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ABSTRACT 

Aziridinomitosenes (AZMs) are organic compounds structurally related to the 

mitomycins, a class of anti-tumor agents and antibiotics.  The cytotoxicity of the 

mitomycins is correlated to their ability to covalently link complimentary strands of 

DNA, forming DNA interstrand cross-links (ICLs).  Currently, there has been limited 

investigation into the biological activity of AZMs, likely due to difficulties in their 

synthesis.  Our lab has synthesized and evaluated the cellular effects of two AZMs, (1S, 

2S)-6-desmethyl(methylaziridino)mitosene (H/H-AZM) and (1S, 2S)-6-

methyl(methylaziridino)mitosene (Me/H-AZM).  We hypothesize that AZMs exhibit 

their cytotoxicity and cellular effects following a similar pathway to that of mitomycin C 

(MC), including the ability to form ICLs and modify DNA in cellular systems.  To test 

this hypothesis, we evaluated the cytotoxicity of our AZMs compared to MC in six 

cancer cell lines.  Previously, MC has also been shown to lead to the production of 

reactive oxygen species (ROS), activation of caspase enzymes, changes in mitochondrial 

membrane potential, and nuclear swelling.  As such, we probed for these effects in Jurkat 

and HeLa cancer cells upon AZM and MC treatment. Our studies reveal that the Me/H-

AZM has increased cytotoxicity compared to MC, while H/H-AZM was only more 

potent than MC in the T47D breast cancer cell line.  Both AZMs were more effective at 

increasing the levels of oxidative stress over MC.  Changes to the mitochondrial 

membrane potential were equivalent or greater than MC in treatments with both AZMs.  

Additionally, all three compounds were found to increase caspase-3 activation, with MC 
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leading to the greatest amount of activity in the Jurkat cell line.  Only MC treatment 

significantly increased caspase-3 activation in HeLa cells.  Both AZM and MC treatment 

stimulated nuclear swelling.  Finally, the DNA modifying-abilities of AZMs were 

investigated with the use of a Hoechst 33342 DNA cross-linking assay and a modified 

alkaline COMET assay.  Of the three compounds tested, these studies found that Me/H-

AZM lead to highest formation of DNA-DNA cross-links and modification to cellular 

DNA.  H/H-AZM treatment was found to produce a larger amount of cross-links and 

DNA modification in Jurkat cells than MC, but showed similar results to MC in HeLa 

cells.  Overall, AZMs were found to possess similarities to MC in their cellular effects in 

Jurkat and HeLa cells, with the ability to alkylate DNA in cell systems. 
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CHAPTER ONE: AZIRIDINOMITOSENES: A BRIEF HISTORY AND POTENTIAL 

AS ANTI-TUMOR CHEMOTHERAPEUTICS 

The mitomycins are a group of potent anti-tumor antibiotics originally isolated in 

1956 by Japanese researchers from the soil bacteria Streptomyces caespitosus.1 The 

search for new anti-tumor agents led the initial discovery of mitomycin A (MA) and 

mitomycin B (MB); this was soon followed by the isolation of the clinically relevant, 

mitomycin C (MC) from the same bacterial strain (Figure 1.1).1-3 Four years later, an N-

methylated version of MC, porfiromycin, was isolated from fermentation broths of 

Streptomyces ardus in 1960.4   

 
Figure 1.1 Structural representations of mitomycin A, B, and C. 

Several detailed reviews have been published that discuss the reactivity and 

biochemistry of mitomycins and MC analogs.5-11  In addition, reviews have been 

published outlining several approaches to the complete synthesis of mitomycins and 

mitomycin derivatives, “mitomycinoids”.6,12  This review is unique in the fact that it will 

attempt to focus primarily on aziridinomitosenes (AZMs) and their biological activity.  

To put this into perspective, an initial discussion regarding the structural skeletons of the 
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mitomycins and AZMs will be presented.  From here, the isolation and initial biological 

activities of MC will be lightly reviewed, followed by a brief overview of the clinical 

utilization.  A general discussion of MC affiliated DNA alkylation, oxidative stress, and 

anaerobic preference will conclude the discussion of MC.  An overview into work with 

AZMs will then ensue, focusing on biological activity studies, DNA alkylation 

properties, and analogs with biological investigations.  To finish, a brief outline to the 

potential benefits and drawbacks foreseen in AZM biological activity and development 

will be given.  

Overview of Mitomycin and Aziridinomitosene Structural Skeleton 

In 1962, Webb and coworkers resolved the structures of MA, MB, MC, and 

porfiromycin.13,14  Confirmation of the chemically devised structure of MA was achieved 

through X-ray crystallography the same year.15  These mitomycins were found to contain 

a tetracyclic core comprised of a fused pyrrolo[1,2-a]indole ring system, an aziridine, and 

carbamate functional group.10-15  Since the initial discoveries of MA, MB, MC, and 

porfiromycin, numerous other mitomycin analogues have been isolated or synthesized, 

each containing the same core structural backbone.10-12 The mitomycins have thus been 

grouped into three primary classes (A-type, B-type, and G-type) based on the substituents 

extending from the tetracyclic core (Figure 1.2).6,10,12 

 
Figure 1.2 Structures of A-type, B-type, and G-type mitomycins.6,12 
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In 1963, Iyer and Szybalski found that MC was capable of covalently linking 

complimentary strands of DNA, forming a DNA interstrand cross-link (ICL).  Iyer and 

Szybalski proposed that a reductive activation cascade of mitomycins resulting in DNA 

alkylation, which included the formation of a reduced aziridinomitosene 

(leucoaziridinomitosene) as a reactive intermediate was proposed (Figure 1.3).17-19   Later 

work presented discussed that cross-linking efficiency of AZMs increased in the presence 

of reducing agents, supporting the assertion that the reduced AZM is the most active form 

of mitomycins.18  

 
Figure 1.3 Structures of MC and leucoaziridinomitosene (reduced AZM).19 

The first AZMs were characterized as degradation products of their parent 

mitomycins in the mid-1960s (Figure 1.4).21  AZM synthesis was accomplished through 

the conversion of N-methylmitomycin A (NMA) and mitomycin B (MB) to their 

corresponding AZMs NMA-AZM and MB-AZM, respectively.  This was accomplished 

via catalytic hydrogenation in N,N-dimethylformamide (DMF) at atmospheric pressure, 

followed by reoxidation at reduced pressure, trituration, and recrystallization.21  
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Figure 1.4 Structural representations of N-methyl mitomycin A (NMA) and 

mitomycin B (MB) with their corresponding aziridinomitosenes.21  

Structurally, mitomycins and AZMs share the same core backbone, including the 

presence of a tetracyclic core arranged in a 6-5-5-3 motif, with the six and three 

membered rings presenting as a quinone and aziridine moiety, respectively.16  The key 

difference in designation as a mitosane (core of mitomycins) versus an aziridinomitosene 

occurs between C9 and C9a where mitosanes have a single bond, and AZMs maintain a 

double bond (Figure 1.5).10   

 
Figure 1.5 Structural depictions of MC and mitomycin C aziridinomitosene 

(MC-AZM) with partial carbon numbering scheme.  

Mitomycin Isolation and Initial Studies into Biological Activity  

Preliminary evaluations of purified mitomycin A, B, and C and their biological 

activities found these species to exhibit strong bactericidal and anti-tumor properties.1-3  

Mitomycins were found to exhibit broad spectrum antibiotic action against both gram 

positive and gram negative bacteria.  MA was shown to be the most potent.  Despite the 
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broad range of bacterial toxicity, effectiveness against fungi and streptomycetes was 

limited.1-4 

Initial in vivo experiments into the anti-tumor actions of MA and MB were 

conducted on mice inoculated with Ehrlich ascites carcinoma.  Upon confirmation of 

tumor growth, intraperitoneal injections of mitomycins were given at various 

concentrations.  Three days post drug injection, tumor cells were counted and compared 

to the untreated group as the average days of life prolongation.  This study found that 

mitomycin injections were able to completely abolish tumor cells, extending life up to 11 

days longer than untreated mice.1  Isolation of MC from the same bacterial broth was 

completed and followed with preliminary evaluations into its biological activity by 

Wakaki and co-workers.3  Treatments of mice inoculated with Ehrlich ascites carcinoma 

showed that MC exhibited anti-tumor properties similar to MA and MB.  However, drug 

toxicity was also demonstrated to be a problem as MC was demonstrated to cause death 

in mice 2-14 days post injection.3 

Mitomycin C Clinical Use 

Of the mitomycins, MC has received the most investigation and clinical use.2,7,22  

For further information regarding the clinical applications of mitomycin C, please see the 

reviews referenced.22-26   

Mitomycin C has been utilized as a single agent or in combination with other 

chemotherapeutics.  Originally MC was found to be useful in the treatment of several 

carcinomas, including those of the cervix, lungs, head and neck, breast, pancreas, colon, 

and rectum.27 Clinical utilization of MC was linked to several side effects, including 

myelosuppression leading to leukopenia and thrombocytopenia. More seriously, the 
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possibility of renal failure that manifests even after discontinued treatment was 

reported.25,27  Due to these side effects, the clinical use of MC was largely discontinued.  

However, MC continues to have high activity in localized treatment of bladder cancer.23 

In addition to its use as a chemotherapeutic agent, the anti-proliferative properties 

of MC have found roles in other fields of medicine, including surgical and ophthalmic 

specialties.  In ocular surgeries, MC is typically applied topically to promote the 

reduction of scarring and inhibition of the wound healing process, leading to prevention 

of haze.26,28  The anti-proliferative effects of MC on keloid fibroblasts have led to use as 

an adjunct therapy in the prevention of recurring highly collagenous hypertrophic and 

keloid scars.29,30 After surgical removal of the scar, application of MC to the surgical 

wound was demonstrated to decrease recurrence of keloid tissue.30  Furthermore, reports 

of MC’s potential use in otolaryngolic surgeries has been investigated in rabbits for 

successful use in decreasing the closure rate of maxillary sinus antrostomies.31 

Mitomycin DNA Alkylation 

In the 1960s, studies in the mitomycins biological activity revealed the formation 

of ICLs, with increased ICL formation occurring in species possessing greater G-C bases 

in their DNA.17-19 Mitomycins were found to further inhibit DNA synthesis through 

additional DNA alkylating events, including mono-alkylation and intrastrand cross-

linking.32  Nine different MC-DNA adducts have been isolated and characterized from 

MC treated cancer cells (Figure 1.6).   The isolated adducts include six different mono-

alkylation and three bis-alkylated species, resulting from MC or its major cellular 

metabolite, 2,7-diaminomitosene (DAM).7,11,32-38  
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  Mono-adducts   Bis-adducts 

1 1,2-trans-deoxyguanosine monoadduct 6 N2 2,7-diaminomitosene monoadduct 
2 1,2-cis-deoxyguanosine monoadduct 7 dG-dG intrastrand cross-link 

3 1,2-trans-deoxyguanosine decarbamoyl 
monoadduct 8 1,2-trans-dG-dG interstrand cross-link 

4 1,2-cis-deoxyguanosine decarbamoyl 
monoadduct 9 1,2-cis-dG-dG interstrand cross-link 

5 N7 2,7-diaminomitosene monoadduct     

Figure 1.6 Structures of nine characterized DNA adducts resulting from MC 
treatment.11,32 

The formation of ICLs is considered the main cause of cellular toxicity.   ICLs are 

extremely potent, with the ability to produce cell death with as little as one cross-link per 

genome.17-20   The mitomycins ability to form ICLs revealed that covalent linkage of 

complementary strands occurred only in the presence of cell lysates or other exogenous 

reductants, thus suggesting that mitomycins must first undergo reductive activation prior 

to formation of the lethal DNA cross-links.17-19  

Mitomycin reduction can occur via one or two electron reduction processes 

initiated through enzymatic or chemical means.  Chemically, MC has been shown to 

become reductively activated by thiols, dithiols, ascorbic acid, formate radicals, sodium 
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borohydride, sodium dithionite, and platinum catalyzed hydrogenation.19,39-41  In addition 

to the previous chemicals, reductive activation of MC has been reported to occur 

appreciably through an acid catalyzed pathway at a pH < 5.42  Two electron reduction of 

MC is accomplished by DT-diaphorase, yielding the hydroquinone mitomycin.43  The 

most common enzyme catalyzed reduction occurs via one electron by NADPH-

cytochrome P-450 reductase, xanthine oxidase, NAD(P)H-cytochrome c reductase, 

xanthine dehydrogenase, and NADH-cytochrome b5 reductase.11,43-45   

Upon discovering that mitomycins must first be reductively activated, Iyer and 

Szybalski suggested a preliminary reduction pathway using the resonant forms of 

mitomycins (Figure 1.7).17-19  Briefly, their proposal began with a reduction of the 

quinone ring (1) to a hydroquinone moiety (2), followed by an elimination of the 

methoxy (hydroxyl) group at carbon 9a (3), and proton removal from carbon 9.  This 

results in the formation of an aromatic indole system (4).17,18  

 
Figure 1.7 Reductive activation of mitomycins presented by Iyer and Szybalski.18 
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Further inquiry into the mechanism of reductive activation has afforded the most 

widely accepted pathway towards activation of C1 and C10 for DNA alkylation (Figure 

1.8), presented by the Tomasz research group in 1997.32  This pathway includes the 

formation of mono and bis-alkylated species and reduction via one or two electron routes.  

Initial reduction of the mitomycin quinone (MC) can occur via one or two electrons 

yielding a semiquinone (5) or a hydroquinone (6), respectively.  
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Figure 1.8 Mitomycin C reductive activation cascade leading to mono and bis-
alkylation.  The blue sphere acts as the first nucleophile, whereas the red sphere is 

the second nucleophile completing the DNA interstrand cross-link.11,32 
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From the hydroquinone (6), elimination of the methoxy group (7) occurs via 

formation of an N4 iminium intermediate (8).  Deprotonation at C9 leads to formation of 

the leucoaziridinomitosene (9).  At this point, the leucoaziridinomitosene can continue 

towards formation of a bis-adduct or undergo mono-alkylation.  In route to creating the 

interstrand cross-link, the leucoaziridinomitosene (9) is protonated to form the 

aziridinium (10).   The resonance stabilized aziridine ring opening occurs at C1, forming 

a quinone methide (12), via 11.  From here, nucleophilic attack of the exocyclic amino 

group of guanosine, as represented by the blue sphere, upon C1 of 12 leads to the first 

DNA alkylation event (13).  After alkylation at C1, elimination of the carbamate group 

(14) produces the second electrophilic site on C10.  The second alkylation event occurs 

through nucleophilic addition of the complimentary strand’s guanine exocyclic N2 amino 

group (red sphere) producing the bis-alkylated DNA adduct (15).  Subsequent oxidation 

of the hydroquinone to the quinone produces the final mitomycin-DNA interstrand cross-

link (16), which have been characterized by HPLC and LC-MS/MS analysis.7,10-12,32,37 

Mitomycin C Oxidative Stress 

Quinone containing compounds that are capable of undergoing one or two 

electron redox processes, such as MC, can lead to the increased production of reactive 

oxygen species (ROS) in the presence of molecular oxygen.46 ROS play integral roles in 

the normal physiological processes of cells at normal levels, including cell signaling and 

combating infectious agents.47  At elevated levels, ROS participate in oxidative stress or 

damage intracellularly, leading to disruption of normal function and potential damage to 

lipids, DNA, mitochondria, and proteins.47-49  The quinone-containing mitomycins 

undergo this one or two electron reduction with several oxidoreductase enzymes in route 
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to alkylating DNA.  Inquisitions into the MC related increase in chromosomal 

abberations, chromatid rearrangements and fragmentations, and additional DNA damage 

were directed towards the drug induced production of ROS and its relationship to these 

effects.17,56,57 

Early in vitro studies into the mitomycin-mediated formation of ROS identified 

the generation of hydrogen peroxide, hydroxyl radicals, and superoxide anion by reduced 

MC (Figure 1.9).52-58  Identification of MC induced superoxide anion was conducted 

using sulfite oxidation in microsome NADPH oxidase systems.52  Through inhibition of 

sulfite oxidation in the presence of superoxide dismutase, superoxide anion was identified 

as a result of MC reduction in the presence of oxygen.52  Additional evidence to the 

mitomycin catalyzed superoxide production was conducted using electron spin resonance 

(ESR) and the spin trapping reagent N-tert-butyl-α-phenylnitrone.54 The identity of each 

species was determined with the addition of catalase and superoxide dismutase to the 

reaction mixture, leading to a loss of the spin trap nitroxide radical.  These results further 

indicated that reduced MB and MC produce superoxide anion and hydrogen peroxide.54  

Both MC and a MC-DNA complex were found to generate hydrogen peroxide after 

reduction followed by exposure to air.  Hydrogen peroxide levels were abolished upon 

addition of catalase to the reaction mixture of both MC species, confirming the identity of 

the ROS as H2O2.53  Characterization of hydroxyl radical formed by enzymatically 

reduced MC was conducted using ESR and a spin trapping agent.51,55  Hydroxyl radical 

identification was confirmed using the addition of superoxide dismutase and catalase, as 

well as the formation of ethylene from methional.55  The generation of ROS through 
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reduced MC was found to lead to the induction of single strand cleavages in PM2 

covalently closed circular DNA, thyroid, plasmid, and λ DNA.50,51 

 

Figure 1.9 Schematic of MC induced ROS production. One or two electron 
reduced MC leads to the production of superoxide anion or hydrogen peroxide in 

the presence of molecular oxygen.8 

Exploration into the correlations between cytotoxicity of mitomycins and the 

production of ROS was investigated using cellular systems. Comparisons of four 

mitomycin compounds (MC, porfiromycin, BMY-25282, and BL-6783) and their 

associative cytotoxicity were conducted in EMT6 tumor cells under an aerobic 

environment (Figure 1.10).59 Using EMT6 cell sonicates, NADPH-cytochrome c 

reductase, xanthine oxidase, and bovine heart mitochondria as biological reduction 

systems, the consumption of oxygen by the four compounds was measured.  In aerobic 

conditions, BMY-25282 and BL-6783 displayed increased toxicity over both MC and 

porfiromycin.  Generation of both hydroxyl and superoxide radicals were greater for 

BMY-25282 and BL-6783 than MC and porfiromycin in three of the four reduction 

conditions, providing indications that enhanced aerobic toxicity is likely affiliated with 

increased production of ROS by mitomycins.59 
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Figure 1.10 Structural depictions of mitomycin analogs: BMY-25282, BL-6783, 

BMY-43324.59,63 

Experiments conducted with VA-13 and IMR-90 human embryonic cells 

provided additional insight into the role of ROS.60  Specifically, VA-13 cells, which are 

more sensitive to oxygen radical production than are IMR-90 cells, were more 

susceptible to MC treatment.  A similar frequency in cross-linking was displayed 

between cell lines, although increased levels of double strand DNA breaks were observed 

in VA-13 cells. Pre-incubation with superoxide dismutase or catalase led to an increased 

survival of VA-13 cells upon treatment with MC but not in IMR-90 cells, suggesting that 

sensitivity to MC treatment could be correlated with the ability to neutralize ROS.60  

Mitomycin Anaerobic Preference 

In the presence of molecular oxygen, reductive activation of MC is halted, 

returning it back to the inactive quinone form.17-19, 56-57  This subsequent reduction-

oxidation pathway renders MC less potent in O2 rich environments, decreasing the ability 

to form ICLs, with increased production of reactive oxygen species.61  As a result, in the 

early 1980s, the potential of MC as a selective hypoxic anti-tumoral drug was 

investigated.  Measurements of MC metabolism (the rate of MC disappearance and 

formation of an alkylating species) were conducted in EMT6 and S-180 cell sonicates 

under hypoxic and aerobic conditions.  These studies found that the rate of MC 

metabolism was much greater under hypoxia than in the presence of oxygen. 
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Additionally, EMT6 cells treated with MC anaerobically exhibited increased sensitivity 

to the drug.61 Investigations were expanded into the exploration of porfiromycin 

cytotoxicity to EMT6 cells under anaerobic and aerobic conditions.  Porfiromycin 

displayed similar cytotoxicity to MC under hypoxia, but had diminished activity 

compared to MC towards EMT6 cells in the presence of oxygen, establishing the notion 

that MC and porfiromycin are selective hypoxic agents.62   

Mitomycin analogues BMY-25282, BMY-43324, and BL-6783 were evaluated 

for their preference to anaerobic versus aerobic environments in EMT6 cells (Figure 

1.10). BMY-43324 displayed hypoxic preference, with greater cytotoxicity and cross-link 

formation than MC and porfiromycin.  BL-6783 experienced no difference in toxicity 

under hypoxic or aerobic conditions.  Under aerobic conditions, BMY-25282 displayed 

an increased potency and earliest formation of DNA cross-linking.  Structural analysis 

(MC vs. porfiromycin; BMY-25282 vs. BL-6783) with ICL formation and cell killing 

ability revealed that methylation of the aziridine nitrogen leads to a preference towards 

hypoxic conditions.63 

Mitomycin C Resistance 

Effective MC treatment relies upon tumors that are high in flavin reductases and 

other proteins that activate mitomycins.8  Inspections into the cytotoxic resistance of 

mitomycin producing Streptomyces lavendulae identified two genes (mcrA and mcrB) 

responsible for coding the protein MCRA (mitomycin C resistance associated).   This 

protein contains a covalently linked FAD, assisting in the reoxidation of hydroquinone 

mitomycin C to the quinone moiety in the presence of oxygen. Sequential analysis of 

MCRA revealed similarities to oxygen oxidoreductases in animal, plant, and bacterial 
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organisms.64,65  Expression of the mcrA gene into CHO cells lead to a substantial 

increased resistance to mitomycin C and porfiromycin under aerobic conditions.  When 

treated under hypoxic conditions, a slight increase in resistance was observed in the 

MCRA-1 expressing CHO cells.  MCRA and its sequential relationship to oxygen 

oxidoreductase enzymes in animal cells generates a plausible stance that tumor cells 

exhibiting overexpression of these enzymes could lead to increased resistance to MC.  

  The necessity of biological reduction to form ICLs allows for the ability to 

develop resistance to mitomycin treatment.  Multiple cancer cells lines have been shown 

to exhibit resistance to MC, in accordance with the regulation of several bioactivating 

enzymes, including DT-diaphorase and NADPH:cytochrome c oxidoreductase.66-68 The 

ability to re-establish MC sensitivity was displayed in CHO cells expressing the MC 

resistant MCRA protein through overexpression of DT-diaphorase and 

NADPH:cytochrome c oxidoreductase.68    

Attempts to profile genes involved in MC resistance were carried out through 

nonessential gene deletions in Saccharomyces cerevisiae.  Deletions of genes involved in 

nucleotide excision repair, including damage recognition (RAD14 and RAD4) and 

incision endonucleases (Radp1-Rad10p complex and Rad2p) led to an increased 

sensitivity of MC.  Further increased sensitivity to MC was observed upon deletion of the 

PSO2/SNM1 gene, which is involved in the repair of interstrand cross-links.  Lastly, the 

removal of multiple DNA damage checkpoint genes led to an increase in yeast’s 

sensitivity to MC.69 

Successful utilization of MC moving forward appears to be dependent on a 

variety of aforementioned factors.  These factors include the enzymatic profile of cells, 
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their ability to reduce MC, and presence of resistant genes.  For these reasons, future uses 

of MC as an effective treatment option may require tailoring to the appropriate system.   

Aziridinomitosene Biological Activity 

Investigations into the biological activity of AZMs have been limited in 

comparison to the mitomycins.  The inaugural explorations into the biological activity of 

AZMs were conducted through the conversion of MB and NMA to their respective 

AZMs (Figure 4).21,70-74  In vitro examinations revealed that NMA-AZM and MB-AZM 

exhibit powerful broad spectrum bactericidal agent in accordance with the mitomycins, 

while showing additional activity in mice orally and subcutaneously against 

Staphylococcus aureus and Streptococcus pyogenes C-203.21 

In 1971, Kinoshita and co-workers studied the biological activity of the five 

AZMs depicted in Figure 1.11.  Evaluations of the bactericidal and anti-tumor activity of 

NMA-AZM and multiple mitosene compounds demonstrated that the most active 

compounds contained the three functional groups: an aziridine ring, carbamate, and 

quinone.  NMA-AZM displayed activity against gram positive and gram negative 

bacteria, while also demonstrating high anti-tumor activity against solid sarcoma 

180.21,72-74  
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Figure 1.11 Structures of aziridinomitosenes studied by Kinoshita and co-

workers.72 

The other AZMs (17, 18, 19, POR-AZM) were evaluated for their bactericidal 

properties against gram positive and gram negative bacteria, but not for their anti-tumoral 

activity.  Of these, 18 (7-dimethylamine) displayed similar activity against gram positive 

bacteria to NMA-AZM, with decreased efficacy towards gram negative bacteria.  POR-

AZM and 19 showed little efficacy as a bactericidal.72 

Hodges and Remers evaluated the biological activity of NMA-AZM in P-388 

murine leukemia with several other mitosene analogs with various substitutions about 

carbon 1.73  Their studies found that NMA-AZM was more effective at prolonging life in 

treated mice over those treated with any of the 1-substituted mitosenes.  When compared 

to MC, NMA-AZM was found to have a higher optimal dose at 12.8 mg/kg versus that of 

3.2 mg/kg for MC.  However, NMA-AZM was found to be more effective at increasing 

the life span of treated mice, despite its requirement for higher dosages.73 

The synthesis and subsequent anti-tumor activity against P-388 leukemia in mice 

of ten different 7-substituted AZMs was conducted by Iyengar, Remers, and Bradner 
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(Figure 1.12).74 Several of the synthetic AZMs showed activity against the murine tumors 

comparable to MC, but required higher dosages. The most active AZMs, NMA-AZM, 

and 25 were both successful at prolonging the life span of treated mice over that of MC.  

The observed increase in survival time required four and eight fold greater dosages, 

respectively.  AZM 21 provided the only mice surviving to 30 days after treatment, in 

two dosages, both of which were higher than MC (8x and 16x). Furthermore, activity was 

seen at high dosages by 22 and 26; there was not an observed increase in survival times 

compared to MC treated mice. 74    

 
Figure 1.12 Structural representations of 7-substituted aziridinomitosenes.74 

Investigations into the range of activity displayed the 7-substituted AZMs was 

conducted by testing MC-AZM, 22, 23, and MC against mice inoculated with L-120 

murine leukemia.  Activity was seen in two of the compounds (AZM 22 and 23), but not 

to the extent of MC.  Of particular interest was the inactivity MC-AZM, as it is an 

intermediate in the DNA alkylation pathway and would have thought to present as an 

active compound.74   

Additional analysis into the biological activity exhibited by the 7-substituted 

AZMs was an assessment of the structural elements leading to increased potency.  A key 
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distinguishing feature between the two sets of AZMs is the presence of a methylated 

aziridine ring in NMA-AZM, POR-AZM, 25, and 26.  This was found to increase the 

activity of the carbon 7-substituted AZMs in accordance with the calculation of a 

minimum effective dose (MED), the minimum dose to exhibit a response.  Explanations 

into the increased activity observed by N-methylated AZMs were attributed to the 

increased basicity of the aziridine.  Protonation of the aziridine ring leads to activation 

and ring opening, followed by subsequent nucleophilic addition at C1.  Therefore, a 

methylated aziridine ring would have increased basicity when compared to the 

hydrogenated version, leading to greater anti-tumoral activity in AZMs. 74  In addition, 

the presence of the aziridine ring functional group was affiliated with the ability to 

prolong life by NMA-AZM treated mice inoculated with P-388 leukemia.73 

Several AZMs have displayed biological activity with most requiring elevated 

quantities above MC in order to elicit similar responses.  Despite the increased dosages, 

treatment with some AZMs resulted in the prolongation of life.  Further, the increased 

activity of methylated AZMs suggests that synthetic efforts should consider incorporating 

this functional group into their architecture. 

Aziridinomitosene DNA Alkylation 

Formation of DNA ICLs have been attributed as the main cause of the 

cytotoxicity associated with mitomycins.20,33  Exploration into the pathway through which 

mitomycins generate ICLs, incorporates AZMs as intermediates towards DNA 

alkylation.32  Investigations in DNA modification of AZMs began with AZMs, which 

were converted from their parent mitomycins through reduction-oxidation reactions and 
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DNA (Figure 1.13).75,76  Soon after, evaluations of a C6/C7 unsubustituted synthetic 

AZM (H/H-AZM) and its ability to covalently modify DNA were investigated.77,78  

 
Figure 1.13 Structure of AZMs investigated for DNA alkylating properties. NMA-

AZM, MC-AZM, and (1S, 2S)-6-desmethyl(methylaziridino)mitosene (H/H-
AZM).75-79 

Teng and coworkers conducted an in vitro ICL analysis using MC, NMA, and 

NMA-AZM under hypoxic conditions in the presence of the reducing agent sodium 

dithionite and radiolabeled DNA.75 Results showed that NMA-AZM exhibits a sequence 

selectivity towards 5'-XCpGY, similar to NMA and MC, while cross-link formation by 

NMA-AZM occurred at higher percentage towards the 5'-XCpGY-3' motif than MC at 

pH 4.5 and 7.5, with similar frequency in 5'-XGpCY-3' sequences.  The cross-link 

percentages for NMA-AZM were consistent with that of its parent mitomycin, NMA, 

throughout the study.75 

Additional studies into AZM DNA alkylation were conducted using the UvrABC 

assay in the absence of a reducing agent, with NMA-AZM and MC-AZM.76 Under non-

reducing conditions, AZMs displayed similar sequence specificity to reduced MC, 

bonding preferentially to the 5'-CpG site, with alkylation occurring at the guanine 

residue, as in the previous study.75,76  Furthermore, upon reductive activation of NMA-

AZM with sodium dithionite, a decline of sequence selectivity of DNA alkylation was 

observed, suggesting an increase in the reactivity of this species.76 
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The DNA modifying capabilities of the C6/C7 unsubstituted AZM, (1S, 2S)-6-

desmethyl(methylaziridino)mitosene (H/H-AZM), were also evaluated using the 

UvrABC assay.78  In the absence of reducing agent, H/H-AZM formed DNA cross-links 

with selectivity towards both 5'-CpG and 5'-TpG sequences, with modifications occurring 

at guanine residues.  Cross-linking with H/H-AZM was shown to be time dependent with 

increased formation at longer incubation times ranging from 1-4 hours. In addition to the 

DNA modifying properties of H/H-AZM, evidence was provided that H/H-AZM could 

be forming DNA-protein cross-links (DPCs).  Formation of DPCs is highly likely given 

the electrophilic sites located at carbon 6 and carbon 7, in addition to the traditional C1 

and C10 locations of DNA alkylation in mitomycins.78 

DNA binding studies with H/H-AZM were conducted in vitro with the absence of 

exogenous reductants under aerobic conditions, revealing formation of DNA ICLs with 

preference to a 5'-CpG motif.79  The cross-linking ability was evaluated as a function of 

pH from 5-7.5, exhibiting the largest formation of ICLs at pH 6.0.  These results appear 

to be consistent with the increased toxicity displayed by MC in acidic environments.  

Alterations in the levels of interstrand cross-linking were seen based on the nucleotide 

immediately preceding and following the 5'-CpG sequence, with the highest ICL 

formation occurring in the presence of the tetranucleotide sequence of 5’-ACGT.  

Replacement of 2'-deoxyguanosine for 2'-deoxyinosine, led to abolishment of cross-link 

formation, confirming the critical role the exocyclic amino group of 2'-deoxyguanosine in 

ICL formation.79 

These studies provide direct evidence that AZMs are capable of forming DNA 

ICLs, and do so with similar properties to MC.  AZM-induced ICL formation was found 
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to follow the same sequence specificity of MC with preference towards 5'-CpG-3' motifs.   

Furthermore, DNA alkylation was found to occur at the guanine residues, as displayed by 

MC.  DNA modification by AZMs has been shown to occur with similar frequency as 

MC, in the presence and absence of exogenous reductants, proposing that formation of 

AZM DNA adducts may not require reductive activation.  

Aziridinomitosene Analogs 

A number of AZM analogues have been synthesized but little on their biological 

activities have been published to date (Figure 1.14).  In 1996, an analog to the MA AZM 

was synthesized by the Jimenez group.  The synthesis started with nitration of 2,5-

dimethylanisole.  Their final product (27) lacked a carbamate functional group, and a 

functional group at the C10 position altogether.80  Soon after, a fully functional MA AZM 

was synthesized, containing both the aziridine ring and carbamate groups.81 

Following this reports of a successful synthesis of a tetracyclic model for an 

aziridinomitosene, via an 11 step synthesis were published.82  This process originated 

with the D-erythronolactone derivative (-)-2,3-O-isopropylidene-D-erythronolactone.  

The final two products consisted of the aziridinomitosene analog possessing an ester at 

C10, with an unprotected aziridine (28) or the N-phosphorylated analog (29).82 
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Figure 1.14 Structures of synthetic AZM analogs.80,82,83 

Later, Wiedner and co-workers synthesized two protected (N-trityl (30) and N-

TBDPS (31)) derivatives of the AZM version of FK317, and evaluated their ability to 

undergo solvolysis at carbons 1 and 10.83  Under mild nucleophilic conditions, the 

analogues 30 and 31 exhibited a faster heterolysis at C10 than C1.  This observation 

presents with conflicted behavior to that of typical AZMs containing the stabilizing 

quinone ring, creating C1 as the preferential electrophile to nucleophilic attack.83 

In 2011, Bonham and co-workers successfully synthesized a diazole analogue 

(32) of an aziridinomitosene, fusing an aziridine ring onto a pyrrolo[1,2-a]benzimidazole, 

and evaluated its biological activity (Figure 1.15).  An additional heterocyclic system, N-

[(1-tritylazridin-(2S)-yl)methyl]-1H-benzimidazole (33) was also synthesized and studied 

in this report.  The cytotoxicity of these compounds were evaluated against MC in three 

cell lines, GM00637 (human normal skin fibroblasts) and two human breast cancer cell 

lines (MCF-7 and HCC1937 (BCRA1 deficient)).84 
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Figure 1.15 Structural representations of synthetic AZM analogs 32 and 33.  

Aziridine ring fused onto a pyrrolo[1,2-a]benzimidazole (32) N-[(1-tritylazridin-
(2S)-yl)methyl]-1H-benzimidazole (33).84 

The synthetic compounds 32 and 33 showed lower toxicity in the GM00637 cell 

lines than MC with IC50 values of 3.11 ± 0.44, 1.26 ± 0.13, and 0.77 ± 0.18 µM 

respectively, while 33 displayed the largest potency over 32 and MC in MCF-7 cells with 

a IC50 of 0.22 ± 0.04, 0.84 ± 0.14, and 0.93 ± 0.11 µM, respectively.   In HCC1937 cells, 

MC was the most potent with an IC50 value of 0.03 ± 0.01 µM, followed by 33 (0.16 ± 

0.03 µM), and finally 32 (0.67 ± 0.01 µM).  Both analogs have preferential toxicity 

towards breast cancer cell lines (MCF-7 and HCC1937) over that of normal human skin 

fibroblasts (GM00637).84 

Aziridinomitosenes: Potential Problems 

To date, there has been very limited investigations into aziridinomitosenes and 

their potential biological activity when compared to the mitomycins.  Most of the 

exploration has been oriented towards AZMs derived from the conversion of the parent 

mitomycin, somewhat restricting functionalization and potential improvements in the 

cytotoxicity of the molecules.  One likely main cause of the deficiency in attention is due 

to the difficulty in synthesizing AZMs and their analogs while maintaining functionality, 

natural substitution pattern about the tetracyclic core, and correct stereochemistry.77,82  

The presence of the double bond between carbons 9 and 9a allows for allylic like 

stabilization of carbon 1 upon opening of the aziridine ring.  This intermediate occurs in 
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the reductive activation of mitomycins and their path towards DNA alkylation.  In the 

case of AZMs, it produces a reactive species capable of readily undergoing 

solvolysis.71,77  Han and Kohn showed that AZMs derived from MC and porfiromycin 

undergo methanolysis with half-lives as low as three and fourteen minutes at a pH of 7.0, 

respectively.71  Similar studies were conducted with H/H-AZM at 20 ºC and at a pH of 

7.0, the half-life was found to be 2,000 minutes, over 660 fold greater than MC-AZM.78  

The major deviation in observed half-life was stated to likely be attributed to the presence 

of the electron donating amine present at C7 of MC-AZM and POR-AZM.  Increased 

electron density within the indoloquinone system presumably assists in stabilizing 

carbocation formation at C1, leading to increased reactivity and susceptibility to 

solvolysis.78    

In addition to the difficulties presented in synthesizing AZMs, their biological 

activities have shown promise but have not yet been shown to surpass that demonstrated 

by MA or MC.  Several AZMs have displayed bactericidal activity and anti-tumoral 

properties similar to the mitomycins.  Despite this similar activity, the efficacy of AZMs 

investigated required larger dosages than MC or MA to exhibit a similar response.21,72-74   

Potential Benefits of Aziridinomitosenes over Mitomycins 

DNA alkylation by MC is reliant upon reductive activation; AZMs do not share 

this requirement in their ability to alkylate DNA, presumably affording AZMs an 

advantage as a DNA modifying agent.17-19  Decreased sensitivity to MC has been 

documented in cells lines lacking or expressing decreased levels of oxidoreductase 

enzymes acting in the reductive activation cascade of MC.66-68 As such, mutations or 

alterations in cancer cells can lead to changes in the successful utilization of MC, 
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rendering tumors more or less sensitive to treatment based on the expression of these 

reductive activation enzymes.  AZM activity may not rely upon the levels of these 

enzymes, establishing the hypothesis that they may be more efficacious with decreased 

dependency on oxidoreductase enzymes in their biological activity. Furthermore, 

investigations into AZM DNA alkylation produced similar frequencies in the ICL 

formation under aerobic conditions.  This may lead to a broad spectrum anti-tumoral 

agent that can be applied to several environments, rather than acting as a selective 

hypoxic agent like MC. 

Studies with substitutions at C7 within MA and MC have presented evidence that 

increased lipophilicity leads to more cytotoxic compounds.85  The ability to fine tune 

functional groups at C6, C7, and C10 within AZMs presents with the potential to create 

compounds with a more facile ability to traverse cellular membranes and increase 

stability of the electrophilic carbons, and potentially rendering them more potent.   

Concluding Remarks 

Multiple AZMs have been found to exert antibiotic and anti-tumoral activities 

similar to mitomycins.  Of particular interest is an observed prolongation of life in mice 

treated with three AZM analogs over that of those that were MC treated.  Regeneration in 

the interest of AZMs could prove to be valuable in the search for new antibiotics or 

chemotherapeutic agents with a decrease in serious side effects.  Despite the difficulties 

faced in synthesizing these compounds, there have been many successful attempts in 

producing AZMs.  Their efforts allow for further modification and “fine-tuning” to 

enhance AZM biological activity.  Moving forward, a focus should be directed towards 

enhancing the lipophilicity of AZMs for enhanced cellular uptake, the steric and 
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electronic effects of substituents located at C6 and C7, and methylation of the aziridine 

nitrogen.  
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CHAPTER TWO: MECHANISMS OF AZIRIDINOMITOSENE CYTOTOXICITY 

Two synthetic aziridinomitosenes (AZMs) were evaluated for their cytotoxicity in 

six human cancer cell lines, and the cellular effects compared to mitomycin C (MC).  

Me/H-AZM was found to be a more potent cytotoxic agent than either H/H-AZM or MC.  

H/H-AZM was the least cytotoxic of the three drugs, although it displayed increased 

potency over MC in the T47D cell lines.  Several cellular effects of AZM and MC 

treatment were investigated in Jurkat and HeLa cell lines.  Treatment with either AZMs 

increased intracellular oxidative stress relative to MC treatment, with H/H-AZM showing 

the greatest overall increase.  Pre-treatment of Jurkat cell cultures with the antioxidant N-

acetyl-L-cysteine (NAC) resulted in a measurable decrease of H/H-AZM cytotoxicity and 

no measurable changes in Me/H-AZM or MC cytotoxicity, suggesting that under the 

conditions tested H/H-AZM may work through increasing oxidative stress, while the 

primary cytotoxic effect of MC and Me/H-AZM was probably not mediated through 

increased oxidant stress. In HeLa cells, pretreatment with NAC produced a measurable 

increase in Me/H-AZM with no alterations observed in MC treatments.  However, 

treatment of Jurkat or HeLa cell lines with any of the three drugs did produce a collapse 

in the mitochondrial membrane potential, with Me/H-AZM inducing the largest 

disruption.  Apoptotic cell death was evaluated by measuring drug induced activation of 

caspase-3, by H/H-AZM, Me/H-AZM, or MC.  In Jurkat cells, all three drugs were 

active, with MC treatment causing the largest activation of caspase-3.  In HeLa cells, 

only MC treatments led to significant caspase-3 activation.  Fluorescence microscopy of 
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MC, H/H-AZM, and Me/H-AZM treated cells showed the drugs also produced changes 

in nuclear morphology.  All three drugs produced increased nuclear size in HeLa cells in 

at least one of the tested drug concentrations that were consistent with stimulating a 

necrotic, rather than apoptotic response.  The results of these studies indicate that AZMs 

and MC share similarities in their cellular effects including the induction of 

mitochondrial membrane changes, activation of caspase-3, and stimulation of nuclear 

swelling.  Furthermore, the two AZMs investigated display increased toxicity towards 

suspension cells over that of adherent cell lines, as well as increases in caspase-3 activity 

and more consistent oxidative stress.  

Introduction 

Aziridinomitosenes (AZMs) are organic compounds structurally related to the 

mitomycin family of chemotherapeutic agents.  The original synthesis and 

characterization of AZMs was accomplished through reduction-oxidation reactions of 

mitomycin B (MB) and N-methyl mitomycin A (NMA).1 As such, AZMs possess similar 

structural features including the presence of a tetracyclic core featuring an aziridine ring.  

The key distinction occurs with the departure of the functional group from carbon 9a and 

deprotonation at C9, leaving a double bond between carbons 9 and 9a in AZMs (Figure 

2.1).2-4   

 
Figure 2.1 Structures of Mitomycin C and a generic AZM. Partial carbon 

numbering scheme is displayed on MC and is consistent with the AZM architecture. 
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Figure 2.2 AZMs with appreciable biological activity. Structural depiction of 

some AZMs investigated that exhibit biological activity.5-7 

Early investigations into the biological properties of AZMs were conducted 

primarily through the conversion from a corresponding mitomycin, followed by 

alterations to the C7 functional group or methylation of the aziridine nitrogen (Figure 

2.2).1,5-7  Of several AZMs, 1 was found to display similar properties to mitomycins, 

including broad spectrum bactericidal action and anti-tumor properties.1,5  Antimicrobial 

activity against gram positive bacteria was shown by 2, but it had limited effects on gram 

negative bacteria.5  Similar activity to mitomycins was observed in 4 and 5, but their 

measured responses required much larger dosages than MC.  Similarly, while AZM 6 

was more effective than MC at increasing the life span of mice inoculated with P-388 

leukemia, the required AZM dose was higher than MC.7  Despite these investigations into 

the biological and biochemical activity of AZMs, detailed description of the effects of 

AZM treatment on mammalian cells has not been published.  A handful of studies have 

found AZMs capable of inducing DNA interstrand cross-linking (ICL) in vitro utilizing 

purified nucleic acids or oligonucleotides.8-11 
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Figure 2.3 Structures of synthetic AZMs investigated in this study. H/H-AZM = 

(1S, 2S)-6-desmethyl(methylaziridino)mitosane, Me/H-AZM = (1S, 2S)-6-
methyl(methylaziridino)mitosane. 

In this study, we report the evaluation of cellular toxicity of two AZMs 

synthesized in our laboratory (1S, 2S)-6-desmethyl(methylaziridino)mitosane (H/H-

AZM) and (1S, 2S)-6-methyl(methylaziridino)mitosane (Me/H-AZM) (Figure 2.3) 

against a small panel of six human cancer cell lines.10  Cellular responses caused by AZM 

treatment in Jurkat and HeLa cell lines were explored to gain better insight into potential 

mechanisms of drugs action. Due to the structural similarities of AZMs and MC, we 

hypothesized that many of the characteristics of aziridinomitosene biological activity will 

parallel that of MC.  Our approach was to measure several potential pathways that may 

contribute to drug cytotoxicity, including stimulation of oxidative stress, alterations to the 

mitochondrial membrane potential (ΔΨm), caspase-3 activation, and changes in nuclear 

morphology that would suggest apoptotic or necrotic pathways of cell death.  

A number of chemotherapeutic drugs, including MC, have been shown to lead to 

increases in oxidative stress of cells.12-21   The formation of reactive oxygen species 

(ROS) occurs naturally in cells as a by-product of the partial reduction of oxygen during 

respiration.12,22 Typically, levels of ROS are maintained in a homeostatic balance by 

interactions with cellular antioxidants (vitamin E, vitamin C, glutathione, coenzyme Q) or 

enzymatic degradation (superoxide dismutase, catalase, glutathione peroxidase).12,23  

Elevated ROS levels in the cell can exceed the reductive capacity of anti-oxidant systems, 
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leading to oxidative damage of important intracellular biomolecules such as lipids, 

proteins, and DNA. This increased oxidative damage can lead to mutations, cancer, and 

cell death.22   

The preservation of an intact ΔΨm is essential to cellular health and proper 

mitochondrial function.  The ΔΨm is involved in functions such as the production of ATP, 

formation of ROS, mitochondrial protein transfer, and mitochondrial calcium 

sequestration.24,25  Furthermore, the collapse of ΔΨm can lead to an apoptotic cellular 

death due to the release of several pro-apoptotic factors including cytochrome c and pro-

caspase enzymes.26-29 

Cells undergoing an apoptotic cellular death experience several distinct features 

including chromatin condensation, nuclear fragmentation, and formation of apoptotic 

bodies.30,31  Condensation of the nucleus has been associated with an apoptotic cellular 

death, whereas nuclear swelling is attributed to a necrotic cell death.30,32 Previously, 

incubations with MC for 24 hours lead to an increase in nuclear area, while decarbamoyl 

MC (DMC) stimulated a decrease in nuclear area, indicating variations in their cytotoxic 

pathways.32 

Many chemotherapeutic drugs induce apoptosis through either the death-receptor-

induced extrinsic pathway or mitochondria-apoptosome-mediated apoptotic intrinsic 

pathway.  Both paths result in caspase activation.33,34  In particular, caspase-3 is activated 

in both extrinsic and intrinsic pathways.  As such, it presents as a plausible enzyme to 

investigate for preliminary insight into evaluation of the apoptotic versus necrotic cellular 

death caused by H/H-AZM and Me/H-AZM.  
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Materials and Methods 

Materials 

Mitomycin C, 2’,7’-dichlorodihydrofluorescein diacetate (DCFDA), and 

5,5’,6,6’-tetrachloro-1,1’,3,3’-tetraethylbenzimidazolocarbocyanine iodide (JC-1) were 

purchased from Cayman Chemical (Ann Arbor, MI). HyClone growth media and 

penicillin/streptomycin were obtained from Thermo Scientific (Waltham, MA). Fetal 

Bovine Serum (FBS) and N-acetyl-L-cysteine (NAC) were purchased from Fisher 

Scientific (Hampton, NH).  Resazurin sodium salt was acquired from Acros Organics 

(Fairlawn, New Jersey).  Carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and 

anhydrous dimethyl sulfoxide (DMSO) were obtained from Sigma (St. Louis, MO).  

Hoechst 33342 stain and EnzChek Caspase 3 Assay Kit #2 were purchased from 

Invitrogen (Carlsbad, CA). 

Cell Culture Methods and Drug Stocks 

Six different human cell lines were used to evaluate the potency of the AZMs and 

MC.  These include three suspension (Jurkat, HUT-78, HL-60) and three adherent cancer 

cell lines (HeLa, T47D, HepG2).   The Jurkat (T lymphocyte) and HuT-78 (cutaneous T 

lymphocyte) cell lines were obtained as a generous gift from Dr. Denise Wingett, Boise 

State University.  The T47D (ductal carcinoma) and HL-60 (acute promyeloblastic 

leukemia) cell lines were kindly provided by Dr. Cheryl Jorcyk, Boise State University.  

The HepG2 (hepatocellular carcinoma) cell line was a generous gift from Dr. Kristen 

Mitchell, Boise State University.  Lastly, the HeLa (cervical adenocarcinoma) cell line 

were obtained generously from Dr. Ken Cornell, Boise State University.   
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Jurkat and T47D cells were cultured in RPM1-1640 supplemented with 10% FBS 

and penicillin (100 U/mL) and streptomycin (100 µg/mL) (pen/strep).  HeLa and HepG2 

cell lines were grown utilizing Dulbecco’s Modified Eagles Medium (DMEM) containing 

10% FBS with pen/strep.  Finally, HL-60 and HUT-78 cell lines were cultured in 

Iscove’s Modified Dulbecco’s Medium (IMDM) supplemented with 20% FBS and 

pen/strep.  All cell lines were grown at 37 ºC in 5% CO2. 

All three compounds (H/H-AZM, Me/H-AZM, and MC) were dissolved in 

DMSO to create concentrated drug stocks that were stored at -80 ºC prior to use.  H/H-

AZM and Me/H-AZM were synthesized in our laboratory according to previously 

reported methods.10   

Resazurin Cytotoxicity Assay 

Cells were seeded into a 96 well plate at a density of 8,000 cells/well and 

incubated at 37 ºC in 5% CO2 overnight.  For adherent cell lines, media was replaced with 

180 µL of fresh media with 10% FBS and pen/strep, and 20 µL of 10x drug stock (diluted 

in nanopure H2O) or 20 µL vehicle.  Cultures were incubated with drug for 48 hours at 37 

ºC in 5% CO2.  After 48 hours, 20 µL of 0.1% resazurin in 1x PBS was added to all wells 

(10% of the total well volume), and the culture incubated with dye for 4-24 hours to 

allow metabolic conversion of resazurin (blue) to resorufin (pink).  Fluorescence values 

(excitation 530 ± 25 nm and emission 590 ± 35 nm) were then obtained using a BioTek 

Synergy HT plate reader (BioTek, Winooski, VT).  Fluorescence data was plotted in 

GraphPad Prism using a non-linear regression with log (inhibitor) vs. response (three 

parameter) for determination of IC50 values.  Data are represented as the mean ± SEM, for 

at least three experiments. 
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Reactive Oxygen Species Assay 

The abcam “DCFDA-Cellular Reactive Oxygen Species Assay Kit (ab113851)” 

protocol was used with slight adaptations.39 Jurkat cells were harvested via centrifugation 

at 150 x g for 5 minutes, and adjusted to a density of approximately 1 x 106 cells/mL, 

after washing once with Kreb’s Ringer Bicarbonate (KRB) buffer, pH =7.4.  Cells were 

stained with 20 µM DCFDA in KRB buffer for 30 minutes at 37 ºC.  After 30 minutes, 

cells were harvested, washed once in KRB buffer, then resuspended in KRB + 10% FBS.  

Followed by an addition of 100 µL cell solution into a black 96 well plate and combined 

with 100 µL of 2x drug dilution (made in KRB + 10% FBS solution) or 100 μL KRB + 

10% FBS solution.  Fluorescence was immediately read on a Biotek Synergy HT plate 

reader (BioTek, Winooski, VT) using excitation 485 ± 20 and emission 528 ± 20 nm.  

Additional readings were then taken at three and six hours after addition of drug 

treatments.  Data was worked up in Microsoft Excel and plotted in GraphPad Prism 6 as 

the mean ± SEM, for at least three experiments. 

HeLa cells were seeded into a black 96 well plate at 2.5 x 104 cells/well and 

allowed to adhere overnight.  Media was removed; the cells were washed once with 

KRB, and were stained with 20 µM DCFDA in Kreb’s Ringer Bicarbonate Buffer for 30 

minutes at 37 ºC.  The staining solution was removed and the cells were washed twice in 

KRB Buffer and then suspended in KRB + 10% FBS.   Buffer (100 µL) was added to all 

wells and combined with either, 100 µL of 2x drug dilution (made in KRB + 10% FBS 

solution) or 100 µL KRB + 10% FBS solution.  Fluorescence was immediately read on a 

Biotek Synergy HT plate reader (BioTek, Winooski, VT) using excitation 485 ± 20 and 

emission 528 ± 20 nm.  Additional readings were then taken at three and six hours post 
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drug treatments.  Data was worked up in Microsoft Excel and plotted in GraphPad Prism 

6 as the mean ± SEM, for at least three experiments. 

N-acetyl-L-cysteine Cytotoxicity Assay 

HeLa cells were seeded into a 96 well plate at a density of 8,000 cells/well and 

allowed to adhere overnight at 37 ºC in 5% CO2.  The next day, media was replaced with 

fresh 90% DMEM/10% FBS with pen/strep and cells were incubated with 5 mM N-

acetyl-L-cysteine (NAC) in complete media for 15 minutes at 37 ºC in 5% CO2.  NAC 

containing media was removed, cells were washed twice with 1x PBS, and 180 μL of 

fresh 90% DMEM/10% FBS with pen/strep added to all wells.  As presented above in 

“Resazurin Cytotoxicity Assay”, the cells were then treated with MC, H/H-AZM, and 

Me/H-AZM for 48 hours.  The cells were then treated with 20 μL of 0.1% Resazurin in 

1x PBS to all wells and incubated for 4 hours at 37 ºC in 5% CO2.  Fluorescence was then 

measured on a Biotek Synergy HT plate reader using excitation 530 ± 25 nm and 

emission 590 ± 35 nm, with sensitivity set to 35.  Data was then analyzed and worked up 

in Microsoft Excel and plotted in GraphPad Prism 6 as the mean ± SEM, for at least three 

experiments.    

Jurkat cells were harvested via centrifugation at 150 x g for 5 minutes at 4 ºC, 

washed once with complete media, and then suspended in 90%RPMI-1640/10% FBS 

with pen/strep and 5 mM NAC.  The Jurkat cells were allowed to incubate with the 5 mM 

NAC solution for one hour at 37 ºC in 5% CO2, after which time they were harvested via 

centrifugation, washing twice in complete media.29  The cells were then suspended in 

complete media and placed in a 96 well plate at a density of 8,000 cells/well at a final 

volume of 180 µL.  Drug dilutions were then added to appropriate wells in pentet, 
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allowing for untreated controls, as well as cells that were not incubated with NAC 

solution. Cells were allowed to incubate with drug for 48 hours at 37 ºC in 5% CO2.  The 

cells were then treated with 20 µL of 0.1% resazurin in 1x PBS to all wells and incubated 

for 24 hours at 37 ºC in 5% CO2.  Fluorescence was then measured on a Biotek Synergy 

HT plate reader using excitation 530 ± 25 nm and emission 590 ± 35 nm, with sensitivity 

set to 35.  Data was then analyzed and worked up in Microsoft Excel and plotted in 

GraphPad Prism 6 as the mean ± SEM, for at least three experiments.  

Mitochondrial Membrane Potential Assay 

Changes in the mitochondrial membrane potential were assessed using the JC-1 

dye following a slight adaptation to the abcam “JC-1 Mitochondrial membrane potential 

Assay kit (ab113850)” protocol, in black clear bottom 96 well plates.24  In cells with 

intact mitochondrial membrane potential the JC-1 dye fluoresces is unable to enter the 

mitochondria and present as aggregates that fluoresce red.  Upon dissolution of 

membrane potential, JC-1 is able to enter the mitochondria as monomers (green), leading 

to a decrease in aggregate fluorescence.  The alterations in aggregate fluorescence were 

utilized in this assay.   

Briefly, Jurkat cells were harvested via centrifugation obtaining approximately 

2.5 x 107 cells, then washing once with KRB buffer at pH =7.4.  Cells were then stained 

with 1 µM JC-1 in KRB buffer in the dark for 30 minutes at 37 ºC in 5% CO2.  After 30 

minutes, cells were harvested via centrifugation, washed once in KRB buffer, and 

suspended in 5 mL of KRB + 10% FBS.  The cell solution was then seeded into a 96 well 

plate at volume of 50 μL/well and combined with 50 μL of 2x drug dilutions made in 

KRB + 10% FBS solution or 50 μL KRB + 10% FBS solution.  The plate was allowed to 
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incubate in the dark for 2 hours at 37 ºC in 5% CO2.  The fluorescence was measured 

using a Biotek Synergy HT plate reader with excitation/emission of 530/590 nm and 

sensitivity of 70.  Data was worked up in Microsoft Excel and plotted using GraphPad 

Prism 6 as the mean ± SEM, for at least three independent experiments. 

HeLa cells were seeded into a 96 well plate at 6 x 103 cells/well and allowed to 

adhere overnight.  Media was removed and cells were washed once with KRB buffer, 

followed by staining with 1 μM JC-1 dye in KRB buffer for 10 minutes at 37 ºC in 5% 

CO2.  After 10 minutes, staining solution was removed, cells were washed twice with 

KRB buffer, and 100 μL of KRB buffer + 10% FBS added to all wells.  Treatments were 

added to appropriate wells as 100 µL of 2x drug dilution or 100 µL KRB + 10% FBS 

solution.  The cells were allowed to incubate in the dark for two hours at 37 ºC in 5% 

CO2. The fluorescence was measured using a Biotek Synergy HT plate reader with 

excitation/emission of 530/590 nm and sensitivity of 70.  Data was worked up in 

Microsoft Excel and plotted using GraphPad Prism 6 as the mean ± SEM, for at least 

three experiments. 

Caspase 3 Assay 

Evaluations into caspase 3 activation were conducted using the Molecular Probes 

EnzChek Caspase 3 Assay Kit #2 following the manufacturer’s instructions.  Briefly, 1 x 

106 Jurkat or HeLa cells were seeded into 12 well plates.  Cells were then treated with 

IC50 concentrations of MC, H/H-AZM, and Me/H-AZM for 24 hours at 37ºC in 5% CO2.  

Cells were then harvested and washed with 1x PBS via centrifugation at 150 x g for 5 

minutes at 4ºC.  From here the manufacturer’s protocol was then followed. Plates were 

read on a Biotek Synergy HT plate reader using an excitation of 485 ± 20 nm and 
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emission of 528 ± 20 nm, every 5 minutes for one hour at a sensitivity of 50. Data was 

worked up in Microsoft Excel and plotted in GraphPad Prism 6. 

Nuclear Morphology Assay 

To investigate the effects of AZMs on nuclear morphology, HeLa cells were 

grown to approximately 75% confluency in sterile 24 well plates at 37ºC in 5% CO2.  

Media was replaced with fresh complete media, and 10x drug dilutions in 1x PBS were 

added to appropriate wells.  Cells were then incubated with drugs for 24 hours at 37°C in 

5% CO2.  After 24 hours, cells were washed twice with 1x PBS, followed by fixation 

with 2% paraformaldehyde in 1x PBS for 10 minutes at room temperature.  After 

formaldehyde fixation, cells were washed twice with 1x PBS, and permeabilized with 

0.1% Triton X-100 in 1x PBS for 5 minutes at room temperature.  Nuclei were then 

stained using 1.0 µg/mL Hoechst 33342 in nanopure H2O for 15 minutes at room 

temperature.  Cell nuclei were visualized and photographed on an AMG Evos fl 

microscope using the 40x objective with the DAPI filter.  Nuclear areas were measured 

using NIH ImageJ and data worked up and plotted using GraphPad Prism 6 as the mean ± 

SEM of two experiments counting over 100 nuclei for each treatment.32,47  

Results and Discussion 

Resazurin Cell Viability Assay 

The resazurin fluorescence assay is a convenient method to examine the effect of 

cytotoxic agents on cell viability and proliferation (Table 2.1, Figure 2.4).35,36 The 

reduction of the blue non-fluorescent resazurin to the pink fluorescent resorufin occurs in 

healthy cells maintaining a reducing environment.35  The results of anti-
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proliferative/cytotoxic activity assays in six human cancer cell lines (3 adherent, 3 

suspension) are summarized in Table 2.1.  All three compounds (Me/H-AZM, H/H-

AZM, MC) showed anti-proliferative effects against the six cancer cell lines that were 

examined, with drug IC50 values ranging from low nanomolar to low micromolar 

concentrations.  

Me/H-AZM was identified as the most potent compound of the three.  Me/H-

AZM was most toxic in Jurkat cells with an IC50 value of 3.11 ± 0.57 nM and least toxic 

in HeLa cells (IC50 = 525 ± 242 nM).  H/H-AZM was overall the least toxic of the three, 

except in T47D cells where it showed a lower IC50 value (9.3 µM) than MC (17 µM).  In 

comparison to MC, Me/H-AZM was at least 2 fold more toxic in every cell line, while 

H/H-AZM was at least 2 fold less toxic in all cell lines except T47D and Jurkat.  

Table 2.1 Summary of drug cytotoxicity.  IC50 values are the mean ± SEM from 
three experiments.  

IC50 (nM) 

 Mitomycin C H/H-AZM Me/H-AZM 
HeLa 1,870 ± 372 6,208 ± 523 525 ± 242 
T47D 16,970 ± 1,472 9,291 ± 1,516 225 ± 78 

HepG2 2,937 ± 209 7,870 ± 701 342 ± 73 
HL-60 409.6 ± 85.5 2,033 ± 967 29.9 ± 4.8 
Jurkat 261.8 ± 70.8 218.7 ± 50.9 3.11 ± 0.57 
HuT-78 66.4 ± 33.0 131.2 ± 47.9 23.7 ± 16.5 
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Figure 2.4 Antiproliferative activity of AZMs and MC.  Representative results of 

investigating drug antiproliferative effects against four cell lines: A) HeLa, B) 
HepG2, C) Jurkat, and D) HuT-78.  Relative fluorescence was calculated by 

dividing the average fluorescence of drug treated cells by the average untreated 
value, and multiplied by 100 to obtain a relative percent to untreated samples. 

Points represent the mean (± SEM) of three experiments.   

The increased potency of Me/H-AZM may be due to preservation of the methyl 

group at C6, lack of a hydrophilic amine group at C7, and methylation of the aziridine 

ring (Figure 2.3) that may help to increase its lipophilicity and allow for more facile 

passage through membranes and into cells.  In addition, the presence of an electron 

donating methyl group on the quinone ring may help to preserve the electrophilic 

integrity of the AZM, stabilizing the molecule for reactions with cellular nucleophiles.  

On the other hand, electron deficiencies at carbon 6 and 7 in H/H-AZM provide 

additional electrophilic sites that may be reactive and lead to reduced drug stability and 

lower activity in vitro.  Nucleophilic addition at these locations shortly after introduction 

A B 

D C 

Log Concentration (M )

R
el

at
iv

e 
Fl

uo
re

sc
en

ce
(%

 C
on

tr
o

l)

-12 -10 -8 -6 -4

0

50

100 Mitomycin C
H/H-AZM
Me/H-AZM

Log Concentration (M )

R
el

at
iv

e 
Fl

uo
re

sc
en

ce
(%

 C
on

tr
o

l)

-12 -10 -8 -6 -4

0

50

100

Log Concentration (M )

R
el

at
iv

e 
Fl

u
or

es
ce

nc
e

(%
 C

on
tr

ol
)

-12 -10 -8 -6 -4
0

50

100

Mitomycin C
H/H-AZM
Me/H-AZM

L og  C o n c e ntration  (M )

R
e

la
ti

v
e 

F
lu

o
re

s
ce

n
ce

(%
 C

o
n

tr
o

l)

-1 2 -1 0 -8 -6 -4

0

5 0

1 0 0



49 

 

into the cellular environment may hinder the cytotoxicity or allow it (H/H-AZM) to 

become sequestered by cellular nucleophiles prior to reaching a cellular target of 

significance.  

Reactive Oxygen Species Assay  

Due to the presence of a quinone moiety in the AZM structure, the potential for 

generation of ROS is highly plausible.  Other quinone containing compounds, including 

the mitomycins have been found to increase levels of ROS.12,14,15  MC itself has been 

shown to increase the production of hydrogen peroxide, superoxide anion, and hydroxyl 

radicals.13-18,20  The cell permeable dye, 2’7’-dichlorofluoresceine diacetate (DCFDA), 

has been used as a probe to evaluate the level of oxidative stress within cells.19  

Previously, DCFDA has been used to examine changes in oxidative stress due to MC 

treatment of MCF-7 cells under both normoxia and hypoxia conditions.21   

Using DCFDA as a probe, H/H-AZM treatment of both Jurkat and HeLa cell lines 

was found to increase ROS over 4-5 fold relative to untreated cells (Figure 2.5).  

Responses to Me/H-AZM varied depending on the cell line.  In Jurkat cells, Me/H-AZM 

treatment stimulated a greater than 4 fold increase in ROS over untreated cells.  Me/H-

AZM treatment of HeLa cells stimulated a less drastic ROS response, with only a ~2 fold 

increase relative to untreated cells.  In both cell lines, the measured oxidative stress 

attributed to MC treatment was essentially equivalent to the levels detected in untreated 

cells.  Results from MC treatment appear to be consistent with the studies performed in 

MCF-7 breast cancer cells using DCFDA as the oxidative stress probe under normoxia.21 

The additional electrophilic sites located at the C6/7 sites in H/H-AZM may allow 

for the reactions with intracellular antioxidants.  H/H-AZM has been shown to react more 
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quickly than Me/H-AZM with thiols, such as glutathione (unpublished results).  This 

interaction of H/H-AZM with thiols may lead to a reduction in intracellular glutathione 

levels, thus lowering the ability of the cell to combat oxidative stress.  A similar but 

limited effect may be present in Me/H-AZM, as it also possesses an additional 

electrophilic site with a functional group vacancy at carbon 7.  Me/H-AZM has also been 

shown to be reactive with thiols (unpublished results), which may explain the increased 

oxidative stress observed in Me/H-AZM treated cells.   

 
Figure 2.5 Oxidative stress responses in drug treated cells. Jurkat and HeLa cells 

were labeled with DCFDA for 30 minutes prior to addition of drug.  Fluorescence 
measurements (ex 485 nm/em 528 nm) were made at 3 and 6 hours post drug 

addition.  Relative fluorescence was calculated by dividing the average fluorescence 
of drug treated cells by the average untreated value, and multiplied by 100 to obtain 

a relative percent to untreated samples.  Data shown is the mean ± SEM of three 
experiments (n = 9) A) Jurkat cells 3 hours post drug addition, B) Jurkat cells 6 

hours post drug addition, C) HeLa cells 3 hours post drug addition, D) HeLa cells 6 
hours post drug addition.  
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N-acetyl Cysteine Cytotoxicity Assay 

N-acetyl-L-cysteine (NAC) is a precursor to glutathione, a cellular antioxidant 

used to combat ROS.  Glutathione exists as the most prevalent low molecular weight 

thiol in mammalian cells. It is present in two forms GSH (reduced) or GSSG (oxidized), 

with the reduced form occurring at concentrations 10-100 fold higher than the oxidized 

form.22,23  NAC protects against intracellular oxidative stress by scavenging radicals.38,27  

Pretreatment with 5 mM N-acetyl-L-cysteine was used to evaluate the relationship 

between oxidative stress and AZM induced cell death based on the premise if a major 

pathway to cytotoxicity is caused by increased oxidative stress, NAC should provide an 

additional antioxidant supply to combat the excess formation of free radicals, leading to 

decreased toxicity under AZM treatment. 

Pretreatment with 5 mM NAC, Jurkat cells did not provide a protective effect 

against MC and Me-H/AZM treatments, with calculated IC50 values of the non-pretreated 

and NAC pretreated experiments falling within experimental errors of each other (Figure 

6).  H/H-AZM experiences a diminished cytotoxicity after pre-treatment with NAC.  

Based on the calculated IC50 values between the NAC pretreated groups and non-NAC 

pretreated groups, NAC exerts a protective effect upon H/H-AZM in Jurkat cells.  

Previous reports revealed a protective effect with NAC pre-treatment in epidural scar 

fibroblasts, with inhibition of MC induced apoptosis.38   

In HeLa cells, results were inconsistent for H/H-AZM in both the presence and 

absence of NAC during this time and require further investigations.  MC retained its 

cytotoxicity with IC50 values falling within experimental error of each other for the NAC 

pre-treated and cells, which were not pre-treated.  Me/H-AZM toxicity appeared to 
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increase slightly with NAC pre-treatment, with a calculated IC50 168.4 ± 27.8 nM.  This 

increased toxicity may result from activation of the AZM through nucleophilic attack of 

the thiol at the C7 position.  Previous studies have shown that mitomycin A (MA) and 

MC can undergo reductive activation with thiols including glutathione to form DNA 

cross-links.40,41 

 
Figure 2.6 NAC pre-treatment and Resazurin Drug Treated Curves. Jurkat cells 

were either pretreated with 5 mM NAC for 1 hour + drug treatment (A), or drug 
treated (B).  HeLa cells were either pretreated with 5 mM NAC for 15 minutes + 

drug treatment (C), or drug treated (D), H/H-AZM not shown as results were 
inconsistent.  Cells in fresh media were then seeded into a 96-well plate at 8,000 

cells/well and treated with drug for 48 hours.  After 48 hours, 20 µL of 0.1% 
resazurin in 1x PBS was added to all wells.  Cells were allowed to incubate with 

resazurin solution for 4-24 hours.  Plates were then read using an excitation 530 ± 25 
nm and emission 590 ± 35 nm. Data is a representation of the mean ± SEM of three 
experiments, n = 5, 1 x 10-12 M was considered the concentration at which there was 

not a drug effect for the untreated controls.  
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Mitochondrial Membrane Potential Assay 

A breakdown in the ability to maintain the mitochondrial membrane potential can 

lead to excess production and leakage of ROS into the cytoplasm.  Due to the increased 

levels of oxidative stress caused by H/H-AZM and Me/H-AZM, as measured by the 

DCFDA assay, a disruption of ΔΨm would likely be the greatest in AZM treated samples.  

An alteration in the ΔΨm of Jurkat and HeLa cells were found to occur after two hours 

with MC, H/H-AZM, and Me/H-AZM treatments (Figure 2.7).  This was observed 

through the fluorescence decrease in aggregates of the cationic, lipophilic JC-1 dye.  MC 

has been previously shown to lead to changes in ΔΨm in corneal endothelial cells after 24 

hour treatment.42  

 
Figure 2.7 Mitochondrial Membrane Potential. A) Jurkat and B) HeLa cells 

were incubated with 1 µM JC-1 in KRB buffer for 30 or 10 minutes respectively, at 
37ºC in %5 CO2.  JC-1 aggregate fluorescence was then read at 2 hours post drug 
addition using ex/em of 530/590 nm and plate reader sensitivity of 50.  Plates were 

incubated at 37ºC in %5 CO2 in the dark between readings. A) Jurkat cells; B) 
HeLa cells. Data shown is the mean ± S.E.M of three experiments, n = 9.  

At lower concentrations, H/H-AZM treated aggregate fluorescence remained 

fairly constant, at around 70% of the untreated HeLa cells.  MC treatments led to 

decreases in JC-1 aggregate fluorescence in each cell line, remaining fairly constant at 

each concentration.  Previous studies in other cell lines have shown that MC treatment 
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leads to changes in the ΔΨm, and this result is consistent with our MC investigations in 

the Jurkat and HeLa cell lines.42 

Me/H-AZM was the most effective in altering JC-1 aggregation as indicated by 

the decrease in fluorescence to about 50% of the untreated controls in both cell lines.  

H/H-AZM presented with similar decreases to MC in Jurkat cell lines, decreasing 

aggregate fluorescence to approximately 80% of the untreated control.  In HeLa cells, 

H/H-AZM decreased JC-1 aggregate fluorescence similar to Me/H-AZM, around 50% of 

untreated cells at higher concentrations.   

Both AZMs lead to a decrease in JC-1 aggregate fluorescence in each cell line.  

This result is consistent with our expectation that due to the increased levels of oxidative 

stress measured in the DCFDA assay, it is likely there will be alterations to the 

mitochondrial membrane potential.  It is unclear if the mitochondria is a direct target of 

AZMs but evidence supports that this organelle is affected by treatment with these 

compounds.  

Caspase 3 Activation 

Caspase-3 is a downstream effector caspase activated through two pathways in 

apoptotic cell death.  MC induced activation of caspases has been documented 

previously, including the stimulation of caspase-3.43-45 After 24 hours of incubation, all 

compounds were found to activate caspase-3 more than the untreated controls in the 

Jurkat cell lines (Figure 2.8).  MC (262 nM) had the most substantial effect, followed by 

H/H-AZM (220 nM), while Me/H-AZM (3 nM) produced the lowest levels of caspase-3 

activation of the three compounds.  In the HeLa cell line, MC (1.87 µM) was the only 

drug that significantly activated caspase-3 over that of the untreated sample.  Treatments 
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with H/H-AZM (6.2 µM) and Me/H-AZM (525 nM) led to caspase-3 activity similar to 

that observed in the untreated samples.   

 
Figure 2.8 Caspase 3 activation by 24 hour treatment.  A) Jurkat and B) HeLa 
cells were treated with IC50 concentrations of drug for 24 hours. Cells were then 

subject to the protocol outlined in materials and methods. Data is presented as the 
mean ± SEM of three experiments, n = 18 for Jurkat cells, n = 9 for HeLa cells. * 
denotes p < 0.05 as determined by one-way ANOVA when compared to untreated 

sample. 

Activation of caspase-3 is consistent with forms of apoptotic cell death.  The 

increased levels of caspase-3 displayed in treatments with MC, H/H-AZM, and Me/H-  

AZM signify a likelihood of apoptotic cell death, rather than necrosis.  Since caspase-3 is 

an effector caspase activated via both apoptotic pathways, further inquiry into which of 

the initiator caspases become activated with AZM treatment is needed in order to develop 

a clear understanding of whether AZM induced apoptosis follows the death-receptor-

induced extrinsic or mitochondria-apoptosome-mediated apoptotic intrinsic pathway.33,34 

Nuclear Morphology Assay 

Apoptotic cells undergo fragmentation of chromosomes, leading to condensation 

of the nucleus.  During necrotic cell death, nuclei experience swelling as the cell loses its 

membrane integrity and is no longer able to regulate its osmotic balance.30,46  Nuclear 

swelling as a result of 10 μM MC has been observed previously in cells treated for 24 
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hours.  In the same study, the decarbamoyl MC derivative (DMC) was found to lead to 

nuclear condensation with the same dosage.32  In this study, HeLa nuclear areas were 

assessed using the DNA fluorescent stain Hoechst 33342 and NIH ImageJ after 24 hour 

treatment (Figure 2.9).32,32 

Treatment with 10 µM H/H-AZM and MC lead to a significant increase in HeLa 

nuclear area when compared to the untreated control.  After 24-hour treatment with 10 

μM Me/H-AZM, a majority of the HeLa cells became detached from the plate making it 

difficult to find remaining nuclei.  The measurable nuclei were found to be significantly 

condensed when compared to the untreated samples, likely attributed to cell death.  

However, nuclear swelling followed by cell death could have occurred well before the 24 

hour measurement, which would mean that the event was missed prior to measuring 

nuclear area.  With 1 µM treatments, both MC and Me/H-AZM produced nuclear 

swelling, while H/H-AZM treated nuclei were, on average, more condensed than the 

untreated control.  A similar pattern was observed in the 100 nM treatment groups, with 

MC and Me/H-AZM causing nuclear swelling, with no effect observed in the H/H-AZM 

treated cells.  At 10 nM, there was no observable drug treated effect as nuclear areas were 

consistent with the untreated control.  The alterations in the nuclear morphology imply 

that MC and Me/H-AZM may induce a similar mechanism of cell death with observed 

nuclear swelling at 1 µM and 100 nM concentrations.  Of particular curiosity was the 

nuclear condensation witnessed in HeLa cells treated with 1 µM H/H-AZM, after 

observed swelling in the 10 µM treatments.  An observed increase in nuclear area 

displayed by both AZMs and MC implies that they follow a similar mechanism of action   

in HeLa cells.  
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Figure 2.9 HeLa Cell Nuclear Morphology and Area. HeLa cells were grown to 
approximately 75% confluency in 24 well plates at 37 ºC in 5% CO2.  They were 
then either left untreated, or treated with MC, H/H-AZM, or Me/H-AZM for 24 
hours.  The cells were fixed in 2% paraformaldehyde, permeabilized using 0.1% 
Triton X-100, then stained with 1.0 µg/mL Hoechst 33342.  Cell nuclei were then 

visualized on an AMG Evos fl microscope using the 40x objective and DAPI filter. 
Nuclear areas were measured using NIH ImageJ.  Data is presented as the mean ± 

SEM from two experiments, n > 100 for each treatment. * denotes p < 0.05 as 
determined by one-way ANOVA when compared to untreated sample.  

Conclusion 

A widespread approach in determining the characteristics of two synthetic AZMs 

and their associated cytotoxicity was conducted.  Our initial hypothesis was that AZM 

induced cellular death follows a similar pathway to MC and there appear to be some 

parallels in the cellular effects caused by treatment with MC and AZMs.  Evaluations into 
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the potency of AZMs and MC were determined using a resazurin reduction assay to 

obtain an IC50 value in six different human cancer cell lines.35,36  Me/H-AZM was more 

efficacious in decreasing cell viability when compared to both H/H-AZM and MC across 

all cell lines.   The most drastic difference in drug toxicity was observed in T47D cells, 

where Me/H-AZM was 74 fold more potent than MC.  In contrast, H/H-AZM was the 

least effective compound in decreasing cell viability, with increased potency compared to 

MC in only the T47D cell line. 

Jurkat and HeLa cells treated with AZMs lead to increased production of ROS, 

when compared to the untreated controls.  MC induced levels of ROS, remained 

consistent with the untreated sample in each cell line, correlating well with a study in 

MCF-7 cells utilizing DCFDA.21  To evaluate whether this increased ROS production 

was a major factor in the AZM induced cell death, we employed pre-treatment with the 

oxygen radical scavenger, NAC.  Pre-treatment with NAC did not produce a significant 

decrease in Me/H-AZM or MC associated cytotoxicity in Jurkat cells.  However, NAC 

pretreatment produced a protective effect against H/H-AZM treatments in Jurkat cells.  In 

HeLa cells, NAC pre-treatment stimulated Me/H-AZM toxicity with a drop in the 

calculated IC50 value, but remained the same in MC. Results from H/H-AZM in HeLa 

cells were inconsistent and require further investigation.  These results indicate that a 

protective effect by NAC was observed in Jurkat cells treated with H/H-AZM, but not 

MC and Me/H-AZM.  Similar results were seen in HeLa cells with MC and Me/H-AZM 

treatments.  No conclusions can be drawn regarding H/H-AZM and NAC pre-treatment 

in HeLa cells.  
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Collapse of the mitochondrial membrane potential is affiliated with an apoptotic 

cell death with the release of pro-caspases and cytochrome c.25 In addition, disruption of 

the ΔΨm
 can lead to increased levels of ROS.  As a consequence to the increased ROS 

production measured by AZM treatments, attention was directed towards measuring a 

potential collapse in ΔΨm.  After two hours, a change in the ΔΨm was observed by 

treatments with all three compounds in both cell lines, with Me/H-AZM leading to the 

largest decrease in aggregate fluorescence.  H/H-AZM treatment lead to a greater 

disruption of ΔΨm in HeLa over Jurkat cells.   

The activation of caspase 3 occurs in the death-receptor-induced extrinsic 

pathway or mitochondria-apoptosome-mediated apoptotic intrinsic pathway.33 Previous 

studies have shown that MC treatment leads to activation of caspase 3.38,42-45  Treatment 

with IC50 concentrations lead to a significant increase in caspase 3 activity with all three 

drugs in Jurkat cells.  MC led to the largest increase in caspase 3 activity, followed by 

H/H-AZM and Me/H-AZM.  However, in HeLa cells only MC was shown to produce a 

significant increase in caspase-3 activity over that of the untreated controls.  

Our initial hypothesis that AZMs follow a similar pattern as MC in their cellular 

effects appeared to be moderately correct.  Similarities in their cellular effects include 

alterations in ΔΨm, caspase-3 activation, nuclear swelling by each drug in at least one 

drug concentration, and continuity of cytotoxicity after NAC pre-treatment (in Jurkat 

cells).  Deviations in AZM and MC cellular effects were observed in AZM increased 

oxidative stress, while not measured in MC treatments.  While there are some shared 

cellular effects between MC, H/H-AZM, and Me/H-AZM, there is much more work to be 

done in characterizing the many effects AZMs have in cellular treatments.   
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CHAPTER THREE: MODIFICATION OF CELLULAR DNA  

BY AZIRIDINOMITOSENES 

The ability of two synthetic aziridinomitosenes (AZMs) to modify DNA in Jurkat 

and HeLa cells was evaluated using a Hoechst 33342 fluorescent assay and modified 

alkaline Single Cell Gel Electrophoresis (COMET) assay.  The Hoechst 33342 assay 

showed that (1S, 2S)-6-methyl(methylaziridino)mitosene (Me/H-AZM) treatment 

increased cross-linkage 48 and 6 fold greater than mitomycin C (MC) in Jurkat and HeLa 

cells, respectively.  In contrast, (1S, 2S)-6-desmethyl(methylaziridino)mitosene (H/H-

AZM) only increased the cross-linkage of DNA in Jurkat cells 12.5 fold greater than MC.  

In HeLa cells, H/H-AZM sponsored DNA cross-links were approximately two fold lower 

than MC.  The modified alkaline COMET assay allows for the evaluation of DNA 

modification of a drug through the reduced migration of treated DNA.  H/H-AZM treated 

cells showed significantly less DNA migration in the modified alkaline COMET assay 

with tail extent moments of 0.7% and 59.6% of MC in Jurkat and HeLa cells, 

respectively.  Me/H-AZM tail extent moments in Jurkat and HeLa cells were found to be 

0.3% and 6.3% of MC treated cells, correspondingly.  The results of this study indicate 

that AZMs are capable of modifying DNA in in vitro cellular systems, with Me/H-AZM 

showing the most potent activity and greatest alterations to DNA.    
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Introduction 

Aziridinomitosenes (AZMs) are a class of compounds that are structurally similar 

to mitomycin chemotherapeutics.  The first synthesis, characterization, and preliminary 

biological activity of AZMs were reported in 1964.1 Further, they present as an 

intermediate in the DNA alkylating reductive activation cascade of mitomycins.2  

Structurally, AZMs differ from mitomycins by the placement of a double bond between 

carbons 9 and 9a in the AZM architecture, whereas this is a single bond in mitomycins 

(Figure 3.1).3  The double bond promotes the benzylic-like stabilization of electrophilic 

carbons 1 and 10, increasing their susceptibility to nucleophilic groups, such as the 

amines in DNA, thus leading to DNA cross-linking. 

 
Figure 3.1 Structures of mitomycin C and aziridinomitosenes. MC displays a 

partial carbon numbering scheme consistent with mitomycins and 
aziridinomitosenes.  H/H-AZM = (1S, 2S)-6-desmethyl(methylaziridino)mitosene, 

Me/H-AZM = (1S, 2S)-6-methyl(methylaziridino)mitosene. 

Of the mitomycins, MC has received the most attention and use as a 

chemotherapeutic agent.  MC has been useful as a single agent or in combination therapy 

for a variety of different cancers including local bladder, head and neck, breast, and non-

small cell lung cancers.  Despite its widespread applications, MC use is limited due to 

severe side effects such as myelosuppression or haemolytic uremic syndrome.4   

The biological activity of the mitomycins has been attributed to the formation of 

DNA-DNA interstrand cross-links (ICLs), a covalent modification between two 
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complimentary strands of DNA.5,6  Prior to forming ICLs, MC must first undergo 

chemical or enzymatic reductive activation, rendering the drug electrophilic (Figure 

3.2).5,7-11  As such, MC induced cytotoxicity has shown preference towards hypoxic 

conditions, or those favoring its reductive activation.11,12 

 
Figure 3.2 Reductive activation of MC.  Reduction of MC leads to formation of a 

mono-alkylated (blue sphere only) or bis-alkylated (both blue and red spheres) 
compound.  

The formation of ICLs with AZMs have been reported using purified synthetic or 

bacterial DNA in the presence and absence of reducing agents.14-17  Similar to MC, 

AZMs exhibit a DNA sequence preference towards 5'-CpG-3' motifs. 14-17  The synthetic 

AZM, (1S, 2S)-6-desmethyl(methylaziridino)mitosene (H/H-AZM) has been shown to 

cross-link DNA with similar frequency and specificity as MC, with alkylation occurring 

preferentially at guanine residues.13,16,17  Previous reports suggest that H/H-AZM may 

form both DNA-DNA and DNA-protein cross-links.16 In contrast to MC, H/H-AZM was 

shown to cross-link synthetic DNA in the presence of oxygen, and did not require 

activation by exogenous reductants.  Guanine nucleotides were confirmed as the 

nucleophilic species in the formation of H/H-AZM facilitated DNA ICLs.17  
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Prior investigations of DNA modification by AZMs were confined to 

demonstration of adduct formation with purified nucleic acids or oligonucleotides.  The 

current study was initiated to establish that AZMs could cause modifications to DNA in 

eukaryotic cellular environments.  We evaluated DNA modification induced by H/H-

AZM and Me/H-AZM, in HeLa and Jurkat cell lines using a Hoechst 33342 fluorescent 

DNA cross-linking and modified alkaline COMET assays.16,18,22,25,27,28 

Hoechst fluorescent DNA cross-linking studies have previously been conducted 

using Hoechst 33258 fluorescence with T7 coliphage DNA to study cross-linking agents, 

including reductively activated MC and its analogs.18-20  The premise of this assay is that 

DNA cross-links will lead to increased retention of Hoechst fluorescence after a heat 

denaturation/rapid cooling process when compared to native DNA.  Reductively 

activated MC and the decarbamoyl derivative (DMC) were found to cross-link T7 in a 

concentration dependent manner with this assay.20  Here, we apply this method to DNA 

isolated from AZM treated human cancer cells in order to determine the relative amount 

of cross-linkage that occurred using the fluorescent DNA probe Hoechst 33342.   

In its original development, the Single Cell Gel Electrophoresis (COMET) assay 

was used to identify DNA damaging agents and investigate the repair kinetics in cells.21 

Since then, variations to the COMET assay have been described that allow the detection 

of DNA cross-linking agents.  These evaluations are based on the compound’s ability to 

decrease the electrophoretic mobility of DNA when combined with DNA damaging 

agents.22-24,26-28   In this study, as in previous studies with MC, we use a similar modified 

alkaline COMET assay to measure DNA cross-linkage in MC or AZM treated that were 

subsequently exposed to the DNA damaging agent hydrogen peroxide.25  
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Materials and Methods 

Materials 

MC was purchased from Cayman Chemical (Ann Arbor, MI).  Hoechst 33342 

was obtained from Invitrogen (Eugene, OR).  A 10,000x SYBR Green solution was 

aquired from Molecular Probes (Eugene, OR).  HyClone growth media (RPMI-1640 and 

Dulbecco’s Modified Eagles Medium (DMEM)) and penicillin/streptomycin solution 

were obtained from Thermo Scientific (Waltham, MA). Fetal Bovine Serum (FBS) was 

purchased from Fisher Scientific (Hampton, NH).  Blood and Cell Culture Mini Kit was 

obtained from Qiagen (Hilden, Germany).  The CometAssay Kit was purchased from 

Trevigen (Gaithersburg, MD).  

Cell Culture 

Jurkat and HeLa cell lines were obtained as a generous gift from Dr. Denise 

Wingett, Dr. John Rasmussen, and Dr. Ken Cornell at Boise State University.  Jurkat 

cells were cultured in RPMI-1640 supplemented with 10% FBS, penicillin (100 U/mL), 

and streptomycin (100 µg/mL).  HeLa cells were cultured in DMEM with 10% FBS, 

penicillin (100 U/mg), and streptomycin (100 µg/mL). Cell lines were grown at 37 ºC in 

5% CO2 atmosphere.    

Jurkat and HeLa Cell DNA Isolation 

Jurkat and HeLa genomic and mitochondrial DNA were isolated together using 

the Qiagen DNA and Blood Mini Kit according to the manufacturer’s recommendations 

for “Tissue” isolation.  This protocol allows for the isolation of mitochondrial DNA as 

well as genomic DNA.29  Prior to DNA isolation, Jurkat and HeLa cells were grown in 
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T25 flasks until approximately 90% confluent or ~5-6 x 106 cells were available.  Cells 

were then treated with vehicle (1x PBS) or 10 µM MC, H/H-AZM, or Me/H-AZM for 

one hour.   After one hour, cells were harvested, washed twice in 1x PBS, and the DNA 

isolated according to the manufacturer’s directions for “Tissue” DNA isolation.  DNA 

concentrations were determined using a SYBR green fluorescence assay.30 

Hoechst 33342 DNA Cross-Linking Assay 

The following protocol is an adaptation to cross-linking assay presented by 

Penketh, Shyam, and Sartorelli.18 DNA utilized in these experiments were isolated as 

outlined above.  Samples for the assay were prepared in the dark by combining isolated 

cellular DNA (3,750 ng) with 300 µL of 1.0 µg/mL Hoechst 33342 in nanopure H2O. The 

total volume was brought to 3 mL with 0.5x TE buffer.  Fluorescence (ex 360 nm/em 460 

nm) of a 2 mL portion of each sample was then read on a Varian Cary Eclipse 

Fluorimeter (Palo Alto, CA).  A solution of 2,700 µL 0.5x TE + 300 µL 1.0 µg/mL 

Hoechst 33342 was used as a blank.  After the initial readings, the retention of 

fluorescence was measured after subjecting samples to a heat/chill process as follows: 5 

minutes in a 96-98°C water bath, immediate chilling in an ice/water bath for 5 minutes, 

followed by incubation in a room temperature water bath for 5 minutes. The fluorescence 

measurement was repeated and the cross-linked fractions were determined using 

Equation 1:   

Cross-linked fraction  =  
𝐸𝐴
𝐸𝐵

   −  𝐶𝐴𝐶𝐵
1  −  𝐶𝐴𝐶𝐵

               Equation 1 
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Where, CA = fluorescence of control sample after heat/chill, CB = fluorescence of control 

sample before heat chill, EA = fluorescence of experimental sample after heat/chill, and  

EB = fluorescence of experimental sample before heat/chill. 

Data was analyzed in Microsoft Excel (Redmond, WA) and GraphPad Prism 

(www.graphpad.com). Values were presented as the mean ± SEM of two independent 

DNA isolations with measurements conducted in triplicate for each isolation.  

Modified Alkaline COMET Assay 

The alkaline COMET Assay was performed according to the manufacturer’s 

protocol (Trevigen, Gaithersburg, MD) with minor modifications.  Briefly, Jurkat and 

HeLa cells were harvested, washed once with complete media, and reconstituted to a 

final density of 1 x 105 cells/mL (Jurkat) or 2 x 105 cells/mL (HeLa) using complete 

media in sterile 1.5 mL micro-centrifuge tubes.  Cells were then either treated with a final 

concentration of either 10 µM MC, H/H-AZM, Me/H-AZM, or 1x PBS for one hour at 

37 °C in 5% CO2 with agitation every 15 minutes.  After one hour, the cells were 

harvested via centrifugation, washed once in 1x PBS (Ca2+ and Mg2+ free), then 

resuspended in 100 µM hydrogen peroxide in 1x PBS for 20 minutes (Jurkat) or 30 

minutes (HeLa) at 4°C.  Next, cells were harvested via centrifugation (5 min, 150 x g 

(Jurkat), 250 x g (HeLa)), washed twice, and suspended in 1 mL of 1x PBS (Ca2+ and 

Mg2+ free).  A 50 µL portion of the cell suspension was then combined with 300-500 μL 

of 37 °C low melting point agarose.  The resulting solution was mixed by inversion 

several times and a 50 μL portion spread evenly on the COMET slide.  COMET slides 

were then allowed to solidify at 4 °C for 30 minutes in the dark, after which they were 

submerged in lysis solution overnight at 4 °C in the dark.  The following day, the slides 
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were removed from the lysis solution and submerged in a freshly prepared alkaline DNA 

unwinding (pH >13) solution for 20 minutes at room temperature in the dark.  Slides 

were then subjected to electrophoresis (20V, ~300 mA) in freshly made alkaline 

electrophoresis solution for 30 minutes at 4 °C.  After electrophoresis, the slides were 

rinsed twice in fresh deionized water for 5 minutes, followed by a third washing in 70% 

ethanol for 5 minutes.  Slides were then dried at 37 °C for 15 minutes, followed by 

staining with 1x SYBR Green solution in 1x TE (pH 8.0) for 30 minutes at room 

temperature in the dark.  Slides were then briefly washed in deionized water and dried at 

37°C for approximately 1-2 hours.  COMETS were visualized and images captured using 

an AMG Evos fluorescent microscope (Mill Creek, WA) using the 10x objective and 

GFP filter.  Analysis for tail extent moment was performed using the OpenComet plugin 

for ImageJ (NIH), and tail extent moments (mean ± SEM) plotted in GraphPad Prism 

6.31,32  

Results 

Hoechst 33342 DNA Cross-Linking Assay 

The thermal denaturation process followed by rapid cooling causes mismatching 

in the base pairing of DNA leading to a decrease in fluorescence.  The Hoechst 

fluorophores preferentially bind to A-T rich regions through the minor groove of DNA.33  

When bound to double stranded DNA (dsDNA), Hoechst stains exhibit an increased 

fluorescence when compared to single stranded DNA (ssDNA).  Covalent cross-links in 

the DNA act as anchor points, decreasing the mismatched base pairing during rapid 
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renaturation.  Thus, DNA with more cross-linking will exhibit increased retention of 

fluorescence after the heat/chill process.18   

The relative fraction of cross-linked DNA created by MC and AZMs were 

determined using isolated DNA from drug treated Jurkat and HeLa cells (Table 3.1, 

Figure 3.3).  When Jurkat and HeLa cells were treated with 10 µM Me/H-AZM for one 

hour, there was a significant increase in the amount of cross-linked DNA when compared 

to MC and H/H-AZM treatment.  The fraction of cross-linked fractions was calculated at 

0.39 (± 0.01) and 0.29 (± 0.01) for Me/H-AZM treated Jurkat and HeLa cells, 

respectively.  The cross-linking sponsored by Me/H-AZM treatment was 48 fold greater 

than MC treatment in Jurkat cells, and 6 fold higher than MC treatment in HeLa cells. 

Similarly, the fraction of cross-linked DNA was higher in H/H-AZM treated Jurkat cells 

than in HeLa cells.  In the Jurkat cell line, H/H-AZM treatment increased the fraction of 

cross-linked DNA 12.5 fold greater than MC treatment.  In contrast, MC treatment of 

HeLa cells resulted in a 1.7 fold increase in cross-linked DNA compared to H/H-AZM 

treatment.  This suggests that Jurkat DNA is more susceptible to H/H-AZM sponsored 

cross-linkage.   

Table 3.1 Hoechst 33342 Assay for Cross-Linked DNA.  Data presented is the 
calculated mean fraction of cross-linked DNA (± SEM) for two experiments, n = 6. 

Fraction of Cross-Linked DNA 
Drug (10 µM) Jurkat cells HeLa cells 
Mitomycin C 0.008 ± 0.003 0.045 ± 0.004 

H/H-AZM 0.10 ± 0.03 0.026 ± 0.007 
Me/H-AZM 0.39 ± 0.01 0.29 ± 0.01 
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Figure 3.3 Hoechst 33342 DNA Cross-linking.  A) Jurkat and B) HeLa cellular 
DNA was isolated after one hour treatment with either 10 µM mitomycin C, H/H-
AZM, or Me/H-AZM.  The fraction cross-linked of isolated DNA found in three 

drug treatments of A) Jurkat cells and B) HeLa cells was measured using Hoechst 
33342 fluorescence. Data is presented as mean ± SEM of two experiments, n = 6, * 

denotes p < 0.05, by one-way ANOVA, when compared to Mitomycin C. 

Modified Alkaline COMET Assay 

The modified alkaline COMET assay provides the ability to investigate the extent 

of drug induced DNA cross-linking in individual cells.  The alkaline COMET assay 

allows for visualization and quantification of DNA strand breakage, or damage and repair 

in single cells induced by DNA damaging agents.19,26  The assay does not readily 

ascertain the ability to detect DNA alkylation events such as DNA interstrand, 

intrastrand, or DNA-protein cross-links.26  Treatment with a genotoxic agent such as 

hydrogen peroxide induces DNA strand breaks that increases the electrophoretic mobility 

of DNA and results in the appearance of an elongated “tail” in the electropherogram.  

Agents that sponsor DNA cross-linking prior to hydrogen peroxide exposure ultimately 

hinder migration of DNA during electrophoresis by decreasing the amount of strand 

breaks that can occur. 22,23,25,26  This leads to a decreased tail length in the 

electropherogram when compared to cells only treated with hydrogen peroxide.22,28  The 

“tail extent moment” is calculated by multiplying tail length by the measured amount of 
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DNA in the tail.26  Previously, treatment of bladder cancer cell lines with MC was 

reported to cause DNA cross-linkage that resulted in decreased γ-radiation induced DNA 

strand breakage in the COMET assay.  The DNA in the assay displayed decreased 

electrophoretic mobility, and a decreased "tail" in the electropherogram.26   This type of 

modified alkaline COMET assay has also been used to demonstrated DNA cross-linkage 

by platinum containing chemotherapeutics, such as oxaliplatin and satraplatin.28 

Results from our modified alkaline COMET assay indicate that treatment of 

Jurkat and HeLa cells with 10 µM drug treatment (MC, H/H-AZM, and Me/H-AZM) for 

one hour results in decreased electrophoretic mobility of the DNA (Figures 3.4 and 3.5).  

Jurkat cells treated with H/H-AZM and Me/H-AZM produced mean tail extent moments 

of 0.45 ± 0.07 and 0.17 ± 0.03, respectively.  These tail extent moments were 

significantly reduced relative to MC treatment (Figure 3.4, panel F).  Tail extent moments 

for MC were found to be 64.06 ± 7.04 in Jurkat cells, compared to that of 69.82 ± 5.50 

for the 100 µM H2O2 treated control, indicating that MC was poorly effective at causing 

DNA cross-linkage under the aerobic conditions used in the assay.  The AZMs appear to 

reduce tail extent moments at least 142 fold greater than MC in Jurkat cells.  
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Figure 3.4 Modified Alkaline COMET assay of Jurkat cells. Jurkat cells were 

treated with either MC or AZM for one hour at 37ºC in 5% CO2 atmosphere 
followed by exposure to 100 µM H2O2 for 20 minutes at 4 ºC to induce DNA strand 

breaks. Controls consisted of cells that received no drug (minimal DNA strand 
breaks), or received only H2O2 treatment (maximal DNA strand breaks).  Panels 

show fluorescence micrographs of Jurkat cell electropherograms. Panel A) Vehicle 
w/o 100 µM H2O2; B) Vehicle + 100 µM H2O2; C) 10 µM mitomycin C + 100 µM 

H2O2; D) 10 µM H/H-AZM + 100 µM H2O2; E) 10 µM Me/H-AZM + 100 µM H2O2.  
Panel F) Plot of Jurkat cell tail extent moment. Tail extent moments are expressed 
as the mean ± SEM of two experiments (n > 50 cells per treatment). * Denotes p < 

0.05 by one-way ANOVA, when compared to 100 µM H2O2 treated sample. 

In contrast to Jurkat cells, HeLa cells appeared to be less sensitive to drug induced 

DNA cross-linkage (Figure 3.5).  Tail extent moments in HeLa cells were the lowest in 

the Me/H-AZM treatment group (5.72 ± 0.73), followed by H/H-AZM treatment (53.77 ± 

3.24).  Both AZMs produced significant reductions in tail extent moments relative to the 

100 µM H2O2 control.  Me/H-AZM and H/H-AZM produced tail extent moments that 

were 15.8 and 1.7 fold lower, respectively, than MC treatment.  Similar to the findings in 

Jurkat cells, MC treatment of HeLa cells produced tail extent moments (90.25 ± 4.17) 

that were insignificant when compared to the 100 µM H2O2 control (101.5 ± 4.6).  Both 
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AZMs were able to significantly reduce the tail extent moments in HeLa cells to a greater 

extent than MC, with Me/H-AZM and H/H-AZM, 15.8 and 1.7 fold lower tail extent 

moments respectively (Figure 3.5).  

 

Figure 3.5 Modified Alkaline COMET assay of HeLa cells. HeLa cells were 
treated with either MC or AZM for one hour at 37ºC in 5% CO2 atmosphere 

followed by exposure to 100 µM H2O2 for 30 minutes at 4 ºC to induce DNA strand 
breaks. Controls consisted of cells that received no drug (minimal DNA strand 

breaks), or received only H2O2 treatment (maximal DNA strand breaks).  Panels 
show fluorescence micrographs of Jurkat cell electropherograms. Panel A) Vehicle 

w/o 100 µM H2O2; B) Vehicle + 100 µM H2O2; C) 10 µM mitomycin C + 100 µM 
H2O2; D) 10 µM H/H-AZM + 100 µM H2O2; E) 10 µM Me/H-AZM + 100 µM H2O2.  
Panel F) Plot of HeLa cell tail extent moment. Tail extent moments are expressed as 
the mean ± SEM of two experiments (n > 50 cells per treatment). * Denotes p < 0.05 

by one-way ANOVA, when compared to 100 µM H2O2 treated sample. 

Discussion and Conclusion 

Results from the Hoechst 33342 cross-linking assay and modified alkaline 

COMET assay provide evidence that H/H-AZM and Me/H-AZM create DNA cross-links 

in Jurkat and HeLa cells after one hour of treatment in an aerobic environment.  Me/H-

AZM was more potent than H/H-AZM, particularly in Jurkat cells.  MC treatment under 
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aerobic conditions resulted in insignificant DNA modification, which would be expected 

based on prior reports that demonstrated enhanced activation of MC for DNA cross-

linking under anaerobic/reducing conditions.    

The modified alkaline COMET assay provided insight into the occurrence of 

DNA alkylation events, although it does not distinguish between DNA-DNA or DNA-

protein cross-links.  However, the observed decreases in tail extent moments further 

support that cellular DNA is a target of AZM treatment that produces modifications 

(cross-linkages) that stabilize the structure and interfere with subsequent strand break 

formation.  The differences in tail extent moments displayed by H/H-AZM in Jurkat and 

HeLa cells also provides evidence that Jurkat cell DNA is more vulnerable to DNA 

alkylation.  These findings correspond well with the results of the Hoechst 33342 assay 

that showed that the fraction of cross-linked DNA was greater in AZM treated Jurkat 

cells compared to similar treatment of HeLa cells.   

The Hoechst 33342 cross-linking assay utilizes DNA isolated from cells that have 

been treated with both RNAse-A and Proteinase K prior to purification.  Since these 

enzymes act to cleave RNA and proteins and results in their removal from the system, the 

Hoechst assay should be more specific for the presence of DNA-DNA cross-links.33,35  

Interstrand cross-links are probably the most likely even since they would stabilize the 

double stranded DNA that would bind the Hoechst dye and result in retained fluorescence 

in the assay.18,34  The formation of DNA-DNA cross-links by H/H-AZM is consistent 

with the formation of DNA-DNA interstrand cross-link formation reported by other 

investigators that examined AZM treatment of purified (cell free) radiolabelled DNA and 

UVrABC nuclease.16,17 
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AZM mediated DNA protein cross-links should still be considered as a relevant 

alkylation event, although not specifically measured here.  While treatment with H/H-

AZM and Me/H-AZM both produced similar reductions in tail extent moments in the 

COMET assay, the fraction of cross-linked DNA produced by Me/H-AZM treatment was 

approximately four fold greater as measured in the Hoechst assay, suggesting that other 

alkylation events are occurring besides DNA-DNA cross-links.  The susceptibility to 

nucleophilic attack in H/H-AZM is present at four potential electrophilic locations at C1, 

C6/7, and C10.  Prior reports by the Vedejs group demonstrated that H/H-AZM treatment 

resulted in the formation of high molecular weight DNA adducts that were tentatively 

attributed to AZM mediated DNA-protein cross-links.16  Preliminary unpublished 

investigations within our laboratory have indicated that H/H-AZM is capable of forming 

DNA-protein cross-links with bovine serum albumin (BSA).  The high intracellular 

concentration of protein, and particularly the presence of numerous DNA associated 

proteins (e.g., histones, etc.) that contain nucleophilic amine groups that could react with 

AZMs, suggest that the formation of a DNA-protein cross-link is highly probable.  While 

additional work is required for the identification and subsequent characterization of AZM 

induced intracellular DNA-protein cross-links, the modified alkaline COMET assay 

could lend supplementary insight.  While the alkaline method utilized in these 

experiments is reported to remove histones from DNA during the lysis process, this step 

occurs after AZM treatment, which leads us to postulate that DNA-protein cross-links 

(e.g., DNA-histone) may be retained in the assay.  Further investigations should be 

directed towards measurement of the capability of AZMs to mediate DNA-protein cross-

links and characterization of the alkylated adduct.  
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The increased DNA alkylation displayed by Me/H-AZM over H/H-AZM may be 

attributed to conservation of the methyl group at C6 that occurs throughout the A, B, and 

G-type mitomycins.36 The methyl group is the sole structural difference between Me/H-

AZM and H/H-AZM.  Yet, this simple alteration results in a remarkable increase in 

cytotoxicity and DNA modification in two different cell lines.  The methyl group may 

help to increase the lipophilicity of the aziridinomitosene that subsequently improves its 

cellular uptake and retention and increases its intracellular concentration.  More likely, 

however, the presence of the inductive electron donation from the methyl group leads to 

increased stabilization of the electrophilic sites, resulting in a more stable DNA 

alkylating compound.  Furthermore, the methyl group at C6 may sterically hinder 

nucleophile accessibility to the quinone ring, thus improving the half-life of the AZM by 

preventing non-productive reactions with other biomolecules outside the context of the 

DNA.  

In conclusion, two synthetic AZMs produced within our lab were able to modify 

DNA in a cellular setting with similar or increased efficacy relative to MC, as indicated 

by Hoechst 33342 fluorescence and modified alkaline COMET assays.  The addition of a 

methyl group at C6 in the AZM skeleton (Me/H-AZM) led to increased DNA cross-

linking in both Jurkat and HeLa cell lines.  Future experiments will be directed towards 

determining the DNA alkylating abilities of additional AZM analogs with chemical 

modification at the C6, C7, and C10 positions.  Furthermore, additional studies to 

characterize and confirm DNA-AZM-protein cross-links and DNA-AZM-DNA cross-

links from treated cells are being explored.    
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