiation doses with decreasing Ge-content. 

Lateral Ag diffusion in a-GexSe100-x films containing silver sources exposed to 

different e-beam radiation doses were measured by EDS mapping. The total diffusion 

distance of Ag, as determined through EDS mapping data, for each composition is 

summarized in Figure 50. The largest Ag diffusion was observed in Ge25.6Se74.4. In the 

range of the studied exposure doses, Ge25.6Se74.4 and Ge36.2Se63.8 demonstrate a nearly 

linear relationship between the diffusion distance and the radiation dose. In the 

Ge44.3Se55.7 sample, Ag diffusion was observed for the entire radiation dose range 

studied; however, the rate of Ag diffusion decreases at the critical dose of 6.3x1011 rad, 

indicating Ag saturation. 
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Figure 50. Lateral diffusion of Ag as determined through EDS mapping 

Results of the EDS mapping of Ge25.6Se74.4 are shown in Figure 51 a, b, and c. 

Similarly, the results for Ge36.2Se63.8 and Ge44.3Se55.7 are summarized in Figure 52a, b, 

and c, and Figure 53 a, b, and c, respectively. The color scale below the map describes 

the counts received by detector. The yellow and orange colors indicate the highest counts 

of silver, suggesting a large quantity of silver atoms at the specific location while black 

indicates the lowest amount of counts, which signifies the inexistence of silver atoms.  

 
Figure 51. EDS mapping of Ag diffusion in a-Ge25.6Se74.4 a) Control, 

b) 6.3x1011 rad, and c) 10.5x1011 rad 
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Figure 52. EDS mapping of Ag diffusion in a-Ge36.2Se63.8 a) Control, 

b) 6.3x1011 rad, and c) 10.5x1011 rad 

 
Figure 53. EDS mapping of Ag diffusion in a-Ge44.3Se55.7 a) Control, 

b) 6.3x1011 rad, and c) 10.5x1011 rad 

The XRD patterns are presented in Figure 54, Figure 55, and Figure 56 for 

Ge25.6Se74.4, Ge36.2Se63.8, and Ge44.3Se55.7, respectively. In each of the three compositions, 
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the phase growth of both the α-Ag2Se and Ag8GeSe6 phases was observed, as illustrated 

in Figure 57 and Figure 58, respectively. The α-Ag2Se phase was observed at 2θ = 38° 

angle [85] and the Ag8GeSe6 phase was observed at 2θ = 44°, which is identified by 

JCPDS card 71-190.  

 
Figure 54. XRD pattern of e-beam radiated Ge25.6Se74.4 with Ag source 

 
Figure 55. XRD pattern of e-beam radiated Ge36.2Se63.8 with Ag Source 
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Figure 56. XRD pattern of e-beam radiated Ge44.3Se55.7 with Ag source 

From the XRD pattern, the grain size of each phase was determined using the 

Debye Scherrer equation ( 11) [89]. 

W = 	 X�
Y cosF[M ( 11) 

where L is the crystal size in nm, K is a shape factor that depends on the crystal structure, 

for cubic K=0.94), λ is the wavelength of the x-rays (for Cu-Kα  λ=0.1506 nm), B is the 

full width at half the maximum of the peak in radians, and θ is the intensity of the peak. 

In addition to these two phases, a third phase of pure phase separated Ag is observed in 

Ge44.3Se55.7
 at 2θ=61°, identified by JCPDS card 87-0598. Significant growth in the phase 

separated Ag was observed with increasing radiation dose.  
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Figure 57. Phase growth of superionic conducting α-Ag2Se phase in three 

different compositions 

 
Figure 58. Grain growth of ternary Ag8GeSe6 phase in three different 

compositions 

 
Figure 59. Grain growth in phase separated Ag in Ge44.3Se56.7 
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RCBM Device Performance 

RCBM devices based of three different compositions of GexSe100-x (x=24.8, 36.2, 

and 44.3) were tested for their IV characteristics and endurance before and after e-beam 

exposure. Each device endured a minimum of 105 switching cycles. The cumulative 

distributions of VTh, VEr, LRS, and HRS for all compositions of devices are summarized 

in Figure 60. 

The endurance performance data (i.e., VTh, VEr, LRS, and HRS) after various 

switching cycles, ranging from 100-105, of the Ge24.8Se75.2 devices after 0, 2.1x1011  rad 

(Dose 1), and 4.2x1011 rad (Dose 2) e-beam exposure are presented in Figure 61. The 

same data for Ge36.2Se63.8 devices and Ge44.3Se55.7 devices are shown in Figure 62 and 

Figure 63, respectively. The inset of each graph provides the same data (i.e., Vth and VEr 

or LRS and HRS) after 105 switching cycles. 

The median HRS values of Ge24.8Se75.2 originally show a miniscule decrease from 

the control device (28.3x103 Ω) to the Dose 1 device (15.5x103 Ω), followed by a 

substantial increase (82.7x103 Ω) in the Dose 2 device. Similarly, the Ge36.2Se63.8 device 

also reveals an initial decrease in HRS from the control device (31.8x103 Ω) to the Dose 

1 device (2.05x103 Ω), followed by a small increase in the Dose 2 device (4.50x103). On 

the other hand, the HRS values for the Ge44.3Se55.7 devices increase consistently. The 

HRS values of Ge44.3Se55.7 devices are 1.07x103 Ω, 1.96 x103 Ω, and 23.1 x103 Ω for the 

control, Dose 1, and Dose 2 devices, respectively.  
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Figure 60. Distribution of write/erase voltages (green) and on/off-state 

resistances (red) for GexSe100-x (x=24.8, 36.2, and 44.3) RCBM devices exposed to 0, 
2.1x1011, and 4.2x1011 rad of electron beam radiation 
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Figure 61. Endurance testing on Ge24.8Se75.2 RCBM devices exposed to 0 rad, 2.1x1011 rad, and 4.2x1011 rad of e-beam 

radiation 
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Figure 62. Endurance testing on Ge36.2Se63.8 RCBM devices exposed to 0 rad, 2.1x1011 rad, and 4.2x1011 rad of e-beam 

radiation 
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Figure 63. Endurance testing on Ge36.2Se63.8 RCBM devices exposed to 0 rad, 2.1x1011 rad, and 4.2x1011 rad of e-beam 

radiation 
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Discussion 

The RCBM devices exposed to e-beam radiation show various reactions 

depending on the interplay of growth in the α-Ag2Se phase, growth in the Ag8GeSe6 

phase, and changes in the structural units. All of the Ag containing a-GexSe100-x films 

revealed growth in both the binary α-Ag2Se and ternary Ag8GeSe6 phases when exposed 

to e-beam radiation.  

However, the growth rate of the specific phases depends on the composition of 

the film as well as the exposure dose. It is important to note the preferential formation of 

the α-Ag2Se, which is only stable at temperatures above 133 oC, instead of β-Ag2Se, 

which is stable at room temperature. The formation of α-Ag2Se in e-beam exposed films, 

regardless of the composition, is attributed to the presence of high and low pressure 

regions resulting from radiation (see Chapter 3, Electron Beam Radiation). The binary 

phase develops in these high pressure regions, which forces the compound to form in its 

closest packed structure, face-centered cubic (FCC), rather than the orthorhombic 

structure (β-Ag2Se). 

In the Ge24.8Se75.2 devices, the median HRS decreases by a small amount in the 

first dose. The small presence of the α-Ag2Se phase, which is a superionic conductor, in 

the control device explains low resistance in the pre-irradiated device. Even at room 

temperature, the solid electrolyte α-Ag2Se significantly increases the ionic conductivity 

of Ge-Se glasses [64, 90]. After the first dose of radiation, proportional growth in both 

the α-Ag2Se and Ag8GeSe6 phases are observed in the XRD patterns.  The superionic-

conducting properties of the α-Ag2Se dominate the HRS value of the device after this 

first dose. The XRD patterns show that additional radiation causes further growth in the 
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ternary phase; however, the binary phase is unchanged. Due to the further development in 

the ternary phase and lack thereof in the binary phase, the semiconducting properties of 

the ternary phase govern the resistance of the device, resulting in a large increase of the 

HRS.  

The Ge36.2Se63.8 devices reveal a large decrease in the HRS after the first dose of 

radiation. This is attributed to the growth in both the α-Ag2Se and Ag8GeSe6 phases as 

determined by the XRD patterns. After 105 switching cycles, this device shows serious 

degradation in the device performance and device failure soon thereafter. Further e-beam 

radiation results in agglomeration of α-Ag2Se phase crystal to form larger crystals spaced 

farther apart. The phase agglomeration in addition to the spacing between these crystals 

results in a higher HRS and decreasing variation in HRS due to fewer conductive paths 

for electrons. 

The HRS values of the Ge44.3Se55.7 devices demonstrate a large increase due to 

radiation exposure. Additionally, large changes in the structural units were also observed. 

Virtually no change was observed in the HRS after the first dose of radiation. There 

appears to be a threshold at the second dose where the growth rates of the binary and 

ternary phases decrease. Additionally, the emergence of a phase-separated Ag was 

observed from the XRD pattern. Furthermore, the ES/CS ratio increases dramatically. 

These observations are related to one another. The increase observed in the ES/CS ratio 

results in the formation of voids and the opening of the structural network. Consequently, 

incident electrons have a more direct path towards the previously diffused Ag. Interaction 

between incident electrons and Ag ionizes the Ag atoms, making them more mobile. 

Additionally, charging at the interface between the Ag electrode and the a-Ge44.3Se55.7 
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film creates an electric field. After 4.2x1011 rad of e-beam radiation, the electric field 

becomes strong enough to withdraw Ag ions from within the film. At the interface, Ag 

agglomeration occurs, proved by the XRD pattern. This effect has been studied and 

observed for chalcogenide glasses containing silver by Kawaguchi and Maruno [91]. The 

changes culminate in the significant increase of the HRS after Dose 2. 

Conclusion 

Interaction of electron beam radiation with GexSe100-x based RCBM devices and 

films were studied using Raman spectroscopy, XRD, and EDS mapping. It was 

discovered that Ge24.8Se76.2 based RCBM device performances were directly dependent 

on the formation of the α-Ag2Se phase or lack thereof. The dependencies of the device 

performances on the crystal phase growth were further established by the Ge36.2Se63.8 

devices. The Ge44.3Se55.7 devices were largely affected by the combination of dramatic 

structural changes and phase separation of Ag.  
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FINAL REMARKS AND FUTURE WORK 

Final Remarks 

As a result of this work, the following contributions have been made: 

1. A detailed study of the influence of visible light on pure Ge-Se glasses 

was conducted. The outcomes of this study include the following: 

a. This study was the first to provide evidence that the effect of sub-

bandgap light on glasses near the stoichiometric composition is 

predominantly related to the presence of lone-pair electrons. The 

excitation of these electrons leads to dynamic changes in the 

optical properties without affecting the structural properties of the 

film. 

b. For the interactions of sub-bandgap light with Ge-rich films, it was 

found that both the optical and structural properties of the films are 

affected. 

2. Irradiation of films with x-rays produces effects similar to that of sub-

bandgap light. The new findings of this study, which contribute to the 

knowledge of the influence of x-rays of Ge-Se films, include the 

following: 
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a. Films with compositions near that of the stoichiometric 

demonstrate a lack of structural changes due to the availability of 

lone-pair electrons and the abundance of stable heteropolar bonds. 

b. Films deviating from the stoichiometric composition, either Ge-

rich or Ge-deficient, undergo conversion of ES structures to CS 

structures, which relax the structure. 

c. Ag diffusion readily occurs in the Se-rich films due to the 

relatively low packing fraction and the high affinity between Ag 

and Se. Comparatively, Ag diffusion is not evident in compositions 

near that of the stoichiometric. 

d. Devices based on films that exhibited structural changes revealed 

an increased HRS after x-ray exposure. 

e. Endurance of control and irradiated devices were commensurable. 

Therefore, it is concluded that these devices can operate 

successfully in an x-ray environment in the dose range studied in 

this work. 

3. E-beam radiation on films and devices produced unique changes, which 

are related to the negative charge of the electrons and their small size. 

a. Only Ge-rich films exhibited structural changes under e-beam 

radiation. 

b. E-beam induced Ag diffusion products include α-Ag2Se, resulting 

from charged sites, and Ag8GeSe6. 
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c. Devices based on Se-rich compositions demonstrated a push-pull 

relationship between the binary and ternary phases. The ratio of 

these species determined the device conductivity. 

d. Devices based on films of the stoichiometric composition 

developed agglomerated crystals, which improved the endurance 

and reduced variations. 

e. Drastic structural changes and interface charging reversed the 

benefits of Ag photodiffusion, increasing the variation in device 

performance. 

Future Work 

Further studies on RCBM devices are planned for both electron beam radiation 

and x-ray radiation. The influence of high energy electron beam (10 MeV) radiation on 

chalcogenide films and RCBM devices will be explored. Additionally, studies 

determining the influence of high energy x-rays (124 keV) on films and RCBM devices 

will be conducted. Moreover, progress on the present study will continue through 

investigating the influence of the low energy x-rays and electron beam at higher doses on 

RCBM devices in order to affirm the trends observed in this work.  
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