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ABSTRACT 

The development of adjuvants that can promote the delivery of purified subunit 

vaccines by mucosal routes, such as the nose or the mouth, is recognized as a top priority 

for vaccine research.  The bacterial enterotoxins cholera toxin (CT) and E.coli heat-labile 

toxin (LTI) have long been recognized as powerful adjuvants with the ability to stimulate 

specific immune responses to co-administered antigens when delivered to mucosal 

surfaces. Shiga toxin 1 (ST1) and pertussis toxin (PT) are structurally homologous 

bacterial toxins secreted by Escherichia coli 0157:H7 and Bordetella pertussis, 

respectively.  ST1 and PT also have reported adjuvant activity but it is less well 

characterized. The receptor-binding affinity and protein stability of these AB5-type 

toxins appear to be the basis for their unique immunomodulatory properties.  However, 

the toxicity of these molecules is a limiting factor for use as adjuvants in human vaccines. 

The non-toxic B subunit of CT, as well as chimeric CTA2B molecules, have shown recent 

promise as novel mucosal vaccines.  A2B chimeras of CT retain the capacity to introduce 

antigens into host cells and modulate the immune response, but toxic domains are 

replaced with a vaccine antigen of interest. This work reveals the construction of a 

number of plasmids for the expression of ST1A2B chimeras containing the Yersinia pestis 

bacterial antigen, LcrV and the West Nile virus domain III (DIII) antigen. Plasmids were 

also constructed for expression of the ST1 B subunit and this pentamer was purified from 

the E.coli periplasm.  The ability of the ST1 A2/B chimeras and STB to stimulate antigen 

uptake and immune stimulation in vitro was assayed by fluorescence microscopy, 



 

vii 

metabolic dye assay, T-cell proliferation assay, and cytokine ELISA using both 

macrophage and dendritic cells.  Findings suggest that STB can induce antigen uptake 

and may stimulate more of a Th-2 type and anti-inflammatory response, similar to CTB. 

These studies will contribute to the development of these toxins as novel mucosal 

adjuvants.  
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CHAPTER I.  INTRODUCTION 

Bacterial AB5 Toxins 

Bacterial AB5 type toxins are large secreted multimeric proteins that bind to and 

trigger reactivity in host cells. AB5 toxins are highly significant proteins because of their 

pivotal role in virulence for pathogenic bacteria specifically Escherichia coli, Shigella 

dysenteriae and Vibrio cholerae. These three pathogens can cause severe gastroenteritis 

and diarrhea and are responsible for significant human  mortality and morbidity globally 

[1, 2]. AB5 toxins are composed of two subunits including a catalytic domain, or A 

subunit, linked to a pentameric binding domain or B subunit. Two stages are involved in 

the process of AB5 toxin mechanism of action: 1) binding of the pentamic B subunit to 

distinctive receptors on the host cell surface that triggers the uptake and internalization of 

the holotoxin, and 2) translocation of the A subunit to the host cytosol leading to the 

suspension or dysfunction of imperative host cell activities and often leading to cell death 

(Figure 1.1). These toxins are often the main virulence factor produced by pathogenic 

Gram negative bacteria and many are well studied. There are four recognized AB5 toxin 

families that include the cholera toxin (Ctx) and E.coli heat-labile toxin (LT) family, the 

shiga toxin (Stx) family,  the pertussis toxin (Ptx) family, and the subtilase cytotoxin 

(SubAB) family (Figure 1.2  and Table 1.1) [3]. 

The most well studied bacterial AB5 toxin is Ctx, produced by Vibrio cholerae. 

The Ctx family contains the highly homologous E. coli heat labile toxin LTI and the 
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closely related LTIIa and b toxins. The Stx family is  composed of Stx from Shigella 

dysenteriae, and the Shiga-like toxins or Vero toxins produced by E.coli  [4].  In addition 

to extensive characterization of the structure and function of these toxins, over the last 

two decades, AB5 toxins have emerged as highly effective mucosal adjuvants for 

strengthening immune responses to co-administered antigens. The adjuvanticity of these 

molecules can be attributed to their unique ability to bind to specific host cells and to 

constructively engineer signaling pathways in these cells [5]. Research shows that Ctx 

and the cholera toxin B subunit (CtxB) are gold standard mucosal vaccine adjuvants, but 

can also be used to promote diverse outcomes, such as the suppression of  auto-immune 

responses in Type 1 diabetes and reduction of the salient features of asthma like 

eosinophilia in mice [6, 7]. Less is known about the immunostimulatory activity of other 

AB5 toxins; however, Stx has been shown to be a promising approach for the 

development of vaccines that target pancreatic and colon cancer, as these cells express 

more Gb3, which is a receptor for Shiga toxin B (StxB) [8-10]. Research shows that ST1 

may possess adjuvant activity for inducing mucosal immunity [30]. We hypothesized that 

ST1 non-toxic derivatives can act as mucosal adjuvants for vaccines directed against 

infectious agents. We tested this hypothesis by constructing non-toxin ST1 fusions and 

characterizing these fusions in vitro.   
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Figure 1.1. Specific glycan binding and cellular internalization. Toxin’s A-
subunits are represented as a pentagon and their subunit activities are illustrated 
with different colors (blue, protease activity; green, ADP- ribosyl transferase 
activity; magenta, N-glycosidase activity). Illustrates the route of internalization of 
the toxins through the endosomes, Golgi, and endoplasmic reticulum. Figure 
reprinted with permission [3]. 
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Figure 1.2. Structures of the four main AB5 toxin families. The binding or B 
subunit is indicated as a molecular surface. The A subunits of Sub AB, Ctx, LT, Stx 
and Ptx  are colored according to the respective catalytic activity (light blue for 
subtilase activity, light green for ADP-ribosylase activity and purple for RNA N-
glycosidase activity). The common structural element (helix A2) is represented by 
red, and the level of sequence identity of the A-subunit inside a family is indicated. 
Figure reprinted with permission [3]. 
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Table 1.1. Summary of AB5 toxins structure and function. Reprinted with 
permission [5]. 

 

Vibrio cholerae Cholera Toxin  

Cholera toxin (Ctx) is produced by the bacterium Vibrio cholerae and is 

responsible for the human diarrheal disease cholera. Ctx consists of an active A subunit 

(CtxA, or CTA) that is a single polypeptide chain with two domains (A1 and A2) that 

total approximately 27 kD, and a receptor binding pentameric B subunit (CtxB, or CTB), 

of approximately 10.6 kD per monomer (Table 1.1). CTA and CTB are folded after 

secretion within the bacterial periplasm to form a large, multimeric holotoxin that is 

greater than 80 kD. Ctx is the main virulence factor contributing to the pathogenesis of V. 

cholerae infection. Pathogenicity of V. cholerae is characterized by its ability to resist 

acidic environments of the stomach followed by colonizing the small intestine and 

secretion of Ctx [11, 12]. In the small intestine, the CTB subunit adheres to ganglioside 
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GM1 receptors on the surface of host intestinal epithelial cells, which triggers the uptake 

of Ctx by retrograde endocytosis through the Trans Golgi network (TGN) to the 

endoplasmic reticulum (ER). CTA is tethered to CTB via non-covalent interactions 

within the C-terminal, called the CTA2 domain (Figure 1.3). After internalization of the 

toxin, the active domain (CTA1) is translocated to the host cytoplasm via the ER-

associated degradation pathway (ERAD). In the cytosol, CTA binds to and constitutively 

activates the regulatory protein Gsα by ADP-ribosylation (Figure 1.4) [13, 14]. This 

enzymatic activity in the host cytosol results in the activation of adenylate cyclase 

followed by the secretion of electrolytes and fluids into the lumen of the small intestine.  

While Ctx intoxication does not trigger apoptosis nor necessarily lead to host cell death, 

the massive fluid secretion stimulates cell sloughing, transmission of the bacterium, and 

fluid losses of up to 20 liters a day. Dehydration and shock can cause death within 24 

hours especially in vulnerable populations. Despite the efficacy of prompt therapy, 

cholera still causes an estimated 3-5 million infections and over 100,000 deaths per year, 

largely in developing countries with inadequate access to clean water (WHO).  

Immunomodulation by Ctx has been studied extensively over the past two 

decades; however, it is yet to be fully understood. Factors that contribute to 

immunomodulation include: antigen-presenting cell activation, B-cell isotype switching, 

and up regulation of co-stimulatory and MHC class II expression. As described in more 

detail below, the majority of these responses are the consequences of interactions 

between CTB and its receptor ganglioside GM1 on the surface of the effector cells, such 

as dendritic cells, which play major roles in antigen uptake, presentation, and cellular 

activation  [15].  
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Figure 1.3. Cholera toxin structure. A subunit (blue) of Ctx is contains CTA1 (22 
kDa) and CTA2 (5 kDa), connected by a single disulfide bond. The enzymatically 
active CTA1 peptide is the (toxic) mono-ADP-ribosyltransferase subunit, and CTA2 
helical peptide links the CTA1 subunit to the pentameric CTB subunits. The cholera 
toxin B subunit (10.6 kDa) is made up of five identical polypeptide subunits (yellow, 
purple, red, orange, and turquoise), each with membrane receptor GM1ganglioside 
binding capacity. Figure reprinted with permission [5]. 
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Figure 1.4. Ctx pathogenesis and mechanism of action: V. cholerae secretes Ctx 
after bacterial ingestion and B subunits binds to oligosaccharide of GM1 ganglioside 
receptors in the apical membrane. Figure illustrates the toxin endocytosis and its 
travel to the ER via a retrograde pathway dependent on cell type. Ctx traffics 
through Golgi to ER where the A subunit dissociates to bind to ADP-ribosylates Gs, 
stimulating the Adenylate Cyclase complex to produce increased cellular levels of 
cAMP, leading to activation of PKA, phosphorylation of the major chloride channel, 
CFTR, and secretion of chloride (Cl−) and water. Figure reprinted with permission 
[16]. 
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E.coli Heat-Labile Toxin 

Heat-labile enterotoxin (LT) is produced by enterotoxigenic Escherichia coli 

(ETEC). LT holotoxin has an enzymatically active A subunit (LtxA or LTA, 27 kDa) that, 

similar to CTA, is made of two subunits connected by a single disulfide bridge. LTA1 is the 

active catalytic portion and LTA2 is a linker peptide that joins the LTA1 subunit to the LTB 

pentamer via disulfide bond. The LTB subunit has five identical binding B subunits and 

binds strongly to ganglioside GM1, but also binds asialo-GM1, GD1b, and GM2 [5, 17-

19] . LT is the major virulence factor of ETEC,  and is highly similar to Ctx  in sequence, 

structure, and function along with antigenicity [20]. CTA is identical to LTA, and CTB is 

80%  identical to LTB at the amino acid level [21]. These subtle differences in sequence 

contribute to distinct cellular binding and toxicity between Ctx and LT. LT endocytosis 

and LTA translocation also results in ADP-ribsylation and constitutive activation of 

adenylate cyclase, followed by increases in in intracellular cAMP,  declines in Na+ 

absorption by the epithelial cells, and increased chloride ion secretion through CFTR 

(cystic fibrosis transmembrane conductance regulator), leading to diarrhea [22]. ETEC 

infection results in what is known as Traveler’s Diarrhea and it was initially identified as 

the cause of human diarrheal illness in the 1960s [23-25]. ETEC infections in humans are 

associated with contaminated food and water consumption. Infection occurs as a sudden 

onset of self-limiting diarrhea but can cause dehydration as a result of the fluid and 

electrolytes loss [26]. ETEC is estimated to cause 200 million diarrheal cases and 

approximately 380,000 deaths annually worldwide [27]. Additionally, it causes a 

significant problem for military personnel visiting countries where ETEC is endemic 

[26]. It also has  significant financial ramifications in the farming industry as it is a 

primary pathogen of cattle, and neonatal and post weaning piglets [28].  
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Shigella dysenteriae Shiga Toxin 

Shiga toxin (Stx) produced by Shigella dysenteriae also belongs to the AB5 family 

of secreted bacterial toxins that includes Ptx, Ctx, and LT [29]. Shiga toxins are named 

after the Japanese bacteriologist, Kiyoshi Shiga, who first described the bacterial origin 

of dysentery caused by Shigella dysenteriae in 1897 [30]. There are two main types of 

shiga toxins, shiga toxin 1 (Stx1 or ST1), and shiga toxin 2 (Stx2 or ST2). ST1 is 

produced by both S. dysenteriae and shiga-toxin producing strains of E.coli (STEC) and 

is virtually identical amino acid  homology between these species [29]. ST2 is produced 

by E. coli and is not cross neutralized by poly clonal antisera against ST1 or vice versa 

[31, 32]. ST2 is often expressed by the 0157:H7 E. coli serotype, or enterohemorrhagic 

E.coli (EHEC) and epidemiological, experimental studies suggest that it is more often 

associated with clinical disease than ST1 [32]. 

E.coli and Shigella strains harboring ST1 and ST2 are transmitted via food, 

person to person, or hand to mouth and can also spread through cattle. Infection of the 

human small intestine with ST1 or ST2 expressing bacteria can lead to a range of clinical 

outcomes including shigellosis, bloody dysentery, hemolytic colitis, or hemolytic uremic 

syndrome (HUS). HUS is the most severe form of disease that can lead to kidney failure 

especially in young children. Symptoms of gastroenteritis usually appear within few 

hours of ingestion of toxin-expressing bacteria. Infections are highly communicable, and 

as low as 50-100 cells can result in significant disease [33, 34].  

Like Ctx, shiga toxins are complex holotoxins with an AB5 – type composition. 

ST1 includes a 32 kDa enzymatically active (ST1A) subunit that is non-covalently 

associated with a pentameric binding domain (ST1B) composed of five identical B 

http://en.wikipedia.org/wiki/Kiyoshi_Shiga
http://en.wikipedia.org/wiki/Dysentery
http://en.wikipedia.org/wiki/Shigella_dysenteriae
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proteins (38.5 kDa) (Figure 1.5). The mature A and B subunits of ST1 and ST2 have 55 

and 61% amino acid identity and 68 and 73 % similarity, respectively. Despite these 

sequence differences, the crystal structures of the ST1 and ST2 holotoxins are highly 

similar and the toxins have the same mode of action [31, 32]. Upon ingestion of bacteria 

and colonization of the host small intestine, Stx is secreted from the bacterium and the A 

subunit is asymmetrically cleaved by trypsin or furin into the A1 (~ 27kDa) and A2 (~ 

5kDa) peptides. The A2 domain is non-toxic, but traverses the B subunit to bind the 

holotoxin together non-covalently before reduction. Similar to Ctx, the B pentamer 

confers toxin receptor-specificity and binds to eukaryotic receptors, however unlike Ctx, 

Stx binds to the unique receptor, globotriaosyl ceramide (Gb3) [3, 35].  Gb3 is found on 

many cells within the body, including intestinal epithelial cells, neuronal cells, dendritic 

cells, and germinal center B lymphocytes [36]. Gb3 is also found abundantly in the 

microvasculature of kidney [37].   

Following toxin secretion and Gb3 binding, the holotoxin enters the cell by 

triggering endocytosis, and escapes the lysosomal pathway by passing from early 

endosomes to the TGN and then to the ER. The A1 and A2 domains of Stx remain 

associated through a disulfide bond while the toxin is internalized by this retrograde 

transport. Reduction and separation of A1 and A2 occurs within ER. The enzymatically 

active A1 domain is then translocated to the cytosol and once there acts as an N-

glycosidase that removes an adenosine residue from the 28S rRNA on the 60S ribosome 

(the bond between the base and ribose is lysed). This alteration halts host cell protein 

synthesis and triggers apoptosis in the intoxicated cell [38]. The result is a sloughing of 

intestinal cells and bloody diarrhea associated with dysentery. More severe infections can 
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release toxin that binds to and targets cells of the kidneys, resulting in HUS that can have 

a mortality rate up to 10% [39]. 

 
Figure 1.5. The structure of Shiga toxin: the crystallographic structure has been 
obtained from the PDB protein data bank (1DM0). Shiga toxin consists of an A 
subunit (moiety) (~32 kDa) that is non-covalently attached to a B subunit (moiety) 
composed of five identical subunits (~7.7 kDa each). The A-moiety is cleaved by the 
protease furin into an enzymatically active A1-fragment (~27 kDa) and a carboxyl 
terminal A2-fragment (~5 kDa), which remain linked by a disulfide bond. Figure 
reprinted with permission [32]. 
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Figure 1.6. Mechanism of action of Stx on sensitive cells. Stx binds to Gb3 
receptor and gets transported into the ER from endosomes to Golgi to ER. In the 
ER the A subunit gets cleaved by the enzyme furin and enters the cystosol and 
inhibits proteins synthesis. Figure reprinted with permission [1]. 
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Bordetella pertussis Pertussis Toxin 

Pertussis toxin (Ptx) is secreted by the gram negative pathogen, Bordetella 

pertussis, that causes the respiratory infection commonly known as whooping cough. Ptx 

was first identified by the Belgian scientist, Jules Bordet, in 1906 [5]. While Ptx is an 

AB5-type toxin with an enzymatically active and binding subunit, unlike Ctx and Stx, it 

is a large hexamer that contains five different subunits (S1, S2, S3, two copies of S4 and 

S5) with a total molecular weight of 105kDa  [40, 41]. The Ptx S1 subunit is the catalytic 

domain possessing enzymatic activity. S1 transfers an ADP-ribose from nicotinamide 

adenine dinucleotide (NAD) to the cysteine residue of trimetric guanine nucleotide-

binding proteins (Sialo glyco proteins), leading to a decoupling of the G-protein α-

subunit from its receptor. The decoupling event blocks the inhibition of adenylate cyclase 

activity, leading to an increase in accumulation of intracellular cAMP concentration and 

subsequent increase in respiratory secretions and mucus production [5]. This activity 

triggers a number of downstream cellular events including cytokine secretion, 

inflammation and cell death, that are the main mechanisms of pathogenesis associated 

with disease [42]. There is a 20% sequence identity between the S1 subunit of Ptx and the 

A subunit of Ctx, indicative of distinct functions within the cell [43]. The Ptx S2, S3, S4, 

and S5 fold to form a binding subunit or B oligomer that facilitates the binding of Ptx to 

target host cell receptors and the delivery of active S1 subunit into the cytosol by 

retrograde transport [44, 45]. The B subunit of Ptx binds to ganglioside GD1a available 

within lipid rafts buried in the plasma membrane of upper respiratory epithelial host cells. 

The S1 subunit undergoes tyrosine sulfation as it travels through the TGN along with  N-

glycosylation in the Golgi apparatus followed by ER  to build its ADP-ribosylating 
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ability [46, 47].  As described below, Ptx also has significant immunmodulatory activites 

and studies show that Ptx is capable of augmenting antigen-specific immunoglobulin- 

IgG and IgE responses [48]. 

 
Figure 1.7. Pertussis toxin (Ptx) structure. The Ptx subunits are in hexameric 
composition with a combined molecular weight of 105 kDa. Subunits are 
represented in different colors as S1 (blue), S2 (green), S3 (pink), S4 (yellow and 
purple), and S5 (turquoise). S1 is the enzymatically active subunit with a molecular 
weight of 28 kDa .The binding subunit is composed of S2 (23 kDa), S3 (22 kDa), two 
S4’s (11.7 kDa each), and an S5 (9.3 kDa) oligomer forming an asymmetrical hetero 
pentameric ring structure. Figure reprinted with permission [5]. 

Vaccine Adjuvants 

Successful vaccines are more effective than therapeutic drugs in establishing 

overall public health.  For a vaccine to be successful, it must have the ability to stimulate 

specific immune responses, and recent vaccine development has focused on the use of 

highly purified antigens that can be delivered by non-traditional routes. Purified proteins 

are often not good immunogens, and delivery via the oral or nasal route requires the 

ability to overcome immune tolerance. These obstacles can be overcome with the use of a 
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vaccine adjuvant. Adjuvants are substances that, when co-administered with an antigen, 

increase the immune response to the antigen without having any specific effect itself. 

Development of potent adjuvants that are effective from mucosal surfaces is crucial as 

the delivery of vaccines through the oral or nasal route is very practical, non-invasive, 

and efficacious for the induction of immune responses against mucosal pathogens [49]. A 

number of important pathogens initiate infection by interacting with host mucosal 

surfaces of the respiratory, urogenital, and gastrointestinal tracts. The production of 

protective mucosal IgA antibodies at these surfaces is important for controlling infection. 

In addition, there is an increased need to induce immunity to a specific purified protein 

subunit or DNA vaccines that are safer and less toxic than traditional live attenuated 

vaccines. Using adjuvants in combination with these antigens can greatly enhance their 

immunogenicity. Despite intense research, there is currently only one vaccine adjuvant 

licensed for use in the U.S: alum, or aluminum salts. Alum is only effective with some 

vaccines and is not capable of inducing immune responses from mucosal surfaces [50, 

51]. Currently there is only two more squalene-based oil-water emulsion MF59 and AS03 

adjuvants licensed in Europe. MF59 has been mainly used to increase flu 

immunogenicity in the elderly and young children [52]. Adjuvant AS03 have been 

licensed for pandemic flu vaccines [53]. Thus, there is an important need to identify and 

characterize novel vaccine adjuvants.  

Cholera Toxin and E.coli LTI Toxin as Vaccine Adjuvants 

Ctx has long been known as an excellent immunostimulatory agent, however, 

wild-type Ctx is too toxic for use as a human vaccine adjuvant. Research has shown that 

detoxifying Ctx can reduce toxicity and retain immunogenicity [49, 54]. In addition, the 



17 

 

nontoxic B subunit by itself has good adjuvant activity [55-57]. Studies have revealed 

that Ctx is a potent vaccine adjuvant as it can induce antigen-specific mucosal IgA 

immunity, stimulate systemic IgG Th2 type immune responses, and inhibit innate 

inflammatory responses induced by pathogen-derived molecules like lipopolysaccharides 

(LPS) [54, 58]. Chemical or genetic conjugation of antigen with CTB enhances antigen 

presentation [59]. However, constructing A2B chimeric molecules with Ctx is able to 

induce antigen specific immune responses without inducing immunological tolerance, 

which is a limitation of chemical conjugation [60]. Dendritic cells (DC) are very 

important for efficient priming of cellular and humoral immune responses, as they are 

professional antigen presenting cells (APC) specialized in the antigen uptake, processing 

and presentation to T cells. Ctx has been shown to bind efficiently to these cells [61, 62].  

A number of studies have used native Ctx to stimulate protective responses to co-

administered antigens [63-65]. Fewer studies have looked at the use of CTB alone as an 

adjuvant, but these studies have indicated that at higher concentrations, CTB can also act 

to induce antigen-specific protective responses that are largely Th2-type [65]. CTB has 

been found to trigger largely anti-inflammatory responses from monocytes, macrophages, 

and dendritic cells [66]. Cytokines IL-10 and TGF-β produced by B cells are essential in 

the regulation process of T cells to form T effector cells [67]. When B cells treated with 

CTB/Ag were isolated from a mice deficient of IL-10 , they still showed greater 

proliferation of Treg (T regulator)cells compared to wild type B cells. It has been shown 

that CTB /Ag treated B cells were able to accomplish the regulatory function of Teff cells 

in a TGF-β dependent manner and provide protection against experimental auto immune 

encephalomyelitis independent of IL-10 [68]. TNF-α is an important factor for 
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recruitment of antigen presenting cells like dendritic cells and lymphocytes to regional 

lymphnodes. Ctx has been shown to inhibit pro inflammatory cytokine TNF-α primarily 

through A subunit whereas CTB has stimulatory effect [69, 70] .  

Lack of IgA is associated with increased rates of sensitization to inhaled and 

ingested allergens [71]. Chemical conjugation of antigens to CTB has been shown in a 

number of studies to stimulate tolerance when delivered at high concentrations to 

mucosal surfaces. This effect of CTB has promoted much research into the therapeutic 

use of this molecule to reduce allergies and treat autoimmune disease like Type 1 

diabetes [72]. CTB-insulin conjugate has been shown to delay the onset of insulin 

dependent diabetes mellitus [5]. 

LT as a holotoxin has varied dimensions of interactions with the immune system 

and also possesses potent immunomodulatory activities [17, 73]. Binding to distinct host 

cell receptors and triggering unique responses, LT has been shown to induce more of a 

balanced Th1/Th2 type of immune response than Ctx [74, 75]. LT has been shown to 

trigger the migration of dendritic cells localization to the follicle associated epithelium of 

the Peyer’s patches [76]. Dendritic cells are of major interest in studying the adjuvant 

capacity of subunit toxin proteins [76]. Research has also shown that the B subunit of LT 

has the capacity to increase the TNF-α induction by murine macrophages. Induction of 

TNF-α is important as it plays an important role in immunity against infections [69]. Use 

of LT mutants as vaccine adjuvants in intranasal influenza vaccines has shown an 

association with Bell’s palsy; a sudden, but self-limiting, weakness or paralysis in facial 

muscles that may be neuro-toxic result of LT trafficking on neuronal cells of the central 

nervous system (CNS) [77, 78].  These studies indicate safety concerns for the use of Ctx, 
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LT, or mutants of these holotoxins, after intranasal delivery.  However, LTB and CTB do 

not trigger inflammation in the CNS of mice and can be delivered via a number of 

alternative routes, including sublingual, intravaginal, subdermal, and transdermal, that do 

not result in trafficking to the CNS [79-81].  Thus, the non-toxic B subunits of Ctx and 

LT are still under intense study as potent adjuvants for vaccine applications [77]. Many 

studies have shown that CT and LT1 are powerful mucosal adjuvants when co-

administered with soluble antigens [65, 73, 82]. 

Pertussis Toxin as a Vaccine Adjuvant 

Ptx has also has potent immune-enhancing adjuvant activity. Studies have 

demonstrated that Ptx can activate CD4+ T cells via co-stimulatory molecules expressed 

by toxin-activated antigen presenting cells [83]. In addition, a non-toxic S1 mutant 

devoid of enzymatic activity is capable of receptor binding and maintained its 

adjuvanticity by augmenting the activation of both Th1 and Th2 subpopulations of T 

cells, antigen-specific T cell proliferation and the secretion of IFN-gamma(Th1), IL-

2(Th1), IL-4 (Th2) and IL-5(Th2) upon injection with foreign antigens [84]. Formalin or 

genetically detoxified Ptx is a major component of the current pertussis vaccine (DTaP or 

TDap) and is a protective antigen in its own right [85]. When used as an adjuvant, 

toxigenic Ptx is able to promote Th17 differentiation through IL-6 induction [86]. More 

recently, Ptx has been shown to induce the polyclonal activation and effector functions of 

CD8+ T cells with up-regulation of CD28 and CD69 and the production of IFN-γ and IL-

17 [87]. Dendritic cells (DCs) are considered to be most potent antigen presenting cells. 

Ptx and the Ptx B subunit (PTB) were compared for the capacity to induce the maturation 

of both human and mouse DCs.  These results suggested that both PT and PTB induced 
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the maturation of DCs and that was dependent on TLR4, a receptor for bacterial 

lipopolysaccharide (LPS) [88]. When used as an adjuvant for experimental autoimmune 

encephalomyelitis, Ptx was shown to reduce the number and function of regulatory CD4+ 

T cells [89].  

Shiga Toxin as a Vaccine Adjuvant 

DCs are known to be Gb3 positive and Stx also binds and targets these cells [62]. 

Toxigenic Stx1 induces more of a Th1 type directed cellular immune response, which is 

an advantage of the use of Stx1 over Ctx as a vaccine adjuvant for effective defense 

against intracellular bacteria and viruses [90, 91]. Because of this unique pathway, Stx1 

has been investigated for its ability to induce MHC class 1 – restricted presentation of 

antigen peptides to CD8+T lymphocytes in vitro [92] and in vivo [92, 93]. Recent studies 

have also shown that ST1 may possess adjuvant activity for inducing mucosal immunity 

[30]. Research suggests that the non-toxic B subunit of Stx1 (ST1B) interacts with Gb3, 

which is expressed preferentially on DC and B cells and induces a robust and long lasting 

CD 8+ T cell response in vivo [61]. In addition, ST1B, coupled to tumor antigens, 

showed tumor protection in both prophylactic and therapeutic settings [61]. These studies 

suggest that native Stx1 and ST1B may be potent vectors for the induction of cellular 

immunity and the development of novel immuno-therapeutic approaches [92, 93]. 

The binding and trafficking properties of the shiga toxins has also led to the use of 

Stx1, or the ST1B subunit alone, for investigating retrograde transport in eukaryotic cells 

[50]. B-subunits have been engineered as fusions to peptides that are specifically 

recognized and modified in different cell compartments. This has allowed the detailed 

characterization of toxin retrograde transport to the ER [29]. Additional studies have 
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determined that the active ST1 A1 domain is translocated from the ER into the cytosol 

through the ERAD pathway and the Sec 61 channel [3].  The distinct host-receptor 

interaction, pattern of cellular activation, and trafficking of Stx on host cells indicates that 

this toxin and its non-toxic B subunit possess unique and novel adjuvant properties 

worthy of further exploration. 

Vaccines of Interest and Potential Vaccine Antigens 

Yersinia pestis and LcrV 

Yersinia. pestis was discovered by Alexandre Yersin, a Swiss/French physician 

and bacteriologist from the Pasteur Institute, during an epidemic of plague in Hong Kong 

in 1894 [94]. It is a Gram-negative rod-shaped bacterium, a member of the 

enterobacteriacae family, and a facultativly anaerobic bacterium that can infect humans 

and other animals [95]. The genus Yersinia is comprised of Gram-negative coccobacilli 

and contains three well-recognized human pathogens including: Y. pestis, Y. 

pseudotuberculosis, and Y. enterocolitica [96]. Y. pestis   is the causative agent of the 

black plague or black death, and the other species cause significant food-borne diarrheal 

diseases [97]. There are three recognized forms of plague caused by Y. pestis in humans: 

bubonic, pneumonic, and septicemic. Bubonic plague is an infection of the lymph system 

acquired through the bite of infected fleas or rodents causing painful and inflamed lymph 

nodes called buboes. The pneumonic form is inhaled, restricted to the lungs, and is 

extremely contagious via aerosolized droplets spread by infected individuals. Finally, the 

septicemic infection occurs when bacteria invade the blood stream from the lymph or the 

lungs [98, 99]. Symptoms and complications of a Y. pestis infection include adult 
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respiratory distress syndrome, disseminated intravascular coagulation, shock, and 

multiple organ failure [100].  

The black plague has a lengthy history of infecting human populations. Mainly, 

this disease spread to epidemic proportions during the 14th century in Europe and led to 

the death of over one third of the continent’s population [101, 102]. Currently, with the 

help of antibiotics, the plague has become manageable and can be cured within days of 

drug administration. Only 1-5 cases per year occur within the U.S. and are usually the 

result of contact with infected rodents (WHO, CDC). However, this gram negative 

bacillus is highly infectious, and has the potential to be engineered into a powerful, 

antibiotic resistant weapon [103]. 

There have been many reports of the use of Y. pestis as a bio warfare agent [104, 

105]. There is a significant concern that a possible bioterrorism attack with plague might 

employ a natural or bio-engineered drug-resistant strain. Natural resistance of Y. pestis to 

antibiotics is rare; however, in 1995, a plague isolate from Madagascar contained a 

multidrug-resistant transferable plasmid [106]. It has also been reported that during the 

Soviet biological weapons program, scientists developed a Y. pestis strain resistant to 16 

different types of antibiotics [107]. The plague has been labeled as a Category A 

Bioterrorism Agent by the Centers for Disease Control because it is highly communicable 

and has an extremely high mortality rate [107]. This risk and potential misuse has as 

initiated research to generate improved vaccines to prevent plague [105]. Currently, there 

is formalin–killed whole cell preparation Y. pestis organisms suspended in saline solution 

available as vaccine for military personnel and researchers at high risk. The limitation of 

this vaccine is that it doesn’t provide protection against  pneumonic plague it present with 



23 

 

reactions such as fever, headache, malaise, lymphadeno-pathy, erythema and induration 

at the injection site and is not recommended for the general public [108, 109]. 

The LcrV protein is a protective antigen and virulence factor of epidemic strains 

of Y. pestis. LcrV was discovered more than 50 years ago and is believed to be 

responsible for an array of immune modulatory effects on the host [42, 110]. LcrV is an 

adhesion molecule located on the tip of a needle-like type 3 secretion system (T3SS). 

T3SS are used by Gram negative bacteria to inject effector proteins into the host. LcrV 

regulates the injection of Yops (Yersinia outer proteins) that trigger cell death and 

inhibition of bacterial phagocytosis [47, 111]. 

 
Figure 1.8. Structure of Y. pestis LcrV.  A) Ribbon diagram of of LcrV, with 
helices and strands colored red and blue. B) LcrV amino acid sequence in single 
letter code. Figure reprinted with permission [112].  

LcrV is a dumbbell-like molecule with two globular domains on either end 

separated by a coiled-coil motif that is uncommon in bacterial proteins (Figure 1.8). The 
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LcrV sequence is highly conserved between the epidemic strains of Y. pestis and is also 

found in pathogenic Y. enterocolitica [47, 112]. Research indicates that subunit vaccines 

with LcrV polypeptide can confer protection against bubonic and pneumonic plague in 

mice, rats, guinea pigs, rabbits, and African Green monkeys [113]. It is also reported that 

LcrV antibodies are successful in blocking Y. pestis type III translocation of Yop 

effectors into host immune cells [114, 115].  

West Nile Virus and Domain III of the Envelope Protein 

West Nile virus (WNV) belongs to the Flaviviridae family that is composed of 

single-stranded RNA viruses [116]. It was originally isolated in the West Nile district of 

Uganda in 1937 and from there it has spread to other parts of world including Africa, 

Asia and the Middle East.  WNV was first reported in New York in 1999 and has since 

spread across the U.S. with major epidemics in both 2006 and 2012 [117, 118].  WNV is 

now endemic in the U.S. with disease occurring most often during summer, depending on 

latitude and seasonal temperatures [119]. Environmental factors, such as global warming, 

urbanization, and the availability of competent mosquito vectors, contribute to the annual 

number of cases. In 2012, there was a striking upsurge in WNV transmission in the U.S. 

resulting in the highest mortality rate recorded in this country, with 2873 cases of 

neuroinvasive disease and 286 deaths [119, 120]. Evidence suggests that the U.S. can 

forecast periodic outbreaks of WNV fever and neurologic disease in the coming years 

that may yield different clinical manifestations and transmission dynamics [121]. 

The majority of humans infected with WNV are asymptomatic or exhibit mild 

febrile illness or self-limiting symptoms, but approximately 1% of patients develop 

neuroinvasive disease that can lead to permanent disability or death [122, 123]. 
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Neurological symptoms are most common and severe in aged patients of above 50 years 

with certain medical conditions, implying that host immune status plays an important role 

in the event of the disease outcome [124-126] . Cell culture infection studies indicate that 

cells of myeloid origin, including tissue macrophages, and immature dendritic cells have 

distinct susceptibility to WNV infection in the skin at the site of injection [127-129]. 

Interferon-dependent innate immune responses and the induction of neutralizing anti-

WNV IgM early in the immune response weakens viremia as well as spread of infection 

[129, 130]. Studies show that a protective immune response must include humoral 

immunity for viral clearance, and neutralizing IgG and IgM antibodies against WNV 

surface envelope (E) and premembrane (prM) proteins are key [131, 132]. The WNV E 

protein acts as a site of viral recognition and binding, and antibodies to E can inhibit viral 

fusion and cellular uptake [133, 134]. Domain III is an immunoglobulin (Ig) like domain 

of the WNV E protein capable of producing the most effective neutralizing antibodies 

[133-136]. Purified DIII has been shown to stimulate protective responses in mice and 

monkeys, but vaccines have yet to advance to clinical trials [137]. There is much demand 

for the development of safe and effective vaccine candidates against WNV due to limited 

antiviral treatment options, and the vulnerability of human elderly and young populations 

[138].  
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Figure 1.9. A) Schematic representation model of a flavivirus particle. 
Illustrating different components of the West Nile Virus B) Ribbon diagram 
Envelope protein E composed of three distinct domains (DI, DII, and DIII). C) 
Organisztion of E protein dimers at the surface of mature virions. Figure reprinted 
with permission [139]. 

The goal of this research was to develop and characterize a novel vaccine 

adjuvant, based on the non-toxic shiga toxin B subunit, to improve the strength and 

quality of immune responses to diverse vaccine antigen candidates. As described above, 

research has indicated that Ctx and the CTB subunit are strong mucosal vaccine 

adjuvants, but direct immune responses largely toward a Th2 humoral mechanism [65]. 

The structural similarity of Stx and Ctx, ability to target cells of the immune response, 

and pattern of retrograde trafficking indicate that Stx and the STB subunit will also prove 

to have significant adjuvant activity.   
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CHAPTER II.  MATERIALS AND METHODS 

2.1. Bacterial Strains, Vectors, and Construction of Plasmids 

2.1.1.  Bacterial Strains  

E. coli TE1 is a ΔendA derivative of TX1 [F′::Tn10 

proA+B+ lacIqΔ(lacZ)M15, glnV44 Δ(hsdM-mcrB)5 Δ(lac-proAB)thi] [15]. This strain 

was used for the cloning of recombinant plasmids as well as expression of proteins. E. 

coli Top10 (Life Technologies, Grand Island, NY), Nova Blue (EMD Millipore, 

Billerica, MA), and Origami (EMD Milipore) bacterial cells were also used for cloning 

the vector plasmids. All the bacterial cells were cultured using Luria-Bertani (LB) agar 

plates or broth at 37°C supplemented with the appropriate antibiotics for selection 

including chloramphenicol (35 μg/ml), ampicillin (100μg/ml), and/or kanamycin (50 

μg/ml). A clinical isolate of Y. enterocolitica (Idaho Department of Health and Welfare, 

Boise, ID) and the Y. pestis vaccine strain (KIM5) were used to isolate lcrV from 

genomic plasmid DNA. Both Stx genes (stxA1 and stxB) were amplified from E.coli 

0157:H7. WNV NY99 strain mRNA was isolated from infected mosquitoes and was the 

kind gift of Dr. Chris Ball (Idaho Bureau of Labs). Viral cDNA was synthesized using an 

Invitrogen Super Script cDNA Synthesis kit.   
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2.1.2. Plasmids and Their Construction 

Plasmids were constructed using the primers and enzymes detailed in Tables 2.1 

and 2.2. All prepared plasmids below were transformed into E.coli TE1, purified by 

plasmid Maxi prep (Qiagen, Valencia, CA) and sequenced for confirmation (SeqWright, 

Houston, TX).   

pLGV002: lcrV from Y. pestis into pSW004 (made by Sara Wilson). lcr V was amplified 

using primers 060 and 036pr and cloned with SmaI and ApaI enzymes (Table 2.1). 

pLGV003:  lcrV from Y. pestis using primers 065 and 059pr (Table 2.1) cloned into 

pLGV001 using BamHI and KpnI enzymes.  

pLGV004: Domain III (DIII) from WNV. DIII was amplified using primers 074pr and 

075pr (Table 2.1) and cloned into pLGV001 using BamHI and XhoI enzymes. 

pLGV005:  DIII from WNV DIII was amplified using primers 081pr and 075pr (Table 

2.1) and cloned into into pSW004 using XhaI and XhoI  enzymes.  

pLGV006: DIII from WNV  DIII was amplified using primers 082pr and 075pr (Table 

2.1) and cloned into pSW004 using XbaI and XhoI enzymes. 

 pLGV007: stx A2B from pSW004  was amplified using primers 083pr and 084pr (Table 

2.2) and cloned into pBAD18CM (ATCC, Manassas, VA) using NheI and HindIII 

enzymes.  

pLGV009: stxA2B from pSW004 was amplified using primers 061 pri, 063 pri (Table 

2.2) and cloned into BAD18CM(ATCC) using NheI and SphI enzymes.  

pLGV010: WNV DIII was amplified using primers WNDIII pri & 115 pri (Table 2.2) 

and cloned into pJY013 (Jenny Yan) using primers SphI and XhoI enzymes. 
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Table 2.1. Primers, enzymes, and plasmids for shiga toxin A2B  expression 

Name of 
the vector 

Primers used Restriction 
enzymes used 

pLGV002  060 
 5'CAACCTCCCGGGGCATCACCATCACCATCACATTAGAGCCTACGAACAA 3' 
 036  
5' GTTCGTAGGGCCCGTGGCAAAGTGAGATAATTC 3' 

Sma I & Apa I 

pLGV003  065  
5' GCAACCTGGATCCATTAGAGCCTACGAACAA 3' 
 059  
5' GTTCGTAGGTACCGTGGCAAAGTGAGATAATTC 3' 

Bam HI & 
Kpn I 

pLGV004  074 
5' GTACTCCGGATCCCAGTTGAAGGGAACAACC 3' 
 075 
5' GCTACTGCTCGAGGTTGTAAAGGCTTTGCC 3' 

BamH I & 
Xho I 

pLGV005 081 
5' GTACTCCTCTAGACAGTTGAAGGGAACAACC 3' 
075  
5' GCTACTGCTCGAGGTTGTAAAGGCTTTGCC 3' 

Xha I & Xho I 

pLGV006 082 
5' GTACTCCTCTAGACATCACCATCACCATCACCAGTTGAAGGGAACAACC 3' 
075 
5' GCTACTGCTCGAGGTTGTAAAGGCTTTGCC 3' 

Xba I & Xho I 

pLGV010 WNDIII  
5' GACTGGGCATGCATTGCAGTTGAAGGG 3' 
115 
5' GTTCTGCTCGAGGGTTGTAAAGGCTTTGCC 3' 

Sph I & XhoI 

 

Table 2.2. Primers, enzymes, and plasmids for shiga toxin B protein expression. 

Name of 
the 
plasmid 

Primers used  Restriction 
enzymes 
used 

pLGV001 050  
5' AAAATAATTATTTTTAGAGTGCTAAC 3' 
051 
5' ACGAAAAATAACTTCGCTGAATCC 3' 

HindIII & 
ApaI 

pLGV007 083  
5' GGTCGTGCTAGCCGTATGGTGCTCAAGGAGTATTG 3' 
084 
5' GCACGTAAGCTTTCAGTGATGGTGATGGTGATGACGAAAAATAACTTCGCTG 3' 

Nhe I & 
Hind III 

pLGV009 061 
5' GCATGGGCTAGCGAACTATTAGCAGTTGAGGG 3' 
063 
5' GACTGCGCATGCGCCTGCTATTTTCACTGAGC 3' 

Nhe I & 
Sph I 



30 

 

2.2 Protein Expression and Purification 

To express recombinant proteins, bacterial cell cultures with  plasmids pLGV002, 

pLGV003, pLGV004, pLGV005, pLGV006, pLGV010, pSW005 ( Sara Wilson) or 

pLGV001, pLGV007, pLGV009 were grown to an optical density of 600 nm (OD600) of 

0.9 O.D and induced for 15 h or overnight with 0.2% L-arabinose or 1M IPTG. Proteins 

from vector constructs pLGV002 (6XHis-LcrV-STA2/B), pLGV005 (DIII-STA2/B), 

pLGV006 (6XHis-DIII-STA2/B), pLGV007 (STA2/B-6XHis), pLGV009 (STB) and 

pLGV010 (DIII-STA2/B) were induced with 0.2% L-arabinose as pBAD is the upstream 

promoter on the plasmid. The arabinose binds to the repressor protein on the plasmid and 

leads to the transcription of mRNA to occur. Proteins from vector constructs pLGV001 

(STB-6XHis), pLGV003 (LcrV-STA2/B-6XHis), pLGV004 (DIII-STA2/B-6XHis) and 

pLGV008 (STA2/B) were induced with 1M IPTG as pLac is the upstream promoter of the 

plasmid. Induced cells were allowed to grow overnight and extracted by centrifugation. 

Periplasmic extracts and the cytoplasmic extracts (supernatant) were collected by 

centrifugation. The pellet was also collected and analyzed for protein expression. 

Bacterial cell extractions of plasmids pLGV001 (STB-6XHis), pLGV002 (6XHis-

LcrV-STA2/B), pLGV003 (LcrV-STA2/B-6XHis), pLGV004 (DIII-STA2/B-6XHis), 

pLGV006 (6XHis-DIII-STA2/B), pLGV007(STA2/B-6XHis) were added to  Talon nickel  

resin (Clontech, Mountain View, CA)  and agitated for 20 minutes. The resin was then 

administered to 5 ml columns (Pierce) and washed with 1ml of 20mM  Tris-Cl, 50mM  

NaCl, pH 8.0, washed again with 1ml 20mM  Tri-Cls, 100mM  NaCl,pH 8.0, washed 

again with 1ml 20mM  Tri-Cls, 100mM NaCl, + 5mM immidazole, pH 8.0, and eluted 

with 20mM Tris, 100mM NaCl, 100 mM immidazole, pH 8.0.       
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Bacterial cell extractions of plasmids pLGV005 (DIII-STA2/STB), pLGV008 

(STA2/STB), pLGV009 (STB), pLGV010 (DIII-STA2/STB) were added to 50% 

immobilized D-galactose gel (Pierce, Rockford, IL) and agitated at 4 degree C for 2 h. 

The Agarose was pelleted, resuspended in 1X PBS and added to a 5 ml column. Column 

beds were washed twice with 2 ml PBS, and eluted with 2 ml 1 M D-galactose. 

2.3. Electrophoresis and Blotting 

2.3.1. Agarose Gel Electrophoresis 

Amplification of gene regions after  PCR or restriction digested samples were 

examined using agarose gel electrophoresis on either a 0.9% gel or 2% gel depending on 

the size range of target fragments. Agarose was dissolved in 1X TAE buffer by heating in 

microwave shorty. 10 ul of ethidium bromide (EtBr) was added to the agarose gel to 

visualize fragments using UV transillumination.  Samples and a 1kB DNA ladder 

(Fermentas, ThermoFisher) were added along with loading dye  and allowed to run for 

30-40 mins at 100V before observation.  

2.3.2.  SDS-PAGE 

Bacterial samples for protein expression were boiled for 2 minutes in loading dye 

(0.25M  Tris-HCl, pH 6.8, 15% SDS, 50% glycerol, 25% β-mercaptoethanol, 0.01% 

bromophenol blue) and  separated by 12% sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE)  through the buffer system of Laemmli [140]. Coomassie 

brilliant blue was used to stain and visualize the samples for protein bands. 
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2.3.3.  Western Blot Analysis 

Proteins from SDS gels were transferred to nitrocellulose membranes. The 

membranes were incubated in one of the following antibodies diluted in Western blot 

blocking buffer (1-PBS with 0.05% Tween-20 and 5% skim milk): rabbit anti-LcrV 

polyclonal antibody 1:4000 dilution (a-LcrV, kindly supplied by S.Little and J. 

Adamovicz, USAMRIID, Ft. Detrick, MD), and or anti-His6 (1:2,500; Abcam, 

Cambridge, MA), followed by horseradish peroxidase (HRP)-conjugated anti-rabbit IgG 

(1:5,000; Promega, Madison, WI) and developed with Immobilon Western HRP 

Substrate (Millipore, Billerica, MA). 

2.4. Cell Culture Methods and Assays 

2.4.1. Internalization of Toxins and Toxin Subunits in Cell Culture  

Vero epithelial (ATC2.C, Manassas, VA) and C57BL/6 murine dendritic (DC2.4; 

kindly provided by K. L. Rock, Dana-Farber Cancer Institute, Boston, MA) cells were 

cultured  to sub confluence on uncoated coverslips at 37°C with 5% CO2 [141]. Protein 

toxin internalization was evaluated by confocal microscopy. Vero cells were cultivated in 

Dulbecco’s modified Eagle’s medium (DMEM) with 4 mM L-glutamine, 4,500 mg/liter 

glucose, 10% bovine growth serum (BGS), 100 IU/ml penicillin, and 100 g/ml 

streptomycin (DMEM + 10). DC2.4 cells were cultivated in RPMI 1640 medium with 2 

mM L-glutamine, 10% BGS, 10 mM HEPES, 55 M 2-mercaptoethanol, nonessential 

amino acids, and penicillin-streptomycin (Pen-Strep). The cells were then washed in 

DMEM or RPMI without serum and incubated at 4°C for 5 mins to slow down the 

internalization process. The cover slips with adherent cells were exposed to  40 µl of 10 
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µg/ml RFP-ST Chimera or 40 µl of 10 µg/ml FITC-OVA along with either 40 µl of 50 

µg/ml of CTB or PTB or STB in phosphate-buffered saline (PBS) at 4°C for 15 min to 

allow protein binding to the plasma membrane. Some of these cell cultures were shifted 

to 37°C for 1 hr in order to yield for the internalization of proteins. Treated cells on cover 

slips were then washed in PBS and  coverslips were mounted using hard-set medium with 

4`,6`-diamidino-2- phenylind ole (DAPI; Vector Laboratories, Burlingame, CA) and 

visualized using a Zeiss LSM 510 META laser scanning confocal microscope running 

LSM 510 META software.  

2.4.2.  Cellular Proliferation Assay 

Mouse macrophages (J774, ATCC) were grown by adding 5X105 cells in 

Dulbecco’s modified Eagle medium (DMEM high glucose) supplemented with pen/strep 

and 10% fetal bovine serum in a 96 well plate. Some of the cells were activated with 

20ng/ml of INF-γ (Reprokine, Ltd in Rehovot, Israel) overnight. The cells were incubated 

for 24 hrs at 37ºC and 5% CO2. with either 10 µl of 5µg/ml of CT, 10 µg/ml of CT, 5 

µg/ml of CTB, 10 µg/ml of CTB, 5 µg/ml of PTB, 10 µg/ml of PTB, 5µg/ml of DIII, 10 

µg/ml of DIII, mock. The metabolic indicator Alamar Blue (Accumed International, 

Westlake, OH) was used to assay cellular proliferation. Fluorescence was measured on a 

BioTek Synergy HT plate reader using  560 nm excitation, 590 nm emission and gain 35 

(BioTek, Winooski, VT). The stimulation index was determined as the ratio of mean 

fluorescence from stimulated to non-stimulated cells or PBS-treated cells. 
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2.4.3. Cytokine Assays 

Cytokine levels were detected using ELISA. Levels of interleukin-12 (IL-12) and 

TNF alpha (TNF-α) produced by mouse macrophages (J774, ATCC) and mouse 

dendritic cells (DC2.4) activated with toxin and toxin subunits were determined by 

ELISA according to manufacturer’s instructions (eBiosciences, San Diego, CA). Cells at 

1X 105 per well were cultivated in Dulbecco’s modified Eagle medium (DMEM high 

glucose) supplemented with pen/strep and 10% fetal bovine serum in96 well Maxi sorp 

plates (Nunc, ThermoFisher) and grown in 5% CO2 and 37°C to subconfluence. Cells 

were then incubated O/N with 10µl of 20 ng/ml of INF-γ (Reprokine, Ltd in Rehovot, 

Israel ) for 2 hrs followed by the addition of either 10 µl of 5 µg/ml CT, 5 µg/ml of CTB, 

5 µg/ml of PTB, 5 µg/ml of STB, or Mock/BKG. Supernantants were removed, 

centrifuged and frozen prior to analysis by ELISA. The assay sensitivity for IL-12 and 

TNF-α was 4 to 500 pg/ml and 15 to 2,000 pg/ml, respectively. A multi-analyte 

ELISArray cytokine assay (Qiagen, Valencia, CA) was performed according to 

manufacturer’s instructions using DC 2.4 cell culture supernantants that had been 

incubated with 2 µg/ml of CTB, 2 µg/ml STB or PBS alone for 24 h.  

2.4.4. B3Z Antigen Presentation Assay 

C57Bl/6 murine dendritic cells (DC2.4, kindly supplied by Kenneth L. Rock, 

DFCI, Boston, MA, USA) were maintained in RPMI 1640 medium with L-glutamine 

supplemented with 10% BGS, 10 mM HEPES, 55 µM 2-mercaptoethanol, 1X non-

essential amino acid and pen/strep at 37 °C and 5% CO2. The cells were incubated for 6 

hrs with either 100 µg/ml SIINFEKEL antigen (OVA peptide 257-264)  Or 100 µg/ml 

SIINFEKEL with 1 µg/ml of CT , SIINFEKEL with 2 µg/ml of CT, SIINFEKEL with 3 
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µg/ml of CT , SIINFEKEL with 1µg/ml of LTB, 2 µl of SIINFEKEL with 2 µg/ml of 

LTB, SIINFEKEL with 0.01 µg/ml of CT, SIINFEKEL with 1 µg/ml of PTB, 

SIINFEKEL with 2 µg/ml of PTB to allow proper antigen processing and presentation. 

DC2.4 cells were washed with 1 X PBS and 100 µl of 5 x 104cells/well B3Z cells were 

added. The plate containing cells was centrifuged at 800-900 rpm to initiate the contact 

between the cells and incubated for 16-20 hrs for T cell activation. The cells were treated 

with CPRG buffer and incubated for 4 h before the absorbance was measured at 595 nm 

in using a BioTek Synergy HT plate reader. B3Z cells were grown in B3Z media (RPMI 

1640 with1.5g NaHCO3, 2ml Na-Pyr, 10ml glucose (4.5 g/L), 2.603g HEPES, 50 mL 

heat-inactivated FBS, 5mL P/S, 5.1mL L-Glutamine, 50uM 2-mercaptoethanol, 5mL 

NEAA (non-essential amino acids) [142, 143]. 

2.4.5. Antigen Uptake Assay  

Mouse macrophages (J774, ATCC) were cultivated at approximately 5X105 

cells/well in DMEM high glucose supplemented with pen/strep and 10% fetal bovine 

serum in a 96 well plate. Some of the cells were activated with 20 ng/ml of INF-gamma 

overnight. The cells were incubated for 2 hrs at 37ºC and 5% CO2 with either 10 ul of 

5ug/ml of CT and 10 ul of 10 ug/ml of FITC-OVA, 10 ug/ml of CT and 10 ug/ml of 

FITC-OVA, 50 ug/ml of CTB and 10 ug/ml of FITC-OVA, 100 ug/ml of CTB and 10 

ug/ml of FITC-OVA,50 ug/ml of PTB and 10 ug/ml of FITC-OVA, 100 ug/ml of PTB 

and 10 ug/ml of FITC-OVA, 50 ug/ml of DIII and 10 ug/ml of FITC-OVA, 100 ug/ml of 

DIII and 10 ug/ml of FITC-OVA, mock (endotoxin free control). The cells were washed 

with 1XPBS and measured the fluorescence at 494 nm and 518 nm emission in a plate 
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reader. The uptake index was calculated as the ratio of mean fluorescence from 

stimulated to non-stimulated cells or PBS-treated cells. 



37 

 

CHAPTER III.  RESULTS 

The objective of this research was to develop and characterize a novel vaccine 

adjuvant, based on the non-toxic shiga toxin B subunit, to improve the strength and 

quality of immune responses to diverse vaccine antigen candidates. As described above, 

research has indicated that Ctx and the CTB subunit are strong mucosal vaccine 

adjuvants, but direct immune responses largely toward a Th2 humoral mechanism [65]. 

The structural similarity of Stx and Ctx, and the ability ability to target cells of the 

immune response and pattern of retrograde trafficking, indicate that Stx and the STB 

subunit will also prove to have significant adjuvant activity.   

Previous work has shown that A2/B chimeras of Ctx are promising vaccine 

candidates in that they are 1) non-toxic, 2) retain overall holotoxin structure and stability, 

3) retain the native pentameric toxin binding subunit, and 4) maintain a non-covalent 

association of toxin to antigen [144, 145]. Thus, initial work focused on the construction, 

purification, and characterization of novel StxA2/B chimeras as vaccine candidates. 

Secondary work focused on the purification and in vitro characterization of the 

immunostimulatory activity of the STB subunit alone in comparison to other AB5 toxins. 

Construction of Plasmids for A2/B Chimeric Protein Expression 

A number of plasmids had previously been constructed in our laboratory for shiga 

toxin I StxA2/B chimera expression. Table 3.1 shows plasmids pSW004, pSW005, and 

pSW006. These plasmids were constructed by PCR amplification of the stxA2 and stxB 
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genes from E.coli O157:H7 and cloning behind the pBAD promoter (work performed by 

Sara Wilson 2008-2009).  The Y.pestis lcrV gene was cloned into pSW004 to construct 

pSW006 for expression of an LcrV-StxA2/B chimera. pSW006 was transformed into 

E.coli TE1 and expression was induced with 20% L-arabinose. As shown in Figure 3.1, 

LcrV-StxA2/B was expressed and E.coli periplasmic protein preparations were analyzed 

by SDS-PAGE (Figure 3.1B). The protein preparations have indicated a potential LcrV-

StxA2 protein band and potential StxB band, along with other bacterial proteins, at 39.7 

kDa and approximately 10kDa, respectively. Expression of the LcrV-StxA2 peptide into 

the periplasm was confirmed through immunoblot analysis (Fig 3.1C) using α-LcrV 

antibodies. The LcrV-StxA2/B chimera from this plasmid could not be studied further as 

there was little success in terms of purification away from other bacterial proteins. Thus, 

as shown in Table 3.1, we constructed new plasmids for StxA2/B chimera expression 

containing 6X histidine tags on both the N terminus of the operon (pLGV002) and C 

terminus of the operon (pLGV003) to facilitate chimera purification using nickel 

chromatography. 
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Table 3.1 Plasmids for A2/B chimeric proteins 

pLGV002 HIS-lcrV into pSW004 plasmid to express His-LcrV-StxA2/B  

pLGV003 lcrV into pLGV001- to express LcrV-StxA2/B-HIS chimera 

pLGV004 WNV DIII into pLGV001 - to express WNVDIII-StxA2/B-HIS 

pLGV005 WNV DIII into pSW004 to express WNVDIII-StxA2/B (no HIS) 

pLGV006 WNV DIII into pSW004 to express HIS-DIII-StxA2/B 
 

pLGV010 WNV DIII into pJY013 to express DIII-StxA2/B chimera 
pSW004 (Wilson) stxA2/B into arabinose-inducible vector for chimera expression   

pJKT36 Red fluorescent protein into pARLDR19 to make RFP-CtxA2/B 

pSW005 (Wilson) Red fluorescent protein into pSW004 to make RFP-StxA2/B 

pSW006 (Wilson) lcrV into  pSW004 to express LcrV-StxA2/B chimera 
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Figure 3.1. A) Schematic representation of pSW006.  B) SDS gel of the E.coli 
periplasm showing LcrV –Stx A2 at approximately 40 kDa and STB below11 kDa. 
C. Western blot showing LcrV-StxA2 using primary LcrV antibodies.  

The plasmid pLGV002 was constructed such that the 6X histidine tag is present 

on the N terminus of the LcrV antigen. As shown in Figure 3.2, lcrV was amplified from 

both Y.pestis and Y. enterocolitica and cloned into pSW004 to make HIS-LcrV-StxA2/B 

(Figure 3.2 A-C). pLGV002 was constructed and confirmed using colony PCR (Figure 

3.2D) and sequenced for confirmation. To determine expression of HIS-LcrV-StxA2/B, 

E.coli TE1 was transformed and induced for expression. Periplasmic protein preparations 

    Standards     PPE( Periplasmic Extracts)  Standards  PPE      
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were separated in 12% SDS-PAGE and stained with either Coomassie brilliant blue or 

transferred to nitrocellulose for Western blot analysis (Figure 3.3 A and B). The HIS-

LcrV-StxA2 peptide was purified in the nickel column elutions and found to be the 

expected size of 39.7 kDa. No copurification of the STB subunit was detected in elutions, 

indicating that the A2/B chimera was not associating and folded properly in the 

periplasm. Protein preparations were analyzed by immunoblot using α-LcrV antibodies 

and did not reveal protein bands as expected.  

The plasmid pLGV003 was constructed to express a chimeric LcrV-StxA2/B 

molecule with the 6X histidine on the C-terminus of STB (Figure 3.4 A and B). The lcrV 

gene was amplified from Y. pestis for pLGV003. The constructed plasmid was 

transformed into E.coli TE1 and verified by colony PCR where it shows the presence of 

cloned lcrV insert of  835 bps (Figure 3.4 C). pLGV003 was induced and purified from 

the periplasm of E.coli. Proteins of approximately 39 kDa (LcrV-StxA2) and 13 kDa 

(STB) were found in column wash and flow-through (Figure 3.4D).  While pLGV003 

appeared to express the predicted A2 and B peptide subunits, the inability to bind and 

elute from the nickel column indicated inaccessibility of the histidine tag in the expressed 

StxA2/B chimeric protein.  
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Figure 3.2. A) Schematic representation of pSW004. B and C) Schematic 
representation of pLGV002 and the multiple cloning site, to express HIS-LcrV-
StxA2/B. D) Colony PCR of pLGV002. Insert was found at the expected size of 854 
bps. 
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Figure 3.3. A) pLGV002 (Yersinia pestis) SDS-PAGE of   E. coli periplasm. 
Protein band at approximately 39.7 kDa  in protein preparations of periplasm and 
pellets. 1. protein ladder; 2. Cell pellet;  3. Culture PPE; 4. Column flow through; 5. 
wash 1; 6. wash 2; 7. wash 3; 8. Elution 1;  9. elution 2; 10. elution 3; B) pLGV002 
(Yersinia enterocolitica) SDS gel of   E. coli periplasm. Protein band showing 
approximately at 39.7 kDa  in protein preparations of periplasm and pellets 1. 
Protein ladder;  2. Cell pellet; 3. culture supernatant;  4. Column flow through; 5. 
wash 1; 6. wash 2; 7. wash 3; 8. Elution 1;  9. Elution 2; 10. elution 3. 
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Figure 3.4. A and B) Schematic representation of pLGV003, the expression vector 
for LcrV-STX-His chimera. C) Colony PCR of pLGV003 Insert found at the 
expected size: 834bps. D) pLGV003 SDS gel of E. coli periplasm band showing 
approximately at  39kDa and 13kDa in protein preparations of periplasm and 
pellets 1-Ladder; 2. FT-PPE; 3. Wash 1 –PPE. 
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Figure 3.5. A and B) Schematic representation of pLGV004, the expression vector 
for WNVDIII-StxA2/B-HIS chimera. C) Colony PCR of pLGV004. Insert found at 
expected size: 370bps. Lanes: 1 kB ladder; 1. Colony 1; 2. Colony 2; 3. Colony 3; 4. 
Colony 4; 5. Colony 5; 6. Colony 6; and 7. negative control. 

The plasmid pLGV004 was constructed to express a WNVDIII-StxA2/B-HIS 

chimera as shown in Figure 3.5 (A and B). The constructed vector plasmid was 

successfully transformed into bacterial cells and verified by colony PCR (Figure 3.5 C) 

where it shows the presence of the expected cloned DIII insert of 370bps. Expression 
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from this plasmid in E.coli and purification from the periplasm resulted in a similar 

outcome to that of pLGV003, with no binding and elution from the nickel column (data 

not shown). These results supported the notion that the 6X histidine tag is unavailable for 

binding when present on the C-terminus of STB.  

The plasmid pLGV005 was constructed to express a WNVDIII-StxA2/B chimera 

without an affinity tag (Figure 3.6, A and B). The constructed plasmid was transformed 

into E.coli TE1 and verified by colony PCR (Figure 3.6 C) where it shows the presence 

of the cloned DIII insert of the expected 370 bps. E.coli TE1 was transformed with 

pLGV005, induced, and proteins from the periplasm were analyzed by SDS-PAGE. Low 

expression of the DIII-StxA2 of approximately 19.6 kDa and STB subunit of 9.7 kDa was 

noted (data not shown)  however, attempts to purify the DIII-StxA2/B chimera away from 

additional E.coli periplasmic proteins using D-galactose-agarose, fetuin-agarose and 

anion exchange chromatography were unsuccessful.  

The plasmid pLGV006 was constructed to express a HIS-WNVDIII-StxA2/B 

chimera (Figure 3.7 A and B). The constructed plasmid was transformed into E.coli TE1 

and verified by colony PCR (Figure 3.7C) where it shows the presence of the cloned DIII 

insert of the expected 388 bp. TE1 cells were induced and found to express the His-DIII-

StxA2 fusion of approximately 20 kDa and the STB of 9.7 kDa as shown (Figure 3.7, D 

and E). Western blot using anti-6X histidine antibodies showed the HIS-DIII-StxA2 

fusion present largely within the insoluble pellet fraction of bacterial cells. The results 

indicate that there was aggregation of the HIS-DIII-StxA2 fusion and no folding with 

STB to form an A2/B chimera.  
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Figure 3.6. A and B)  Schematic representation of pLGV005, the expression 
vector for  WNVDIII-StxA2/B chimera . C. Colony PCR of pLGV005 showing insert 
at expected size of 370bps. Lanes 1.1 kB DNA ladder; 2. Positive control; 3. 
Colony1;  4. Colony 2;  5. Colony 3; 6. Colony 4; 7. Colony 5; 8. Colony 6; 9. Colony 
7; 10. Colony 8; 11.Colony 9; 12. Colony 10; 13. Colony 11; 14. negative control.  
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Figure 3.7. A and B) Schematic representation of pLGV006, the expression vector 
for HIS-DIII-StxA2/B chimera. C) Colony PCR of pLGV006 showing insert at 
expected size of 388bps. Lanes: 1. 1 kB DNA ladder; 2. positive control; 3. colony 1; 
4. colony 2; 5. colony 3; 6. colony 4; 7. colony 5; 8. colony 6; 9.colony 7; 10. negative 
control. D) SDS-PAGEof periplasmic and supernatant proteins from E.coli TE1 + 
pLGV006 purified on Ni column. Lanes: 1. flow through of periplasmic extracts 
(PPE); 2. Flow through of supernatant; 3.first wash of PPE (protein band visible at 
20 kD for His-DIII-StxA2 and at 9.7kDa for STB); 4. first wash of supernatant; E) 
SDS-PAGE of E.coli TE1 + pLGV006 elutions and pellet fraction; Lanes: 1. elution 
1 of supernatant; 2. elute 2 of supernatant; 3. insoluble pellet fraction (protein band 
of HIS-LcrV-StxA2 shown at 20kDa); F) Western blot of E.coli TE1 + pLGV006 
protein preparations using anti-HIS antibodies; Lanes: 1. flow through of 
periplasmic exctracts (PPE); 2. first wash of PPE; 3. blank; 4. insoluble pellet 
fraction.  



49 

 

 
Figure 3.8. A and B) Schematic representation of pLGV0010, the expression 
plasmid for DIII-StxA2/B chimera with TorA as the leader sequence for toxin 
secretion. C) Colony PCR of pLGV010 showing insert at the expected size of 
649bps. Lanes: 1. colony 14; 2. colony 15;  3. colony 16; 4. colony 17.  

Due to low expression from plasmid pLGV005, and the inability to affinity 

purifiy StxA2/B chimeras using histidine tags, pLGV010 (Figure 3.8, A and B) was 

constructed to express a WNVDIII-StxA2/B chimera that is secreted to the periplasm 

using the efficient TorA secretion signal. The TorA leader sequence has been used for the 

successful expression of DIII- cholera toxin chimera as well as other Ctx chimeras [144, 

146] .pLGV010 was transformed into E.coli TE1 and verified by colony PCR (Figure 
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3.8C) to show the presence of cloned DIII insert of 649bps. E.coli TE1 was induced for 

expression, however, studies to date have indicated limited protein expression (data not 

shown) and, similar to pLGV005, no current effective mechanism to purify chimera away 

from contaminating periplasmic proteins. 

Construction of Plasmids and Purification of Shiga Toxin A2/B or STB   

Concurrently with attempts to construct and purify StxA2/B chimeric molecules, 

plasmids were developed to express the STB or the StxA2/B subunits alone. These 

molecules could then be combined, or mixed, in vitro with antigens of interest (LcrV and 

WNVDIII) to characterize adjuvanticity and compared to that of CTB or LTIB. 

pLGV001 was originally constructed as a vector for cloning antigens for StxA2/B 

chimera expression and was used to make the pLGV003 and pLVG004 plasmids (Table 

3.1) for LcrV and WNVDIII chimera expression, purified respectively. However, this 

vector was also used alone to express StxA2/B and purified using nickel affinity. 

pLGV001 (Table 3.2, Figure 3.9) was constructed from TOPO vector by inserting stxA2B 

with 6X Histidine tag on the C terminus. The constructed vector was transformed into 

E.coli TE1 and verified by colony PCR (Figure 3.9 C) where it shows the presence of the 

cloned stxA2B insert of 493 bp. Cells were induced to express StxA2/B-HIS of 

approximately 13kDa as shown (Figure 3.9D). 

Table 3.2 Plasmids for Shiga toxin A2/B or STB expression 

Name of the plasmid Genes and purpose of the plasmid 
pLGV001 stxA2/B to express StxA2/B-HIS for Ni purification 

pLGV007 stxB into pBAD to express STB-HIS for Ni 
purification 

pLGV009 stxB into pBAD-KN to express STB  
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Figure 3.9. A and B) Schematic representation of pLGV001, the expression vector 
for DIII-StxA2/B-HIS chimera construct and plasmid for the purification of 
StxA2/B-HIS alone.  C) Colony PCR of pLGV001 showing insert at expected size of 
493bps. Lanes: 1. colony 1; 2. colony 2; 3. colony 3; D) SDS PAGE of protein 
preparations Lanes: 1. blank; 2. PPE of colony 2;  3. flowthrough of PPE of colony 
2; 4. PPE of colony 3;  5. flow through of PPE of colony 3; 6. wash 1 of PPE of 
colony 2.  
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Figure 3.10. A and B) Schematic representation of pLGV007, the expression vector 
for STB-HIS C) Colony PCR of pLGV007 showing insert at the expected size of 
570bps. Lanes: 1.1kB DNA ladder; 2. colony 1; 3. colony 2; 4. colony 3; 5. colony 4; 
6. colony 5; 7. colony 6; 8. colony 7; 9. colony 8; 10. colony 9. D) SDS-PAGE of 
protein preparations from E. coli TE1 purified on Ni column. Lanes: 1.Flowthrough 
of PPE; 2. Wash 1; 3. Wash 2; 3. Wash 3; 4. wash 4 of PPE.  E) Western blot of 
E.coli TE1 + pLGV007 protein preparations using anti-HIS antibodies with PPE.  

The plasmid pLGV007 (Figure 3.10, A and B) was constructed to express STB-

HIS for purification using nickel chromatography. The constructed plasmid was 

transformed into E.coli TE1 and verified by colony PCR (Figure 3.10 C) showing the 

presence of the cloned stxB insert of 570 bp. E.coli + pLGV007 was induced to express 
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STB-HIS and periplasmic extracts were purified using columns of nickel. Results 

revealed a low level of expression and purification of STB as compared to the 

chloramphenicol acetyl-transferase (CAT, approximately 20 kD) from this plasmid 

(Figure 3.10 D). Western blotting using anti-HIS antibodies revealed STB of 

approximately 13kDa (Figure 3.10 E). 

The plasmid pLGV009 (Figure 3.11, A and B) was constructed to express STB 

without a histidine tag and using a plasmid with a distinct antibiotic selection marker 

(Kanr). The plasmid was transformed into E.coli TE1 and verified by colony PCR (Figure 

3.11 C) where it shows the presence of the cloned stxB insert of 349bp. Cells were 

induced and the periplasmic extract were purified by filtration.  Extracts were found to 

over-express STB of the appropriate size (9.7kDa) as shown (Figure 3.11 D). 

Subunit proteins were purified to compare and analyze their adjuvant activities. 

STB was expressed from plasmid pLGV009 and concentrated from the periplasm. 

Periplasmic preparations were filtered through a 30 kDa filter and the residual sample 

remaining on top of the filter found to contain monomeric STB (as shown in Figure 3.11 

D). Pentameric STB is expected to be 48.5 kDa and thus the periplasm was then 

subjected to filtration through a 50 kDa concentrator/filter to remove larger contaminants. 

The filtrate from the 50 kDa concentrator was analyzed by SDS-PAGE (Figure 3.13 B). 

The final STB protein preparation was excised from SDS-PAGE and subjected to liquid 

chromatography–mass spectrometry (LC–MS). The results from the LC-MS confirmed 

the expected protein sample to be the Shiga toxin B subunit with a good 60.92% of 

coverage (Figure 3.12A). CTB was induced and expressed from plasmid pARLDR19 and 

was purified using D-galactose affinity chromatography from periplasmic extracts. 
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Elution samples were analyzed by SDS-PAGE and the results indicate the presence of 

CTB at an expected size of 11 kDa (Figure 3.12 C). Pertussis toxin was purchased from 

List Biological Laboratories INC, CA and was analyzed on SDS-PAGE to reveal 

subunits S2 and S3 at the expected sizes of 23 and 22 kDa, respectively (Fig 3.12 D). The 

B subunit of  E.coli heat-labile toxin (LTB) was induced and expressed from plasmid 

pJKT68 and  purified with D-galactose affinity chromatography from the periplasm of 

E.coli TE1. Elution samples were analyzed by SDS-PAGE and the results indicated the 

presence of LTB at the expected size of 11 kDa similar to CTB (Fig 3.12 E). 

In vitro Adjuvant Characterization Assays 

The plasmid for the expression of red-fluorescent protein STA2/B chimeras was 

made previously in our laboratory (pSW005, Table 3.1).  To characterize the ability of 

this chimeric molecule to deliver antigens to cells, in vitro assays were performed.  E.coli 

TE1 cells containing pSW005 were induced for expression and the periplasmic extract 

was isolated.  To determine if the RFP-STA2/B (Red flourescent protein) chimera was 

equally effective at binding and transporting of RFP into tissue culture cells, the extracts 

containing RFP–StxA2/B were incubated on green monkey kidney cells (Vero) and 

internalization was detected using confocal microscopy. Figure 3.12 shows the incubation 

of an RFP-CTA2/B chimera (A) and the RFP-StxA2/B chimera (B) on Vero cells at 4°C  

for 15 minutes to observe the surface binding of the chimera on to the cells. 

Internalization is observed at 37°C after 50-60 mins. These results suggested that the 

RFP-StxA2/B chimera is internalized through a retrograde pathway to a perinuclear 

domain of the cell similar to Ctx [144].  
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Figure 3.11. A and B) Schematic representation of pLGV009, the expression vector 
for STB C) Colony PCR of pLGV009 showing insert at the expected size of 349 bps. 
Lanes: 1.1 kB DNA ladder;2. colony 13; 3.colony 14; 4. colony 15; 5. colony 16; 
6.colony 17; 7. colony 18; 8. colony 19; 9.colony 20; 10. negative control; D) SDS-
PAGE of periplasmic protein preparations from E.coli TE1 + pLGV009 after 
concentration with 30K filter.  
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Figure 3.12. LC-MS of purified STB and SDS–PAGE of purified toxin B subunit 
proteins. A) LC-MS results from STB purification showing 60.92 % of coverage; B) 
SDS–PAGE of STB from pLGV009; C) SDS–PAGE of CTB subunit from 
pARLDR19; D) SDS–PAGE of PTB;  E) SDS-PAGE of Heat labile toxin B subunit 
from pJKT68 
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Figure 3.13. Binding and internalization of the A) RFP-CTA2/B. B) RFP-StxA2/B 
chimera on  Vero cellsat 4°C and at 37°C showing internalization.DAPI is labelling 
the nucleus of the cells as blue and red color indicates the Rhodamine flourescence. 
Movement of Red flourescence towards perinuclear space indicates the 
internalization. 
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Figure 3.14. Confocal microscopy of CTB and PTB after incubation on dendritic 
cells (DC2.4) at 37°C for 1 hour using anti-CTB and anti-PTB primary antibodies 
and FITC labeled secondary antibodies. Results have indicated that antibody 
staining is showing good Internalization of B subunits of CT and PT. Movement of 
Green fluorescence towards perinuclear space indicates internalization (indicated 
by arrow). Blue color center indicated the Nucleus of the cells stained by DAPI.  

To better understand the application of toxin B subunits alone as antigen-delivery 

vehicles, studies were completed to characterize the binding and internalization of toxin 

B subunits in vitro. The results shown in Figure 3.14 was conducted to compare the 

binding and internalization pattern of CTB to PTB on mouse dendritic DC2.4 cells using 

anti - CTB and anti-PTB staining after incubation at 37oC for 1 hour.  These results 

suggest significant internalization of PTB into DC2.4 cells that is superior to CTB under 

these conditions.  We were unable to compare STB in this assay as no affective anti-STB 

antibodies were available.  

To extend the above study and compare the ability of toxin B subunits to promote 

the internalization of mixed antigen, we conducted a comparative study using CTB, PTB 

and STB as adjuvant with FITC-OVA as an antigen on mouse dendritic DC2.4 cells at 



59 

 

37°C (Figure 3.15). The result of this in vitro study are preliminary, but indicate that 

nontoxic STB promotes stronger binding and internalization of FITC-OVA to DC2.4 

cells compared to PTB and CTB. We also attempted to quantify the uptake through use of 

an antigen uptake assay and thus far the results obtained have shown that the WNV DIII 

antigen alone may promote antigen uptake (data not shown). 

 
Figure 3.15. Confocal microscopy of FITC-OVA mixed with toxin B subunit 
proteins or mock extract and incubated on DC2.4 cells for 1 hour at 37°C. Blue-
nucleus of the cells labelled by DAPI staining. Movement of green fluorescence 
towards perinuclear space indicates internalization. 
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Figure 3.16. Metabolic activity as shown by Alamar blue on J774 macrophage cells 
with different adjuvants at different concentrations. Cholera toxin (CT)  at 5 µg/ml, 
CT at 10 µg/ml, cholera toxin B subunit (CTB) at 5µg/ml, CTB at 10µg/ml, Pertussis 
toxin B subunit  (PTB) at 5 µg/ml, PTB at 10 µg/ml, Envelope Domain III of West 
Nile Virus (DIII) at 5 µg/ml, and DIII at 10 µg/ml. Mock is the periplasmic extracts 
without testing protein. Error bars indicate STD error of assay performed in 
triplicate. 

Cell proliferation assays monitor actively dividing cells, expressed either as the 

actual number of active cells or the ratio of proliferating to non-proliferating cells in 

culture. The results from Figure (3.16) show that Ctx at10 µg/ml showed highest 

proliferation followed by CTB subunit at 5 µg /ml and 10 µg/ml. There is a decrease in 

the level of cell proliferation with PTB subunit at 5 µg/ml compared to PTB at 10 µg/ml. 

DIII from West Nile Virus has shown similar effect of lower proliferation at 5 µg/ml 
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compared to 10 µg/ml in a concentration dependent manner. This experiment was 

performed to assess the cellular proliferation ability of the non-toxic derivatives of 

bacterial enterotoxins CT, CTB, PTB, and DIII at different concentration. The higher 

proliferation capacity of the macrophages cells (J774’s) indicates the better adjuvant 

property of the protein. 

B3Z is a LacZ-inducible CD8+ T cell hybridoma expressing TCR specific for 

OVA257–264 (SIINFEKL), presented on the murine H2Kb MHC class I molecule.  After 

incubation of antigen presenting cells with adjuvants plus SIINFEKL, cells are washed, 

and β-galactosidase activity is detected in live cells by using fluorescein di-b-D-

galactopyranoside and propidium iodide according to the manufacturer’s protocol (Figure 

3.17, Invitrogen). Results from a primary study (Figure 3.17 A) show increased B3Z 

activation with increasing concentrations of native CT as well as the purified LTB 

subunit.  LTB shows greater activation at higher concentrations and also greater 

activation than native CT. This result was unexpected, however, the possible rationale 

may due to the effect of lipopolysaccharide (LPS) content of the purified LTB. The 

second experiment was a comparative study between native CT and the B subunits of 

Pertussis (PTB). Results indicate that PTB at higher concentrations of 2 µg/ml promotes 

better antigen presentation to the B3Z T cell line than native Ctx at 1µg/ml.  

We analyzed cells for their cytokine expression and stimulation upon reacting 

with the proteins through ELISA as it is important to show T cell activation and the 

immune response [147]. Results of TNF-α analysis (Figure 3.19A) indicate that the mock 

has the highest stimulation possibly due to LPS followed by STB, PTB, and CTB. In 

comparison, CT has the lowest stimulation, Research shows that the pro-inflammatory 
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cytokines like TNF-α are suppressed by Ctx [69, 148]. Comparative analysis of IL-12 

(Figure 3.19B) indicates that PTB was able to stimulate IL-12 next to mock/ PBS. CT, 

CTB, and STB show a clear suppression of IL-12 in agreement with the evidence from 

literature stated above, that CT is shown to suppress cytokine Il-12 [149].  

 
Figure 3.17. Schematic representation of the in vitro antigen presentation assay 
using the B3Z cell line. Adjuvant proteins and antigens are applied and incubated 
on DC2.4 cells followed by co-incubation of cells with B3Z cells and measurement of 
B3Z T cell stimulation through β-galactosidase activity. 
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Figure 3.18. A) In vitro B3Z stimulation assay. Measurement of beta-galactosidase 
activity using adjuvants Cholera toxin (CT) and Heat labile toxin B subunit (LTB); 
CT1 (1 µg/ml); CT2 (2 µg/ml); CT3 (3 µg/ml); and LTB1 (1 µg/ml) and LTB2 (2 
µg/ml). B) Comparative study of adjuvant activity between CT and PTB; CT (0.01 
µg/ml); PTB1 (1 µg/ml) and PTB2 (2 µg/ml). Analyzed using student’s t-test 
compared with the control value and based on two independent samples (P <0.05). 
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Figure 3.19. Cytokine production on C57Bl/6 murine dendritic cells line (DC2.4) 
stimulated with different purified adjuvant proteins. DC2.4 cells were incubated for 
24 hours with media containing the indicated concentrations of proteins.  A) 
Comparison between CT, CTB, PTB, and STB at different concentrations for the 
stimulation of TNF- α.  CT (5 µg/ml) CTB (5 µg/ml), PTB (5 µg/ml), STB (5 µg/ml).  
B) Comparison of IL-12 stimulation by CT, CTB, PTB, and STB a different 
concentrations. CT (5 µg/ml), CTB (5 µg/ml), PTB (5 µg/ml), STB (5 µg/ml). The 
values were determined by ELISA and the data shown are determinations from two 
independent experiments.  
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Figure 3.20. Multi-analyte cytokine analysis on C57Bl/6 murine dendritic cells line 
(DC2.4) stimulated with adjuvant proteins CTB and STB at 2 ug/ml concentration. 
DC2.4 cells were incubated with media containing the indicated concentrations of 
proteins for 24 hours prior to collection of supernatant. Standard error is based on 
results of two independent samples.  

Broad analysis of many cytokines was completed using a multi-analyte cyotokine 

assay. Although cytokine concentrations could not be determined in this assay, Figure 

3.20 supports results from Figure 3.19 indicating  that both CTB and STB inhibited TNF-

α expression when compared to Mock or PBS. IL-12 expression was also inhibited and 

supports the results from earlier assays (Figure 3.19).  Overall results suggest that CTB 

and STB were inhibiting the expression of most of the cytokines, including; IL-6 (Th2), 

IL-10 (Th2), IL-12 (Th1), IL-13 (Th-2), IL-17A (Th17), IL-23 (Th17), INF-γ (Th1), and 

TNFα (Th1) at the concentration of 2 µg/ml. However, STB, similarly to CTB, may be 

promoting the stimulation of Th-2 type and anti-inflammatory cytokines like IL-2 (Th1), 

IL-4 (Th2) , IL-5 (Th2) and TGF-β (Th2/Th17).  
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CHAPTER IV.   DISCUSSION AND CONCLUSIONS 

The objective of the current thesis was to develop and characterize novel vaccine 

adjuvants that are based on non-toxic bacterial toxin derivatives. The goal of vaccination 

is to generate a strong and specific immune response to the administered antigen to 

induce long-term protection against infection.  As vaccine development progresses more 

towards the use of killed or purified subunit vaccines as opposed to live attenuated 

vaccines for safety reasons, effective immune induction often requires the addition of an 

adjuvant [150]. In addition, the development of vaccines that can be administered through 

non-invasive routes, such as intranasal, sublingual, transdermal, or subdermal is highly 

desirable and requires the use of novel adjuvants.  Lastly, there is an ever-increasing need 

to develop vaccines for bioterror, antibiotic resistant and new emerging pathogens. Over 

the last 200 years, the use of vaccines has proven to be one of the most successful 

medical interventions in the reduction of disease caused by infectious agents[151].  

Adjuvants are defined as substances that can elevate and enhance the potency and 

endurance of the desired immune response when co-administered or coupled with 

antigens in vaccines, but have little to no toxicity and immune properties of their own 

[152-154]. The word adjuvant comes from the Latin word adjuvare, which means to help, 

aid or to enhance[150, 155]. The inclusion of adjuvants in vaccines helps in the 

augmentation and sustainability of the antigen-specific response and to efficiently 

regulate the appropriate immune responses [153, 155]. Adjuvants can be used for 
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different purposes, including: 1) to  enhance the immunogenicity of highly purified or 

recombinant antigens, 2) to reduce the dosage or quantity of antigen or the number of 

immunizations needed for establishing protective immunity, 3) to  improve the efficacy 

of vaccines in pregnant women, newborns, the elderly or immuno-compromised persons, 

or 4) as an antigen delivery systems for the uptake of antigens by the mucosa [150]. 

Bacterial components constitute an important source of vaccine adjuvants because 

of their immunostimulatory capacity[72]. Constituents of Gram negative bacteria like cell 

wall peptidoglycan or lipopolysaccharide (LPS) boost the immune response to co- 

administered antigens through the activation of Toll like receptors which transfer threat 

signals leading to the activation of immune defense systems[156]. Various bacterial 

species that have been used as a source of adjuvants include: Mycobacterium species, 

Corynebacterium parvum, Bordetella pertussis and Neisseria meningitides. However 

these live whole or killed cells can induce strong inflammatory responses and are not safe 

for human use due to their toxic nature[157]. 

Shiga toxin 1 (Stx1), secreted by Shigella dysenteriae and Escherichia coli 

EHEC, has considerable structural similarity to cholera toxin (Ctx), but distinct 

immunostimulatory characteristics. Ctx has long been recognized as an excellent vaccine 

adjuvant, or immunomodulator, with the ability to stimulate specific immune responses 

to co-administered antigens (vaccine antigens) delivered through the oral or nasal route 

[158]. High specific receptor-binding affinity and stability appear to be the basis for these 

unique immunomodulatory properties.  However, the toxicity of Ctx is a limiting factor 

for use as an adjuvant in human vaccines. Chimeric A2B molecules, as well as other non- 

toxic derivatives, of Ctx have shown much promise as novel mucosal vaccine candidates 
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[5, 49]. A2B chimeras of Ctx retain the capacity to introduce antigens into host cells and 

modulate the immune response, and toxic domains are replaced with a vaccine antigen of 

interest. We hypothesized that, due to significant structural homology, Stx1 can also act 

as a vaccine adjuvant, but with distinct receptor binding specificities that may more 

directly target immune cells and produce a different response.  

The goal of this research was to construct plasmids to express and purify 

Stx1A2/B chimeric molecules, and the STB subunit alone, and to characterize these 

molecules in vitro as novel vaccines and vaccine adjuvants. Previous work has shown the 

successful construction of plasmids and purification of Ctx A2/B chimeric proteins [15, 

144-146, 159]. CtxA2/B chimeras are easily purified on commericially available D-

galactose agarose affinity resins. The availability of D-galabiose affinity resin and 

structural similarity of Ctx and Stx1 supported our hypothesis that Stx1A2/B chimeras 

could be purified for characterization as novel vaccines [160].  The work presented in the 

first part of this thesis shows the successful construction of recombinant plasmids with 

Stx1 A2/B containing the vaccine antigens LcrV from Yersinia pestis and the Envelope 

protein Domain III (DIII) from West Nile virus.  These plasmids were confirmed through 

colony PCR (Table 3.1 and Figures 3.1D, 3.2C, 3.3C, 3.4C, 3.5C, 3.6C, 3.7C, 3.8C, and 

3.10C) and nucleotide sequencing (data not shown). Near the start of this work, D-

galabiose resin became unavailable as the commercial vendors stopped supply, limiting 

our options for StxA2/B chimera purification. Thus, some of the constructed plasmids 

incorporated a 6X histidine (HIS-tag) to promote purification using nickel 

chromatography. The plasmids were constructed with the HIS-tag on either the C-
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terminus of the STB subunit (3.7A andB , 3.2A andB, 3.3 A and B,  3.8A and B) or on 

the on N-terminus of the A2 fusion peptide (3.1A and B, 3.5A and B).  

Previous studies using the LcrV antigen from Yersinia pestis revealed successful 

incorporation into a CtxA2/B chimera and co-purification of LcrV-CtxA2/B peptide with 

the CTB subunits on D-galactose [15]. However, many factors influence the expression of 

proteins including the alignment of the amino acids, folding of protein chains, and 

culturing conditions. The chimeric proteins from pLGV002 (His-LcrV-STA2B) and 

pLGV003 (LcrV-STA2B-His) were expressed and purified using nickel column 

chromatography. Figure 3.2 illustrates the presence of the His-LcrV-STA2 fusion, but the 

STB subunit was not co-purified. Similarly, for the proteins expressed from pLGV003, 

the HIS-STB peptide was purified as shown in Figure 3.4, but there was no co-

purification of the LcrV-StxA2 peptide. These results indicate that the StxA2 domain and 

the STB subunit were not able to fold properly into holotoxin within the periplasm of 

E.coli.  The reason for this ineffective folding may be due to the differences in the non-

covalent interactions between the A2 and B regions between Ctx and Stx.  The A2 domain 

of Ctx is 46 amino acids long and produces more hydrogen bonds with CTB, whereas the 

A2 domain of Stx  gene is only about 12 bases apart from B subunit and has relatively 

weaker bonds with STB [161, 162]. Literature published indicated that A2 part of Shiga 

toxin is an essential factor for holotoxin assembly and any disturbance to A2 domain 

during molecular cloning process could cause a negative effect on holotoxin formation 

[163].  

Purification of StxA2/B chimeric molecules containing the DIII antigen from 

West Nile virus was also of limited success.  These plasmids included pLGV004 (DIII-
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STA2/B-HIS), which resulted in limited expression despite performing experiments at 

different time intervals and temperatures, and pLGV006 (HIS –DIII-STA2B), which 

resulted in protein aggregation and insolubility.  We also designed chimeric DIII-StxA2/B 

with no HIS (pLGV005) to attempt purification on other lectin affinity columns, such as 

D-galactose and fetuin-agarose.  The results indicated that, unlike Ctx and Ptx, Stx had no 

binding capacity for these resins. A final strategy to express DIII-StxA2/B molecules was 

based on previous success using a strong E.coli signal sequence (TorA) to direct the A2 

fusion to the E.coli periplasmic space (pLGV010, Figure 3.8) [146]. Expression studies 

thus far from pLGV010 have indicated limited protein expression even in the insoluble 

pellet fractions. Limited expression could be due to the absence of N terminus Stx1 

leader sequence as studies show that N-terminus leader sequence of the StxI gene is 

essential for production  and assembly of the subunits to yield an active recombinant 

holotoxin in E.coli [164]. Thus, while there was significant success creating a number of 

new plasmids for StxA2/B chimeric vaccine expression, the current evidence indicates 

that Stx A2/B chimeras do not fold with the same efficiency and stability that CtxA2/B 

chimeras do, resulting in insoluble subunits that cannot be co-purified. StxA2/B 

molecules are also not expressed as well in the E. coli periplasm. Toxic effects may result 

from over-expression of StxA2/B that select for transformants that do not express to a 

high degree.  Lastly, our inability to purify using Gb3 affinity chromatography was a 

severe limitation for the purification of StxA2B chimeras. Alignment of STA subunit with 

that of CTA indicated that there is a lot of variability among these two toxins subunits 

and that may have contributed to the poor expression as well as folding of the 

recombinant proteins. 
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In addition to plasmids to produce StxA2/B molecules, plasmids were constructed 

to over-express STB alone, with or without HIS tags to promote purification (Table 3.2 

and 3.9, 3.10, 3.11). The hypothesis of this work was that the immunogenicity of purified 

STB and CTB could be compared in vitro and would be distinct. The plasmids pLGV001, 

pLGV007, and pLGV009 (Figures 3.9, 3.10 and 3.11) were used to over-express STB 

with or without a HIS tag.  Plasmid pLGV007 (STB-HIS) did express STB, as confirmed 

by Western blot (Figure 3.10D and E) but we could not separate contaminant proteins by 

purification. Plasmid pLGV009 (STB) over-expressed STB to a high concentration and 

we were able to separate contaminant protein to a high purity by filtration. The identity of 

STB from this preparation was confirmed by LCMS (Figure 3.11D).  

The final goal of this work was to characterize the antigen-uptake capacity and 

adjuvanticity of StxA2/B chimeras and STB in vitro. The trafficking of antigens 

stimulated by SxtA2/B and STB was analyzed using confocal microscopy and tissue 

culture of epithelial (Vero) or leukocyte (J774 macrophage and DC2.4 dendritic) origin. 

We showed the internalization of RFP-StxA2/B Vero cells (Figures 3.13A and B). These 

results indicated that the RFP –StxA2/B is able to bind to and internalize into Vero cells 

at 37°C, and deliver a large antigen (RFP) to a perinuclear domain within the host cell, in 

a similar manner to the RFP-CtxA2/B construct. This antigen-delivery capacity is a 

highly desirable quality of effective adjuvants. The trafficking of the nontoxic B subunits 

of Ctx and Ptx was directly compared using anti-toxin antibodies on DC2.4 dendritic 

cells (Figure 3.14). These results indicated that PTB (Pertussis toxin B subunit) was as 

efficient, or more so, than CTB at trafficking and internalization into this cell type. In 

order to study the uptake and internalization properties of the B subunits into cells 
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further, Shiga toxin B subunit, Pertussis Toxin B subunit and Cholera Toxin B subunit 

were incubated along with the large FITC–OVA antigen on DC2.4 cells. These results 

showed good antigen binding that was stimulated with the addition of the toxin B 

subunits, and uptake that may be superior with STB over the other toxin subunits (Figure 

3.15). We attempted to quantify the antigen uptake capacity using a microplate-based 

fluorescent antigen uptake assay, but results have thus far have not shown significant 

differences between toxin subunits (data not shown). Proliferation and activation of 

macrophages is also considered as an important quality of adjuvanticity and we tested the 

capacity for native CT, CTB, and PTB to activate the macrophage cell line (J774) using 

the Alamar blue metabolic dye. Results indicate that native CT has significant stimulation 

properties on these cells, followed by the CTB subunit and the DIII antigen alone (Figure 

3.16). The WNV DIII antigen binds to αvβ3 integrins and may have adjuvant properties of 

its own as research shows that DIII may possibly be entering through cholesterol-rich 

rafts and dynamin as reported in  [146, 165]. 

Further studies were conducted to characterize the ability of STB to deliver 

antigens to antigen presenting cells in vitro using a model antigen and sensitive T-cell 

line (B3Z cell line). Comparisons between STB and native Ctx, CTB, LTB, and PTB 

were analyzed. Although Ctx is known to be a good adjuvant, results indicated that LTB 

was better able to present the SIINFEKL antigen to B3Z T cells compared to Ctx (Figure 

3.18A).  This effect may be attributed to residual lipopolysaccharide (LPS) in the LTB 

protein sample preparations despite endotoxin removal from this preparation. LPS is a 

powerful adjuvant and may act at even very low concentrations [166]. Another 

comparative B3Z assay was performed between commercially prepared and endotoxin-
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free native Ctx (CT).  Results indicate that while PTB can stimulate antigen presentation 

at high concentrations, native Ctx is better at concentrations as much as 100-fold lower 

(Figure 3.18 B). While STB was not used in this assay due to concerns over purity and 

LPS contamination, the B3Z assay was found to be an effective method for the in vitro 

comparison of toxin adjuvants and will be used for future studies.  

The ability of proteins STB, PTB, CTB, and CT to stimulate or inhibit cytokines 

in vitro was also characterized. Understanding of Cytokines production helps to 

determine the kind of immune responses that these proteins are capable of eliciting. As 

mentioned above, Ctx has been shown to inhibit TNF-α on macrophages in vitro and we 

observed a similar pattern on dendritic cells (Figure 3.19) [69].  Less is known about the 

cytokines affected by Stx, however, it has been reported that TNF-α  plays an important 

role in HUS (Hemolytic Uremic Syndrome) progression by increasing the Stx receptor 

Gb3 in human cerebral endothelial cell and sensitizing the cells to the toxic enzymatic 

activity [167, 168]. In our assay, STB was found to inhibit TNF-α production, but to a 

lesser degree than CT or CTB (Figure 3.19A).  These results are in contrast to a recent 

study indicating that STB and a mutated Stx (substituted amino acids in A subunit) from 

E.coli to possess adjuvant activity for primary dendritic cells through the stimulation of 

TNF-α[169]. Differences in protein preparation, including the host for protein expression, 

purification techniques, and possible impurities, such as LPS, as well as the nature of the 

dendritic cells (i.e.primary versus immortalized), might explain the differences in 

outcome between this study and our study. While Ohmura et al. (2005) did not 

specifically analyze IL-12 expression, our results also indicate that IL-12 has not been 

stimulated by STB and may be inhibited (Figure 3.19B). A recent study on Ptx and its B 
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subunit shows that Ptx can induce dendritic cells production of interleukin (IL)-6, TNF-

alpha, IL-12, and interferon-inducible protein, and PTB was capable of stimulating the 

production of interferon-inducible protein [88]. Our results indicated that PTB may also 

inhibit TNF-α production, but has little effect when compared to mock expression on IL-

12 production from DC2.4 cells (Figure 3.19). A multi analyte cytokine assay using 

endotoxin-free preparations of CTB and STB indicates that both CTB and STB may 

inhibit the induction of Th1-type, such as IFN-γ and TNF-α, and promote the induction 

of Th-2 type and anti-inflammatory cytokines like IL-4, IL-5, and TGF-β. However, 

overall cytokine levels were very low in all of our assays, indicating that the 

immortalized DC2.4 cells were largely inactive and immature. 

Future studies to support this work will need to include the isolation and 

implementation of primary bone marrow derived or peripheral monocytes for the analysis 

of cytokine activation or inhibition, as well as antigen-uptake. Alternatively, improved 

methods for the activation of immortalized cells can be implemented [170]. In addition, 

in vitro characterization studies could be enhanced by the addition of Gb3 to the cells in 

vitro to identify improvements in Stx immunostimulation. Protein expression and 

purification of STB and Stx chimeras can be improved through the construction of D-

galabiose affinity columns, or Stx antibody-based affinity purification. In addition, 

making use of different affinity tags, expression vectors, stx sequences, and host 

organisms may improve protein expression and yield.  Recently an endotoxin free strain 

of E.coli (Clean Coli, Lucigen, WI) has become available to ensure proteins are prepared 

in the absence of immune-stimulating LPS.  
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The development of novel adjuvants will improve the immunogenicity of purified 

vaccine antigens and is recognized as a top priority in vaccine research. Adjuvants have 

long been of great interest to vaccine development as they are commonly necessary to 

strengthen immune responses. Adjuvants are also key to the development of effective 

mucosal vaccines because they can compensate for the often poorly immunogenic nature 

of orally and nasally administered vaccine antigens. Much of the protection available at 

mucosal surfaces such as respiratory, gastrointestinal, and urogenital tracts is provided by 

the production of secretory IgA and antibodies, which are effectively produced only 

when the vaccine is administered by a mucosal route. In an effort to develop novel 

adjuvants, Stx or STB represent important candidates for further characterization due to 

their ability to target dendritic cells and to induce antigen-specific responses. Although 

many details of the molecular mechanisms behind the enhancement of immune responses 

by AB5 toxin derivatives remain to be elucidated, the present study represents a novel 

attempt to design and characterize primary Stx derived adjuvants and compare the 

immunogenicity of non-toxic subunits of AB5 bacterial toxins. 
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