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ABSTRACT

Since the discovery of the molecular basis of disease, numerous studies have 

reported a correlation between the activity of specific protein receptors and the 

progression of disease. As a result, drug development has become dependent on the 

study of protein receptor activities. The relative inexpense of computing hardware has 

made computational methods an important supplementary tool for receptor modeling. 

This work details an open source software tool that is capable of both efficiently 

screening large peptide mutant libraries and enabling 3-D conformer-based searches 

over local molecular databases.

A Computational Approach to Efficient Peptide Influenced Drug Repurposing

(CAEPIDR) has been developed to explore the conformational ligand binding space

of the α3β2 nicotinic acetylcholine receptor (nAChR) isoform using a library of α-

conotoxin (α-CTx) MII peptide mutants. The screen’s top hits were used to identify

small molecule drugs that might also bind to the receptor. The conformational ligand

binding space of the nAChR was heuristically explored using a genetic algorithm,

which managed a structure-based virtual screen of a 640,000 α-CTx MII peptide

mutant library. A utility was developed to search the PubChem Compound database

for small molecule drugs with a 3-D shape similar to the highest affinity peptides

from the virtual screen.

CAEPIDR’s genetic algorithm-based procedure was able to find 10 peptides with

estimated free energies of binding (with the α3β2-nAChR) below -20 kcal/mol, which
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can be compared to α-CTx MII’s -12.38 kcal/mol. These peptides were identified

in spite of the genetic algorithm performing docking calculations for only 9,344 of

the 640,000 α-CTx MII mutants. The PubChem Compound search yielded 2 small

molecule drugs with estimated binding energies below -20 kcal/mol.

CAEPIDR has been integrated with DockoMatic to create DockoMatic 2.1, which

can be used to create virtual peptide mutant libraries, virtually dock ligands to

macromolecular receptors, and identify small molecule drugs for disease treatment.
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1

CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Drug Repurposing

The discovery of the molecular basis of disease has resulted in massive efforts to

research and develop new medicines. So far, de novo drug development has followed

the general pattern: lead candidate identification, prototype development, pre-clinical

testing of the model systems, clinical trials, Food and Drug Administration (FDA)

approval, clinical deployment, and continued monitoring of efficacy and any side

effects associated with long-term use. This process, which has historically yielded

a marketable drug for every 10 candidates that make it to clinical trials, has an

average cost of ≈ $1.2 billion per marketable drug and an average turn around time

of 14 years [1, 2]. Reducing these costs is difficult since the majority of the expenses

are a result of the clinical trials and cannot be circumvented due to federal safety

regulations.

In an effort to reduce development costs, the National Institute of Health (NIH),

universities, and pharmaceutical companies have made use of an alternative strategy

for drug development: drug repurposing. As the name implies, drug repurposing fo-

cuses on the reuse of drugs or small molecules that have already undergone some level
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of clinical testing. Repurposing allows researchers to build upon previous research

and development efforts to expedite and reduce the costs of clinical trials, speeding

the drug’s review by the FDA and, if approved, integration into health care.

Drug repurposing is either receptor or ligand focused. Receptor-oriented repur-

posing is an attempt to identify drugs that can be reused to target another receptor

or family of receptors (e.g., acetylcholine receptors). Drug databases are searched for

small molecules that exhibit a set of characteristics (e.g., structural similarity to a

known ligand or to a receptor’s binding cavity) that makes them likely candidates

for binding to the targeted receptor. Many chemical databases have been created to

support this type of repurposing.

In contrast, ligand-oriented repurposing focuses on finding a new use for a specific

drug. It is a popular approach for pharmaceutical companies since it has the potential

to yield a new pharmaceutical without the majority of the expenses associated with

drug development. Ligand-oriented repurposing is better known to the general public

because of the success of repurposed drugs such as Viagra, Requip, and Colesevelam.

The drug repurposing paradigm has had immense success in recent years, ac-

counting for nearly 30% of the newly (FDA) approved drugs between 1999 and

2008 [3]. This success has been fueled in part by resources, mostly in the form of

large chemical databases, that have been made publicly available by both public

and private institutions. NIH’s PubChem database [4] is a notable example as it

contains structural and bioactivity information for over 51 million small molecules.

It also includes web-based tools for performing substructure, shape, and many other

searches over any of their databases.
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1.1.2 Molecular Docking

Ligand-gated ion channels are a class of membrane-bound receptor proteins that are

often involved in cell signalling. These channels are activated or inhibited by ligands:

the peptides and other small molecules that bind to the gate to form a complex

with the receptor. The specialized role played by these receptors in the regulation

of cellular activity has made them a central focus in the fields of biochemistry and

pharmacology, where the goal is often to develop small molecule ligands to activate

or inhibit biologically relevant receptors.

Many diseases have been correlated with abnormalities in specific cellular activ-

ities. For this reason, drug development is largely a search for small molecules that

can activate or inhibit the receptor associated with the abnormal activity. As such,

predicting the interaction of a small molecule and biological receptor is a central

problem in biochemistry and pharmacology. While fast mathematical methods exist

for predicting the interaction strength between two bound molecules of a given orien-

tation, accurately predicting the binding orientation of the two molecules (molecular

docking) is a complex procedure.

There are two common approaches to molecular docking: simulation and comple-

mentary surface modelling. In the complementary surface approach, both the surface

area of the receptor’s complex and the surface area of the ligand are represented as

a set of descriptors, which are then compared to predict the binding orientation of

the ligand. This assessment is relatively fast but limited in its ability to account

for molecular flexibility. Complementary surface modelling lends itself to functional

group-based comparisons, where the ligand’s functional groups can serve as its de-

scriptors for the model.
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In comparison to the surface modelling approach, simulation is more accurate but

has greater computational complexity. In simulations, molecular dynamics techniques

are used in tandem with heuristic search methods to explore the orientation binding

space for a ligand/receptor pair. All pairwise atomic interactions between the two

molecules must be taken into account, subject to the additional degrees of freedom

introduced by ligand and receptor flexibility. These degrees of freedom produce a

huge orientation space, and simulation techniques often use a search heuristic, grid

system, and scoring function to identify low energy1 orientations.

Within the context of this thesis, the term molecular docking (or just docking)

refers to the use of a simulation technique to determine a ligand/receptor pair’s

binding orientation and the application of a scoring function to assess the pair’s

binding affinity.

AutoDock

While molecular docking programs abound, AutoDock [5, 6] is the most popular

amongst researchers and was cited in 2006 almost as often as the 4 next most cited

docking programs combined [7]. AutoDock is a suite of automated docking tools that

simplify the task of molecular docking. It consists of two main programs: autogrid for

calculating coordinate grids to model the target receptor and autodock for simulating

molecular docking within those grids. AutoDock is currently maintained by the

Scripps Research Institute and is free under the GNU General Public License.

AutoDock uses a Lamarckian Genetic Algorithm to search for a ligand/receptor

pair’s lowest energy pose. A genetic algorithm (GA) performs an indeterministic

search, so multiple GA runs will produce different affinity scores for the same lig-

1According to the Gibbs energy function
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and/receptor pair. As such, researchers who use AutoDock will typically use multiple

(100 is standard) GA simulations with different random seeds to more accurately as-

sess a ligand’s binding affinity. Since each simulation results in a predicted orientation

(pose), groups of AutoDock simulations are also termed pose evaluations.

1.1.3 High Throughput Virtual Screening

Drug development typically involves screening large collections of compounds to

identify a small set of compounds that can serve as the starting point for structure

optimization and refinement. In high throughput screening (HTS), machine automa-

tion is leveraged to rapidly estimate the biochemical activity of large collections of

drug-like molecules. A collection of assay plates, containing enclosed wells for storing

and isolating chemical entities, is built and filled with a reactant/reagent pair. After

allowing time for the reaction to occur, humans or machine optical devices measure

and record the extent of the reaction. The expense of this procedure has made

computational methods an important supplementary tool for drug development.

High Throughput Virtual Screening (HTVS) techniques may be categorized as

either ligand-based or structure-based depending on the screening criteria. Ligand-

based techniques are used to identify molecules that are similar to a set of ligands.

The throughput of ligand-based methods is dependent on the similarity metric, but it

is typically on the scale of thousands of chemicals per second. In contrast, structure-

based HTVS techniques use molecular docking methods to identify molecules that

have a high affinity for the target receptor. Structure-based HTVS techniques are

consequently several orders of magnitude slower than their ligand-based counterparts,

and a structure-based HTVS usually requires a parallel computing infrastructure to

achieve an acceptable throughput. Working with parallel computing infrastructures
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can require a large learning curve; fortunately, software programs such as WinDock [8],

BDT [9], Glide [10], and DockoMatic [11, 12] have been built to facilitate HTVS and

make HTVS tools more accessible to researchers who lack computer programming

skills.

1.1.4 DockoMatic 2.0

DockoMatic 2.0 is open source software intended for use by researchers and educa-

tors. It consists of an intuitive graphical interface and a Perl script that uses the

scripts from the AutoDockTools package to set up and run batches of docking jobs

with AutoDock. In addition to single ligand/receptor docking, DockoMatic enables

secondary ligand binding and structure-based HTVS. Ligands and receptors are input

as protein database (pdb) files and the experimentally determined or predicted ligand

binding domain on the receptor is specified with a grid coordinates file (gpf). Dock-

oMatic is capable of submitting and subsequently monitoring hundreds of thousands

of AutoDock jobs.

DockoMatic has the ability to generate a peptide’s structure from an amino acid

sequence and using the Obconformer program (part of the Open Babel tool suite [13])

for the structure’s energy optimization. Dockomatic 2.0 includes the Treepack [14, 15]

program, allowing in silico site-directed mutagenesis for complex peptide and protein

structures using experimentally determined tertiary structure. As a result, a library of

mutated peptides can be screened without manually generating the peptide’s mutated

structure; Treepack handles that on the fly. This greatly reduces the work associated

with screening large collections of peptide mutants, an attribute of DockoMatic that

has been leveraged in this thesis.
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1.2 Towards a Drug for Parkinson’s Disease

Epidemiological studies have demonstrated an inverse relationship between the de-

velopment of neurodegenerative disorders and smoking [16, 17, 18], decreased levels

of nicotinic receptors in postmortem studies of person’s who had been afflicted with

forms of dementia [19], and nicotine’s ability to improve cognitive function in animals

(including humans) [20]. These results have led many researchers to hypothesize that

nicotinic receptors serve an important role in both neuronal survival and cognitive

function [21]. This hypothesis has made nicotinic acetylcholine receptors (nAChRs),

which are the primary targets for nicotine in the brain, a central focus for researchers

interested in studying neurodegenerative disorders such as Parkinson’s disease.

In addition to nicotine, α-conotoxins have been extensively studied as ligands

for nAChRs. Conotoxins are one of a group of neurotoxin peptides that have been

isolated from the venom of the marine cone snails of genus Conus. They are small

peptides, consisting of 10-30 amino acid residues, and usually contain one or more

disulfide bonds. α-conotoxins have received a lot of attention because, unlike nicotine,

they have been found to selectively block specific nAChR subtypes. This has made

them an important tool for probing the structure-function relationships of nAChRs.

1.2.1 Previous Work

Dr. Owen McDougal and his research team have been investigating α-CTx MII,

a 16 amino acid peptide that exhibits an IC50 of 0.5 nM for the nAChR α3β2-

isoform [22]. α-CTx MII has a primary sequence of GCCSNPVCHLEHSNLC, con-

tains two disulfide bonds between C2-C8 and C3-C16, and features an α-helix initiated

at P6 and ending at S13 (see Figure 1.1). Site-directed mutagenesis studies on
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nAChRs, investigations into the alteration of the primary sequence of α-CTx MII, and

molecular modeling approaches have all been conducted to understand the selectivity

and potency of α-CTx MII and its variants [23, 24, 25]. Notably, the results of a

study by Bordia and colleagues showed the E11A mutant of the α-CTx MII peptide

demonstrated a 50-fold binding preference for the α6α4β2β3-nAChR isoform [26].

Figure 1.1: Primary sequence for α-CTx MII with disulfide linkages.

The findings of these studies motivated the team to develop a drug repurposing

workflow that could be used to identify strong candidates for pharmaceuticals to treat

Parkinson’s disease. The workflow was:

Peptide Mutant Screening Perform a structure-based HTVS of an α-CTx MII

mutant library to find peptides with high binding affinity for the α3β2-nAChR.

Search PubChem Compound Use these peptide structures to perform a ligand-

based HTVS of the PubChem Compound database and identify FDA approved

drugs with 3-D conformers similar to the high affinity peptides.

Verification Screening Perform molecular docking calculations between the result-

ing small molecule drugs and the α3β2-nAChR.

Synthesize Purchase or synthesize the highest affinity small molecules.
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Wet Lab Use lab-based experiments, such as the two electrode voltage clamp ex-

periment, to confirm that the predicted binding affinity translates to biological

activity.

Extension Use the developed workflow to study the more biologically relevant nAChR

α6α4β2β3-isoform in order to develop a drug to treat Parkinson’s disease.

As the first step in the workflow, the team decided to perform an in silico com-

binatorial chemistry experiment-based on the α-CTx MII peptide. They constructed

a library of α-CTx MII mutants and wanted to use structure-based HTVS methods

to identify peptides with a high binding affinity to the α3β2-nAChR. A pentameric

homology model of the α3β2 isoform of rat neuronal nAChR [27] was used for the

initial experiment since it was the best available expression of a nAChR. Citing studies

that identified the importance of the disulfide bonds in maintaining a rigid structure

and the α-helix initiated by proline in restricting the peptide’s length, the team

decided to conserve the C2, C3, P6, C8, and C16 residues during their simulation.

The plan was to allow the mutation of all other residues subject to the constraint that

a residue’s polarity and/or charge be conserved. That is, the polar and/or charged

S4, N5, H9, E11, H12, S13, and N14 residues could mutate into polar and/or charged

amino acids and the nonpolar G1, V7, L10, and L15 residues could mutate into

nonpolar amino acids (excluding proline). However, the resulting mutation space

consisted of an intractable 80 billion (84 ∗ 117) peptides. To make the experiment

tractable, the mutable residues were reduced to N5, H9, L10, E11, H12, and L15 and

mutation into C was excluded. This reduced the mutation space to a collection of

640,000 (82 ∗ 104) peptides. The HTVS capabilities of DockoMatic 2.0 were to be

used to investigate the library.
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Peptides are rarely used as pharmaceuticals since most are rapidly inactivated by

gastrointestinal enzymes. As such, the second step in the workflow was using the

top hits from the first step as the structural basis of a ligand-based HTVS of the

PubChem Compound database. The PubChem project contains an online tool for

searching any of the PubChem databases. The team planned to use the online tool

to perform a 3-D shape-based similarity search against the top α-CTx MII mutants.

Molecular docking calculations would be performed to predict the binding affinity

(to the α3β2-nAChR) of the identified small molecules. Lab-based techniques could

then be used to verify the computational predictions, and the entire workflow could

be used to probe the more biologically relevant nAChR α6α4β2β3-isoform in order

to identify drugs for treating Parkinson’s disease.

1.3 CAEPIDR

CAEPIDR was developed to facilitate the experiment described in Section 1.2. Fol-

lowing experimental validation, the software that was developed for the α3β2-nAChR

experiment was generalized and incorporated into DockoMatic. The resulting pro-

gram, DockoMatic 2.1, is a powerful tool for exploring a receptor’s conformational

binding space with peptide mutation and identifying small molecule drugs for disease

treatment.

In total, this thesis represents 4 major contributions to the field of biochemistry.

First, the identification of small molecule drugs with a high binding affinity to the

nAChR α3β2-isoform. Second, GAMPMS, a model for efficiently and accurately

searching a peptide’s mutation space for receptor binding affinity. Third, a procedure

for performing fast 3-D shape-based similarity searches over molecular databases.
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Last, an extension to DockoMatic that includes an implementation of the GAMPMS

model and the 3-D shape-based search procedure.

The body of this thesis has been divided into 2 chapters. Chapter 2 details the

Genetic Algorithm Managed Peptide Mutant Screening (GAMPMS) model, which

was developed to increase the throughput of DockoMatic’s virtual screening process

when screening peptide mutant libraries. The general model, as well as an imple-

mentation of it, are explained and experimental results are shown that demonstrate

its soundness. A GAMPMS of the 640,000 α-CTx MII peptide mutant library was

performed, in fulfillment of the workflow from Section 1.2, and is described. The

results of the search are also presented. The chapter ends with a usage case of

DockoMatic 2.1, demonstrating how to use the integrated GAMPMS program.

PubChem’s online search tool does not work with small peptides such as the α-

CTx MII peptide mutants, and an alternative tool was needed to search the database.

Chapter 3 details the procedure used to search a local copy of the PubChem Com-

pound database. The procedure is presented in the form of several pseudo-code algo-

rithms with accompanying textual explanations. The PubChem Compound database

search, for small molecules that were structurally similar to the α-CTx MII mutants,

is described and the identified small molecules are presented. The chapter ends with

a usage case of DockoMatic 2.1, demonstrating the use of the SimSearcher tool.

SimSearcher can be used to quickly search local molecular databases (sdf format) for

structurally similar 3-D conformers.
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CHAPTER 2

GENETIC ALGORITHM MANAGED PEPTIDE

MUTANT SCREENING

2.1 Introduction

2.1.1 Motivation

DockoMatic 2.0 facilitates the screening of large peptide mutant libraries by enabling

the following workflow: enumerate the peptide ligands in a file, enter the receptor

and specify its binding domain as a set of grid coordinates, select the number of GA

runs to be used in AutoDock simulations, and submit the jobs to run on a server.

However, the simultaneous submission of hundreds of thousands of jobs is likely to

overload the cluster’s scheduler and upset its administrators. In practice, screening a

large library with DockoMatic 2.0 requires the user to partition the library and submit

each partition separately, usually after some of the previously submitted jobs have

completed. Since most users of DockoMatic 2.0 are not expected to have scripting

skills, this procedure is not viable for large libraries.

Even with a script to monitor job submissions, performing molecular docking

calculations for hundreds of thousands of ligands is computationally expensive. For

example, using AutoDock 4.0 to simulate the binding of each of the 640,000 α-CTx
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MII mutants on a 122 core cluster1 (using 100 GA runs) would require:

1. ≈ 2 years to complete

2. ≈ 73.7 Terabytes of storage

3. 5246 partitions (for user submission)

assuming that each pose evaluation would requires 2 minutes to complete.

For many reasons, perhaps the most important of which is the inability of most re-

searchers to access a large quantity of computing power for a long period of time, these

requirements made the experiment intractable. An alternative method was needed

to reduce the time and computational requirements. To address these problems, we

asked the following question:

How can the α-CTx MII mutant library be screened in less time, with less

computational resources, and without the need for human supervision?

One solution that immediately presented itself was to reduce the number of pose

evaluations per ligand. This would result in a proportionate reduction in the time and

storage requirements for the screening. However, using only a few pose evaluations

would still require 5,246 submissions and would undermine the accuracy of the study.

2.1.2 Related Work

Generally applicable HTVS techniques exist that can greatly increase the throughput

of virtual screenings. Typically, these approaches use machine learning algorithms to

predict the binding affinity of new compounds. The affinity of docked ligands is used

1The size of the Computer Science Department’s in house (beowulf) cluster at Boise State
University
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to train the algorithms. Once trained, the algorithms are several orders of magnitude

faster than molecular docking techniques. As such, they can be used to screen huge

libraries that would be intractable to screen with traditional docking methods.

In one such approach, molecular docking techniques are used to assess the binding

affinity of a subset of a compound library. The docking results are then used to train

a random forest algorithm which is used to predict the binding affinity of the library’s

remaining compounds [28]. Using this approach, Plewczynski was able to find 60%

of the active compounds for a protein target when docking only 10% of the library.

Random forests have been shown to compare favorably to other methods for screening

molecular databases [29, 30]. Cherkasov et al. took a similar approach but built a

QSAR regression model instead of a random forest. The QSAR was then used to

predict the binding affinity for new compounds based on their 2D descriptors [31, 32].

The approach was able to reduce the time required for the screening of a 90,000

compound library (of potential human sex hormone-binding globulin (SHBG) binders)

by 40% while finding 4 structures that were SHBG binders with high micromolar

affinities. Different regression models, decision trees, neural networks, and many

other classifiers from machine learning have been used to a similar effect. Ma [33]

and Melville et al. [34] have both surveyed applications of machine learning classifiers

within the field of HTVS, and the interested reader is encouraged to review their work

for a more detailed treatment of the subject.

A genetic algorithm (GA) is another popular machine learning technique that

has found application in computational and combinatorial chemistry. Sheridan et

al. [35, 36] have used a GA to construct a library of synthesized oligomers from large

sets of simple chemical fragments. The GA was used to optimize the diversity of

the library’s members with the assumption that maximum structural diversity would
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result in the broadest coverage of the bioactivity space. The SELECT program [37]

searches for optimally diverse libraries using a product-based approach to library

design. With SELECT, a fully enumerated virtual library can be searched with a

GA for combinatorial subsets that are optimally diverse. Studies demonstrating low

hit rates yielded by maximally diverse libraries [38, 39] have resulted in the extension

of SELECT to support multiobjective optimization. Fonseca and Fleming give a

detailed survey of various approaches to multiobjective optimization [40], and several

programs have been created to perform multiobjective optimization [41, 42].

2.1.3 Genetic Algorithm-Based Searching

While machine learning algorithms can be used in place of traditional docking meth-

ods in order to increase the throughput of a screen, they are less accurate. Addition-

ally, the score that is assigned by a custom implementation (using a unique training

set) of a machine learning algorithm to a ligand/receptor binding is rather meaningless

in the context of a scientific community. In contrast, reporting an AutoDock score is

useful since anyone can use AutoDock and attempt to replicate the reported results.

Ultimately, an unsupervised algorithm was needed that could use the results of

previous docking jobs to make an informed decision as to which mutations would

increase the peptide’s binding affinity and which would decrease it. Algorithm 1

illustrates the essential characteristics of the desired model, which can be implemented

effectively with a GA.

A GA is a non-deterministic, iterative search heuristic that uses techniques derived

from natural evolution to search for an optimal solution to a given problem. A

GA searches by first randomly generating a collection (population) of hypotheses

(individuals) and then iteratively deriving a new population from the current one. A
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Algorithm 1 Heuristic Screen

Dock random peptides from the library
while improvement in top affinity ligands do

Infer goodness of mutations using data from docked peptides
Generate peptide mutants which could test inference model
Dock those mutants

end while

new population is built by applying a set of operators, known as genetic operators, to

the members of the current population. Common genetic operators include: mutation,

where individuals experience slight alterations; crossover, where pieces of the best

known individuals are recombined to form new individuals; and selection, where

individuals meeting some criteria are transferred to the next population. Central

to GAs is the ability to assess the goodness (fitness) of an individual. In the case of

molecular screening, the fitness of a ligand is likely to be directly proportional to its

binding affinity with a target receptor. A GA continually derives new populations

until some stopping criteria is met: typically when a set number of iterations have

occurred or there is stagnation in the fitness of the top individuals.

A genetic algorithm can be used to perform a heuristic HTVS of a peptide mutant

library, reducing the time and computing resources required for the screening without

the need for algorithm training.

The Genetic Algorithm Managed Peptide Mutant Screening (GAMPMS) model

was built to demonstrate the soundness of this hypothesis. In the GAMPMS model,

a GA manages a structure-based HTVS of a collection of peptide mutants. The

GA iteratively docks small collections of compounds and uses the binding affinities

of previously docked compounds, in tandem with techniques derived from natural

evolution, to select compounds for subsequent docking calculations. This approach
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compares favorably to other machine learning methods, when screening large peptide

mutant libraries, since it does not require training. The GA handles job submission

and monitoring, allowing researchers to focus instead on setting up the next phase of

the study.

2.2 GAMPMS

Algorithm 2 GAMPMS

stagnant rounds, i← 0
populationi ← generate random peptides
while stagnant rounds < MAX do

fitness evaluation of populationi
if change in highest affinity ligands then
stagnant rounds = 0

else
stagnant rounds+ +

end if
populationi+1 ← genetic operators(populationi)
i = i+ 1

end while

The GAMPMS model is shown in Algorithm 2, and a possible iteration is il-

lustrated in Figure 2.1. As mentioned previously, the GAMPMS model uses a

genetic algorithm to iteratively dock small collections of compounds (populations).

Every population has the same number of peptides whose binding affinity with the

target receptor is unknown, so a constant number of docking jobs are submitted at

the beginning of each iteration. The GAMPMS model is therefore self-throttling,

requiring no submission management on behalf of the user.

In GAMPMS, peptide mutant libraries are defined as a base peptide and a set

of mutation constraints. Mutation constraints specify which residues are subject

to mutation (mutable) and which amino acids can be substituted for each mutable
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residue. As an example, the 640,000 α−CTx MII mutant ligand library from Section

1.2 is defined in Table 2.1.

Base Peptide: α-CTx MII
Mutable Residue Substitutable Amino Acids

N5 R,N,D,E,Q,H,K,S,T,Y
H9 R,N,D,E,Q,H,K,S,T,Y
L10 A,G,I,L,M,F,W,V
E11 R,N,D,E,Q,H,K,S,T,Y
H12 R,N,D,E,Q,H,K,S,T,Y
L15 A,G,I,L,M,F,W,V

Table 2.1: The 640,000 α−CTx MII mutant ligand library defined as a base peptide
and a set of mutation constraints.

To be consistent with the GA terminology from before, peptide mutant screening

is envisioned as an optimization problem. An individual is a sequence of amino

acids such that there is one amino acid associated with each mutable residue in the

peptide mutant library’s definition. The goal of a peptide mutant screening is to find

an individual that, when the individual’s amino acids are substituted for the base

peptide’s mutable residues, results in a peptide with an optimal binding affinity with

the target receptor.

Figure 2.1: A possible iteration of GAMPMS
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2.2.1 Implementation of the Genetic Algorithm

Representation of an Individual

In the GA that was integrated into DockoMatic 2.1, each individual (peptide mutant)

is represented as the sequence of amino acids that are substituted for the base

peptide’s mutable residues. Since the base peptide is assumed to be the same for

all mutants, it is not necessary to incorporate it into the representation. Using the

single letter amino acid symbols, each individual can be represented as a character

array.

Fitness Evaluation

In DockoMatic’s GAMPMS implementation, evaluating the fitness of an individual

is a two-step process. In the first step, a pdb file is built for each individual by

submitting the individual’s set of mutations, along with the base peptide, to the

Treepack program. In the second step, the pdb file is used as the ligand for a

molecular docking simulation against the target receptor. AutoDock is used to dock

the ligand against the target receptor, and the Gibbs energy of the highest affinity

pose is considered the fitness value for the individual. The number of pose evaluations

to be used in each AutoDock simulation is configurable.

Genetic Operators

Three genetic operators are used in DockoMatic 2.1’s GA.

Elitism The first operator is elitism: a special case of the more general selection op-

erator. As previously mentioned, the selection operator selects individuals, based on
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some user-defined criteria, to be carried over to the successive population. In the case

of elitism, that criteria is fitness ranking within the population. In DockoMatic 2.1,

the elitism operator selects the top elite factor ∗ 100% of a population’s individuals

and adds them to the successive population.

Crossover The second genetic operator is two parent, two offspring N-point crossover

using a fitness proportionate selection scheme. The implemented two parent, two

offspring N -point crossover occurs in three steps. First, a selection scheme is used

to chose two individuals (the parents) from the current population. Since a fitness

proportionate selection scheme is used, the probability of an individual being chosen is

directly proportional to its fitness ranking within the population. In the second step,

a set of N indices are chosen from within a parent’s range ([1, individual length]) and

both parents are split into N + 1 pieces according to the indices. Finally, the pieces

from both parents are combined, in an alternating fashion, to make two different

offspring that share features of both parents. Figure 2.2 shows an example of two

parent, two offspring, 2-point crossover.

In DockoMatic’s implementation, the indices defining the splits are chosen ran-

domly for each pair of parents. The number of indices (N) is configurable but defaults

to N = b individual length
2

c. Recall that individual length is the number of mutable

residues in the peptide mutant library’s definition.

Mutation The final genetic operator is mutation, a process whereby each amino

acid in an individual’s sequence has a small chance of being replaced by a different

amino acid from the substitution set of the associated mutable residue. Two versions

of the mutation operator were implemented. In the first version, the probability of
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Figure 2.2: A pictorial representation of 2 parent, 2 offspring, 2-point crossover. Two
individuals from the current population are split into pieces and those pieces are
reassembled, in an alternating fashion, into 2 new individuals.

an amino acid being replaced by another amino acid was proportional to the historic

probability of such a mutation occurring. The historic probabilities were derived from

the PAM 1 mutation matrix (see Figure 2.3). In the second version, an amino acid

had an equal chance of changing into any of the other amino acids in the associated

residue’s substitution set. The different versions were used in multiple screens of

a known affinity peptide mutant library (see Section 2.3). It was found that the

uniform mutation technique had a (statistically insignificant) lower average number

of docking calculations for a screening that found similar affinity ligands. Due to its

relative simplicity, uniform mutation is used in DockoMatic 2.1’s GA.

In DockoMatic 2.1, the user can specify themutation rate, which is the probability

that any amino acid is altered during the mutation operation.

Terminating Condition

A genetic algorithm iteratively builds new populations, using a set of genetic oper-

ations, until some criteria is met (see Algorithm 2). In DockoMatic 2.1, the genetic

algorithm stops generating new populations when there has been no change in the
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Figure 2.3: The PAM 1 mutation matrix. The number at coordinates row, col
represents the average number of times that the amino acid row has mutated into
the amino acid col for every 10,000 mutations that have been identified.

top X highest affinity peptides over the last λ iterations. Intuitively, using larger λ

values will increase the probability of finding the highest affinity ligands in the library,

whereas using lower λ values will reduce the screening’s run time. The values of both

top X and λ are configurable.

Parameters

In review, the behavior of the GA is parameterized with 5 numeric values, represent-

ing:

elitism factor : the percent of the population’s top individuals that are carried over

to the successive population.

mutation rate : the probability of a mutation occurring within an individual.

top X : the number of optimal peptide mutants to identify.

|ρ| : the population size.
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Name Size Residues Amino acids
library64 64000 N5 -
library46 46656 N5 D
library32 32768 N5 D,H
library25 25088 N5 D,H,V
library16 16807 N5 D,H,V,Q
library8 8000 N5,L15 -
library5 5382 N5,L15 D

Table 2.2: Additional constraints were added to the 640,000 α − CTx MII mutant
library in order to create smaller libraries. This table lists, for a specific library, the
residues that were no longer deemed mutable and the amino acids that were no longer
substitutable.

λ : the GA stops after λ iterations of no change in the top top X individuals.

|ρ| = 50 and top X = 10 were used as the default values in the experiments in

section 2.3. The following notation is used to list the additional parameter values for

a GAMPMS experiment: { elitism factor,mutation rate, λ }.

2.3 Validation

For proof of concept, the GAMPMS implementation was used to screen libraries of

α−CTxMII mutants for binding affinity towards the α3β2 isoform of rat neuronal

nAChR. Each library was a subset of the 640,000 α−CTxMII mutant library from

Section 1.2; the libraries are defined in Table 2.2.

The most important subset was the 64,000 mutant library (library64) resulting

from the removal of N5 from the set of mutable residues. Since it was small enough

to screen exhaustively but large enough to yield interesting results, it was used for

most of the experiments in this section.
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2.3.1 Experimental Setup and Evaluation Metrics

The soundness of GAMPMS was assessed by comparing its results to those of an

exhaustive, structure-based HTVS (i.e., molecular docking calculations were per-

formed for each compound) of the same library. The binding energy of the top hits

and the number of docking calculations performed were the focus of the assessment.

Comparison of the number of docking calculations was straightforward; every peptide

was docked with the exhaustive approach whereas only a fraction of them were docked

with GAMPMS. The number of docking calculations performed by a GAMPMS is

reported as a percent of the library’s cardinality, denoted %Docked.

Comparison of the binding affinity of the top hits is a little more complicated.

We define Σx,r,s as the summation of the binding energy, against receptor r, of the x

best peptides identified by a HTVS s. The similarity in binding affinity between a

GAMPMS and an exhaustive screening is measured as:

%Affinity =
Σx,r,GAMPMS

Σx,r,exhaustive
.

All %Affinity scores in the current study use x = 10 and r = α3β2 nAChR.

AutoDock 4.0 was used, with 30 pose evaluations per docking (i.e., ga runs =

30), for the exhaustive, structure-based HTVS of library64 against the α3β2 nAChR

model. A fitness map, which associated a peptide to its highest affinity score from

AutoDock, was constructed from the HTVS results and used as the fitness function

for each GAMPMS mentioned below. This map allowed a GAMPMS to run in a

fraction of a second and removed the inconsistency from AutoDock scoring.2

The results of a GA are dependent on the values of its parameters (e.g., mutation rate,

elite factor, λ, etc.) and the pseudo-random numbers generated during the crossover

2If a ligand is given a different fitness score in each screening, it can be difficult to compare the
results of those screenings.
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and mutation operators. As such, a meaningful assessment of GAMPMS required

multiple screenings of each library. A given GAMPMS, identified by the library

screened and the parameter values used, was repeated multiple times to isolate the

variance resulting from the random number generator. We report the results of 1910

GAMPMS’s of library64 and 10 GAMPMS’s of each of the smaller libraries. The

fitness map from above served as the basis of the comparison between a GAMPMS’s

identified peptides and those that would have been identified by an exhaustive screen-

ing.

2.3.2 GAMPMS Consistency

The consistency of GAMPMS, as it relates to the %Affinity and %Docked scores,

was assessed with 300 independent GAMPMS’s of library64. For 100 of the exper-

iments, the set of parameter values { .2, .02, 2} was used to produce low %Docked

scores. The more general set of parameter values { .2, .05, 12 } was used for an addi-

tional 100 experiments. The last 100 experiments were run with a set of parameter

values, { .3, .08, 25 }, selected to yield a high %Affinity score. The results are

captured by the histograms in Figures 2.4 and 2.5. Figure 2.4 shows the frequency

of %Affinity scores across the 300 experiments, whereas Figure 2.5 shows the fre-

quency of %Docked scores across the same experiments. In both of these figures,

the height of bar[i] represents the fraction of GAMPMSs that resulted in a score

x : bar[i] ≥ x ≥ bar[i−1]. The exception to this rule is bar[0], whose height represents

the fraction of GAMPMSs that resulted in a score x : x ≤ bar[0]. For perspective,

100 screens were performed by docking 5,700 (the largest number of peptides docked

during the 300 experiments from above) random members of library64. This random

sampling resulted in a mean %Affinity score of 91.7 (σ = 1.3).
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Figure 2.4: A histogram representing GAMPMS’s soundness when screening
library64. The height of a bar represents the frequency of the range of %Affinity
scores. The blue bars summarize the data from 100 experiments with “low % Docked”
parameter values, the yellow bars summarize the data from 100 experiments with
“high %Affinity” parameter values, and the orange bars summarize the data from 100
experiments with more neutral parameter values. The lowest recorded %Affinity
score across all 300 screens was 94.05.

Figure 2.5: GAMPMS’s efficiency when screening library64. The x-axis shows the
percent of the library that was docked and the y-axis shows the associated frequency.
The color scheme is the same as detailed in Figure 2.4.
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Figures 2.4 and 2.5 demonstrate that GAMPMS can consistently find some of

the highest affinity ligands while performing docking calculations for a relatively

small number of the peptides. Moreover, the results indicate that the variance in

performance can be tuned with a single parameter. Specifically, increasing λ had the

effect of decreasing the variance in the %Affinity scores and decreasing λ had the

effect of decreasing the variance in the %Docked scores.

2.3.3 GAMPMS Scalability

|ρ| vs Performance

To assess how the GAMPMS implementation scaled with population size, |ρ|, 1,600

independent GAMPMSs of library64 were performed. The value of |ρ| was changed

for every 100 screens. The parameter values { .25, .05, d900
|ρ| e } were used for all

1,600 GAMPMSs. The %Docked score and the number of iterations required for

convergence were recorded and are displayed in Figure 2.6.

The time required to apply the genetic operators, submit docking jobs, and parse

the fitness values is insignificant compared to the time required for the molecular

docking simulations. As a result, the approximate run time of a GAMPMS can be

expressed with Rquation 2.1.

timetotal = iterations ∗
⌈

timejob ∗ |ρ|
available cores

⌉
(2.1)

where timejob is the amount of time required to dock a ligand to a receptor with

AutoDock.3

3This time is dependent on the number of pose evaluations being used; 1-3 minutes per pose
evaluation depending on your system’s speed.
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Figure 2.6: GAMPMS’s performance measures based on the number of processing
cores used, |ρ|. The y-axis shows the number of iterations (submissions) needed for a
GAMPMS to converge. Each diamond represents the mean value, for the associated
ρ, from 100 GAMPMSs of library64.

It can been seen from Equation 2.1 that the lowest run time can be achieved by

choosing the population size, |ρ|, to be less than or equal to the number of available

processing cores. In this case, all docking jobs can be run in parallel. Selecting a

larger value of |ρ| will at least double the run time of the screen.

Library Size

To approximate how the %Docked score scales with larger libraries, library64, library46,

library32, library25, library16, library8, and library5 were each screened 10 times with

the GAMPMS implementation. Each screening used the same set of parameter values:

|ρ| = 30, topX = 5 and { .2, .04, 5 }. The %Docked score from each GAMPMS was

plotted and is shown in Figure 2.7.

The inverse relationship between the size of a library and the %Docked score

indicates that the number of docking jobs required for a GAMPMS increases more
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Figure 2.7: The %Docked scores from 10 GAMPMSs of different sized libraries. Each
diamond represents a %Docked score.

slowly than does the cardinality of the compound library. So the average %Docked

score for a GAMPMS scales very well with library size. It is also interesting to note

the negative correlation between the variance in the %Docked scores and the size of

the library. If the trend holds for larger libraries, it might be possible to accurately

predict the number of iterations required for the screening to complete.

2.4 A GAMPMS of the 640,000 α-CTx MII Mutant Ligand

Library

The GAMPMS implementation was used to screen the 640,000 α-CTx MII mutant

library for binding affinity to the α3β2 nAChR. The results from Section 2.3 were used

to identify a set of parameter values that would yield peptides with a relatively high

binding affinity without requiring more than a week to run. The GA was configured

to mutate one in every 50 amino acids, carryover the top 40% of each population,

use two parent, two offspring, 3-point crossover, and attempt to identify a set of 50
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Peptide Energy (kcal/mol)
MII:N5Y:H9Y:L10W:E11T:H12N -21.07
MII:N5Y:L10W:E11Q:H12S:L15F -20.91

MII:N5Y:H9Y:L10W:E11Q:H12S:L15V -20.91
MII:N5Y:L10W:E11S:H12S:L15F -20.88
MII:N5Y:L10W:E11S:H12S:L15W -20.79

MII:N5Y:H9S:L10W:E11K:H12S:L15F -20.74
MII:N5Y:L10W:E11Y:H12S:L15V -20.73

MII:N5Y:H9K:L10W:E11S:H12N:L15G -20.71
MII:N5Y:H9N:L10W:E11S:H12S:L15W -20.68

MII:N5Y:L10W:E11K:H12S:L15G -20.66
MII -12.38

Table 2.3: The 10 highest affinity peptides found with a GAMPMS, the base peptide
(α-CTx MII), and their associated Gibbs free energy of binding.

optimal peptides. The GA terminated after it went 5 rounds without an improvement

in the binding energy of the 50 top peptides.

The screening was performed using 128 cores on Idaho National Laboratory’s

(INL’s) Fission cluster.4 40 pose evaluations were used in the AutoDock docking

simulation for a ligand/receptor binding. Had DockoMatic 2.0 been used for the

HTVS, it would have required 5,000 submissions (of 128 AutoDock jobs) and roughly

292 days. Instead, the GAMPMS implementation submitted 73 groups of 128 jobs

(for a total of 9,344 molecular docking jobs) and finished in 4 days and 6 hours. The

10 highest affinity mutants identified by GAMPMS, as well as the α-CTx MII peptide

(for reference), are shown in Table 2.3.

4The screening was funded as part of the Idaho University Consortium
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2.5 Usage: Screening Peptide Mutants with DockoMatic 2.1

A workflow has been included in DockoMatic 2.1 to facilitate the screening of large

peptide mutant libraries. The workflow is illustrated here by walking through the

setup of a GAMPMS of the 640,000 α-CTx MII library from Section 1.2.

To screen a peptide mutant library, DockoMatic 2.1 must be loaded and the

receptor’s pdb and gpf file, the output directory, and the ligand’s (base peptide’s)

pdb file must be entered in the associated fields. The number of AutoDock cycles

(pose evaluations) must be specified, as well as any special options for the swarm

utility. When these steps are completed, the “Mutation Screening” check box can be

marked to bring up the peptide mutant screening wizard (thewizard). Figure 2.8

shows what DockoMatic’s main window looks like when setting up a GAMPMS of an

α-CTx MII (MII) mutant library against the α3β2 nAChR (A3B2 2br8).

thewizard was designed to simplify the process of defining the peptide mutant

library and, if desired, to configure the genetic algorithm to be used for a GAMPMS

of the defined library.

2.5.1 Defining the Peptide Mutant Library

Recall that a peptide mutant library can be defined as a base peptide and a set of

mutation constraints, which specify the mutable residues and the amino acids that

can be substituted for each mutable residue. The base peptide is input as the ligand

in DockoMatic’s main screen, and the mutation constraints are specified in the first

two steps of thewizard. In the first step, residues belonging to the base peptide are

selected for mutation. In the second step, a set of amino acids is associated with each

of the mutable residues.
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Figure 2.8: The main window component of DockoMatic 2.1. To screen a peptide
mutant library, the user needs to input the necessary data files and then select the
“Mutation Screening” option, which has been highlighted in red in the picture.
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Mutable Residues

When thewizard is first loaded, the base peptide’s amino acid sequence is parsed

from the pdb file and displayed as a list of residues. Residues are deemed mutable if

they are selected in the list. One can use the standard multiselect and range select

features (respectively, CTRL + click and select first, hold SHIFT, select last) to select

residues for mutation. The “Go To” button is useful when dealing with a larger base

peptide (more residues). The button can be used to center the list on a certain

residue (enter its index and click “Go To”) or on the next type of residue (enter the

single letter representation for the amino acid and hit “Go To”). For convenience,

the currently selected residues will be displayed at the bottom of the screen.

To setup the GAMPMS for the the 640,000 α-CTx MII mutant library from

Section 1.2, hold down the CTRL button, click the N5, H9, L10, E11, H12, and L15

residues, and then click Next. Figure 2.9 shows the completed step before clicking

Next.

Mutation Constraints

Once the mutable residues have been selected, a peptide mutant library can be

defined by constraining the mutation of each mutable residue. This is achieved

by entering a substitution set for each mutable residue. One specifies a mutable

residue’s substitution set by selecting the mutable residue from the top list, selecting

the substitution set from the lower list (using the same list features described above),

and then hitting the “Bind Constraints” button. The same substitution set can be

easily assigned to multiple residues by multiselecting from the residue list. Figure

2.10 shows the nonpolar residue substitution set selection for the 640,000 α-CTx MII
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Figure 2.9: The first step in the Peptide Mutant Screening wizard. The user selects
residues from the base peptide that can be mutated during the experiment. The Go
To button can be used to focus the list on an acid type or index. Clicking the “Next”
button goes to the Mutation Constraints screen.

mutant library.

A peptide mutant library has been fully defined when a substitution set has been

selected for each mutable residue. Clicking “Finish” returns the user to the main

DockoMatic screen, where they can perform an exhaustive structure-based screen of

the library by clicking the “New Job” button. Alternatively, clicking the “Next”

button allows the user to configure a GA for a GAMPMS of the library.

2.5.2 Setting the GA’s Parameters

Configuring a GAMPMS requires specifying |ρ|, top X, and the desired balance

between the opposing goals of minimizing the number of docking calculations required

for the screening and maximizing the estimated binding strength of the resulting

ligands. The population size, |ρ|, determines the number of molecular docking jobs
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Figure 2.10: The second step in the Peptide Mutant Screening wizard. The user
assigns a substitution set to each mutable residues by selecting the relevant list
elements and hitting the Bind Constraints button. The resulting library can be
screened exhaustively (“Finish”) or with a GAMPMS implementation (“Next”).

that will be submitted at each iteration. To minimize the time required for a

GAMPMS, |ρ| should not exceed the number of processors that can be dedicated

to the screening. As mentioned in Section 2.2.1, the GAMPMS process ends when

there has been no change in the top X highest affinity ligands in the last λ rounds.

Thus, the value of top X affects both the number of iterations that will be generated

and the cardinality of the “optimized” result set.

In Section 2.2.1, it was shown that a GA’s performance can be configured by

specifying values for genetic operators’ parameters and the termination condition.

However, part of DockoMatic’s purpose is to make molecular docking tools accessible

to students. It is assumed that DockoMatic 2.1 users will be unfamiliar with GAs and

thus unable to configure a GA’s parameters to meet their screening goals. So instead

of inputting numeric values for unfamiliar parameters, a novice user tells thewizard
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Figure 2.11: Configuring a GAMPMS requires setting the population size, top X
(Result Set Size), and the sliding bar’s position. The remaining parameters are
generated automatically based on these 3 values. The generated values can be
viewed/modified by clicking Next, or the GAMPMS can be instantiated by clicking
Finish.

how to weigh the opposing goals of minimizing the number of docking calculations

required for the screening and maximizing the estimated binding strength of the

resulting ligands. This is achieved by adjusting thewizard’s sliding bar (see Figure

2.11). Appropriate values for elitism factor,mutation rate, and λ are generated

automatically.

When all 3 values have been input, the generated parameter values can be viewed

and/or modified by clicking Next. Alternatively, the GA can be instantiated by

clicking Finish. Clicking the “New Job” button from the main DockoMatic screen

will start a GAMPMS of the defined library.
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2.6 Conclusion

GAMPMS uses a genetic algorithm to manage a structure-based high throughput

virtual screening of a peptide mutant library. It is capable of reducing the number

of molecular docking calculations required to screen a 640,000 peptide library by

roughly 98.5% while finding ligands with high binding affinity with the target receptor.

Its performance is easily configurable, allowing the user to prioritize the number

of docking calculations performed or the binding affinity of the identified peptides.

GAMPMS scales well with the size of the peptide mutant library, exhibiting an inverse

relationship between the size of the library being screened and the percent of the

library’s compounds that need to be docked.

GAMPMS has the advantage of significantly reducing the number of docking

calculations required for structure-based HTVS. In comparison to other approaches,

GAMPMS does not require training or any form of human supervision. Instead,

GAMPMS iteratively docks populations of mutants using evolutionary techniques and

the binding energies of previously docked mutants to select compounds for subsequent

docking simulations. The types of libraries that can be screened with GAMPMS

are limited to combinatorial libraries such as those that result from mutating a

molecule. As with most other non-trivial heuristic searches, there is no guarantee

that a GAMPMS will find the highest affinity ligand from a library. The integration

of the GAMPMS model into DockoMatic 2.1 represents an important extension to

the suite’s investigative potential.
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CHAPTER 3

SIMILARITY SEARCH

3.1 Introduction

3.1.1 Motivation

Receptor-driven drug repurposing typically involves a ligand-based HTVS of small

molecule databases. Many small molecule databases exist, including DrugBank, Pub-

Chem, BindingDB, ChemSpider, and the Beilstein and Gmelin databases (available

through Reaxys), which provide web-based tools for performing substructure and

molecular similarity searches. However, each database uses a different interface and

different algorithms for their search. This can be problematic when one wishes to

perform a specific type of search over a database that contains the necessary data but

not the tools.

Having identified a set of peptides with a high-binding affinity to the target

receptor, the next step in the workflow (described in Section 1.2) was the identification

of small molecule drugs that closely resembled the 3-D shape of the α-CTx MII mutant

ligands. This was to be achieved using PubChem’s online search tools. The tools are

accessible free of charge, courtesy of the NIH, and can be used to search any of the

PubChem databases. The compound structure similarity search was identified as the

most appropriate for our experiment. The 200 highest affinity α-CTx MII mutants
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from the GAMPMS were used as input for the search. However, it was discovered

that PubChem’s 3D search, which is geared towards small, drug-like molecules, can

only generate a model for compounds containing less than 16 rotatable bonds. The

α-CTx MII mutants had at least 20 rotatable bonds, and as a result the tool failed

to generate a model for any of them. An alternative means of searching PubChem

was needed.

While there are many chemical databases, PubChem is arguably the most useful

for drug repurposing. It contains patent information, bioassay results, bioactivity

data, and structural information for over 51 million small molecules, including drugs

that have already been approved by the FDA.1 For these reasons, searching PubChem

was a vital part of the research project.

PubChem provides an FTP service for downloading their Compound database,

but the question remained:

How can a local copy of the PubChem database be quickly searched for molecules that

are “similar” to our small peptides?

First, a means of assessing similarity was needed. PubChem 3D uses volume

overlay techniques to compare each molecule in the database to a set of (a few

thousand) structurally diverse reference molecules. A binary fingerprint is then

constructed for each molecule by associating a bit with every reference molecule. If a

reference molecule is similar to a molecule, the corresponding bit is set. When all the

molecules have a fingerprint, the similarity between molecules is quickly assessed using

the Tanimoto coefficient (shown in Equation 3.1) to compare their binary fingerprints.

1Although all 4 types of information are not available for all molecules
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Tanimoto =
AB

A+B − AB
(3.1)

where A and B are the counts of fingerprint set bits in the molecule pair (respec-

tively) and AB is the count of bits in common.

Generating the fingerprint for every molecule is a computationally demanding

endeavor, but they can be precomputed in an completely parallel manner. PubChem

3D used this technique to reduce the search time by two orders of magnitude [43].

However, we did not want to spend months determining reference shapes and gener-

ating fingerprints in order to search the database a few times. A different technique

was needed to assess similarity within the database.

3.1.2 Similarity Metrics

Ligand-based HTVS must use a similarity metric that is easy to compute (or at

least precomputable) and discriminative. Since ligand-based HTVSs are often used

to discover ligands with similar bioactivity, without needing to perform expensive

molecular docking calculations, similarity metrics account for ligand characteristics

that are thought to be important in determining binding properties. Metrics are

broadly classified as structure or (pharmacophore) feature based, although some

metrics handle both. Structure-based metrics assess the shape of a molecule using the

molecule’s 2-D or 3-D coordinates. Graph comparison techniques such as Maximum

Common Subgraphs [44, 45] and graph kernels [46, 47], regression models such as the

Quantitative Structure-Activity relationship (QSAR) model [48], and volume overlay

techniques are commonly used to assess molecular similarity [49]. Feature-based

metrics focus on the presence and location of chemical features (e.g., hydrogen donors
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and acceptors, ring centers, and charged atoms) that are needed to trigger a biological

response from a specific biological target. QSAR and graph techniques, which work

well with a descriptor-based representation, can also be used to assess feature-based

similarity.

The size of chemical databases (terabytes) often necessitates the use of molecu-

lar signatures: compact, trivially comparable entities that encapsulate a molecule’s

relevant features. Using signatures divides the work of searching into two steps:

signature generation and signature comparison. Signatures are typically designed to

transfer complexity from the comparison aspect and into the generation aspect. Since

signatures can be precomputed, search times are typically much faster when signatures

are used. PubChem 3D uses binary fingerprints, which require computationally

demanding volume overlay techniques to generate, as a molecule’s signature.

3.2 Search Model

It was hypothesized that a shape distribution technique [50] could be used to assess

3-D shape similarity between molecules. With a shape distribution technique, a

shape sampling function is used to construct a distribution of measurements. The

distribution serves as the molecule’s signature and a distribution difference measure,

such as the χ2 test, is used to quickly compare the signatures.

While distribution tests are fast, performing 51 million of them can take a sub-

stantial amount of time. Multilevel K-means clustering provided a sound method for

decreasing search time since it would allow a recursive search operation to compare

the target molecule with a subset of the clusters. This would reduce the number of

comparisons required and therefore the search’s run time.
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A model was devised to allow quick similarity searches, with any target molecule,

over local molecular databases. For clarity, using a molecule M as the basis of a

similarity search (i.e., searching with a target molecule M) over a database D is

equivalent to searching D for items that are similar to M . The model consisted of

three steps:

Map Map all molecules to signatures.

Cluster Cluster the signatures for quicker searching.

Search Map the target molecule to a signature and search the (clustered) database

for similiar signatures.

Map must occur first to make a search tractable. The Cluster step is optional

but highly recommended because of its ability to reduce search time by a few orders

of magnitude. The Map and Cluster steps are computationally expensive but only

need to be performed once per database and can be pre-computed. Search is the

end product of the process, allowing users to quickly perform molecular similarity

searches over the database.

3.2.1 Map

Generating signatures is an embarrassingly parallel problem, which is made even

simpler by the fact that molecular databases are typically downloaded as a collection

of data files. To quickly generate signatures, it is necessary to first partition the

database files to create a partition for each available processing core. Then, using a

function (map()) to generate a signature for a molecule, an instance of the Map DB

algorithm (Algorithm 3) can be run on each processor in order to generate signatures
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for the associated partition. The important work in the Map step occurs in the

function map().

Algorithm 3 Map DB

for each DB file ∈ partition do
for each molecule ∈ DB file do
mMolecule← map(molecule)
write(mMolecule)

end for
end for

map() is responsible for generating a molecule’s signature (mapping a molecule

to a signature). The signature needs to be both descriptive and easily comparable so

that a similarity metric can be discriminative and efficient, respectively. Signatures

can be pre-computed, making the computational complexity of their generation less

important than that of the similarity metric.

Shape Similarity

The shape distribution approach described in Section 3.3 was used to gauge the 3-D

shape similarity of two molecules. In this approach, a shape sampling function is

applied to a 3-D shape in order to attain a set of measurements. The distribution of

these measurements is used as the shape’s signature. Any distribution difference test

(e.g., χ2) can be applied to the two signatures to quickly judge the similarity of the

associated molecules. This approach has been successfully applied to the comparison

of 3-D protein structures [51]. The implemented shape sampling function measures

the euclidean distance between unique pairs of atoms within a molecule. The amount

of computation needed for sampling is configured by defining the number of samples

to take. Since most of the molecules within PubChem Compound are small (less
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than 50 atoms), it was feasible to generate a distribution using all N(N+1)
2

unique

measurements (N is the number of atoms in the molecule).

A distribution is represented as a histogram containing a constant number of

bins and a maximum measurement threshold. Algorithms 4 and 5 demonstrate the

process used to create a molecule’s shape signature. Algorithm 5 is used as map()

in Algorithm 3 to generate shape signatures for a group of data files. Four similarity

metrics were implemented for signature comparison: Chi Square, L1 norm, L2 norm,

and the Root of Products test. These distribution tests are described in Appendix A.

Algorithm 4 Shape Sample(molecule)

for each atomi ∈ molecule do
for each atomj ∈ molecule do

if i 6= j then
if NOT sampledList.contains((i, j)) then
measurements.add(L2Norm(atomi, atomj))
sampledList.add((i, j), (j, i))

end if
end if

end for
end for
return measurements

3.2.2 Cluster and Search

Clustering is an optional step, although it is highly recommended for shape-based

similarity searches. Without clustering, searching a database with molecule q re-

quires comparing the signature of q to every signature in the database. For the

PubChem database, this would mean performing 51 million calculations. Clustering

the signatures can reduce the number of similarity calculations by a few orders of

magnitude.
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Algorithm 5 map(molecule)

ID ← molecule.getID()
measurements← Shape Sample(molecule)
bins← Integer[num bins]
for each measurement ∈ measurements do
i← 1
for 1 to num bins do

if measurement < (i ∗ bin width) then
bins[i] + +
BREAK

end if
i+ +

end for
if i > num bins then
bins[num bins] + +

end if
end for
for each bin ∈ bins do
bin← bin/measurements.size()

end for
return ID, bins
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Let us imagine dealing with a database containing |DB| signatures. If the database

is clustered with the K-means algorithm, where K = k1∗k2∗ . . .∗kn, then an effective

search could be performed with

≈ K +
|DB|
K

(3.2)

similarity calculations by comparing the target molecule to each of the K cluster

centers and then to each of the ≈ |DB|
K

signatures within the cluster whose signature

was most similar to the target molecule. If |DB| � K, a single K-means clustering

would reduce the number of comparisons by a factor of K.

Nested (multilevel) clustering can be used to further reduce search time. In

multilevel clustering, most clusters contain subclusters. Algorithm 6 gives a pseudo

code algorithm for the idea, with a user calling NlevelCluster(N,DB) to perform N

level clustering with the K-Means clustering algorithm. A “Big Data” implementation

of the K-means clustering algorithm was used for generating the two outermost

clusters, whereas an in-memory implementation was used for subsequent clusters.

Both of these implementations are discussed in Appendix B.

Algorithm 6 NlevelCluster(level,DB)

KMeans Cluster(DB)
if level > 1 then

for each cluster ∈ DB do
NlevelCluster(level − 1, cluster)

end for
end if

If the DB database is clustered with n-level clustering, where level i has ki clusters

(recall K = k1 ∗ k2 ∗ . . . ∗ kn from above), then the approximate number of similarity

calculations required for an effective search is given by:
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≈
n∑
i=1

ki +
|DB|
K

(3.3)

As a result, the difference in the number of required signature calculations between

the n-level clustering and the single clustering is given by:

n∏
i=1

ki −
n∑
i=1

ki (3.4)

So if |DB| = 50 million and K = 20 ∗ 20 ∗ 20 = 8000, then multilevel clustering

can reduce the search time by ≈ 65%, compared to a single K-means clustering.

The idea used in the single level cluster search can be easily extended to handle

nested clusters. Algorithm 7 shows a recursive technique that can search a collection

of signatures that have been subjected to N-level clustering.2 To search with the

target molecule q, one would call Search(q,DB).

Algorithm 7 Search(q,DB)

if DB contains clusters then
for each cluster ∈ DB do
sim← similarity(q, cluster.getCenter())
if sim < CLUSTER SIMILARITY THRESHOLD then
Search(q, cluster)

end if
end for

else
for each signature ∈ DB do
sim← similarity(q, signature)
if sim < SIGNATURE SIMILARITY THRESHOLD then
write(IDsignature, sim)

end if
end for

end if

2including 0-level & 1-level clustering
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3.3 Searching PubChem Compound

PubChem’s FTP tool3 was used to download the most diverse conformer for each

molecule in the PubChem Compound database. The SDF directory contained 2,864

sdf files, with each covering a range of 25,000 Compound ID numbers (CIDs). For

various reasons, many hundreds of thousands of compounds have been removed from

PubChem since its creation, so there are gaps in the CID sequence and each sdf file

contains data for less than 25,000 molecules. The 2,864 sdf files, which required 300

GB of storage, were stored on INL’s servers.

Shape distributions (signatures) were created for the downloaded molecules. The

Euclidean distance between all the unique atomic pairings within a molecule was

used to sample the 3-D shape of the molecules. The distances were binned to create a

histogram distribution. Each histogram contained 10 bins and each bin had a width

of 1.5 units. Distances greater than 15 units were placed in the last bin. The 2,864 sdf

files were divided into 16 groups of 179 files and signatures were generated for each

group in parallel. This required 3 hours and produced a signature file corresponding

to each sdf file.

Searching the signature database with a single peptide required 24 minutes. To

reduce the search time, the signatures were clustered using multilevel K-means cluster-

ing. During clustering, the χ2 test was used to assess the distance between signatures.

As a result of the clustering, the signatures were divided into 50 clusters, where each

of those clusters contained 20 subclusters and each of those clusters contained 5

subsubclusters.

The clustered signature database was queried with the top 200 peptides from the

3get ftp://ftp.ncbi.nih.gov/pubchem/Compound 3D/01 conf per cmpd/SDF/*
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GAMPMS described in Section 2.4. When querying the database, the χ2 test was

used to compare the peptide to the center of each of the 50 outermost clusters. The

cluster whose center was closest to the peptide, and all clusters whose centers had

a similarity score (with the peptide) within .01 of that score, were searched. The

same process occurred with the 20 subclusters contained in each searched cluster,

and again with the 5 subsubclusters contained in each searched subcluster. When

a subsubcluster was searched, the peptide was compared to each signature in that

cluster. In this manner, the 100 molecules that were most similar to a peptide were

identified in a few seconds with only a few thousand distribution tests.

Duplicate molecules and those containing inorganic elements such as silicon were

removed from the 20,000 small molecule collection, leaving 1,320 small molecules.

Each of these small molecules was docked against the α3β2 nAChR model using

AutoDock with 40 pose evaluations. To identify only distinct scaffolds, the 1,320

molecules were clustered and the molecule with the highest binding affinity with the

α3β2 nAChR was selected from each cluster. In this manner, 128 molecules were

identified. The 12 highest affinity molecules from the set of 128 are shown in Figure

3.1.

3.4 Usage: Searching PubChem with SimSearcher

The SimSearcher tool has been implemented in DockoMatic 2.1 to perform quick

similarity searches over local molecular databases. In this section, SimSearcher is

demonstrated by walking through the mapping, clustering, and searching of the Pub-

Chem Compound database. The PubChem Compound database, which was already

downloaded for the experiment in Section 3.3, was stored in the PubChemData folder.
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(a) CID 10349665 (b) CID 11017883 (c) CID 11479396

(d) CID 19303596 (e) CID 19311642 (f) CID 22012526

(g) CID 25131416 (h) CID 46702076 (i) CID 50197859

(j) CID 23590164 (k) CID 54426994 (l) CID 57872389

Figure 1: 2 dimensional structures

1

Figure 3.1: Small molecule drugs with predicted high binding affinity for the α3β2-
nAChR.
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Figure 3.2: The user interface for the SimSearcher program. To run any step of the
program (i.e., map, cluster, search), a user clicks the associated button. Output is
displayed in the area above the buttons

3.4.1 Map

The Map wizard is used to map the database’s molecules to a database of shape

signatures. A user clicks the Map button at the bottom of the SimSearcher window

(see Figure 3.2) to start the wizard. In the Mapping wizard, one must specify the

molecular database, the output folder (where to put the signature database), the type

of signature to generate, and the submission parameters.

For the demonstration, the PubChemData folder is used as the database directory

and the PubChemSignatures folder as the output directory. Shape distributions

are selected for use as the signatures (the pharmacophore signature is discussed

in Appendix C) and the default values are used. These values were chosen by

building histograms for a subset of the PubChem Compound database with the goal

of minimizing the number of empty or almost empty bins. Finally, one tells the

program to divide the work across X processes and to run Y processes per node.

Once again, the swarm utility is used to submit jobs to the cluster scheduler. Figure

3.3 shows the completed wizard for the example, using X = 12 and Y = 4. Clicking

the Finish button will submit the jobs to the scheduler.
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Figure 3.3: The interface for the Map program. A user points the program to the
molecular database and specifies the type of signature to generate as well as the
submission parameters (swarm parameters and the number of processes to spawn).

3.4.2 Cluster

The Cluster button can be clicked, from the SimSearcher window, to load the Cluster

wizard, which allows up to 3 levels of clustering to be performed. With the Cluster

wizard, one specifies the mapped (signature) directory, the output directory, the dis-

tribution test to use when assessing signature similarity (during K-means clustering),

the number of clusters to generate at each level, and the submission parameters.

For the demonstration, the PubChemSignatures (mapped) database is used and

the output is sent to the ClusteredDB directory. The χ2 distribution test is selected

to be used when comparing signatures. The number of clusters (the K in K-means

clustering) to generate at each level is then entered. To use 2 (or 1) level clustering,

one can specify 0 for the number of clusters at level 3 (and 2). Finally, one tells the

program to divide the work across X processes and run Y processes per node. Figure



53

Figure 3.4: The interface for the Cluster program. A user points the program to the
signature database and specifies what similarity metric to use, how many clusters to
generate at each level, and what parameters to use for submission (swarm parameters
and the number of processes to spawn).

3.4 shows the completed wizard from the example, with X = 12 and Y = 4. Clicking

the Finish button will submit the clustering jobs to the scheduler.

3.4.3 Search

Searching the molecular database is the end goal of the process. The Search button

is used to load the Search wizard, which allows a search of a (clustered) signature

database. With the Search wizard, one specifies the signature database to be searched,

the target molecule (as an sdf file), the similarity test to use, and the number of similar

molecules to identify. The search is run on the local machine.

For the demonstration, the ClusteredDB is searched for the 10 molecules most

similar to the first compound in PubChem 3D (the compound with CID = 1). The

χ2 test is selected to be used to assess signature similarity. The completed wizard

for this step is shown in Figure 3.5. Upon clicking Finish, DockoMatic 2.1 will parse

the target molecule (CID 1) from the sdf file and generate a signature for it. It will
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Figure 3.5: The interface for the Search program. A user points the program to a
database of molecular signatures and specifies the target molecule and the number of
similar molecules to identify.

then use Algorithm 7 to locate the most similar signatures and output the ID and

similarity score associated with the 10 most similar signatures.

One can search the database with a set of target molecules by submitting a .txt

file as the Query Target. The text file should contain the path to each query target’s

sdf file, with one path per line.

For comparison, both PubChemSignatures and ClusteredDB were searched

with a single target molecule (CID = 1) for the 10 most similar molecules. The

PubChemSignatures search took a little more than 24 minutes to complete and

performed ≈ 51 million similarity calculations. In comparison, the ClusteredDB

search required a few seconds, performed ≈ 15, 000 similarity calculations, and found

the same 10 molecules.
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3.5 Conclusion

The development of additional signature types and corresponding similarity metrics

could increase SimSearcher’s utility. A pharmacophore-based signature and corre-

sponding similarity metric have been developed (see Appendix C) and are included

in DockoMatic 2.1, but pharmacophore clustering is not supported. Work remains to

be done to improve the speed and test the accuracy of the developed pharmacophore-

based similarity search.

Once a molecular database has been mapped to a signature database, the molec-

ular database can be deleted. If a researcher wishes to learn more about a molecule

(e.g., the one that was most similar to a target molecule), he or she can use the ID

to locate its information from the online database. This prevents researchers from

having to allocate hundreds of gigabytes of memory to store redundant molecular

information.

In summary, a model has been devised to allow quick similarity searches over local

molecular databases with any target molecule. The model consists of 3 steps: Map,

Cluster, and Search. In the Map step, signatures are generated for the database’s

molecules. In the Cluster step, N-level K-means clustering of the signature database

is performed to reduce the number of comparisons needed for a search. Each of these

steps needs to be performed once per database per signature type. In the Search

step, a recursive search algorithm is used to locate signatures similar to the target

molecule(s). The ID for the identified molecules are output, allowing the user to

search the original web database for additional information on the molecule. The

model has been implemented and integrated with DockoMatic 2.1.



56

CHAPTER 4

CONCLUSIONS

4.1 Overview of Work

CAEPIDR was developed to explore the conformational ligand-binding space of the

α3β2 nAChR isoform and use the results to identify small molecule drugs that target

the receptor. A GA-based search procedure (GAMPMS) was used to heuristically

explore the ligand-binding domain of the α3β2 nAChR isoform using a 640,000 α-CTx

MII mutant library. The GAMPMS required only 9,344 docking calculations and

identified peptides with estimated binding affinities 70% higher than the original

α-CTx MII peptide.

In CAEPIDR’s repurposing step, the PubChem Compound database was searched

for molecules bearing a shape similar to the highest affinity α-CTx MII mutants. To

perform the search with small peptides, the database was downloaded and the shape

distribution based signatures were generated for each molecule. The signatures were

clustered using multilevel K-means clustering and searched with the peptide mutants.

The estimated binding affinities of the identified small molecules varied, but the top

molecule’s predicted affinity was 70% higher than that of the α-CTx MII peptide.

Some of the top identified small molecules, which are shown in Figure 3.1, are being

purchased from a vendor to provide additional validation for the approach.

CAEPIDR has been generalized and integrated with DockoMatic. DockoMatic
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2.1 contains an intuitive graphical interface for a peptide mutant screening workflow,

allowing a researcher to quickly create virtual peptide mutant libraries. The user

has the option to screen the peptide mutant library exhaustively or with an im-

plementation of GAMPMS. DockoMatic 2.1 also contains the SimSearcher module,

which facilitates the mapping, clustering, and searching of local molecular databases.

Searching a clustered database with SimSearcher requires a few seconds per target

molecule, and a list of target molecules can be submitted to facilitate larger searches.

As a result, DockoMatic is a powerful tool for researchers interested in the drug

repurposing model.

DockoMatic is an open source software tool and is available for download on

sourceforge.net.

4.2 Future Work

At this point, the first 3 steps of the workflow from Section 1.2 had been completed.

The 128 identified small molecules are promising candidates for repurposing to target

the α3β2-nAChR and treat Parkinson’s disease. However, much work remains to be

done before any of these drugs can be tested for treating Parkinson’s disease. For

example, Lipinski’s rule of 5, that can be used to remove candidates which have a

high chance of failing clinical trails, can be applied to filter the set of molecules. Once

a narrowed set is specified, members of that set must be purchased or synthesized

and tested in a lab setting to confirm the predictions of the computational methods.

However, these procedures are beyond the scope of this thesis; the 128 molecules

represent this thesis’ main contribution to the project.

The SimSearcher utility can be improved through additional experimentation
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to discover better default values for the shape distribution based signatures. Ad-

ditionally, pharmacophore features can be integrated into the signatures in order

to improve SimSearcher’s ability to identify molecules with similar bioactivity. A

pharmacophore-based metric has been implemented (see Appendix C) and has been

tested for effectiveness. Its performance (see Table A.1 from Appendix A) was

equivalent to that of the Chi-Square test. Unfortunately, this made it useless as

a complementary metric. Work remains to be done to modify the metric so that

it is capable of complimenting the shape distribution approach, which would give

researchers a better approximation for bioactivity similarity.
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APPENDIX A

DISTRIBUTION TESTS

The calcDistTest() function (below) was used to assess the similarity of shape-based

signatures. Since each signature was a fixed-size histogram, signatures were repre-

sented as an array of doubles. The calcDistTest() function was built to work with

one of four metrics, and the implementations of those metrics follow the code for

calcDistTest().

An experiment was performed to compare the performance of the shape distri-

bution approach, with each of the 4 distribution tests, to the results reported by

Bolton et al. on a 3-D conformer search of PubChem Compound [52]. To set up

the experiment, a set of 16 molecules was selected from the PubChem Compound

database. 8 of the molecules, set Pos, were ligands of prostaglandin synthase and

therefore had established similar bioactivity. These were the ligands reported on by

Bolton et al. While shape Tanimotos have an established threshold for similarity (.8

- .85), our approach did not. As a result, we also included a set of 8 molecules, Neg,

which were selected to be dissimilar to each other. Its use is explained below.

The pairwise similarity between all 16 molecules was assessed using each of the

4 implemented distribution tests. A threshold was used so that the tests could act

as classifiers. That is, if test(mola,molb) > THRESHOLD, then mola would be

considered similar to molb. The ideal classification for the 16 molecules is given by
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Equation A.1. The actual classification for all 5 tests (the 4 implemented tests as well

as the results reported by Bolton et al. for the Shape Tanimoto) are given in Table

A.1. In the experiments, the THRESHOLD was set so that there was no more than

1 false positive.

test(x, y) =


similar if x ∈ Pos& y ∈ Pos

not similar if x ∈ Neg& y ∈ Neg
(A.1)

Test True Positives False Positives
chiSquare 18 1

pdfL1 14 1
pdfL1 14 1

rootOfProduct 20 1
Bolton et al. 14 NA

Table A.1: Distribution Test results.

As can be seen, the shape distribution approach compared favorably to the tech-

niques used by PubChem 3D.
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public static double calcDistTest(double[] dist1, double[] dist2, String dtest) {

int x;

double sum = 0.0;

if (dist1.length != dist2.length){

sum = 0.0;

} else if (dtest.equals("chiSquare")) {

for (x = 0; x < dist1.length; x++){

sum += chiSquare(dist1[x], dist2[x]);

}

sum /= 2.0;

} else if (dtest.equals("pdfL1")) {

for (x = 0; x < dist1.length; x++){

sum += pdfL1(dist1[x], dist2[x]);

}

sum /= 2.0;

} else if (dtest.equals("pdfL2")) {

for (x = 0; x < dist1.length; x++){

sum += pdfL2(dist1[x], dist2[x]);

}

sum = Math.sqrt(sum);

} else if (dtest.equals("rootOfProduct")) {

for (x = 0; x < dist1.length; x++){

sum += rootOfProduct(dist1[x], dist2[x]);

}

sum = 1 - sum;

}

return sum;

}

Figure A.1: Function to compare distributions using the test arguments
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public static double chiSquare(double a, double b) {

double result = 0.0;

if ((a + b) != 0.0){

result = Math.pow(a - b,2) / (a + b);

}

return result;

}

public static double pdfL1(double a, double b) {

return Math.abs(a-b);

}

public static double pdfL2(double a, double b) {

return Math.pow(a - b,2);

}

public static double rootOfProduct(double a, double b) {

return Math.sqrt(a * b);

}

Figure A.2: Code for distribution tests
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APPENDIX B

K-MEANS CLUSTERING

The SimSearcher module uses N-level, K-means clustering to reduce the time required

for database searches. K-means clustering is an iterative clustering algorithm that

partitions a set of data points by placing K center points and adjusting their locations

until an optimal arrangement is found. An arrangement is considered optimal if the

sum of the distances between each data point and the cluster center closest to it is

minimized. However, our version of K-means clustering iterates for a set number of

cycles before stopping. At each iteration, a cluster center is moved to the average

coordinates of all the points that were in the cluster during the previous round.

B.1 In-Memory Clustering

When all the data points can be placed into main memory, algorithm 6 can be used to

perform N-level, K-means clustering by using Algorithm 8 as KMeans Cluster(DB).

B.2 Big Data Style

When all the data points cannot be placed into main memory, a different algorithm

needs to be used. In this case, algorithm 9 needs to be used. This algorithm assumes

a parallel computing infrastructure, and the parameter cores is used to specify the

number of processes to spawn during each iteration.
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Algorithm 8 In Memory KMeans Cluster(DB,K)

clusters← choose K random points as cluster centers
for i ∈ [0, X] do

for each point ∈ DB do
distance←MAX V ALUE
for each cluster ∈ clusters do
tmp← getDistanceBetween(cluster.center, point)
if tmp < distance then
closest← cluster
distance← tmp

end if
end for
closest.addPoint(point)

end for
for each cluster ∈ clusters do
distance←MAX V ALUE
for each point ∈ cluster.getPoints() do
run total+ = point.coordinates

end for
cluster.setCenter(run total/cluster.points.size)

end for
end for
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Algorithm 9 Big Data KMeans Cluster(DB, cores,K)

clusters← choose K random points as cluster centers
write clusters.getCenters() to centersf ile
partitions← partition(DB, cores)
for i ∈ [0, X) do

for each partition ∈ partitions do
spawn worker(partition, false) process

end for
wait for all workers to finish
if i ¡ X then

for each file ∈ worker totals file do
for j ∈ [1, K] do
running total[j]+ = running total cluster[j]
points in cluster[j]+ = count[j]

end for
end for
for j ∈ [1, K] do
cluster[j].setCenter(running total[j]/count[j])

end for
write clusters.getCenters() to centersf ile

end if
end for
for each partition ∈ partitions do

spawn worker(partition, true) process
end for
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Algorithm 10 worker(partition, final)

clusters← read from centersf ile
for file ∈ partition do

for each point ∈ file do
distance←MAX V ALUE
for each cluster ∈ clusters do
tmp← getDistanceBetween(cluster.center, point)
if tmp < distance then
closest← cluster
distance← tmp

end if
end for
if final then
closest.addPoint(point)

else
closest.add running total(point.coordinates)
closest.increment count()

end if
end for
if final then
append points to cluster file(clusters)
clusters.remove all points()

end if
end for
if 6 final then

write clusters.running totals and clusters.counts to worker’s totals file
end if
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APPENDIX C

PHARMACOPHORE-BASED SIMILARITY METRIC

Pharmacophore (feature) based similarity is another popular estimator of bioactivity

similarity. As such, a rotationally invariant function was developed to generate a

feature-based signature for a molecule, assuming a rigid structure.

A molecule’s data file contains information on atom locations, charge, and con-

nectivity, so simple graph traversal techniques can be used to determine the existence

of features within a molecule. For the algorithms in this section, we assume that a

function parseFeatures() exists that returns the features of the argument molecule.

Each feature has a type (e.g., ring, cation) and a location (set of (x,y,z) coordi-

nates), and the location of a composite entity (e.g., the molecule, a ring) is considered

to be the average location of its atoms. The feature-based signature generation

function is shown in Algorithm 11. The ID (its CID in the case of PubChem

Compound) and its features are parsed from a data file. Next, every feature is cast as

a typed vector originating at the molecule’s center. Finally, a 4-tuple (see Algorithm

12) is created for every pair of typed vectors in the molecule. The 4-tuple contains

the type of both of the typed vectors as well as their magnitude difference and the

angle between them.

A custom function was designed to map two feature-based signatures, s1, s2 to a

number sim ∈ [0, 1]. Before describing the function, we note that a signature is a
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Algorithm 11 map(molecule)

ID ← molecule.getID()
features← parseFeatures(molecule)
for each feature ∈ features do
feature.coordinates← feature.coordinates−molecule.getCenter()

end for
for each feati ∈ features do

for each featj ∈ features do
if i 6= j then

if NOT sampledList.contains((i, j)) then
FeaturePairs.add(generateFeaturePair(feati, featj))
sampledList.add((i, j), (j, i))

end if
end if

end for
end for
return ID, FeaturePairs

Algorithm 12 generateFeaturePair(vector1, vector2)

type1 ← vector1.getType()
type2 ← vector2.getType()
∆← L2Norm(vector1, vector2)
θ ← arccos vector1·vector2

|vector1||vector2|
return < type1, type2,∆, θ >
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collection of FeaturePairs. Now, let µ and ρ be any positive integer. The metric is:

h(s1, s2) =

∑
∀x∈s1

f(x, s2)

|s2|µ
(C.1)

where

f(x, s2) = MAX(g(x, y)) (C.2)

and where y ∈ s2. We also note that each 4-tuple in s2 is used at most once at

the in calculating the similarity between a 4-tuple:

g(x, y) =


0 if types don′tmatch

µρ−|θx−θy |
ρ

(1− |∆x −∆y|) otherwise
(C.3)

In other words, the function computes the similarity between two signatures by

summing the similarity between the most similar FeaturePairs in each signature. Fea-

turePair similarity is 0 if the feature types differ; otherwise, it is inversely proportional

to the difference in the angles and magnitudes.

The technique has the following shortcomings:

1. There is no defined average value for a collection of pharmacophore signatures,

so K-means clustering is unusable and queries require too many similarity

computations.

2. The signature generation assumes a rigid structure, which is inaccurate.

3. The method seems to classify small molecules in a manner similar to shape-based

similarity, so the methods do not complement each other well.


