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ABSTRACT 

Climate change has raised concerns about the interplay between agricultural 

productivity, water demand, and water availability in semi-arid to arid regions of the 

world. As these regions cover nearly 41% of the Earth’s surface and are home to more 

than 38% of the total global population of 6.5 billion, it is important to understand the 

implications of changes to water use and water availability on the civilizations and 

industries that rely upon already scarce water resources. Currently, irrigated agriculture is 

the dominant water user in these regions and is estimated to consume approximately 80% 

of the world’s diverted freshwater resources. Future climate change is anticipated to 

produce increased variability in precipitation, including a reduction in winter snowfall in 

areas such as the Snake River Basin of Southern Idaho. It is therefore important to 

discern how irrigated land-use (water use) is changing on an annual basis to improve 

water management practices and to be able to deduce factors (both natural and social) 

leading to changes in practices. Current methods for mapping irrigated land-use either 

lack sufficient accuracy or are time intensive, costly practices. This study aims to create 

an improved irrigated land-use mapping technique using remote sensing observations, 

which could not only reduce data processing time and cost, but also increase the temporal 

resolution at which irrigated areas are monitored. Using USDA Census of Agriculture 

county-scale irrigated area data from 2002 and 2007 as validation, our model was able to 

produce area-weighted average percent errors for the study region of 2.73% and 6.29%, 
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respectively. When considering classification error at a regional scale, this is an 

improvement on the results from the widely accepted method of using single date 

imagery to classify irrigated land-use, which produced area-weighted average percent 

errors for the study region of 33.46% and 36.71%, respectively. Individual county 

correctness varied on an annual basis, with the accuracy being a direct correlation to the 

quantity and accuracy of observation locations chosen. Increasing the quantity of 

observation locations within each county should reduce the effect of observation point 

classification uncertainty on model accuracy, hopefully leading to improvements in water 

use accounting and helping advance understanding on the impacts of changes to irrigated 

land-use towards food security, economic effects, and environmental impacts. 
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CHAPTER ONE: PROJECT MOTIVATION AND OVERVIEW 

Climate change has raised concerns about the interplay between agricultural 

productivity, water demand, and water availability in semi-arid to arid regions of the 

world. As these regions cover nearly 41% of the Earth’s surface and are home to more 

than 38% of the globe’s population of 6.5 billion (Reynolds et al., 2007), it is important 

to understand the implications of changes to water use and water availability on the 

civilizations and industries that rely upon already scarce water resources.  Semi-arid to 

arid climates typically receive limited precipitation during the agricultural growing 

season of March to September, averaging 0.1-0.8 meters annually (Food and Agriculture 

Organization of the United Nations [FAO], 1989), and experience much hotter, drier 

summers than other regions of the world. The Snake River Plain (SRP) of Southern Idaho 

is such a region, and is the focal area for this research. In this area, agricultural 

productivity, the value of agricultural land, and producers’ land-use decisions are driven 

by the availability of water for irrigation. In the U.S. Intermountain West, agriculture 

depends heavily on irrigation water that is primarily supplied by winter snowpack, 

making the consequences of climate change likely to be particularly prominent (Karl et 

al., 2009). Recent research shows climate has already begun to impact the timing of 

snowmelt runoff and is suggesting increased variability in both the timing and magnitude 

of available water derived from winter snowmelt (Kunkel and Pierce, 2010). These 

scenarios of increased variability in water availability during the late summer months will 
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introduce uncertainties in decision-making, making it critical to understand how water is 

currently used and the factors that control decisions available to producers (e.g., crop 

choice, irrigation rotation schedule, etc.). This leads to the question of whether additional 

food demand from increasing populations will require additional water resources and 

irrigation system infrastructure or whether increased yields and productivity from rain-

fed agriculture can satisfy the increase in demand (Molden et al., 2007). Currently, it is 

estimated that irrigation accounts for nearly 80% of all water used by humans (Döll and 

Siebert, 2002), and over 98 percent of all water used in Idaho goes to counties that lie 

completely or partially within the SRP, with the majority of that water, 85.6 percent, 

being used for irrigation (United States Geological Survey [USGS], 2014). Accurate 

mapping of irrigated land-use can facilitate improved understanding of how water use 

changes on an annual to decadal basis. This information will be a critical asset for water 

allocation institutions, allowing them to gather a better understanding of the annual 

demand on the already limited water resources of the region. Economists will also be able 

to analyze this data in combination with other socioeconomic data to enhance scientific 

understanding of the factors that shape the western agricultural landscape. 

The variable nature of the cropland component in the agricultural landscape is of 

particular interest due its ability to impact groundwater quality and quantity, ecological 

processes, the economy, climate, and biogeochemical and hydrologic cycles (Wardlow et 

al., 2007). Current information on the spatial distribution of irrigated crops along with 

changes to their area over time can improve more efficient water management techniques 

(Ozdogan et al., 2006). The use of surveys as a tool to map these irrigated areas can be 

both time-consuming and tedious (Velpuri et al., 2009). This includes the difficulty of 
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obtaining agricultural data at a finer resolution than aggregate levels because of privacy 

laws. However, there has been a movement towards using remote sensing, which offers 

inexpensive user costs and a reliable technology, to gather estimates for irrigated area 

across a variety of scales (Thenkabail et al., 2005). These remote sensing satellites are 

continuously monitoring the Earth, making them well suited for monitoring changes to 

the areal extent of irrigated lands and improving water resources management (Velpuri et 

al., 2009). The goal of this work is to not only understand recent changes in agriculturally 

irrigated land-use, but also look at long-term trends in the hopes of understanding the role 

climate change has had in controlling land-use decision-making. Although the USDA 

Census of Agriculture has gathered detailed agricultural data every four to five years for 

the state of Idaho, there is need to understand how the spatial arrangement in irrigation 

practices have changed with time to improve the accurate accounting of land-use changes 

on an annual basis to further improve water management practices. Remote sensing data 

can also provide the ability to diagnose the social and environmental factors that 

contribute to observed changes. 

The objectives of this thesis include: 

• Chapter 2: Discuss background information on our study region, including 

climate, topography, temperature, and precipitation. 

• Chapter 3: Present and describe a method for using remote sensing data to 

monitor changes in irrigated agricultural land-use in the Snake River Plain of 

Southern Idaho. 

• Chapter 4: Present calibration and validation accuracy results. Show examples 

of model output for spatial distribution of irrigated area. Compare model 
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results to USDA Census of Agriculture county-scale irrigated area data. 

Display results of single date imagery method along with comparison to 

greenness-duration method results. 

• Chapter 5: Discuss trends in irrigated area over the duration of our study 

period (2000-2011). Go over potential sources of observed changes in 

irrigated agricultural land-use. 

• Chapter 6: Discussion of thesis results and statement of project conclusions. 

Mention limitations and application potential of greenness-duration model. 

Chapter 2 presents an introduction to the study region. Here we highlight regional 

differences in topography, temperature, and precipitation amongst areas of the study 

region. Also discussed are the climatological differences between other similarly 

classified semi-arid to arid climates and the influence that may have on land-use 

classification method applicability.  

In Chapter 3, a method is proposed for using the Normalized Difference 

Vegetation Index (NDVI) remote sensing product to differentiate between irrigated and 

non-irrigated land-use. This method makes use of the influence of irrigation on crop 

greenness during the hot, dry summer months of a semi-arid to arid climate. The model is 

calibrated using 2003 National Agriculture Imagery Product (NAIP) images of the Snake 

River Plain (SRP) in Southern Idaho, which is used to visually identify both irrigated and 

rain-fed parcels. Plots of the NDVI trends during the growing season of March to 

October were used to derive an optimal discriminant threshold NDVI value during a 

period in which NDVI separation between the two land-use categories is greatest.  
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Chapter 4 presents the model results from calibration and validation, which show 

favorable results in some counties, with errors as low as 5% compared to those county-

scale values reported by the USDA Census of Agriculture. Also displayed in this chapter 

are the model results for our interpretation of the single date imagery method. Results 

likewise show favorable results in some counties with errors as low as 1% compared to 

the USDA census data. In both cases, however, there was persistent overestimation of 

irrigated area noted in other counties. Due to inherent variability in local factors 

attributed to using a large study region, there can be a lot of influences contributing to the 

overestimation mentioned above, which will be further examined in the discussion 

section of this thesis.  

In Chapter 5, we further assess our model results in the hopes of discerning 

potential trends in agriculturally irrigated area. Here we begin to look at the model 

uncertainty by using Monte-Carlo simulations with a randomly sampled subset of the 

data locations in a given county and testing our derived discriminatory threshold value 

against the remaining test locations. This allows us to look at uncertainty in terms of the 

discriminatory classification threshold value, modeled irrigated area, and model accuracy. 

Discussion of trends on both the county scale and for the study region will be presented 

in this chapter. 

Chapter 6 concludes the document, providing both a discussion of the challenges 

present during the analysis, including ideas on how to further improve the model, along 

with an overview of the entire work described in the document. Applications and 

limitations of the proposed method for water management practices and economic 

analysis are also discussed. 
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CHAPTER TWO: STUDY REGION DESCRIPTION 

The study region for this research is the Snake River Plain (SRP) of Southern 

Idaho. The SRP has a Mediterranean semi-arid to arid climate in which the summer 

months have reduced precipitation compared to other months in the year. This unique 

condition of a ‘summer dry’ climate, which does not exist in all semi-arid regions of the 

world, allows us to explore methods to map irrigated land-use via changes to the Earth’s 

surface reflectance spectra caused by irrigation water application. Though we initially 

described the SRP as having a singular climate, local-scale differences in precipitation, 

temperature, and topography can have a significant impact on the accuracy of our overall 

analysis. For this reason, we decided to break our analysis down to the county scale to 

maximize land-use classification accuracy. The counties comprising the study region are 

shown in Table 1 and are presented in map view in Figure 1. 

Table 1 List of counties included in this study 

Ada Canyon Jerome 
Bannock Cassia Lincoln 
Bingham Clark Madison 
Blaine Elmore Minidoka 
Bonneville Fremont Owyhee 
Butte Gooding Power 
Camas Jefferson Twin Falls 
 

 



 
 

7 

 
Figure 1. Map view of counties that make up the Snake River Plain in Southern Idaho. The image of Idaho in the bottom 
right shows the SRP highlighted in red for an Idaho location reference. 
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From Figure 1, our study region covers a significant portion of southern Idaho. 

Because it is such a large area, there are likely to be differences in climatological 

variables on both the regional and county scale. These differences are primarily 

controlled by Pacific Ocean-derived moisture and topography (Desert Research Institute, 

2014a). To illustrate these differences, we created climate graphs for different locations 

throughout the SRP (Figure 2). These graphs are plotted on top of a Digital Elevation 

Model (DEM) from the National Elevation Dataset, showing the differences in elevation 

and topography of the study region as well as the long-term averages in maximum 

temperatures, minimum temperatures, and monthly precipitation (Desert Research 

Institute, 2014b). 

 
Figure 2. Example climate graphs of different areas throughout the Snake 
River Plain using data from US COOP Stations. These graphs show the averages of 
monthly precipitation, maximum temperatures, and minimum temperatures. 
(Michael Poulos map credit, unpublished data.) 
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There are noticeable differences in elevations, temperatures, and precipitation 

magnitude between the western and eastern SRP shown in Figure 2. From the 

background DEM in Figure 2, it is evident that surface elevations increase from west to 

east. Though the entire SRP may have been formed from similar volcanic processes, the 

western and eastern SRP have quite different geological origins. The western SRP is a 

Basin and Range NW trending graben structure with rock units on both sides of the plain 

dipping towards the plain axis (Link, n.d.).  The eastern SRP was formed by a 

progression of hotspot caldera explosions and collapse, as the N. American plate moved 

to the southwest above a stationary hotspot, which currently resides beneath Yellowstone 

National Park (Pierce and Morgan, 1992).  

Air temperatures in the western and central SRP tend to have higher maximum 

and minimum temperatures relative to the eastern SRP. There also appears to be a 

gradient in precipitation with the eastern SRP receiving increased precipitation relative to 

the western SRP. While both the eastern and western SRP exhibit a ‘summer dry’ 

precipitation trend, this is more pronounced in the western SRP.  For example, at the 

Boise Airport site, only 4.5% of the annual total precipitation falls during July and 

August, while the Blackfoot site records 10.6% of the annual total precipitation falls 

during July and August. As was stated earlier, this ‘summer dry’ characteristic of the SRP 

climate is not persistent throughout all semi-arid to arid climates of the world. Many of 

these other semi-arid to arid regions (e.g., the southwestern US) are ‘monsoon-driven’ 

climates, which receive a significant fraction of annual precipitation during the summer 

months compared to other times of the year. To illustrate the differences in similarly 

classified semi-arid to arid climates, we present Figure 3, which shows the climate graphs 
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for two locations within the SRP as well as locations in Colorado, New Mexico, and 

Arizona.  

 
Figure 3. Example climate graphs of two locations within the Snake River Plain 
as well as an example from Colorado, New Mexico, and Arizona to illustrate 
differences in precipitation patterns amongst semi-arid to arid climates. These 
graphs show the averages of monthly precipitation, maximum temperatures, and 
minimum temperatures. (Michael Poulos map credit, unpublished data.) 
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Due to the fact that similarly classified semi-arid to arid climates can exhibit such 

different climatological trends, it is crucial that the differences are examined prior to and 

taken into account when attempting to develop a method to map irrigated land-use via 

changes in the Earth’s surface reflectance spectra. A more in-depth discussion on the 

application of our model in other semi-arid to arid regions of the world follows in Section 

6.3. 
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CHAPTER THREE: THEORY AND METHODS 

3.1 Introduction 

3.1.1 Background 

Accurate mapping of irrigated land-use could significantly improve water 

management practices in times of changing climate and uncertainty in water availability. 

Since irrigation accounts for nearly 80% of all water used by humans (Döll and Siebert, 

2002), understanding and quantifying changes to water demand, via changes in land-use, 

is of great significance. Land-use accounting is typically done via surveys that can be 

time-consuming, costly, and tedious (Velpuri et al., 2009). For these reasons, the USDA 

Census of Agriculture only attempts to accurately quantify irrigated land-use every four 

to five years. However, remote sensing presents readily available data in space and time, 

which can be used to identify and quantify irrigated area on an annual timescale. The 

Normalized Difference Vegetation Index (NDVI) has proven to be vital for mapping 

irrigated areas on the local scale, mainly due to the differential spectral responses 

between irrigated and non-irrigated croplands (Ozdogan et al., 2010). Using NDVI as an 

indicator of vegetation phenology reduces the amount of computational storage needed, 

improves processing time, and provides a simple means for classifying complex 

landscapes (Biggs et al., 2006). For example, studies using NDVI have shown the ability 

to accurately account for irrigated land-use in other semi-arid to arid regions of the world 

(Biggs et al., 2006; Thenkabail et al., 2005; Ozdogan et al., 2006). Furthermore, NDVI 
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has also been used to derive Land Use/Land Cover (LULC) maps (Dheeravath et al., 

2010; Wardlow et al., 2007; Wardlow and Egbert, 2008) in which irrigated area is just 

one of many classification classes, and not the primary focus. 

MODIS and Landsat have been found to be the most effective imagery for 

observing differences in NDVI in semi-arid regions (Ozdogan et al., 2010). The 

Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, aboard NASA’s 

Aqua and Terra satellites, has demonstrated the ability to map land-use using multiple 

reflectance spectra and vegetation indices (Huete et al., 2002, Thenkabail et al., 2005). 

Likewise, the Landsat remote sensing system has proven capable of also producing land-

use maps, but at a much finer spatial resolution when compared to MODIS (Draeger, 

1977; Thiruvengadachari, 1981). However, each of these remote sensing products has its 

spatial and temporal limitations. For instance, MODIS gathers daily data, but at a 250-m 

spatial resolution. Conversely, Landsat has a return interval of approximately 16 days 

with a spatial resolution of 30 m. One problem they both share is the ability to be 

impacted by clouds, making the data from cloud-covered areas of the image unusable for 

classification of land cover. Since land-use changes can be local, regional, and global in 

scale and occur on both short and long timescales, it is desirable to have a product that 

has both increased spatial and temporal resolution to capture all aspects of land-use 

variability at any scale. 

3.1.2 NDVI 

The proposed method is based on the idea that irrigated crops should stay greener 

longer than non-irrigated crops during the hot summer months of a semi-arid to arid 

climate due to a reduction in natural precipitation. In any climate, crops rely on the 
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photosynthetic process to generate and maintain biomass throughout their lives. The 

major component of photosynthesis that our method focuses on is the plant interaction 

with incoming solar radiation. Vegetation tends to transmit and reflect most of the light in 

the near-infrared (NIR) wavelengths, with little absorbed, compared to predominate 

absorption in the visible wavelengths, with some reflected and little transmitted (Jackson 

and Huete, 1991). Using this information, varying stages of plant life have been shown to 

exhibit different spectral reflectance signatures at specific energy wavelengths (Tucker, 

1979). Variations in the blue, red, and near-infrared wavelengths showed the greatest 

relationship with plants at varying stages of life (Jackson and Huete, 1991). The MODIS 

sensor collects reflectance imagery in blue, red, and near-infrared regions of the 

spectrum, with channels centered at 469 nonometers, 645 nanometers, and 858 

nanometers, respectively (NASA Land Processes Distributed Active Archive Center [LP 

DAAC], 2014). From these channels, vegetation indices were created to enhance the 

vegetation signal, while minimizing the influence of solar irradiance and soil background 

effects (Jackson and Huete, 1991). Though there have been many remote sensing 

vegetation indices created and explored (Jackson and Huete, 1991; Ozdogan et al., 2010), 

this research is done exclusively using NDVI data. There has been overwhelming 

agreement that NDVI can be an essential vegetation monitoring tool (De Fries et al., 

1998; Goward et al., 1991; Justice et al., 1985; Myneni et al., 1995). NDVI and plant 

moisture availability have been closely related (Nicholson et al., 1990), making NDVI a 

sufficiently good indicator of irrigation presence (Kolm and Case, 1984; Eckhardt et al., 

1990; Abuzar et al., 2001; Beltran and Belmonte, 2001). For our purposes, NDVI will be 
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a proxy for artificial water application in this semi-arid to arid climate. NDVI is defined 

as: 

𝑁𝐷𝑉𝐼 = 𝜌𝑛𝑖𝑟−𝜌𝑟𝑒𝑑
𝜌𝑛𝑖𝑟+𝜌𝑟𝑒𝑑

                                                       (1) 

where ρnir and ρred represent NIR and red reflectances, respectively. Because NDVI is a 

simple computation of spectral bands, any form of bias or assumptions regarding land 

cover class, soil type, or climatic conditions will not be present (Huete et al., 2002). 

Using Eqn. 1, NDVI can range between −1 and +1 but values below 0 and above 0.8 are 

seldom observed (Ozdogan et al., 2006). The process of filtering and compositing the 

NDVI data will further be described in Section 2.2.1. 

3.1.3 Objective 

The objective of this research is to develop and assess a method for effectively 

mapping and quantifying annual irrigated land-use from multispectral data such as 

MODIS and Landsat. The derived irrigated land-use maps will be used by economists to 

aid in determining how water right institutions influence agricultural decision-making, as 

well as to begin to look into the long-term effects of climate change on irrigation 

practices. The proposed method is based on the hypothesis that irrigated crops in semi-

arid to arid environments should stay greener longer into the hot, dry summer months 

compared to non-irrigated crops. Further, it relies on the ability of remote sensing to 

detect changes in the land surface’s spectral reflectance based upon the availability of 

water for plant consumption. The developed algorithm uses the annual time series of 

NDVI values from a dataset of known land-use observation locations. The algorithm then 

assigns a binary classification (i.e., irrigated or non-irrigated) to a raster coincident with 

the remote sensing image, based upon the optimal land-use classification threshold. This 
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optimal threshold is determined using the known land-use dataset and determining the 

NDVI value(s) at which the two land-use categories are best separated, in essence 

maximizing classification accuracy. We calibrate and test the model against two separate 

years of USDA Census of Agriculture data, and perform visual evaluation of the model-

generated map overlaid on NAIP imagery.  

3.1.4 Relevant Theory and Outline 

This method is centered upon the response of Earth’s surface to incoming solar 

radiation, particularly that of croplands (Figure 4). This figure is a conceptual plot of the 

reflectance spectra for examples of healthy vegetation, unhealthy or senesced vegetation, 

and soil. The differences, such as in the NIR region of the plot (far right), can be 

exploited for land-use classification purposes. In water-limited semi-arid regions such as 

‘summer dry’ Mediterranean-style climates, most vegetation is likely to be dead or in a 

stage of senescence during the hot summer months, unless of course, a supplement of 

water is available for plant consumption. Supplements of water can be associated with 

regions for a variety of reasons including shallow groundwater storage, a precipitation 

event, or application of water for the purposes of irrigation. As the frequency of 

precipitation events are reduced during the summer months in the SRP (Hoekema and 

Sridhar, 2011), anomalies in plant greenness can likely be attributed to irrigation 

practices. For this reason, it is hypothesized that a spectral reflectance of vegetation in 

agricultural lands similar to that of the healthy vegetation shown in Figure 4 (green line) 

during the summer growing season can be attributed to irrigation water application. 
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Figure 4. Examples of vegetation reflectance spectrums to incoming solar 
radiation (Courtesy of Stephens and Rasmussen, 2010; image designed by J. Keck.) 

In Section 2, we describe the datasets used in this study, including the 

methodology for how they were derived. Section 3 then outlines the models design, 

development, and steps used for calibration and validation. 

3.2 Datasets 

When attempting to map irrigated land-use via satellite data, it is important to first 

determine the desired resolution of the model output for application purposes, as well as 

the limitations associated with each dataset. This will help determine the remote sensing 

product that is to be used in the ensuing analysis. This section provides more detailed 

discussion of the two datasets used to derive agricultural irrigated area. 
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3.2.1 Remotely Sensed NDVI: MODIS 

In developing a land-use classification method, we needed a continuous dataset 

with which to create and calibrate our new model. MODIS has the advantage of having a 

high temporal resolution, making it possible to capture the short-term dynamics of 

vegetation variability. In this study, a series of MODIS images over a mid-latitude, semi-

arid region in southern Idaho are compiled over the agricultural growing season months 

of March-October between 2000 and 2011. The MODIS product chosen for this research 

is the global MODIS MOD13Q1 data, which gathers daily data at a 250-m spatial 

resolution that is then composited into a 16-day product. This data comes in the form of 

multiple Vegetation Indices (VI) derived from differences in reflectance spectra of 

vegetation at the Earth’s surface (LP DAAC, 2014). We decided to focus our research on 

NDVI because it has been successful as a vegetation measure due to its stable nature, 

allowing for meaningful comparisons of seasonal and annual changes in vegetation 

growth (Huete et al., 2002). The MODIS NDVI product is computed from 

atmospherically corrected bi-directional surface reflectance that has been masked for 

water, clouds, heavy aerosols, and cloud shadows (LP DAAC, 2014). The MODIS NDVI 

algorithm uses daily observations taken over a 16-day period to generate a composited 

NDVI value for each pixel (Huete et al., 2002). Prior to compositing the data, the MODIS 

NDVI algorithm applies a filter to the 16-day dataset looking at quality, cloud, and 

viewing geometry for each image taken, with only the higher quality, cloud-free, filtered 

data being used for compositing (Huete et al., 2002). With the study region being in a 

‘summer dry’ semi-arid to arid climate, in which precipitation and cloud cover during the 

summer months is reduced when compared to other times of the year (Hoekema and 

 



19 
 

 

Sridhar, 2011), the chances of receiving a continuous record of composited NDVI values 

is high. Based on this, problems with the temporal resolution of the MODIS NDVI 

product should be limited, however, the spatial resolution may lead to some classification 

errors. The MODIS NDVI data used in this study has a resolution of 250 meters, which is 

potentially too coarse to capture small-scale agricultural practices on the sub-pixel scale. 

Previous studies have used algorithms to find the percent of each MODIS pixel irrigated 

to reduce the impacts of coarse resolution on model accuracy (Thenkabail et al., 2007; 

Ozdogan et al., 2006). For our purposes, we use the coarser MODIS NDVI data to 

develop a model that could extend to the Landsat data, which exhibits a finer spatial 

resolution, but less frequent temporal support. 

3.2.2 Known Land-Use Classification Locations 

The proposed idea of using remote sensing data to monitor changes in irrigated 

agricultural land-use relies on the notion of having locations of known land-use 

classification (i.e., irrigated or non-irrigated), from which you can create a classification 

algorithm to determine the land-use of the other areas within the study region. To find 

these known land-use locations and build a county-by-county dataset, we employed 

National Agriculture Imagery Product data (NAIP). This product is an image of the 

Earth’s surface taken at a single point in time during the course of a given year, and is 

available during our study time period for the years 2003, 2004, 2006, and 2009. The 

goal was to find 20 known locations within each county with 10 labeled as summer-

irrigated and 10 non-irrigated (spring irrigated, rain-fed, fallow, urban, water, etc.) for 

each observation year (2000-2011), with the exact number of observation locations 
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shown in Table A.1 in Appendix A. An example of the observationally classified land-

use locations for Twin Falls County during 2003 is presented in Figure 5.  

 

 
Figure 5. (Top) NAIP image of Twin Falls County for 2003 with classified 
observation points. (Bottom) Zoomed in section to illustrate land-use characteristics. 

Upon plotting the NDVI curves for the growing season of March to October, 

using the known classification observation points determined from the NAIP imagery, 
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distinct characteristics arose that appeared to separate the two land-use categories. As 

would be expected, based on our hypotheses described in Section 3.3, there is seemingly 

a distinct difference in the NDVI values between irrigated and non-irrigated land-use 

during the months of May-September (Figure 6). 

 
Figure 6. Classified NDVI curves for Power County observation points in 2003. 

Irrigated observation points tended to reach much higher NDVI values, typically 

between 0.6 and 0.9, and sustained those values for multiple MODIS images in a row 

until a sudden drop off in NDVI value, likely attributed to crop harvest. Non-irrigated 

presented lower NDVI values, typically between 0.1 and 0.6, and typically reached their 

peak during the late spring and early summer before steadily declining to a relatively 

static baseline, only showing temporary spikes in NDVI likely attributed to summer 
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precipitation events. This can be seen in Figure 7 during the month of August in which 

some of the red, non-irrigated NDVI curves show a short-lived increase in NDVI value. 

Rain-fed agriculture, which is included with non-irrigated land-use, showed the 

tendency to reach and maintain elevated NDVI values similar to that of irrigated land-use 

before declining in value typically during the early to mid-summer months, making the 

classification process more difficult under these circumstances (Figure 7). 

 
Figure 7. Classified NDVI curves for Bonneville County observation points in 
2003. 

Local climatological factors also played a key role in determining the degree of 

separation between the NDVI values for the two land-use types. Higher elevation regions 

with cooler, wetter climates tended to show a less distinctive visual separation between 
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irrigated and rain-fed areas, making the classification potentially challenging in these 

locations (Figure 8).  

 
Figure 8. Comparison of average classified NDVI curves for Bannock County 
and Twin Falls County observation points in 2003. 

This is apparent when comparing the separation between the average irrigated and non-

irrigated known classification locations in Twin Falls County and in Bannock County. 

Even though the average non-irrigated trends are similar in both counties, the primary 

difference between the counties is the magnitude of NDVI for irrigated land-use. These 

unique situations have the potential to cause classification errors and must be accounted 

for when developing an agricultural land-use classification algorithm.  
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3.3  Methods 

Presented in this section is the map-generating model used to derive the temporal 

and spatial distribution of irrigated land-use in the SRP for the duration of remote sensing 

data acquisition. Similar to Pervez and Brown (2010), our method was developed based 

on multiple hypotheses about the influence of water availability towards crop NDVI 

values: 

a) Irrigated crops should have higher NDVI values than non-irrigated crops during 

the hot, dry summer months in the same region of a ‘summer dry’ Mediterranean 

semi-arid to arid climate. 

b) NDVI values during the growing season will vary based on the timing of crop 

planting and harvest, crop type, and geographic location. 

c) Differences in NDVI values between irrigated and non-irrigated crops should be 

greatest during times of reduced water availability (i.e., drought or summer dry 

months in Mediterranean semi-arid to arid climate). 

This study tests these hypotheses in the hopes of accurately mapping irrigated land-use 

using quantifiable differences in NDVI values. As the study region is spread out and 

encompasses a wide range of climatological conditions, understanding the impacts of 

local factors such as differences in temperature, topography, and precipitation patterns 

will be key for developing an accurate model. 

This section is organized as follows. First, the process of classifying each MODIS 

pixel is described. Next, reprojection and subsetting of the MODIS data for the study 

region is presented. Discussion of the two methods explored to differentiate the two land-

use types follows. The parameter calibration and validation methods are then reviewed. 
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Lastly, our method for isolating agricultural lands (e.g., removing other “green” areas 

such as forests and riparian areas) is explained. 

3.3.1 MODIS Pixel Classification Process 

Using the NDVI product described in Section 3.1.2, the objective is to derive 

spatial and temporal maps of irrigated land-use in the SRP of Southern Idaho. Since this 

research is focused on mapping primarily irrigated agricultural land-use, our model 

output will simply be a binary classification corresponding to irrigated and non-irrigated 

land-use. With this in mind, MODIS pixels will be classified in the binary manner 

described above according to the following criteria: 

𝑐𝑜 = � 𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑,
𝑛𝑜𝑛−𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑,            

𝑁𝐷𝑉𝐼 ≥𝑡ℎ𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                       (2) 

where co represents the classified state of the observed pixel. The threshold value shown 

in Eqn. 2 describes an independently derived threshold value based upon the modeling 

method applied. The first approach is the widely accepted method of using single date 

imagery to classify irrigated land-use. This involves determining the observation date at 

which the NDVI between each land-use classification is at its maximum separation and 

then deriving the threshold value that most accurately classifies both land-use categories. 

A conceptual diagram of this is presented in Figure 9. The next approach is the 

classification technique we are proposing that involves determining the integral of each 

NDVI time series of values and again deriving the threshold value that most accurately 

classifies both land-use categories (Figure 10). Because we will be describing both 

modeling approaches taken, as well as taking into account the spatial variability of the 

study region, we cannot simply apply just one NDVI threshold value to our entire 
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classification algorithm. The methods for deriving these individual classification 

thresholds will be further described in the following sections. 

 
Figure 9. Conceptual diagram of single date imagery method. 

 
Figure 10. Conceptual diagram of greenness-duration method. 

3.3.2 MODIS Grid Processing 

Global MODIS MOD13Q1 data are provided every 16 days at 250-m spatial 

resolution as a gridded level-3 product in the Sinusoidal projection (LP DAAC, 2014) 

and are acquired in hierarchical data format (HDF). The data is subset over the study 

region and re-projected from its native Sinusoidal grid into a UTM coordinate system 

using the MODIS Reprojection Tool (MRT) from the NASA Land Processes Distributed 
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Active Archive Center (LP DAAC). The resulting MODIS NDVI image for one 

observation date is shown in Figure 11. As MODIS delivers a 16-day composite product 

and the SRP of Southern Idaho has a reduction in cloud cover during the summer months, 

there is very little concern about the potential need to interpolate between NDVI values in 

the case of cloud-corrupted or missing data on any given day during the 16-day 

observation period. This would be more appropriate for sub-tropical and tropical regions 

that have significant cloud cover during the growing season. 

 
Figure 11. Unprocessed MODIS NDVI data that has been corrected and scaled. 

3.3.3 Greenness-Duration 

Previous research has shown that using a singular observation date, preferably 

during the peak of the growing season, has been sufficient for mapping irrigated land-use 

(Ozdogan et al., 2010). This method, however, has the potential to result in significant 

classification errors if the improper observation date is chosen. The variable nature of 

NDVI that can be caused by grower decision-making, whether it is crop choice or 

irrigation timing, can be a significant source of this error. In this study region, there is 
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also a strong dependency on winter snowmelt from mountain watersheds to sustain 

surface water availability for irrigation through the hot, dry summer months. 

Inconsistency in surface water availability will also strongly impact grower decision-

making. With this in mind, we developed a method that uses a time series of NDVI 

values to account for variability in agricultural practices. As was discussed in Section 3.2, 

the MODIS NDVI product has the best chance of providing the continuous dataset 

needed to account for this variability. It is with this MODIS NDVI data that we will 

process our known observation points in our classification algorithm. 

Using the hypothesis that the greatest separation in NDVI values between the two 

land-use types should occur during the hot, dry summer months when natural 

precipitation becomes infrequent, there should exist significant and quantifiable 

differences in the areas below the time series of NDVI values for each land-use type. 

Even though the MODIS NDVI data is a series of values at discrete 16-day intervals, the 

values are a composition of the NDVI for each day during that time interval. This 

essentially allows us to use an integral approach to quantify the duration of time and 

magnitude by which NDVI at a control point exceeds some threshold (co from Eqn. 2). 

The resulting integral we refer to here is the greenness-duration. We linearly interpolate 

consecutive NDVI observations to daily timescales and then use a midpoint integral 

approach. This method requires, however, the determination of the date to start and end 

the integration, the NDVI minimum threshold, and the value of greenness-duration that 

maximizes correct classification of irrigated areas.  
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3.3.4 Determination of Greenness-Duration Start Date 

It was discussed in Ozdogan et al. (2006) that the best window to apply a 

classification scheme is near the peak of the growing season. Typically the peak of the 

growing season is mid-summer, but the greenness-duration method is meant to capture 

the time frame at which the NDVI for each land-use type is at its greatest separation. 

Based on the preliminary analysis, the timing of greatest separation between tends to 

follow peak green-up, or the time at which crops are at or nearly at their maximum NDVI 

values. Following this time, non-irrigated crops typically start to show a reduction in 

NDVI values while irrigated control point values maintain elevated values for multiple 

MODIS images. The determination of peak green-up timing is a critical step in this 

process, and likely one to become more variable as climate change has the ability to 

impact grower decision-making, potentially causing the distribution of peak green-up 

dates to become more variable. This has already been recognized by Ozdogan and 

Gutman (2008) who find that the area of irrigated lands varies greatly, driven by each 

year's water availability and choice of crop. Our method for determining peak green-up 

includes isolating the date of maximum NDVI value from the time series of NDVI data 

for each pixel within a given county. We then use the distribution of these maximum 

NDVI dates to derive the date at which the majority of the pixels reach their maximum 

NDVI value (Figure 12). This resulting date is taken as the lower limit to the integral 

from the equation in Figure 10. The remaining step before processing the NDVI data is 

deciding on the length of the observation window, which determines the corresponding 

upper limit to the integral from the equation in Figure 10.  
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Figure 12. Each MODIS image is presented as a 16-day composite, making the 
distance between each histogram bin 16 days. 

In looking at the known observation point NDVI curves used in this analysis, 

there appears to be a distinct pattern in the time for which irrigated land-use shows 

elevated NDVI values. Though not all of the irrigated observation points followed this 

NDVI trend, the majority showed elevated NDVI values following the timing of peak 

green-up for six composite product cycles (96 days) or approximately three months 

before falling off, likely attributed to harvest (Figures 6 and 7). There were also other 

irrigated agricultural land-use NDVI trends, which included: rapidly changing NDVI 

multiple times during the duration of the growing season attributed to multi-harvest 

crops, reaching peak NDVI in the late spring and early summer months for spring 

irrigated crops, and reaching peak NDVI during the late summer and early fall months 

caused by delayed planting. Examples of this variability can be seen amongst Figures 6 

and 7. The use of an approximately three month (six composite cycles) classification 
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window allows for inclusion of important phenomena such as those mentioned when 

describing the uniquely different irrigated land-use NDVI trends. 

3.3.5 Determination of Greenness-Duration Threshold 

Upon verification that each observation location matched their visual land-use 

classification (i.e., irrigated or non-irrigated), each NDVI curve was then processed to 

determine the area below each curve for the six-composite cycle that corresponds to the 

previously mentioned irrigated NDVI trend. We explored a variety of methods for 

deriving the optimal classification threshold value including focusing on the 20 known 

land-use classification county-scale data and using strictly irrigated greenness-duration 

data from a given county. The pros and cons of each method will be discussed along with 

the process used to derive each classification threshold value.  

Our initial efforts were focused on processing the greenness-duration data on the 

county-scale. Once the area under the curve values were determined for the 20 test sites 

in each county, they were partitioned into their land-use categories to look at differences 

in the distribution of area values that could potentially be used for classification purposes. 

Using the maximum NDVI date shown in Figure 12, we derived the greenness-duration 

from each NDVI curve to produce the distributions shown in Figure 13. 
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Figure 13. (Left) Boxplot of the classified NDVI data for Cassia County in 2003. 
(Right) Distributions of greenness-duration for each classified land-use. The red ‘X’ 
denotes the greenness-duration threshold value that was chosen to represent the 
ideal classification threshold for our proposed method.  

Varying the greenness-duration classification threshold, we were able to calculate 

the probability that a pixel was either irrigated or non-irrigated at a given threshold. This 

was done by fitting a distribution, assuming normality, and calculating each probability 

given the mean and standard deviation in greenness-duration. The best classification 

value will be found at the point where the probability of classifying either irrigated or 

non-irrigated is the same. To find this threshold location, we subtracted the probability of 

being irrigated from the probability of being non-irrigated. The value of greenness-

duration at which the sign of this difference switched was taken as the optimal threshold 

of greenness-duration. In Figure 13, this corresponds to approximately 47. Once the 

optimal threshold value is found, it is then used to classify the area below the NDVI 

curve for each pixel within that given county from which the threshold value is derived.  
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Based on our hypotheses, we theorized that using strictly the distribution of 

known irrigated land-use locations from an increased county-scale dataset could be a 

method for mapping irrigated agricultural areas. This idea relies entirely on the notion 

that rain-fed agriculture maintains minimum NDVI values during the hot, dry summer 

months and shows little fluctuations during the course of the growing season. Of course 

we know this likely doesn’t apply to all counties within our study region, but it may 

exhibit success in counties whose agriculture is nearly entirely irrigated. This is the case 

in Twin Falls County in which their agriculture land-use is greater than 99% irrigated, as 

determined from USDA census data. To test this, we gathered 100 locations of known 

irrigated agricultural land-use in Twin Falls County during the year 2003. The idea for 

the optimal classification threshold would be the minimum greenness-duration value 

from the entire dataset in the efforts to maximize irrigated classification correctness. This 

will likely lead to an increase in Type I (overestimation) errors when the classification 

threshold is applied to the entire county, with the benefits of this mentioned in the 

discussion section of this thesis. From the distribution of greenness-duration at these 

locations, we were able to derive a classification threshold only 4.1% less than that of the 

mean classification threshold value in Section 4.1.1. This 4.1% difference equates to a 

1.6% increase in irrigated area or 17 km2. Even though this is a relatively small increase 

in irrigated area, it does push our newly modeled irrigated area further from both the 

projected and the mean and standard deviation in irrigated area values derived in Section 

4.1.1. With this method, we may be airing too much on the side of classifying all irrigated 

agricultural land-use correctly and inherently including some rain-fed agriculture in our 

final irrigated area results. For this reason, we focused our efforts on applying the 
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greenness-duration method to the dataset of 20 known classified land-use locations in the 

hopes of deriving the highest classification accuracy.  

Once the classification threshold is determined, it can be applied to the entire 

county to derive the modeled irrigated area results. Mapping MODIS pixels with 1 equals 

irrigated and 0 equals non-irrigated, we created an ASCII file of the data that could be 

imported into ArcGIS for visual comparison of model output to NAIP imagery data. For 

more than just a visual accuracy check, the number of pixels classified as irrigated were 

also added up and multiplied by the area of each MODIS pixel to determine the overall 

irrigated area for a county. This value can then be compared to the USDA census data to 

determine the error in our model outputs. As will be discussed in Section 3.3.6, we also 

compared the greenness-duration method to that of the widely accepted single date 

imagery method. 

3.3.6 NDVI Single Date Imagery 

We decided to compare the greenness-duration method’s accuracy to the widely 

accepted method of using single date imagery, acquired at the peak of the growing 

season, to map irrigated land-use. Ozdogan et al. (2006) used this single date imagery 

method for a study location in Southeastern Turkey, also a semi-arid region of the world 

approximately 75,000 km2 in size. Our study region of the SRP is only slightly larger at 

nearly 100,000 km2, with a significant portion of that area not being agricultural areas. 

Following the removal of this non-agricultural areas using methods described in Section 

3.3.7, the size of the study region is around 75,600 km2. Because these two areas are 

similar in size and both have characteristics of semi-arid to arid climates, the background 

context is sufficiently similar allowing for informative comparison of irrigated 
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agricultural land-use mapping techniques. Ozdogan et al. (2006) gathered 81 data points 

of known land-use that were spread out across the study region for their initial study year. 

At each of those points, they also collected grower records as to whether the plots were 

irrigated or non-irrigated for the preceding nine years. In Section 3.3.5, we discussed 

gathering a total of 20 initial sites for each county within the SRP for the year 2003, 

corresponding to either irrigated or non-irrigated classes, for a total of 420 sites. We then 

processed these same points for other years in which we had some form of a validation 

technique (2002, 2004, 2006, 2007, and 2009). This validation could be in the form of 

visual NAIP imagery or USDA census data. For these years, we plotted the raw NDVI 

curves and classified each observation point based on its NDVI curve characteristics. For 

years in which we had NAIP imagery data (2003, 2004, 2006, 2009), we used those 

images to validate our NDVI curve classifications. Once the classification process was 

complete, we had to next determine the date that would be used to classify irrigated and 

non-irrigated areas based on instantaneous NDVI observations. 

We targeted a date at which irrigated and non-irrigated NDVI values historically 

tend to be at their greatest separation. Similar to the methods in Sections 3.3.4 and 3.3.5, 

we used the characteristics of the NDVI curves from our classified dataset to derive the 

optimal observation date. By summing up the NDVI values for each land-use 

classification on a given date, we wanted to find the time at which those sums were the 

most different, or the time at which the separation between the land-use distributions was 

greatest. Similar to observation of Ozdogan et al. (2006), most of our derived optimal 

single imagery dates tended to be in the months of July and August (Appendix A). Figure 
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14 shows the timing of greatest separation using the observation data from all counties 

for each study year.  

 
Figure 14. Histogram of days of year in which NDVI separation between land-
use classifications is greatest in each county for every observation year. 

The most frequent date of greatest separation is the 193rd day of the year or July 

12th in non-leap years. This date coincides with the time that most irrigated plots will be 

well into the growing season, while non-irrigated plots will be drying out due to the hot, 

dry summer conditions that exist in the SRP. From Figure 14, we can see that there is a 

range of dates where separation is greatest and no distinct year-to-year patterns emerge, 

meaning to improve accuracy the date to perform each classification should be done on a 

county-by-county basis. To further illustrate this point, the observation dates of three 

counties that showed low variability, moderate variability, and high variability in optimal 

observation date are plotted in Figure 15. 
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Figure 15. Plots of optimal observation date for single date imagery method 
showing counties that have low variability, moderate variability, and high 
variability. 

Both Figures 14 and 15 show the variable nature of our study region and point 

towards a more fine-scale study approach in which analysis should be annually 

performed on the county scale to achieve maximum classification accuracy. 

3.3.7 Crop Mask 

To facilitate visual comparisons with NAIP imagery and statistical comparisons 

with agricultural census data, it is important to isolate agricultural areas from other, 

natural land cover types and minimize impacts of riparian and other naturally green areas 

(e.g., wetlands). As our MODIS NDVI dataset encompasses most of Idaho, Eastern 

Oregon, Northern Utah, and Western Wyoming, we first had to clip and remove areas 

that were not part of the SRP study region by joining together county shape files to form 

an SRP study region polygon in ArcGIS. Once the study region section of the MODIS 

image was confined, the next step was to remove influence due to aforementioned natural 
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land cover where greenness is higher. In our case, the major form of interference was 

other vegetation besides irrigated crops that stayed green year round. This mainly 

includes alpine trees and riparian zones. These vegetation areas show NDVI 

characteristics similar to irrigated lands (Figure 17), making it important that we remove 

them from our analysis to attain an appropriate measure of accuracy in classifying 

irrigated area. Because riparian zones are a relatively small fraction of the total 

interference, we decided to focus our efforts on removing the forested mountain areas 

from our study region. 

Because evergreen trees maintain greenness year round, they are likely to be the 

greatest source of error in our classification scheme. To remove this source of model 

error, we attempted to find an automated procedure to isolate agricultural areas from 

evergreen forests. For instance, we investigated the MODIS Land Cover Type product 

(MCD12Q1). This product is a yearly land cover classification map provided at 500-m 

spatial resolution as a gridded level-3 product in the Sinusoidal projection (LP DAAC) 

and is acquired in hierarchical data format (HDF). The MCD12Q1 product is then 

converted from sinusoidal projection to UTM coordinates using the MODIS Conversion 

Toolkit (MCTK) from ENVI (www.exelisvis.com). Within the MCD12Q1 product, there 

are multiple bands of data with which to create a masking product. We explored all data 

bands, but were unable to find one that did a sufficient job at removing forests from our 

study region without also removing significant amounts of agricultural areas. Also 

explored was the Cropland Data Layer from NASS, which is based on classification from 

Landsat. Again, however, the Cropland Data Layer exhibited classification errors, 

including the modeled presence of crops in mountainous terrain. This left us with the task 
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of hand delineating the forested mountain regions of our study region. The process of tree 

removal from the original study region, to the hand delineated forested location, and the 

resulting study region is shown in Figure 16. 

 

 
Figure 16. (Top) The Snake River Plain study region denoted in pink with the 
hand delineated forested regions highlighted in gray. (Bottom) The final study 
region after removal of forested regions. 
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Before ultimately settling on hand delineation for crop masking, we attempted to 

use the same NDVI time series analysis done in the beginning stages of Section 3.3.4 

with a dataset of known forested locations. The hope was to find significant differences 

in NDVI values between forest and irrigated land-use during the late summer to early fall 

months in which irrigated crops will be harvested (Figure 17). This analysis would be 

ideal to do in the winter months but proves difficult do to an increase in cloud 

contamination. Forests tended to show a similar green-up trend to that of irrigated land-

use during the late spring and early summer (Figures 6 and 7). This could, however, be 

due to a corresponding green-up in intercanopy spaces that are detected in the NDVI 

data. 

 
Figure 17. NDVI curves for forested locations across the study region in 2003. 

In comparison to irrigated NDVI trends, the NDVI values of forested locations 

showed much less fluctuation when compared to irrigated land-use over the same time 

period. With further analysis, this may have the possibility of being used to create an 
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effective forest mask when dealing with agriculture in regions where mountain forests are 

present. 
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CHAPTER FOUR: CALIBRATION AND VALIDATION ACCURACY 

ASSESSMENT 

4.1 Results 

In this section, we present the results of our irrigated land-use map-generating 

model analysis. Presented first is the calibration results for our greenness-duration 

method for the year 2003. The results from other years with which we had some form of 

validation data are given next. Lastly, we present our validation results in which we 

compare our model results to that of the widely accepted method of using single date 

imagery to map irrigated land-use. 

4.1.1 Calibration Results 

Our initial method testing model runs were done using the observational land-use 

data gathered from 2003 NAIP imagery.  This was the first agriculturally based high-

resolution imagery product available post the launching of the MODIS satellite in 1999. 

From the 20 observation locations described in Section 3.3.5, we were able to derive a 

greenness-duration threshold value to be used to classify the remaining pixel locations 

within the given county in which the threshold was derived.  

When determining the best classification threshold value, using the two land-use 

distributions, it was first important to compare the means of each land-use distribution to 

detect whether there were any statistically significant differences between their means. 

Using a simple T-test, we were able to determine the probability that two distributions 
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come from the same group. At a confidence of 95%, only four counties failed to exhibit 

significant discrimination in mean greenness-duration at some point during the six-year 

evaluation. These included: Gooding County, Jerome County, Lincoln County, and 

Minidoka County. The reasons that likely contributed to the failing of the T-test in these 

counties are discussed in Section 6.2. The modeled and predicted irrigated area results for 

2003, using the methods described in Sections 3.3.4 and 3.3.5, are presented in Table 2. It 

is important to also note that some of the modeled irrigated area may include forms of 

urban irrigation (e.g., lawns and golf courses). This is more likely to impact counties with 

high population densities such as: Ada County, Bannock County, Bonneville County, 

Canyon County, and Twin Falls County. 

Table 2 2003 greenness-duration irrigated area values along with the project 
irrigated area values (km2). 

County Modeled Irrigated 
Area 

Projected Irrigated 
Area 

Percent Error (%) 

Ada 181 275 -34.18 

Bannock 725 210 244.91 

Bingham 1636 1301 25.71 

Blaine 386 167 131.41 

Bonneville 1131 585 93.2 

Butte 255 233 9.54 

Camas 22 70 -68.66 

Canyon 96 825 -88.37 

Cassia 911 1051 -13.32 

Clark 356 127 180.76 

Elmore 131 373 -64.86 

Fremont 466 416 12.02 

Gooding 69 488 -85.87 

Jefferson 602 826 -27.14 
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Jerome 456 575 -20.67 

Lincoln 164 270 -39.90 

Madison 792 478 65.62 

Minidoka 755 793 -4.84 

Owyhee 221 493 -55.19 

Power 496 460 7.78 

Twin Falls 1035 969 6.79 

Total 10886 10987 -0.92 

 

Using our small dataset of 20 known land-use locations, with 10 irrigated and 10 

non-irrigated, we were able to derive irrigated area values similar to values reported in 

the 2002 and 2007 USDA agriculture census. Because we saw no significant changes in 

reported irrigated land-use between the two census reports, even though land-use can 

change significantly on a year-to-year basis, we used the reported USDA values as a 

benchmark for our initial calibration of this method, as well as for comparison of model 

accuracies in the following section of this thesis. Assuming a linear relationship between 

the two reported USDA census values for irrigated land-use on the county scale, we were 

able to derive projected irrigated area values on an annual basis (Table 2). This was the 

only way to have a source of quantitative data with which to compare our model results 

for years in which we did not have USDA agricultural census data. 

A county that performed well in regards to the projected irrigated area values for 

2003 was Minidoka County. The model output for irrigated area was within 4.84% of the 

projected irrigated area using the two years of census data. Figure 18 shows the model 

output for Minidoka County overlain on the 2003 NAIP imagery for visual validation. It 

is important to note that NAIP imagery is a single snapshot in time and visually may not 
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show irrigated land-use characteristics at all pixels that are deemed irrigated by our 

model.   

 
Figure 18. Model output for Minidoka County in 2003 with observation points 
shown for visual validation. The green colored regions of the county are the model 
output for irrigated area. The brown colored regions are the non-irrigated model 
output.  

There were circumstances in which the technique performed poorly when 

compared to the census data, either strongly under or overestimating irrigated area values. 

This occurred in Bannock County in which the model predicted values much higher than 

would be expected. The model projected irrigated area values over three times larger than 

the projected values. Reasons for this were discussed in Section 3.3.4 and will be further 

discussed in Chapter 6. The model results for Bannock County are shown in Figure 19, 

again overlain on top of 2003 NAIP imagery for visual validation. 
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Figure 19. Model output for Bannock County in 2003 with observation points 
shown for visual validation. The green colored regions of the county are the model 
output for irrigated area. The brown colored regions are the non-irrigated model 
output. 

It is important when interpreting these calibration results that we take into account 

the uncertainty involved in each model result. The main forms of uncertainty are in the 

MODIS NDVI product itself and in our derived classification threshold value, which 

ultimately impacts the overall model accuracy. In the case of the MODIS NDVI product, 

it was reported in Huete et al. (1999) that the mean VI uncertainties were estimated to be 

+/- 0.01 VI units for the NDVI product resultant from the MODIS satellite. Due to the 

fact that we are integrating the area below each NDVI curve in our greenness-duration 

method, the successive additive errors inherent with this method should result in reducing 
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the overall error in the NDVI product values to nearly zero. To quantify the uncertainty in 

our threshold value and model results, we ran 200 Monte-Carlo simulations using a 

randomly sampled set of 80% of the total number of observation locations with 

replacement, from which a classification threshold value was derived using the methods 

described in Section 3.3.5. This value was then applied to our test set of remaining 

observation locations that had not been randomly selected. From this we were able to 

quantify the uncertainty in: our derived threshold values, the accuracy of our model when 

that threshold was applied to the test dataset, and the final irrigated area values. Table 3 

presents our irrigated area uncertainty results along with the projected irrigated area 

values for the year 2003. 

Table 3 2003 mean and standard deviation irrigated area values from Monte-
Carlo simulations (km2).  

County Mean Modeled 
Irrigated Area 

Standard Deviation of 
Modeled Irrigated Area 

Projected 
Irrigated Area 

Ada 166 35 275 

Bannock 661 24 210 

Bingham 1191 97 1301 

Blaine 3646 796 167 

Bonneville 1030 136 585 

Butte 218 11 233 

Camas 20 5 70 

Canyon 83 16 825 

Cassia 1481 40 1051 

Clark 564 235 127 

Elmore 180 69 373 

Fremont 302 21 416 

Gooding 48 6 488 

Jefferson 591 26 826 
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Jerome 648 272 575 

Lincoln 61 10 270 

Madison 781 38 478 

Minidoka 716 44 793 

Owyhee 323 173 493 

Power 364 45 460 

Twin Falls 920 76 969 

 

Seen in Table 3, Jerome County, Owyhee County, and Twin Falls County show 

projected irrigated area values falling within the mean plus or minus one standard 

deviation bounds of our uncertainty analysis for each of those counties (light green 

highlight). Bingham County, Butte County, and Minidoka County have projected 

irrigated area values that are nearly within the range of the mean and standard deviation 

uncertainty values for each county, respectively (light yellow highlight). The fact that 

some counties show irrigated area values quite drastically different from the projected 

values puts further emphasis on the importance of the size and quality of the observation 

dataset towards improving model accuracy. 

Initially, we set about seeking to use all observation points at the regional scale to 

perform classification. However, significant variation in the estimated value of 

greenness-duration used for classification suggests that the entire region exhibits 

systematic variability. To illustrate the spatial and temporal differences, Figures 20 and 

21 show the mean and standard deviation of the threshold values for each county in the 

year 2003. 
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Figure 20. The mean threshold values for each county derived from the Monte-
Carlo simulations for the year 2003. 

 
Figure 21. The standard deviation of the threshold values for each county 
derived from the Monte-Carlo simulations for the year 2003. 

As can be seen in Figures 20 and 21, there is a large of a range of threshold values 

to be able to apply just one threshold value for the entire study region. The next question 
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to answer is whether or not we can use the same threshold value in a given county over 

the six years of the data record. To look at this, we examine the annual variability in the 

threshold values for counties that show high variability, moderate variability, and low 

variability. Figures 22 and 23 show the mean and standard deviation of the threshold 

values over the six-year dataset for Jerome County, Elmore County, and Fremont County. 

 
Figure 22. Annual variability in mean threshold values for Jerome County, 
Elmore County, and Fremont County. 
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Figure 23. Annual variability in standard deviation of threshold values for 
Jerome County, Elmore County, and Fremont County. 

Seen in Figure 22, Fremont County shows the tightest distribution of mean 

threshold values, followed by Jerome County, and then Elmore County. In Figure 23, 

Fremont County again shows the tightest distribution of standard deviation of threshold 

value, now followed by Elmore County, and then Jerome County. The fact that the 

distributions for the mean and standard deviation of threshold values is so tight for 

Fremont County suggests that we may in fact be able to use one threshold value to 

classify each observation year. Due to the variability in both the mean and standard 

deviation of threshold values for both Elmore County and Jerome County, determination 

of a greenness-duration threshold should likely be performed on a year-by-year basis. We 

believe the high variability of mean threshold values for Elmore County and the standard 

deviation of threshold values for Jerome County also depends significantly on the size 
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and accuracy of the observational land-use dataset used as the calibration target. To 

further explore this, we will examine our other years of observational dataset. 

4.1.2 Validation Results 

Using other years of NAIP imagery and the USDA Census of Agriculture data, 

we were able to build a five-year validation dataset (2002, 2004, 2006, 2007, and 2009) 

to further test the accuracy of our model. For the years 2002 and 2007, we were able to 

directly compare our predicted irrigated area to the values reported by the USDA census 

for those years. These two years are the only datasets with which we have accurate 

numerical irrigated area values that can be used to calculate a percent error for our 

modeled results. Table 4 shows the model generated irrigated areas for the years 2002 

and 2007, as well as the percent errors when compared to the USDA Census of 

Agriculture data. 

Table 4 2002 and 2007 greenness-duration irrigated area compared to USDA 
Census of Agriculture irrigated area data (km2).  

County 2002 
Greenness-
Duration 
Irrigated 
Area 

2002 
USDA 
Irrigated 
Area 

Percent 
Error 
(%) 

2007 
Greenness-
Duration 
Irrigated 
Area 

2007 
USDA 
Irrigated 
Area 

Percent 
Error 
(%) 

Ada 173 286 -39.51 195 231 -15.58 

Bannock 1217 223 445.74 879 159 452.83 

Bingham 1177 1306 -9.88 1642 1283 27.98 

Blaine 254 164 54.88 356 178 100.00 

Bonneville 995 574 73.34 677 631 7.29 

Butte 286 236 21.19 250 220 13.64 

Camas 32 71 -54.93 115 67 71.64 

Canyon 155 832 -81.37 349 799 -56.32 

Cassia 770 1061 -27.43 1388 1011 37.29 
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Clark 235 126 86.51 243 130 86.92 

Elmore 430 367 17.17 159 396 -59.85 

Fremont 397 417 -4.80 409 412 -0.73 

Gooding 304 476 -36.13 268 537 -50.09 

Jefferson 710 820 -13.41 667 851 -21.62 

Jerome 667 566 17.84 590 610 -3.28 

Lincoln 349 269 29.74 513 275 86.55 

Madison 612 468 30.77 699 519 34.68 

Minidoka 500 798 -37.34 594 775 -23.35 

Owyhee 413 500 -17.40 584 466 25.32 

Power 363 460 -21.09 570 461 23.64 

Twin Falls 1245 964 29.15 546 990 -44.85 

Total 11284 10984 2.73 11693 11001 6.29 

 

Seen in Table 4, percent errors ranged from 446% for Bannock County down to 

4.80% in Fremont County for 2002 and from 453% again in Bannock County all the way 

down to 0.73% again in Fremont County for 2007. Nearly all of the percent error values 

were below 100% with only Bannock County and Blaine County showing error values 

higher than that. The area-weighted average percent errors for 2002 were overestimated 

by 2.73% and for 2007 were again overestimated but by 6.29%. 

The validation results for the remaining observation data years of 2004, 2006, and 

2009 are presented in Table 5. Mentioned in the previous section, we did apply a linear 

relationship to the census data from 2002 and 2007 to come up with projected irrigated 

area values for every other observation year to create another model comparison tool. 

Though we understand there is likely to be deviation from a linear pattern of irrigated 

land-use change, this was our only means of deriving a quantitative value for irrigated 
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land-use on the annual time scale. The comparison of these projected irrigated area values 

to our model derived irrigated land-use values is also shown in Table 5.  

Table 5 2004, 2006, and 2009 greenness-duration (G-D) irrigated area next to 
the projected irrigated area data derived from the USDA Census of Agriculture 
data (km2).  

County 2004  
G-D 
Irrigated 
Area 

2004 
Projected 
Irrigated 
Area 

2006  
G-D 
Irrigated 
Area 

2006 
Projected 
Irrigated 
Area 

2009  
G-D 
Irrigated 
Area 

2009 
Projected 
Irrigated 
Area 

Ada 123 264 105 242 260 209 

Bannock 1020 197 1090 172 1280 133 

Bingham 1774 1297 1787 1288 1664 1274 

Blaine 256 170 460 175 260 184 

Bonneville 1411 597 697 620 1353 654 

Butte 243 230 251 223 258 214 

Camas 39 69 89 68 41 65 

Canyon 187 819 400 806 230 786 

Cassia 1008 1041 1112 1021 1155 991 

Clark 160 128 183 129 166 132 

Elmore 100 379 144 390 412 408 

Fremont 556 415 593 413 756 410 

Gooding 167 500 364 525 346 561 

Jefferson 807 832 727 845 1057 863 

Jerome 526 584 552 601 578 628 

Lincoln 194 271 389 274 225 277 

Madison 745 488 722 509 669 539 

Minidoka 516 789 688 780 802 766 

Owyhee 185 486 274 473 227 452 

Power 464 460 530 461 517 461 

Twin Falls 598 974 600 985 817 1000 
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Due to the fact that we are using projected irrigated area values, we chose not to 

include the percent error for each individual county when comparing our model output. 

Instead we will present an overall percent error for comparisons with the other 

observation years. The area-weighted average percent errors for the years 2004, 2006, 

and 2009 were 0.80%, 6.91%, and 18.76%, respectively. Because we are comparing 

projected irrigated area values, we cannot comment on any sort of trends in percent 

errors. We will, however, examine the possibility of trends in irrigated area in Chapter 5. 

In the following section, we will present the results from our interpretation of the single 

date imagery method from Ozdogan et al. (2006), which will later be compared to the 

results of our greenness-duration method. 

4.1.3 Single Date Imagery Results 

We based our greenness-duration method after those used by Ozdogan et al. 

(2006) to map irrigated land-use. A way to compare our method is then to compare our 

model outputs to our interpretation of their method of using single date imagery, acquired 

at the peak of the growing season, to map irrigated land-use. Using the method described 

in Section 3.3.6, all observation years (2002-2004, 2006-2007, and 2009) were processed 

to determine irrigated area in each county.  

First, we will present how well our interpretation of the method of Ozdogan et al. 

(2006) did in comparison to the USDA census data. Table 6 shows the modeled irrigated 

area values for the years 2002 and 2007 as well as the percent errors when compared to 

the USDA census data.  
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Table 6 2002 and 2007 single date imagery irrigated area compared to USDA 
Census of Agriculture irrigated area data (km2).  

County 2002 
Single 
Date 
Irrigated 
Area 

2002 
USDA 
Irrigated 
Area 

Percent 
Error 
(%) 

2007 
Single 
Date 
Irrigated 
Area 

2007 
USDA 
Irrigated 
Area 

Percent 
Error 
(%) 

Ada 574 286 100.70 424 231 83.55 

Bannock 903 223 304.93 635 159 299.37 

Bingham 1646 1306 26.03 1567 1283 22.14 

Blaine 367 164 123.78 346 178 94.38 

Bonneville 1448 574 152.26 1053 631 66.88 

Butte 337 236 42.80 377 220 71.36 

Camas 112 71 57.75 48 67 28.36 

Canyon 294 832 64.66 540 799 32.42 

Cassia 1497 1061 41.09 2555 1011 152.72 

Clark 295 126 134.13 424 130 226.15 

Elmore 347 367 5.45 363 396 8.33 

Fremont 682 417 63.55 1113 412 170.15 

Gooding 561 476 17.86 430 537 19.93 

Jefferson 835 820 1.83 815 851 4.23 

Jerome 691 566 22.08 522 610 14.43 

Lincoln 428 269 59.11 419 275 52.36 

Madison 656 468 40.17 721 519 38.92 

Minidoka 529 798 33.71 502 775 35.23 

Owyhee 536 500 7.20 502 466 7.73 

Power 729 460 58.48 699 461 51.63 

Twin Falls 1192 964 23.65 984 990 0.61 

Total 14659 10984 33.46 15039 11001 36.71 
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Percent errors ranged from 305% in Bannock County down to 1.83% in Jefferson 

County for 2002 and from 299% again in Bannock County all the way down to 0.61% in 

Twin Falls County for 2007. The majority of percent error values were below 100% with 

only a few select locations showing error values higher than that. On the average, there 

was an area-weighted overestimation of irrigated area by approximately 35% for both 

years when compared to the USDA census data.  

For the other observation years of 2003, 2004, 2006, and 2009, we used the 

projected irrigated area values discussed in Section 4.1.1 to compare the derived single 

date imagery results. Again, because we are comparing the derived irrigated area values 

to projected irrigated area values that are based on census data from other years, we will 

not include the individual percent errors on the county scale. Instead, we will mention the 

overall average percent error amongst all the counties for a given year. These results are 

presented in Table 6.  

Table 7 Single date imagery irrigated area compared to USDA Census of 
Agriculture irrigated area data for remaining observation years (km2).  

County 2003 
Single 
Image 
Irr. 
Area 

2003 
Pro-
jected 
Irr. 
Area 

2004 
Single 
Image 
Irr. 
Area 

2004 
Pro-
jected 
Irr. 
Area 

2006 
Single 
Image 
Irr. 
Area 

2006 
Pro-
jected 
Irr. 
Area 

2009 
Single 
Image 
Irr. 
Area 

2009 
Pro-
jected 
Irr. 
Area 

Ada 882 275 236 264 298 242 620 209 

Bannock 588 210 829 197 831 172 950 133 

Bingham 1775 1301 2001 1297 1674 1288 1735 1274 

Blaine 411 167 401 170 295 175 344 184 

Bonneville 1282 585 1537 597 991 620 1396 654 

Butte 428 233 239 230 376 223 336 214 

Camas 82 70 67 69 130 68 113 65 

Canyon 482 825 200 819 584 806 443 786 
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Cassia 1216 1051 1745 1041 1295 1021 1489 991 

Clark 448 127 215 128 201 129 223 132 

Elmore 368 373 355 379 345 390 297 408 

Fremont 592 416 457 415 786 413 1102 410 

Gooding 174 488 456 500 365 525 575 561 

Jefferson 864 826 983 832 913 845 1043 863 

Jerome 431 575 653 584 498 601 775 628 

Lincoln 432 270 430 271 419 274 315 277 

Madison 690 478 695 488 699 509 753 539 

Minidoka 825 793 802 789 767 780 695 766 

Owyhee 637 493 589 486 651 473 605 452 

Power 669 460 642 460 821 461 994 461 

Twin Falls 1059 969 869 974 824 985 609 1000 

 

Counties that performed well in regards to the projected area values were: Elmore 

County, Jefferson County and Minidoka County. In these three cases, the percent errors 

were in the range of 5-15% for the first three years before increasing significantly in 

2009. In looking at all of the counties and the resulting average percent errors from the 

comparison of the single date imagery method to the projected irrigated area values for 

each year are as follows: 2003 had an area-weighted average percent error of 30.47%, 

2004 had an area-weighted average percent error of 31.03%, 2006 had an area-weighted 

average percent error of 25.15%, and lastly 2009 had an area-weighted average percent 

error of 40.01%. In all of these years, the average percent error was an overestimation 

compared to the projected irrigated area values. The impact of this bias on potential result 

applications will be discussed in Section 6.1. 
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After examining the model results for all of our observation years, we can see that 

the greenness-duration method results in a lower area-weighted average percent error on 

the regional scale when compared to the single date imagery method (Table 8). 

Table 8 Summary of model results for comparison.  

 Greenness-Duration Area-Weighted 
Average Percent Error 

Single Date Imagery Area-Weighted 
Average Percent Error 

2002 2.73 33.46 

2003 0.92 30.47 

2004 0.80 31.03 

2006 6.91 25.15 

2007 6.29 36.71 

2009 18.76 40.01 

 

As can be seen in Table 8, the greenness-duration model resulted in lower area-

weighted average percent errors across all observation years. Improvements ranged from 

18.24% to a 31.39% reduction in error compared to the single date imagery method. 

Later in this section, we will present other error metric values that can be used to further 

compare model accuracies. 

The summary results presented in Table 8 represent all years in which we had a 

form of observational data, whether it was USDA census data or strictly surface imagery 

from NAIP and Google Earth. As was discussed in Section 4.1.1, for the years in which 

NAIP and Google Earth were the form of observational data, we had to interpolate 

between the years of census data to derive some form of a quantitative irrigated area 

value that we could compare to our model results. Because we only had access to 

quantitative irrigated area values from the USDA census for 2002 and 2007, those are the 

only years with which we feel confident comparing our model-derived irrigated area 
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values to those reported by the USDA. Figure 24 shows the total study region irrigated 

area values for the years 2002 and 2007 from the USDA census, the greenness-duration 

method, and the single date imagery method.  

 
Figure 24. Study region irrigated area values (km2) from census data, greenness-
duration method, and single date imagery method. 

From Figure 24, the greenness-duration model did a much better job of accurately 

representing the total irrigated area on the regional scale. It only overestimated the actual 

irrigated area reported by the USDA Census of Agriculture by 300 km2 in 2002 and 692 

km2 in 2007 compared to an overestimation of 3675 km2 in 2002 and 4038 km2 in 2007 

for the single date imagery method. Further exploration of these errors, including a more 

in-depth look at both the county and regional scale errors, will be discussed in Section 

6.1. 

It is also important when studying the results from Table 8 and Figure 24 that we 

take into account the errors from each model output and the resulting impact that has on 

their applicability. When examining the model comparisons to the USDA census data in 
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Tables 4 and 6, the percent error between our modeled values and the observed census 

values was the only error metric presented. To further explore the resultant model errors, 

we examined the unsigned error metrics of Bias, MAE, and RMSE (Table 9). 

Table 9 Error metrics for model comparisons to USDA census data (km2).  

 2002 2007 

 Greenness-
Duration 

Single Date 
Imagery 

Greenness-
Duration 

Single Date 
Imagery 

Bias 14.29 175.00 32.95 192.29 

MAE 207.90 253.76 206.67 270.48 

RMSE 310.90 333.69 271.72 426.52 

 

Examining the values shown in Table 9, we can see that the greenness-duration 

model shows a reduction in error values for all metrics when compared to our 

implementation of the single date imagery method. Because 2002 and 2007 are the only 

years that we have accurate county-scale irrigated area data from the USDA Census of 

Agriculture, those are the only years with which we will present the increased error 

metric analysis. We will, however, discuss hypothetical error scenarios in Section 6.1, 

along with their scale-based result applicability. 

Mentioned at the beginning of Section 3.3.3 was the importance of how this 

method relies entirely on the observation points chosen as well as the optimal time with 

which to classify agricultural land-use. Since these two factors rely on each other for the 

derivation of irrigated land-use, it is imperative for increased model accuracy that 

improvements are made towards expanding the dataset of known land-use observation 

points. Due to the natural variability of our study region (i.e., topography, precipitation, 

temperatures), we believe our limited dataset to be the limiting factor in our analysis and 
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one that Ozdogan et al. (2006) did not encounter due to the homogeneity of their study 

region in Turkey. They were able to apply a single threshold value to the entire study 

region, whereas we were forced to do individual analyses on the county-scale to produce 

the highest accuracy results. Future work must account for this variability, whether by 

using new techniques such as machine learning and/or incorporating ancillary data such 

as soil moisture, temperature, and precipitation data to improve model accuracy. 
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CHAPTER FIVE: TRENDS IN IRRIGATED AREA 

A likely inquiry following the presentation of the greenness-duration and single 

date imagery irrigated area results is the question of whether or not the data has pointed 

towards any observable trends in agricultural land-use changes, either moving towards 

more irrigated land-use or towards an increase in rain-fed agriculture. To look into this, 

we examined the percent errors of every county during our observation years (2002, 

2003, 2004, 2006, 2007, and 2009) and found the counties that showed the greatest 

frequency of achieving percent errors less than 25% when compared to both the USDA 

census data and the interpolation data derived from those census statistics. Upon looking 

at the results of this quick analysis, we decided to choose counties that would best display 

the variability of the study region by selecting a location in the west (Ada), central 

(Jerome), southeast (Power), and northeast (Jefferson). Figures 25 and 26 show the mean 

and standard deviations in irrigated area derived from our greenness-duration method 

over the length of our available data record (2000-2011). Plotted above the irrigated area 

trend plots for each county is the annual precipitation at a location near a predominant 

agricultural region located in each county (NCDC). Years without precipitation data 

present are years in which there is missing data from one or more months during the 

course of the year. Lastly, the green stars in each subplot represent the reported county-

scale irrigated area for the given county in the years 2002 and 2007. 
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Figure 25. Mean and standard deviations of irrigated area for Ada County and 
Jefferson County over the duration of our data record from 2000-2011 accompanied 
with annual local precipitation. The green stars represent the reported irrigated 
area values from the USDA Census of Agriculture. 

 
Figure 26. Mean and standard deviations of irrigated area for Jerome County 
and Power County over the duration of our data record from 2000-2011 
accompanied with annual local precipitation. The green stars represent the reported 
irrigated area values from the USDA Census of Agriculture. 
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Due to the limited dataset of known irrigated area values on the county scale from 

the USDA, it is hard to evaluate whether these observable trends are in fact real or are a 

function of the observational known land-use dataset used. When looking for trends, 

there appears to be a correlation between relative precipitation and irrigated area in 

Power County. Both variables follow a similar pattern regarding the timing of increases 

and decreases. As discussed in Section 3.2.2, precipitation can have a strong influence on 

NDVI, temporally making a location appear as though it may be irrigated. Along with the 

precipitation and irrigated area pattern in Power County, precipitation also appears to 

have had an influence in Ada County in 2010 and Jerome County in 2005, in which there 

is a significant spike in irrigated area corresponding to a year of significant precipitation 

when compared to the rest. To further explore this phenomenon, we broke down the 

annual precipitation for the two years of greatest precipitation from those two counties 

into monthly precipitation (Figure 27). This was to determine when and how much rain 

was falling at different times of the year to see if the timing and magnitude had a 

significant impact on the modeled irrigated area for those years in which the unexpected 

spike in irrigated area was observed.  
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Figure 27. Monthly precipitation for Ada County 2005 (A), Ada County 2010 
(B), Jerome County 2005 (C), and Jerome County 2010 (D). 

First note in Figure 27 that the colors correspond to data from the same year and 

not from the same county. From Figures 27A and 27B, you can see that Ada County 

received a large influx of precipitation during the month of May in 2005, whereas in 2010 

the months of January through April receiver more precipitation compared to the same 

months in 2005. The influence this has on modeled irrigated area is that in the years in 

which a given area receives more than normal precipitation over a continuous length of 

time, it will likely result in an increase in non-agricultural biomass. This results in some 

non-agricultural lands appearing greener and getting modeled as irrigated during our 

model observation window, leading to a greater irrigated area than there is in actuality. In 

the case of the large precipitation pulse seen in Ada County in May of 2005, it will cause 

a similar impact to the NDVI of each pixel as the examples discussed in Figure 7, in 

which there is a short-lived spike in NDVI before returning to previously similar NDVI 

values. We see a similar scenario in Jerome County in 2005 (Figure 27C) in which there 
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was an increase in precipitation during the months of March through May relative to 

2010 (Figure 27D), also resulting in uncharacteristically high modeled irrigated area 

values for that year. From this, we believe both the timing and magnitude of precipitation 

play an important role in determining the overall greenness of non-agricultural lands and 

the resulting impact that has on our model accuracy. 

Going back to Figures 25 and 26, it appears that both Ada County and Jerome 

County have not seen a significant shift in the amount of irrigated agriculture area. 

Jefferson County does show a significant increase in irrigated area between the early 

2000s (2001-2003) and late 2000s (2009-2011). However, the question remains as to 

whether this is an actual trend or a consequence of using a small dataset of known 

classified land-use locations.  

Besides looking at trends on the county scale, we also wanted to examine the 

potential of trends in the study region as a whole. To do so, we used the irrigated area 

values gathered from our initial Monte-Carlo simulations and sampled one irrigated area 

value at random from each county in a given year and summed them up to get a total 

regional irrigated area value. We completed these simulations 1,000 times to derive mean 

and standard deviation irrigated area values for each year of MODIS data (Figure 28). 

Also, similar to what was done in Figures 25 and 26, we present the regional annual 

precipitation for potential correlation purposes. 
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Figure 28. Mean and standard deviations of irrigated area derived from Monte-
Carlo simulations for the entire study region. The red crosshairs represent the 
USDA census values. 

As can be seen in Figure 28, there appears to be some small-scale trends during 

the time series of our analysis. We see our first increasing trend between 2003 and 2005, 

followed by a sharp drop off to previously similar 2003 values. In 2005, we see another 

increasing trend running from 2005 to 2010. Similar to what was done in Figures 25 and 

26, we then looked to the precipitation to see if there was any correlation to the trends in 

regional irrigated area. As was the case with Ada County, Jefferson County, and Jerome 

County, there appears to be no similarities between precipitation and irrigated area trends 

that can further be explored. Though we may have expected to see an overall increasing 

trend in irrigated agricultural area during the time series of our analysis due to increases 

in both temperature and to the variability in precipitation, there are a variety of influences 

that can impact the decision to irrigate agricultural land including technological advances, 
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economic stress, and climate change induced precipitation changes. Future work will 

include exploring the relative importance of each of these factors on controlling land-use 

decision-making. 
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CHAPTER SIX: DISCUSSION AND CONCLUSION 

6.1 Scale Dependence of Error 

The developed greenness-duration irrigated area model performs with an 

improved level of skill, compared to the widely accepted method of using single date 

imagery to classify irrigated land-use, when comparing the area-weighted average 

percent error from all counties within the study region. Both models resulted in an area-

weighted average overestimation of irrigated land-use, with the greenness-duration 

method resulting in at least a 18% reduction in area-weighted average percent error when 

compared to the years with projected irrigated area values. When examining the 

comparison during the census years of 2002 and 2007, the greenness-duration method 

results in a minimum 30% reduction in area-weighted average percent errors. It is 

important to understand the implications of both the magnitude and sign of these percent 

errors when applying these classification results. Of the classification errors to have, 

focusing on Type I (overestimation) and Type II (underestimation) errors, one could 

argue that for practices overestimation is preferred. This is because overestimation of 

irrigated area would incline managers against expansion of water rights, a more 

conservative approach in water-limited regions.  

It is also important that we discuss the implications of our results on both the 

county and region scale. Understanding the scale dependency of model errors is critical 

for any policy application or potential users of this method. If we glance back at Table 9 
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in Section 4.1.3, we can see that our model presents lower error metrics on the regional 

scale when compared to the single date imagery method for the years in which we had 

USDA census data. Because we don’t have accurate quantitative values on an annual 

basis, we cannot speculate as to whether this will always be the case. On the county scale, 

from Tables 4 and 6, the greenness-duration performs with increased accuracy for 13 out 

of the 21 counties in 2002 and 10 out of 21 in 2007 when compared to the single date 

imagery method. Again, because we do not have accurate irrigated land-use data on an 

annual basis, we cannot speculate on any trends or patterns as to which model preforms 

best for a given county throughout our analysis. However, if the situation were to arise in 

which the greenness-duration method resulted in higher, less biased errors at the county 

scale but had reduced errors at the regional scale compared to the single date imagery 

method, it would be important to understand the implications of these results towards 

potential result applications. As an example, a Bureau of Land Management (BLM) 

employee wants to use our model results to look at water demand on the regional scale. 

The greenness-duration method performed with increased accuracy on the regional scale 

with less accurate sub-regional resolution, making it the likely product of choice due to 

its better overall representation of total irrigated area for the study region. As another 

example, if a county manager for the Idaho Department of Water Resources (IDWR) 

needed accurate county-level data, it may be more appropriate for them to use the single 

date imagery data due to its increased county-scale accuracy, despite it having a strong 

overestimation bias compared to the greenness-duration method. It is the hope that with 

an increased dataset, both county and regional-scale errors should be reduced, leading to 

a more widely applicable method for all scales of irrigated land-use analysis. 
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As was mentioned in Section 4.1.1, we had counties that failed a 95% confidence 

T-test when comparing the means of each land-use categories distribution of greenness-

duration values. Upon further examination, there appeared to be two dominant scenarios 

that produced these results. The first being strictly a function of the observation points 

selected for a given county, in which the NDVI curves for each land-use category were 

not significantly different during the observation time window. Secondly, non-

agricultural lands appear to be having a strong influence on the observation window start 

date for the greenness-duration method in counties in which the agricultural land-use is a 

small fraction of the overall land-use in a given county. It was noticed in Gooding County 

that the start date for the observation window was earlier than normal during one of the 

years it failed the T-test, and upon revisiting the NAIP imagery, it is apparent that 

agricultural land-use makes up approximately less than 50% of the overall land-use in 

Gooding County. In this situation, the spring greenness of the non-agricultural lands was 

overwhelming our start date determination method and forcing our model to run earlier 

than would be optimal for classification accuracy. Further work needs to be done on 

developing a cropland mask to remove the influences of non-agricultural lands on model 

classification accuracy. 

6.2 Sources of Uncertainty 

The inaccuracies mentioned in Chapter 4 are believed to be a product of our 

limited dataset of known observation points. We are attempting to use a small dataset of 

20 known observation points per county to predict irrigated land-use throughout each 

county. Unless we are fortunate enough to select locations that are in fact a good 

representation of the county, there are bound to be errors dependent on the variability of 
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the individual NDVI curve characteristics and how separated the distribution in 

greenness-duration are between the two land-use categories. There are a variety of 

influences that can impact the NDVI time series of values at any given agricultural land-

use location. One contributor could be the influence of storm events that temporarily 

increase NDVI values in those affected regions. In non-irrigated agricultural areas, this 

can cause the NDVI values at these areas to be erroneously classified as irrigated. Also, 

rain-fed crops tend to maintain elevated NDVI values longer into the growing season 

relative to other non-agricultural lands, making discrimination between irrigated and non-

irrigated areas more subtle and leading to larger estimates when compared to the USDA 

census data. Lastly, the influence of water right priority dates can have a significant 

impact on both the timing of irrigation and our model’s accuracy. Those lower in priority 

may only have access to water during the beginning of the irrigation season or not have 

access until nearly the end of the irrigation season. This can lead to initial land-use 

misclassifications from our surface imagery, leading us to believe the parcel may be non-

irrigated, when in fact, they may have had their water rights curtailed for that given year, 

forcing them to not be able to irrigate. We do, however, reclassify each selected pixel on 

an annual basis, instead of assuming a constant land-use classification throughout our 

data time series, to avoid these situations. Along with the potential to impact our initial 

observation classification, the influence of water rights can also cause model 

misclassification due to the timing of the greenness-duration observation window, 

potentially missing water right curtailed early spring or late fall irrigation. These 

examples of natural variability further emphasize the point of needing to expand our 
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dataset of known land-use classification locations to reduce their overall impact on 

classification accuracy. 

The most difficult part of this study was determining locations of known land-use. 

The only way to gather that information was to collect the UTM coordinates of locations 

that appeared to be irrigated or non-irrigated via NAIP imagery or Google Earth, and then 

process each point to assess whether the resulting NDVI curves broadly matched the 

expectation of that classified point for each study year. In many cases, the selected 

location would show NDVI trends that did not match their initial classification or were 

highly inconsistent on an annual basis. This was especially prominent when selecting 

rain-fed sites from which the NAIP or Google Earth would show a parcel of land that 

appeared to be non-irrigated during the time at which the surface image was captured, 

yet, it would produce a resulting NDVI curve of elevated NDVI values prior to or 

following the image date. These inaccurate classification situations made this known 

land-use selection procedure an iterative process that is fraught with problems. This is 

believed to be a function of using NAIP imagery, which is simply a one-time image of 

the land surface, to locate points that appeared to exhibit irrigated and non-irrigated 

characteristics. Because it was a single snapshot in time and land-use can change rapidly, 

it was challenging to gather a large dataset of known observation locations for each 

county. Having access to a large dataset of known land-use classifications and locations 

has the potential to significantly improve model accuracy more generally. Though 

information on the location and land-use classification of agricultural land is typically 

private unless on public land, having that information would be of immense help towards 

improving the accuracy of modeling irrigated land-use. However, the problems 
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encountered in our study region may not exist everywhere. The freedom of grower 

decision-making, water right institutional control, and the structure of the agricultural 

system in a given region play a critical role in dictating the spatial distribution of irrigated 

and non-irrigated agricultural land-use, in turn affecting method applicability.  

6.3 Potential Errors in Extended Application 

As stated prior, the larger goal of this work is to develop a map of irrigated land-

use at a resolution similar to maps of water rights. This will involve using the Landsat 

remote sensing dataset from Google Earth Engine to apply the MODIS NDVI derived 

method to a longer time series of satellite observations. The longer data record will allow 

for a more detailed look into the impacts that climate change has had on land-use 

decision-making. Additional benefits of using the Landsat remote sensing dataset include 

the increased resolution from MODIS’s 250-m to Landsat’s 30-m. This allows for a more 

accurate analysis on the sub MODIS pixel scale, hopefully reducing errors in small-scale 

plot classification (Ozdogan and Woodcock, 2006). An example of this is the situation in 

which multiple irrigated and non-irrigated parcels reside within one 250-m2 MODIS 

pixel, likely leading to a classification error based upon the intensity of irrigation and the 

resulting influence on the composited NDVI for that pixel. Research has shown that using 

finer spatial resolution to map irrigated area has improved classification accuracy 

(Ozdogan et al., 2006). The downside with Landsat, however, is that the temporal 

resolution increases to approximately 16 days between each image capture. Though both 

MODIS and Landsat are 16-day products, clouds can effectively be integrated out of the 

MODIS images due to the compositing process whereas Landsat gathers only a single 

image during the 16-day time window. If clouds happen to be present during the time the 
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image and data is collected, the resulting information and data will be unusable. This is 

an important fact to consider when developing a model to be used with Landsat data. 

Besides simply increasing the dataset of known land-use observation locations as 

well as using finer-scale Landsat NDVI data, adding other sources of data into the 

analysis could further improve model accuracy. An alternative to strictly using NDVI 

data is to include other spectral bands such as the blue band, which is used in conjunction 

with the red and near-infrared bands to derive the Enhanced Vegetation Index (EVI). 

There are also other remote sensing products such as soil moisture and precipitation data 

that can potentially be used in collaboration with NDVI data to improve model accuracy. 

Along with adding to the data used in the analysis, there are also additional techniques 

that can be explored to improve the classification accuracy. We could explore using 

machine learning algorithms as well as classification and regression trees. These 

techniques will break down the classification process into a finer-scale than was 

completed in this analysis and hopefully lead to an increase in model accuracy. 

Narrowing down the study region to areas that could potentially be used for 

agriculture was also an important task in this analysis. As stated previously, forested 

regions and riparian zones showed elevated NDVI values similar to irrigated areas, 

meaning they would appear as though they were irrigated when processed. Because the 

influence of riparian zones was limited in our study region, our main focus was on 

dealing with the existence of trees. The presence of trees posed a significant problem 

while attempting to quantify irrigated land-use on the county scale for comparisons with 

both the USDA census data and the projected irrigated area values, likely resulting in an 

overestimation of irrigated land-use if not removed. As discussed in Section 3.3.7, we 
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tested multiple sources of land cover data in the hopes of finding a product that could 

effectively automatically remove the forested sections from our study region. Though 

none of the available products did a sufficient job, we hypothesize that potentially using 

the NDVI curve characteristics of forested areas to derive a threshold that could 

effectively eliminate them from our study region. In Figure 11, there appear to be distinct 

patterns in the NDVI curves including the timing of green-up, the slope of the decline in 

greenness during the growing season, as well as the timing of rapid NDVI drop-off near 

the end of the year, likely attributed to the presence of snow or defoliation of 

undergrowth in intercanopy spaces. This dataset of 40 forested locations was selected 

from all areas of the study region, meaning that with further exploration of these patterns, 

a method for removing these regions may be developed. 

Besides having classification errors due to the presence of trees, there was also the 

impact of rain-fed agriculture, which maintained elevated NDVI values similar to 

irrigated land-use for the start of the growing season, on classification accuracy. This was 

most concentrated in the eastern portion of the SRP. Precipitation in the SRP follows a 

relative east‐west gradient in which the east receives increased precipitation relative to 

the west (Hoekema and Sridhar, 2011). Counties in the eastern SRP appeared to have 

been strongly influenced by differences in temperature, elevation, and precipitation 

patterns when compared to the rest of the SRP. This is evident in Figure 8, where the 

land-use distributions are less separated for Bannock County compared to Twin Falls 

County, making the determination of the best classification threshold more difficult. 

Because of this, the errors in classification accuracy associated with these counties are 

likely due to the increased presence of rain-fed agriculture. As stated at the end of Section 
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4.1.3, these unique situations were an issue that caused our known land-use classification 

dataset to be limited due to the need to perform our analysis on the individual county 

scale for maximum classification accuracy.  

Lastly, we must discuss the broader application of this method towards mapping 

other semi-arid to arid regions of the world. As was shown in Chapter 2, the SRP study 

region is a ‘summer dry’ semi-arid to arid climate. We did also discuss how not all semi-

arid to arid climates exhibited this same ‘summer dry’ characteristic. Examples of this 

were shown in Figure 3, including locations in Arizona, New Mexico, and Colorado, 

which happen to be monsoon-driven areas and receive significant precipitation during the 

summer months. As our greenness-duration method relies on a lack of available water for 

plant consumption during the summer months to be able to identify locations that are 

receiving supplemental irrigation water, the model would lack accuracy in these ‘summer 

wet’ climates. However, if someone wished to apply our method to these ‘summer wet’ 

regions, the timing and length of the observation window would need to be adjusted to 

still satisfy the method assumptions. The resulting changes to the observation period 

would depend on the timing and length of the growing season along with the timing and 

magnitude of precipitation during the growing season. If there was a significant enough 

amount of time in which precipitation was reduced and temperatures were high during 

the growing season, this method could be applied to map irrigated agricultural land-use in 

these ‘monsoon-driven’ semi-arid to arid climates. 

6.4 Conclusion 

We described here an efficient and computationally inexpensive method for 

mapping irrigated land-use in a ‘summer dry’ Mediterranean semi-arid to arid climate. As 
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was discussed in Chapter 2, this method is broadly applicable to regions that exhibit a 

similar ‘summer dry’ climate. NAIP Imagery and Google Earth were used to derive a 

dataset of land-use observations. These locations were processed to create NDVI curves 

that could then be used to derive the area below each curve for classification purposes. 

The model is calibrated using 2003 observational land-use data. Validation is performed 

using USDA Census of Agriculture data for 2002 and 2007, as well as with NAIP 

imagery and projected irrigated area values for 2004, 2006, and 2009, derived from a 

linear interpolation between the two years of USDA census data. Calibration results show 

a wide range of model accuracies, highly dependent on the number and accuracy points 

chosen as calibration targets. Results from validation tell a similar story, including the 

decrease in average percent error over all observation years when compared to the 

method of Ozdogan et al. (2006). Though the model accuracy for our method was 

improved compared to the single imagery date method, there is still considerable 

improvement that could be made in the classification of irrigated areas. To attain a higher 

level of accuracy and confidence, a larger dataset of known locations and classifications 

of land-use is necessary. Other ideas for improvement include incorporating other 

techniques (e.g., machine learning) that can integrate other ancillary satellite data (e.g., 

soil moisture, temperature, precipitation, elevation, etc.). The developed method has the 

potential to benefit those tasked with the job of accounting for agricultural water use on 

an annual basis. With climate change threatening our already scarce water resources, this 

becomes an ever more crucial task if we hope to maintain our current way of life in this 

‘summer dry’ semi-arid to arid climate. 
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CHAPTER SEVEN: PROJECT CONCLUSIONS 

Discussed in this work are the algorithms used to map irrigated land-use in a 

‘summer dry’ Mediterranean semi-arid to arid climate. This spatial and temporal 

information may be useful to those in charge of managing already limited water 

resources. Currently, it is estimated that irrigation accounts for nearly 80% of all water 

used by humans (Döll and Siebert, 2002), and over 98 percent of all water used in Idaho 

goes to counties that lie completely or partially within the SRP, with the majority of that 

water, 85.6 percent, being used for irrigation (USGS, 2014). With the big question in the 

world food policy debate being whether the anticipated increase in food demand will 

require additional irrigation systems or whether increased yields and productivity from 

rain-fed agriculture can meet the growing demand (Molden et al., 2007), it will prove 

critical to be able to quantify changes in irrigated agricultural land-use with the 

understanding of the resulting impacts on water use. These algorithms were created to be 

computationally efficient and need minimal parameterization. It was designed with the 

objective that similar work could be repeated or expanded upon following the details of 

this report.   

In Chapter 3, a method is outlined for mapping irrigated land-use using MODIS 

NDVI data. An algorithm is used that calculates the area below each NDVI time series 

curve from a dataset of known land-use and produces a threshold value that best separates 

the resulting two land-use distributions. The model is calibrated using observational land-
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use data for the study region of the Snake River Plain in Southern Idaho. In Chapter 4, 

the model is tested against observational data not used in the calibration process and has 

shown to perform favorably when assessed over the whole study region versus on the 

county scale. Accuracy errors are thought to be the result of having not a robust enough 

dataset of known land-use. It is suggested that gathering a larger dataset of known land-

use classifications and locations would be a way of further improving model accuracy. 

Chapter 5 discusses the potential of any trends in irrigated agricultural land-use during 

the years 2000-2011. Though it may appear as though some trends exist, this may again 

be a function of our limited dataset of known land-use locations. Building a more robust 

dataset will have the potential to further improve model accuracy and increase certainty 

in model results. 
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APPENDIX 

A.1 Observation Locations per County 

Table A.1 Table of number of classified observation points per county.  

County Irrigated  Non-Irrigated 

Ada 10 10 

Bannock 10 10 

Bingham 10 10 

Blaine 10 10 

Bonneville 10 10 

Butte 10 10 

Camas 10 10 

Canyon 10 10 

Cassia 10 10 

Clark 10 10 

Elmore 10 10 

Fremont 10 10 

Gooding 10 10 

Jefferson 10 10 

Jerome 10 10 

Lincoln 10 10 

Madison 10 10 

Minidoka 10 10 

Owyhee 10 10 

Power 10 10 

Twin Falls 100 10 
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A.2 Single Imagery Dates of Observation 

To use the single date imagery method, the optimal observation dates had to be 

determined for each county during each year of observation (2000-2011). Below is a 

table of the selected dates. 

Table A.2 Table of best Single Date Imagery dates of observation.  

County 2002  2003 2004 2006 2007  2009 

Ada 241 177 177 209 209 209 

Bannock 177 193 193 193 225 161 

Bingham 193 177 193 177 177 193 

Blaine 193 177 193 177 177 193 

Bonneville 193 193 193 193 177 193 

Butte 241 193 193 177 241 193 

Camas 209 193 209 209 193 209 

Canyon 177 193 193 177 209 209 

Cassia 241 177 193 193 209 177 

Clark 209 193 241 193 193 193 

Elmore 209 193 241 193 193 193 

Fremont 225 193 193 193 193 161 

Gooding 225 161 209 193 193 193 

Jefferson 177 177 193 161 193 193 

Jerome 193 161 209 225 177 193 

Lincoln 193 161 209 209 193 193 

Madison 209 193 209 193 193 193 

Minidoka 225 241 193 209 209 241 

Owyhee 209 209 209 225 209 241 

Power 193 177 193 193 177 145 

Twin Falls 225 177 177 177 177 161 
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