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ABSTRACT 

The rubber sheet analogy for Einstein’s General Relativity model of gravity is a 

popular way to visualize the effect mass has on the curvature of spacetime. My single 

group, quasi-experimental study with repeated measures was designed to assess the 

effectiveness of the rubber sheet analogy in teaching gravitational fields. I developed 

instructional materials, including a hands-on lab, to engage university students in 

thinking about gravity using the rubber sheet analogy. Previous research on students’ 

ideas about gravity informed the development of the pre/post-test.  My work is an 

important first step in establishing a standard assessment on gravity.  

Approximately 97 students in a university-level conceptual physics course 

participated.  The results are promising. Normalized gains for students were about 30%.  

Post-test scores indicate improvement in student recognition of factors that do and do not 

influence gravity. There were significant differences in student performance for two 

demographic categories (sex and age).   
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CHAPTER ONE: INTRODUCTION 

The intent of my study was to assess the effectiveness of the rubber sheet analogy 

and its ability to affect student understanding of gravitational fields.  Einstein’s Theory of 

General Relativity describes gravitational forces as the curvature of four-dimensional 

spacetime due to the presence of matter (Hartle, 2003).  The rubber sheet analogy 

described below is a way to visualize the effect mass has on the curvature of spacetime.   

Imagine a rubber sheet stretched out.   Then, visualize placing a bowling ball on 

the sheet.  The material around the bowling ball is stressed and deforms to the presence 

of the mass.  Now take a golf ball and roll it across the sheet.  The motion of the golf ball 

changes in response to the deformation of the sheet caused by the bowling ball (see 

Figure 1).  The motion of the golf ball in the analogy is similar to how light passing near 

the sun, whose mass changes the light’s trajectory. If the speed of the golf ball is fast 

enough, it continues to move by, on an altered course; but if the speed is too slow, the 

golf ball will fall in towards the bowling ball.   

 
Figure 1. Scientific Diagram of Spacetime Curvature 

(Source:mattmancini.wordpress.com) 
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Examining how bodies move on the rubber sheet around masses can potentially 

be used by educators to initiate class discussions about orbiting bodies and in particular 

the effect of gravity. For example, a class discussion and demonstration may support 

student understanding of how satellites stay in orbit.  Depending on the level of course, 

educators could also use the rubber sheet analogy to introduce the equations and 

calculations that allow for orbital speed determinations.  I posit the rubber sheet analogy 

provides students with a mental model that supports thinking about and calculating 

gravity using Newton’s Universal Law of Gravity. 

The curvature of the sheet is representative of the familiar “g” constant physics 

students are introduced to in their first semester physics course.  This “g” constant 

describes the acceleration an object experiences when falling near the surface in Earth’s 

gravitational field.   In general, the more massive the object, the greater the curvature, 

and thus, the larger the “g” constant for a given distance from the object.  An educator 

can extend the rubber sheet analogy further by then having students imagine placing a 

less massive ball on the sheet to represent the moon. Even though this ball is less 

massive, the sheet deforms around this small object as well, albeit less so. The extension 

of the analogy may enable students to surmise that the “g” constant for the moon is 

smaller than Earth’s acceleration constant because there is a weaker gravitational field.  

By doing so, the rubber sheet analogy could address the misconception that there is no 

gravity on the moon (Bar, Zinn, & Rubin, 1997; Borun, Massey & Lutter, 1993; Palmer, 

2001). 

The rubber sheet analogy could also provide educators with another method for 

presenting gravity besides the usual Newtonian, action-at-a distance, method of 
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explanation.  The possible benefit comes from providing a way for students to visualize 

why objects move as they do near massive objects.  Action-at-a-distance describes the 

gravitational force, as well as electromagnetism, as being propagated by no physical 

connection between the two bodies.  One of the problems with this method is that, due to 

our everyday experiences, many people think that a contact is needed for a force to be 

propagated (Watts, 1982).  Students exposed to the visualization afforded by the rubber 

sheet analogy may develop a more comprehensive understanding of gravity (Bradamante 

& Viennot, 2007).  With appropriate support, students may then be able to extrapolate the 

analogy to electrostatics and to what the electric field looks like around a charge. 

There are many different methods researchers use to classify student 

understanding about gravity, mass, and weight.  A review of research carried out between 

1975 and 1985, Martinez (2001) summarized the methods of classification as 

Aristotelian, Newtonian, or some mixture of the two. Although the terminology used in 

the studies vary, the intent of the studies has been the same: to understand how students 

think about gravity.   

I found only one study that reported the effectiveness of the rubber sheet analogy 

for teaching concepts of gravity (Baldy, 2007).  Baldy’s (2007) study was conducted with 

9th grade French students (n=123) and examined the effectiveness of two teaching 

methods: classical Newtonian (n=21) and a new approach using General Relativity and 

the rubber sheet analogy (n=102).  My study builds on Baldy’s research by examining the 

conceptual understanding of American college students who were enrolled in a 

conceptual physics course where the rubber sheet analogy was used to teach ideas about 

gravity. 
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Research Questions 

The documentation of student conceptions regarding gravitational fields is vast 

(Bar, et al., 1997; Borun, et al., 1993; Clement, Brown & Zietsman, 1989; Driver, 1989; 

Dostal, 2005; Galili & Bar, 1997; Galili, 2001; Graham & Berry, 1993; Watts, 1982).  

Some of these well-documented alternative conceptions (e.g. no gravity on the moon, 

gravity requiring an atmosphere, that gravity is associated with magnetism and rotation) 

could potentially be alleviated by using the rubber sheet analogy.  In short, the rubber 

sheet analogy could provide a means for students to develop a robust understanding of 

gravity.   

I have used the rubber sheet analogy in my teaching for many years and have 

always thought that the analogy could be very powerful for some students, especially 

those who need visual aids to help in understanding.  Additionally, the rubber sheet 

analogy allows me to leverage student’s prior experience with the analogy when we study 

electric fields and electric potential.  Lastly, the analogy has seemed to correct some 

alternative conceptions that students might have.  I wanted to create a lab, instructional 

materials, and instrument that could be used to explore this possibility. 

The following research questions guided my investigation:   

1. Is the rubber sheet analogy an effective model for teaching gravity? 

2. What are student conceptions of gravity pre and post instruction? 

3. Do personal characteristics or educational backgrounds appear to influence 

student conceptions? 

My study could stimulate other educators to use the rubber sheet analogy in the 

classroom.  Other researchers may be motivated to perform similar studies that 



5 

 

investigate the effectiveness of the rubber sheet analogy, allowing for greater 

generalizability. 
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CHAPTER TWO:  REVIEW OF THE LITERATURE 

In this chapter, I describe results from educational research relevant to my study, 

in particular, students’ understanding of gravity. I also address how research on 

conceptual understanding informs my perspective of learning, in general.  Also included 

is a brief description of how the scientific community’s perspective on gravity has 

developed over time, which is important given previous categorizations of student 

reasoning.  Relativity is no longer something that only physicists can claim to understand, 

as the overall idea is accessible to the general population and allows for a deeper 

understanding of both spacetime and gravity, in particular. 

Research into Conceptual Understanding 

According to the tenets of constructivism, students come to a class with their own 

notions, ideas, mental models, and beliefs about the world that surrounds them (von 

Glaserfeld, 1995).  Researchers whose work is founded on the tenets of constructivism 

posit that learning is an active process where the learner constructs or revises their own 

mental model (Borun, et al., 1993; Murphy & Alexander, 2006; Driver, 1989; Sinatra & 

Pintrich, 2003).  When there is a difference between the mental model a student uses 

(intuition), and the scientifically accepted explanation, an alternative conception (or 

misconception) arises (Driver, 1989; Gonen, 2008).   

Education research, whether in mathematics or the sciences, attempts to document 

some common conceptions that students have coming into the classroom (Bar, et al., 
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1997; Borun, et al., 1993; Clement, et al., 1989; Driver, 1989; Dostal, 2005; Galili & Bar, 

1997; Galili, 2001; Graham & Berry, 1993; Watts, 1982).  By knowing what students are 

thinking pre-instruction, educators are in a better position to create the conditions needed 

to modify a student’s conception (if needed) (Dykstra, 2004). That is, educators are in a 

position to directly address students’ misconceptions by creating opportunities for 

cognitive conflict between ideas (the correct notion in conflict with the student’s 

misconception) and build from that point. Directly addressing student misconceptions is a 

prominent method used to promote conceptual change in students (Driver, 1989; Greeno, 

Collins & Resnick, 1996; Murphy & Alexander, 2006; Sinatra & Pintrich, 2003).   

Borun, et al.’s (1993) research has shown that people are not able to understand 

what gravity is until they have seen what it is not.  Borun, et al. developed hands-on 

exhibits that directly confronted persistent misconceptions students have about gravity 

being associated with air, rotation, and magnetism. In general, the conceptual change 

approach has its origins in Piaget’s theory of equilibration (Kang, Scharmann, Noh, & 

Koh, 2005) where it is assumed that the need to reduce conflict is human nature and can 

be key to learning.   

By instructing students about the laws of physics, teachers are attempting to fit 

potentially new knowledge or ideas into the students’ existing cognitive structure, or 

framework.  Conceptual modification can take place when students are faced with an 

example that does not fit into their existing framework.  Duit and Treagust (2003) 

describe an approach to conceptual change that consists of first making the student’s 

framework explicit and then proposing a situation where the framework does not work. 

The student should become dissatisfied, and at this point a new framework can be 
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proposed.  Students are then motivated to accept and modify their existing frameworks.  

Duit and Treagust (2003) claim that no study has found complete change in student 

conceptions.  Instead, many students develop dual frameworks that are called on in 

specific situations.   

The use of dual frameworks was also documented by Lave (1988) where 

individuals’ use of arithmetic varied drastically with the situation.  Given a “real world” 

situation, like grocery shopping, many of Lave’s research participants were able to 

perform complex arithmetic problems, but when given a formal mathematics test, with 

similar tasks, the participants’ ability plummeted.  These differences are classified as 

situationally specific cognitive activities, or situational knowledge (Greeno, et al., 1996). 

Understanding that knowledge is situated is an important pedagogical consideration when 

planning opportunities for learning. 

Mildenhall and Williams (2001) refer to well-documented research to validate 

when students are likely to use a situation-specific approach; in academic contexts, the 

school-based framework will be used and in “real-world” situations students will fall 

back to their intuitive frameworks.  The school-based and intuitive frameworks do not 

have to be coherent with one another.  Only when both frameworks are called upon does 

an actual conflict arise (Tall & Vinner, 1981).  Plasticity of the mind can allow for a 

reworking of an existing framework (accommodation), but not entire replacement since 

these frameworks could have been built up through years of experiences.   

Posner, Strike, Hewson, and Gertzog (1982) suggest four conditions that should 

be met in order for a proposed framework to take the place of an existing framework: 

dissatisfaction, intelligibility, plausibility, and fruitfulness.   These four conditions were 
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found in most cases where accommodation was documented (Posner et al., 1982).  

Dissatisfaction can occur when a student has a collection of unsolved puzzles that cannot 

be explained by current mental models.  For the replacement to be considered intelligible, 

the proposed framework must be non-contradictory and understood by the student. 

Posner et al. (1982) stress the importance of analogies and metaphors, arguing they lend 

meaning and intelligibility to new concepts.  Further, Chandler supports using a “series of 

analogies rather than relying on just one” (M. Chadler, personal communication, 

November 18, 2012).   If a proposed framework is to be plausible, then in addition to 

understanding the framework, the student must find the proposed framework believable.  

Finally, the new framework will be fruitful if the student finds the framework helpful in 

solving other problems.   

“To understand a physical phenomenon means to know what causes it, what 

results from it, how to initiate it, how to influence it or how to avoid it” (Greca & 

Moreira, 1997, pp. 713).  In other words, students need some sort of mental model, or 

framework, to work from in order to understand a physical phenomenon (Besson, 2010).  

Glynn and Takahashi (1998) define guidelines for creating what they call an elaborate 

analogy.  Glynn and Takahashi found that students who learned about an elaborate 

analogy not only had greater understanding of the topic, but also had greater recall when 

compared to students using a standard method of instruction.  Their guidelines for an 

elaborate analogy are (a) the introduction of a target concept, (b) reminding students of 

the analog concept, (c) identifying the relevant features of the target and analog, (d) 

mapping the similarities, (e) indicating where/if the analogy breaks down, and (f) 

drawing conclusions.  Glynn and Takahashi also note that making comparisons between 
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the target concept and analogy is sometimes called mapping (1998).  The example used 

in Glynn and Takahashi’s research involved both text and images that mapped features 

from the analogy, a factory, to the target concept, an animal cell.  Glynn and Takahashi’s 

results indicate that the analogy acted as a mediator between students existing knowledge 

and the newly presented knowledge.    

Scientific Views of Gravity  

Over a long period of time the views held about gravity in the scientific 

community have changed (Chandler, 1994; Galili, 2001).  The Aristotelian, Earth-

centered, world view of gravity focused on the quality of matter (color, shininess, amount 

of earth, air, water, and fire, etc.).  The motion of objects in the Aristotelian world was 

explained by objects trying to reach their “natural place.”  The natural place of an object 

was determined by the “nature” of the object; any object not in its proper place would 

strive to get to the natural place.  From an Aristotelian perspective, an unsupported lump 

of clay, since it is made of earth, properly falls to the ground; being a mixture of air and 

earth, a feather, will fall more slowly to the earth.  Aristotle surmised that more massive 

objects fall faster.  The views of Aristotle were held in high regard for over 2000 years 

(Hewitt, 2014). 

In the 1600s, the scientific community shifted to a Newtonian world view 

(Chandler, 1994).  Chandler (1994) claims the Newtonians viewed the Aristotelian 

beliefs as superstitious and unscientific. The Newtonians focused on the quantification of 

data, corresponding with increased popularity of the scientific method.  The Newtonian 

view of gravity involves accepting the gravitational force as being propagated by no 

physical connection between the two bodies; called action-at-a-distance.  Newton was 
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uneasy with the lack of interaction between objects and wrote about it at the end of the 

Principia as 

A certain most subtle spirit which pervades and lies hid in all gross bodies; by the 
force and action of which spirit the particles of bodies attract one another at near 
distances, and cohere if contiguous. (as quoted in Chandler, 1994, pp. 165) 

Privately, Newton believed that space was an attribute of God (Chandler, 1994).  

Thus, the force of gravity was a “non-mechanical, spiritual force demonstrating God’s 

continuing presence, after creation, to maintain the order of the universe” (Chandler, 

1994, p. 165).  Newton’s law of gravity has been experimentally validated for hundreds 

of years.  Scientists have sent rockets into space relying on this equation alone, even 

though the equations of General Relativity have surpassed the scope and applications of 

Newton’s.  In certain situations (around large masses or traveling at fractions of the speed 

of light), we cannot rely on Newton’s gravitational equation alone.  In these situations we 

must take the principles of General Relativity into account. For example, in order for 

Earth’s GPS devices to work accurately, we must use General Relativity to correct for the 

differences in rates for clocks in orbiting satellites as compared to the surface of the Earth 

(Hartle, 2003).     

A world view that relies on General Relativity describes gravitational forces as 

the curvature of four-dimensional spacetime due to the presence of matter (Hartle, 2003).  

Note that scientists do not know why matter curves spacetime, or even what gravity is, 

per se.  The fundamental meaning of this statement is complex, having implications for 

the nature of physical law, and how mathematics is used to describe 

physics.  Nevertheless, the connection between gravity and geometry is established 

fundamentally by Einstein.   
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How specifically does matter curve space?  Beyond insisting that Einstein's 

equation just says it does, that question may only be answered by extending general 

relativity into a more comprehensive theory that includes the other pillar of 20th century 

science, quantum mechanics.  In particular, Hartle (2003) notes scientists are still 

exploring connections between Quantum Gravity and General Relativity.  If we look at 

how scientists’ world views have changed over the years, it is reasonable to consider that 

the General Relativity world view might not be an end-all description of gravity.  Like 

previous perspectives, the General Relativity world view might also be replaced with 

something else.  String Theory is one popular candidate for future descriptions of our 

universe, but this theory includes many details that need to be verified with 

experimentation.   

While the notion of spacetime curving might seem too extreme for students and 

the general public to accept, society has already made progress toward this shift of world 

views.  For example, curved spacetime, and even string theory, have been popularized by 

the media, including many NOVA programs like The Elegant Universe (McMaster et al, 

2004).  More recently, the popularity of Cosmos: A Spacetime Odyssey (Dolleman, 

2014), a follow-up to Carl Sagan’s Cosmos: A Personal Voyage (Andorfer, 1980), 

demonstrates the feasibility of introducing the rubber sheet analogy into the classroom. 

The Newtonian view of gravity has not, and should not, be completely 

abandoned.  Many problems in physics can be approached from multiple lenses.  For 

instance, some problems in physics are best solved using kinematics, while others can 

more easily be solved using energy conservation.  A physicist has multiple methods at his 

or her disposal, and is capable of deciding which way to most effectively approach a 
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problem.  I argue that introducing students to the rubber sheet analogy allows for another 

framework students can use to solve problems. 

Instruction that includes the rubber sheet analogy may support the formation of a 

more complete (global) conceptual framework about gravity, one that incorporates both 

the Newtonian and General Relativity views.  In particular, the Newtonian view provides 

an operational framework that can be employed when students have to make force 

calculations.  The General Relativity view can allow students to accurately solve 

problems involving GPS technology.    

Research into Student Understanding of Gravity 

Students’ mental models are very resistant to change (Borun, et al., 1993; Limón, 

2001; Mildenhall & Williams, 2001; Murphy & Alexander, 2006).  Researchers have 

shown that student conceptions are entrenched and thus are very hard to change because 

they are supported by every day experiences (Bar, et al., 1997).  For example, Bar, et al. 

(1997) discuss the notion that children regard forces as acting by touch, since that is their 

usual exposure.  Since students feel that contact is needed between the source of the force 

and the object that it is acting on, a natural place for research into student understanding 

has been with regard to action-at-a-distance and gravity (Bar, Zinn & Rubin, 1997; 

Dostal, 2005; Watts, 1982; Watts & Zylbersztajn, 1981).  Research has shown that 

students will fulfill the need for contact to explain gravity by including the presence of air 

in their explanations (Bar, et al., 1997; Borun, et al., 1993; Watts, 1982).  In the absence 

of air, the gravitational force cannot be transmitted (Bar, et al., 1997; Bradamante & 

Viennot, 2007; Watts, 1982).  Other studies (Bar, et al., 1997; Voutsina & Ravanis, 2013) 
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have found similar associations between the presence of air and the propagation of the 

magnetic force as well. 

Field is a key concept in physics that generally is not introduced until students 

encounter electricity and magnetism.  Greca and Moreira (1997) found that students who 

do not form mental models of fields show poor conceptual understanding of fields.  The 

standard method of explaining gravity is by using the action-at-a-distance approach, but 

using action-at-a-distance is not sufficient for extended work with charge interactions.  

Instead, the idea of fields is introduced to explain the electric force.  For example, the 

field description centers on the idea that space around an electric charge is distorted due 

to the presence of the charge. The distortion of space results in a vector field, allowing 

calculations to be done to find the force on a particle in this field.  The gravitational field 

can be visualized by a rubber sheet dipping down around a mass, but the electric field can 

dip down, as well as up.   

Galili (1995) suggests from his results exploring student conceptions of fields in 

electromagnetism that students find the field idea confusing.  To help alleviate student 

confusion, Galili suggests letting students know the historical reasons why we use the 

field model, and to also introduce fields earlier when discussing gravity.  The rubber 

sheet analogy is one way to introduce the field model in the context of gravity. 

Martinez (2001) summarizes research studies spanning from 1979 to 1995 that 

have focused on primary and secondary students and their understanding of force.  There 

have been few studies involving college students (Dostal, 2005).  Many researchers have 

classified the mental models students constructed (Galili, 2001; Mildenhall & Williams, 

2001) and found that the models generally fall into three categories: an Aristotelian-like 
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intuition, a Newtonian intuition, or some combination of the two. I argue that educators 

need to add another view of gravity to physics instruction: a view based on General 

Relativity.   

By having complete separation between the two “physics,” educational 

experiences may lead to student errors and misunderstandings of “even the reality of 

everyday life, let alone about science” (Galili, 2001, p. 1081).  Even though Newton’s 

Laws allow for sufficient computations in most realms, I argue that the introduction of 

fields may help learners modify their concept image to be more consistent with the 

current views of the scientific community.  If our goal, as educators, is to develop 

scientific literacy in students, this additional perspective of spacetime cannot be left out.   

While the instruments used to assess student understanding of gravity are vast, 

there is little consistency in the tools that researchers have developed (Dostal, 2005; 

Feeley, 2007; Williamson & Willoughby, 2012).  This is unlike the Force Concept 

Inventory (FCI), which many physics education researchers use to gauge student mastery 

of forces typically taught in a first semester physics course.  To assist in the interpretation 

of the results of my study, I examined normalized gain scores for students taking the FCI. 

In general, these gain scores have been found to vary between 20 and 59% (Coletta & 

Philips, 2005).  In addition, Coletta and Philips (2005) found that the range of gain scores 

could be attributed to a student’s reasoning ability, as measured by the Lawson’s 

Classroom test of Mathematical Reasoning.   

Questions used across many studies designed to assess student understanding of 

gravity, in particular, have common features.  Some researchers allow students to answer 

freely and use drawings to aid in their description (Baldy, 2007; Borun, et al., 1993; 
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Dostal, 2005; Williamson & Willoughby, 2012), while others rely strictly on a multiple-

choice format (Feeley, 2007).  One of the critiques by Martinez (2001) in his review of 

past studies is the lack of evidence supporting the validity of the various instruments.  

Instruments have been created for each study, but little has been done to expand and 

replicate studies to other populations.  If a common assessment were developed, then 

much progress could be made in this domain. 

A number of researchers have examined possible correlations between 

performance on science and mathematics assessments and demographic variables (see 

Kahle & Meece, 1994).  Kahle and Meece conducted a meta-analysis of research on 

classroom performance by sex. The results of the meta-analysis are inconsistent across 

the studies referenced.  For example, some studies show differences in students’ 

achievement in science (Hyde, Fennema, & Lamon, 1990; Stage, Kreinberg, Eccles, & 

Becker, 1985), whereas other studies have shown no differences (Conner, Schackman, & 

Serbin, 1978; Liben & Golbeck, 1980; Linn & Peterson, 1985).  Also examined were 

age-related differences in achievement (Hyde, et al., 1990; Hyde, Fennema, Ryan, Frost, 

& Hopp, 1990).  These results are also inconclusive, and thus warrant further 

investigation. The inconsistent results motivated me to explore possible differences in 

student performance based on demographic variables.  

An Analogy for Gravity 

A new approach for teaching gravity was proposed and studied by Baldy (2007) 

who recommends using Einstein’s Theory of General Relativity to explain gravity.  

General Relativity relies on a geometrical understanding of the shape of spacetime 

illustrated with the rubber sheet analogy.  By using the rubber sheet analogy, educators 
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can initially ignore the action-at-a-distance instructional method and focus student 

attention on observing how bodies move in response to deformed spacetime.  One 

instructional goal is for students to realize that the motion of an object is not due to some 

property of attraction inherent in the body, but rather is a response to the deformation of 

the space in which the object is traveling.   

As noted earlier, research has shown students often think an inappropriate 

medium (e.g. Air) is needed for gravity (Bar, et al., 1997; Borun, et al., 1993; Palmer, 

2001; Watts, 1982).  As a result, many students think there is no gravity in space or on 

the Moon (Watts, 1982).  I argue that the rubber sheet analogy will give students an 

anchor to replace students’ requirement for a medium, even if their replacement is the 

rubber sheet itself.  There is always a chance that students may develop a different 

alternative conception that involves the rubber sheet.  

Baldy’s (2007) study had a small control group that was presented the topic from 

the traditional Newtonian view.  The control group was justified since there is a wealth of 

data on student understanding in the traditional Newtonian view.  The treatment group 

(n=102) consisted of French 9th graders.  Students in the treatment group were presented 

the topic using the Einsteinian view.  Students were asked to provide short answers at 

various points in the lecture sequence in both cases. Student responses were coded and 

seven concept sectors became apparent, and line up well with prior work.  Baldy’s study 

focused on how conceptual change happened at various points in the presentation. 

Baldy’s (2007) findings indicate that nearly 40% of the students that were 

exposed to the Einstein approach reached a consistent overall understanding of gravity, 

36% of them still confined the phenomenon of attraction to the vicinity of a celestial 
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body, and another 20% thought gravity only occurred on earth.  My study aims to expand 

on Baldy’s results by engaging students in hands-on experiences with a physical 

representation of the analogy. 
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CHAPTER THREE: METHODOLOGY 

I designed my study to assess the effectiveness of the rubber sheet analogy and its 

ability to affect student conceptions of gravitational fields.  I used the following questions 

to guide my research: 

1.  Is the rubber sheet analogy an effective model for teaching gravity? 

2. What are student conceptions of gravity pre and post instruction? 

3. Do personal characteristics or educational background appear to influence 

student conceptions of gravity? 

The research was quantitative in nature; employing a single group, quasi-

experimental design with repeated measures.  This study was approved by the IRB for 

exempt status prior to implementation.  Students took a pre-test at the beginning of the 

course, and then a post-test, which was exactly the same as the pre-test, a few weeks after 

the end of the unit on gravity.  The test contained a variety of Likert-scale style and 

multiple choice questions.  I created some questions based on my review of the literature, 

including the questions that requested demographic information.  Regarding demographic 

information, I was particularly interested in determining students’ prior experience with 

principles of physics and mathematics, age, sex, primary language, class standing, and 

major.   

In addition to the assessments, students participated in a hands-on lab focused on 

gravity.  I developed the lab with the goal of providing students a hands-on opportunity to 
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explore practical implications for gravity using the rubber sheet analogy.  The students 

also had the opportunity to attend multiple lectures on gravity, which included an 

introduction to the rubber sheet analogy. 

In this chapter, I describe my sample population, study design, including the 

process for creating the instrument and lab, how the analogy was addressed during 

classroom lectures, and the statistical analyses I used to examine my data. 

Participants 

The sample in my study was one of convenience. Participants were students 

enrolled in a 3-credit Conceptual-based Physics course at a 4-year public university.  The 

course had approximately 115 students enrolled, and 84% of the students participated in 

the pre-test, while 75% of the students completed the post-test. Historically, this class has 

a majority of first-semester students who have had no formal coursework in physics. The 

details of gravity as a scientific and mathematical concept was new to them.   

All students had the potential to participate in the same treatment.  However, 

student attendance to lecture was not mandatory and was not officially recorded, while 

student attendance to lab was monitored.  Of the students who participated, 

approximately 40% were female, and 60% male.  The course also had a majority of 

students in the 18-22 age range (59%), and about a third of the class were freshmen 

standing, a third were sophomore standing, and a third were junior/senior/graduate 

standing. 
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Gravity Lab & Equipment Design 

I began by trying to build a rubber sheet prototype that would eventually be 

replicated for the lab set-ups.  My initial attempt gave me a product that worked, but was 

not easily replicable.  Since the physics lab sections consist of eight stations that require 

complete set-ups, I needed a design that was easy to replicate.  A break-through in design 

came about that uses hula-hoops, checkered spandex, and binder clips to fasten (See 

Figure 2). 

 
Figure 2. Rubber sheet used in Lab 

Since my intent for the lab, in part, was for students to explore the effects on the 

rubber sheet associated with various masses, my next task was to locate a variety of 

objects that had similar mass (listed in Appendix C) but varying radii, and some masses 

with same radii but different mass (Figure 3).  I developed the lab based on the following 

instructional goals. Specifically, I wanted student to: 

1.  Observe how placing various objects with same mass, but varying radii, do 

not affect the curvature of the sheet. 
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2.  Observe how placing various objects with different mass, but constant radii, 

change the curvature of the sheet. 

3.  Observe what happens when two objects are on sheet as the same time.  For 

example, one object is placed in the center and a second ball is either set on 

the sheet, or given some initial velocity. 

4. Reflect and comment on how other parameters might affect the curvature of 

the sheet (atmosphere, rotation, magnetism). 

5. Extrapolate this idea to applications such as gravitational lensing and orbiting. 

 
Figure 3. Masses used in Lab 

All of these goals are reflected in the final version of the lab (Appendix A).  I 

address student and instructor confusion on a few aspects of the write-up in the fifth 

chapter. 

There are five lab sections for the Conceptual-based Physics course involved in 

my study.  As the lead instructor, I taught the first lab section in the week and the other 

lab sections were taught by upper-level undergraduate physics majors.  Lab instructors 

are expected to review the expectations of each lab prior to the week it occurs and to 
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come to me for clarification when needed.  None of the other lab instructors contacted me 

about the gravity lab prior to its implementation. 

Pre/Post-Test Design 

After deciding on the objectives for the lab, I began to formulate questions for the 

instrument I intended to use as my pre/post-test.  The initial instrument had items that 

were adapted from questions found in Williamson and Willoughby (2012) and Dostal 

(2005).  Questions used in both studies allowed students to freely respond.  I adapted the 

most common student responses into multiple-choice options for my instrument.  Other 

questions were adapted from Feeley’s (2007) thesis on students’ concepts of gravity.  I 

chose the questions so that there were multiple opportunities to assess the same concept. 

In the interest of class time, and because I wanted students to take the test 

seriously, I did not want the test to take too long.  My goal was for students to spend no 

more than 10-15 minutes.  Because my initial instrument contained over forty questions, I 

decided it needed to be pared down.  In the interest of creating a test that accurately 

measures student ideas about gravity, I created a conceptual analysis table (Table 3.1 and 

Table 3.2) of the test to determine which questions were critical and which could be 

eliminated (I describe the conceptual analysis in detail in the next section).  The pool of 

questions I chose allows for cross correlation and checking for consistency in answers.    

Moreover, I asked experts from education, physics, and diversity programs to 

review early versions of the instrument and provide feedback to improve overall clarity 

of expression and ensure accurate presentation of physics concepts.  I also tested early 

versions of the instrument with a variety of individuals ranging in age, gender, and 
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educational background.  I made revisions to the instrument after meeting one-on-one 

with the individuals who reviewed or responded to questions on the instrument. 

The final instrument (Appendix B) consisted of thirty-seven questions.  The first 

twelve questions are Likert-scale type questions that assess the certainty students have in 

their responses.  Questions thirteen through twenty-eight are multiple choice questions.  

The final nine questions are demographic questions. 

Conceptual Analysis of the Instrument 

I conducted a conceptual analysis of the instrument to ensure every item on the 

instrument was essential (Table 3.1 and Table 3.2) for assessing student understanding of 

gravity. The instrument included questions and answer choices (distractors) that, when 

chosen, indicate a students’ association with some common concepts that are associated 

with gravity.  I focused on student associations with air, magnetism, and rotation in my 

study, which are titles of three columns in the table. The titles of the other columns 

represent other ideas that students may associate with gravity.    

The table cell is grayed out if a student might use a concept in reasoning through 

the question.  If the concept is directly used in the statement of the question, then the 

corresponding table cell also has a Q in it.  If the concept was directly addressed in lab, 

then the cell associated with the appropriate question number has a lined fill. The 

conceptual analysis table also shows where answer choices directly relate to the concept 

heading.  For example, if I want to see how many students use the concept of rotation to 

answer a question, then I can look at their responses to either Question 26 or 28. Notice 

that Question 26 also has several other distractors as answer choices.   
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Table 3.1  
 
Conceptual Analysis of the Instrument- A 

Quest. Mass Radius 
Falling 
Objects Rotation Atmosp. Magnetism 

1         Q   
2       Q     
3   Q         
4 Q           
5             
6     Q       
7             
8             
9             
10     Q       
11             
12             
13     Q       

14         
Ans- D, 

E   
15             
16             
17             
18     Q       
19     Q       
20             
21           Ans- C 
22 Q           
23 Q Q         
24             
25           Q 
26       Ans- B Ans- A Ans- D 
27         Ans- C   

28       
Ans- A, 

B     
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Table 3.2  
 
Conceptual Analysis of the Instrument- B 

Quest. 

Distance 
from 
Sun 

Distance 
from 

Surface 
Weight 

vs. Mass Orbiting Density 
1           
2           
3           
4           
5 Q         
6           
7           
8           
9           
10           
11     Q     
12           
13           
14   Q       
15     Q     
16     Q     
17           
18           
19           
20       Q   
21   Q       
22           

23   
Q; Ans- 

C,D     
Ans- A, 

B 
24       Q   
25           
26           
27 Ans- B         
28           
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Pre/Post-Test Scoring 

I determined each student’s total score by contributions from two parts of the test.  

The multiple choice section (questions 13-28) was scored by awarding one point for each 

correct response.  Thus, students could earn a total of 16 points from the multiple choice 

section of the test.  The second contribution to each student’s total score came from the 

student’s responses to questions 1-12.  These are the Likert-scale type questions that 

assess a student’s confidence in their answer.  Each statement does have a correct answer. 

To be able to include a student’s score on the confidence questions, I gave one point for 

being certain and having the correct answer, 0.75 points for having the correct answer but 

only thinking it was right, 0.5 points for choosing option C (“do not know or are 

uncertain”), 0.25 points for having the wrong answer but only thinking it was right, and 0 

points for having the incorrect answer and being certain it was right. Thus, a student 

could score up to a total of 28 points possible on the test.  I used the process described 

above to calculate a raw score for each student on the pre and post-test. 

I also calculated a normalized gain score for paired results using the following 

standard computation: 100 ∗ 𝑃𝑜𝑠𝑡−𝑃𝑟𝑒
100−𝑃𝑟𝑒

 .  The normalized gain score measures the relative 

gain in performance on the test, controlling for students’ pre-test scores.  

Analogy in the Classroom 

The Conceptual-based Physics course that was a part of my study included two 

75-minute lectures a week. I gave lectures on the topic of gravity for 1.5 weeks of the 

course.  My lectures included a class discussion of, and calculations with, Newton’s Law 

of Gravity.  Collectively, the students and I derived, and calculated, the gravitational 

acceleration constant, g, for Earth.  I also led a class discussion on how the gravitational 
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acceleration constant varies for other bodies, which was followed by students engaging in 

thought experiments involving the rubber sheet analogy and objects with varying masses.  

In addition to this, I showed the class videos of the 2-D rubber sheet as well as a 

simulation of a 3-D rubber sheet. I also assigned homework problems that required the 

use of a virtual rubber sheet to answer questions.  This virtual rubber-sheet was also 

accessed by students during the gravity lab. 

Statistical Analysis 

Before each analysis, an F-test was performed to confirm that the data sets had 

similar variances.  All tests used a significance level of 0.01.  This value was chosen to 

reduce the potential of a type-1 error (Nuzzo, 2014), even though behavioral sciences 

often use 0.05 significance levels.  Effect sizes are also used in conjunction with the p-

values to make sure the results are truly meaningful by multiple methods of statistical 

testing.  In order to assess the effectiveness of the analogy, I performed a one-sided t-test 

for independent means on the pre and post-test scores.  In addition, I calculated the 

normalized gain for paired data.  Coletta and Philips (2005) completed a study looking at 

normalized gain scores for students’ performance on the Force Concept Inventory.  Their 

analysis only included normalized gain scores between 15 and 80 percent.  To be 

conservative, I examined all but the extreme negative normalized gain scores.  

When appropriate, I assessed differences in outcome variables by categorical 

variables using one-way ANOVA procedures.  For example, I compared the pre-test 

scores for the categories of sex (female and male) to see if their performance was 

significantly different.  I did this again to compare post-test scores. 
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I used a test for proportion to determine if there was improvement on three 

specific concepts: rotation, atmosphere, and magnetism.  Recall that several questions on 

the pre/post-test included distractors directly related to one these concepts (atmosphere: 

14 and 27; rotation: 28; magnetism: 21 and 25; multiple: 26).  By choosing one of these 

distractors, an association could be made between the students’ conception of gravity and 

the chosen concept. I calculated the test for proportion by determining the standard 

deviation: 𝜎 = �𝑃∗(1−𝑃)
𝑛

, where P is the pre-test proportion.  The null hypothesis states 

that the post-test proportion (p) should be equivalent.  I calculated the z-score by  

𝑧 = (𝑝 − 𝑃)/𝜎, and then consulted standard z-tables. 

To measure the strength of the treatment I also determined effect sizes.  In 

situations where I compared two data sets I calculated the Cohen’s d effect size and the 

effect size correlation r.  When I used ANOVA to test multiple variables, I calculated the 

eta-squared (η2) effect size.  A small practical significance is associated with effect sizes 

between 0.20 and 0.50.  A moderate practical significance is associated with effect sizes 

between 0.50 and 0.80.  A large practical significance is associated with effect sizes 

greater than 0.80.  

I also calculated Chronbach’s alpha test statistic for both the pre- and post-test.  

This coefficient gives an estimate of internal consistency for the reliability of test scores.  

The general rule of thumb is that if alpha is between 0.7 and 0.9, the test has good 

internal consistency.  If values are larger than 0.90, the test could be too long or have 

redundancies. 
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CHAPTER FOUR: RESULTS 

In this chapter, I describe the results of my analysis.  I organize the chapter by 

research question.  I discuss these results in Chapter Five. Chronbach’s alpha for the pre- 

and post-test was determined and is 0.86 and 0.85, respectively.  These values point to 

good internal reliability of the instrument. 

Is the rubber sheet analogy an effective model for teaching gravity? 

I analyzed the average scores from the pre- and post-tests using a t-test for 

independent means. Table 4.1 shows the average score for the pre-test was 51.4%, while 

the average score for the post-test was 67.8%. There was a significant difference 

(p<0.001) in average scores between the two.  Further, Cohen’s effect size value (d=0.89) 

suggests a high practical significance. Student performance significantly improved. 

Table 4.1  
 
Pre and Post-test Results 

  Pre Post 
Mean (%) 51.4 67.8 
Variance 338.8 341.4 
n 97 86 
p 5.1E-09* 
Cohen's d 0.89 
Effect size r 0.41 

 

Table 4.2 contains the statistics associated with the normalized gain for paired 

students.  The average normalized gain was 30.3%.  I did not include in the statistical 
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analysis one student with a normalized gain of -1100%.  This student scored a 99.1% on 

the pre-test and an 89.3% on the post-test.   

Table 4.2  
 
Normalized Gain Statistics 

Normalized Gain 
Mean (%) 30.3 
Standard Error 4.9 
Standard Deviation 43.9 
Minimum -161.1 
Maximum 93.2 
n 81 

 

A histogram (Figure 4) of the normalized gain scores indicates there were only a 

small number of students with negative gain scores, and that the positive scores are 

centered around 40.  Also notice the histogram shows over half the class had gains at 

40% or above. 

 
Figure 4. Normalized Gain Histogram 
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In order to gauge the effectiveness of the gravity lab, I grouped questions from the 

test that were directly addressed and then I used a t-test to compare gains (p=0.244) and 

found no significant difference.  I defined the normalized gains associated with questions 

on the pre/post-test directly related to the lab “very gains” since these are “very related” 

to tasks completed during the gravity lab.  Recall, the conceptual analysis of the 

instrument (Table 3.1 and Table 3.2) shows which questions are directly related to the lab 

by the lined texture. The effect size (d=0.04) indicates students were able to answer these 

questions just as well as questions that weren’t directly addressed in the lab (see Table 

4.3).  

Table 4.3  
 
Gains on questions “very” related to the Lab 

  Very gain Overall gain 
Mean (%) 28.4 30.3 
Variance 2455.2 1925.9 

n 81 81 
p 0.244 

Cohen's d 0.04 
Effect size 

correlation r 0.02 
 

In an effort to identify whether there was a bias in instruction from my lab to 

other lab sections, I used a t-test to compare post-test scores (see Table 4.4).  The scores 

and variances were not significantly different (p=0.081, d=0.37).   I also used a t-test to 

compare post-test scores from students who completed my lab versus those who did not 

attend lab at all (see Table 4.5).  Again, the scores and variances were not significantly 

different (p=0.211, d=0.33).  Note that the sample size is rather small for these two 
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analyses.  The Cohen’s d effect size for these two results are comparable in size and 

indicate small practical significance. 

 
Table 4.4  
 
Post-test Scores for My Lab/Other Lab Comparison 

  My Lab  Other Lab 
Mean (%)  73.1 66.2 
Variance 393.2 323.1 

n 19 58 
p 0.081 

Cohen's d 0.37 
Effect size 

correlation r 0.18 
 
Table 4.5  
 
Post-test Scores for My Lab/No Lab Comparison 

  My Lab  No Lab 
Mean (%)  73.1 66.7 
Variance 393.2 354.4 

n 19 9 
p 0.211 

Cohen's d 0.33 
Effect size 

correlation r 0.16 
 

I did not include an analysis of individual student lab scores because of the lack in 

variation in grading across various lab sections.  This is due to the fact that a large portion 

of the lab grade is tied to student attendance. 
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What are student conceptions of gravity pre and post instruction? 

I chose to focus on three concepts from the literature that students often associate 

with gravity: magnetism, atmosphere, and rotation.  I paired the data for pre/post-scores 

and ran a test for proportion. In particular, I first compared the percentage of students 

who chose the targeted distractor(s) on the pre-test with the percentage of students who 

chose the distractor(s) on the post-test. Student performance regarding distractor selection 

improved significantly on four of the six questions (see Table 4.6).  I then compared the 

percentage of students who chose the correct answer on the pre-test with the percentage 

of students who chose the correct answer on the post-test. Student performance also 

improved significantly regarding the proportion of the class that chose the correct answer 

(see Table 4.7). These results show overall improvement in student performance on the 

related items (atmosphere: 14 and 27; rotation: 28; magnetism: 21 and 25; multiple: 26).  

The total percentage between the distractor choice and the correct choice do not 

necessarily add to 100%.  This is due to the fact that there are other possible answer 

choices that I did not account for in my analysis.  

Table 4.6  
Distractor Test for Proportion Results 

n = 82 % that Chose Distractor(s) 
Concept PRE POST SD p  Effect size d 
ATMOS. 

     Q14 54.9 28 5.5 < 0.0001* -0.63 
Q27 12.2 2.4 3.6 0.0034* -0.95 

ROTATION           
Q28 54.9 43.9 5.5 0.0228 -0.24 

MAGNETISM 
     Q21 9.8 4.9 3.3 0.0681 -0.41 

Q25 42.7 26.8 5.5 0.0018* -0.39 
MULTI           

Q26 82.9 69.5 4.2 0.0006* -0.42 
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Table 4.7  
Correct Choice Test for Proportion Results 
 

n = 82 % of Class Correct 
Concept PRE POST SD p  Effect size d 
ATMOS. 

     Q14 20.7 54.9 4.5 < 0.0001* 0.85 
Q27 72.0 82.9 5.0 0.0143 0.35 

ROTATION           
Q28 39.0 52.4 5.4 0.0064* 0.30 

MAGNETISM 
     Q21 76.8 70.7 4.7 0.0951 -0.17 

Q25 50.0 68.3 5.5 0.0005* 0.42 
MULTI           

Q26 17.1 30.5 4.2 0.0006* 0.42 
 

Students showed significant improvement in both of the atmosphere related 

questions.  Question 14 (Figure 5) asked students to think about how the gravitational 

force changes as you move up from the Earth’s surface.  There were two distractors 

(answers D and E) that linked gravitational strength to the presence of atmosphere.  On 

the pre-test, 54.9% of the class chose one of these distractors, and on the post-test 28% of 

the class chose an atmosphere distractor (p<0.0001, d=-0.63). Class performance on this 

question went from 20.7% of the students getting this question correct on the pre-test, to 

54.9% of the students answering correctly on the post-test (p<0.0001, d=0.85).  The 

effect sizes suggest moderate to high practical significance related to student performance 

on Question 14. 
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Figure 5. Pre/Post-Test Question 14 

The second item that involved the relationship between gravity and atmosphere 

asks students to compare the strength of gravity at the surface of Pluto to the surface of 

Earth (see Question 27 in Figure 6).  There was one distractor (answer C) that linked 

gravitational strength to the presence of atmosphere.  On the pre-test 12.2% of the class 

chose this distractor, and on the post-test 2.4% of the class chose the atmosphere 

distractor (p= 0.0034, d=-0.95).  The effect size suggests high practical significance for 

students choosing the atmosphere distractor on Question 27.  Class performance on 

Question 27 went from 72% of the students getting this question correct on the pre-test to 

82.9% of the students answering correctly on the post-test (p=0.0143, d=0.35).  The 

effect size shows low practical significance regarding the change in the percentage of 

students getting the problem correct. 

 

Figure 6. Pre/Post-Test Question 27 

14) As you move up and away from the Earth’s surface, what 
happens to the Earth’s gravitational force on you? 
A. The gravitational force on you decreases, but never reaches zero. 
B. The gravitational force on you increases. 
C. The gravitational force on you stays the same. 
D. The gravitational force on you decreases until you leave the Earth’s 
     atmosphere, where it then reaches zero. 
E. The gravitational force on you stays the same until you leave the 
     Earth’s atmosphere, where it then reaches zero. 

27)  How would you compare the strength of gravity at the surface of 
Pluto with the strength of gravity at the surface of the Earth? 
A. Weaker because Pluto has less mass.  
B. Weaker because Pluto is further from Sun.  
C. Weaker because Pluto has less atmosphere. 
D. They are the same.  
E. Greater 
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Figure 7. Pre/Post-Test Question 28 

Question 28 asked students to rank the strength of gravity of various planets 

depending on their indicated rotation (see Figure 7).  There were two distractors (answers 

A and B) that linked gravitational strength to rotation.  On the pre-test 54.9% of the class 

chose one of these distractors, and on the post-test 43.9% of the class chose a rotation 

distractor (p=0.0228, d=-0.24). Students did not show significant improvement on this 

concept.  Class performance went from 39% of the students getting this question correct 

on the pre-test to 52.4% of the students answering correctly on the post-test (p=0.0064, 

d=0.30).  Even though the p-value indicates a significant improvement, the effect size 

shows low practical significance regarding student performance on Question 28.   

Two questions (Figures 8 and 9) had answer choice distractors related to 

magnetism.  Question 21 asked students which person experienced the stronger force of 

gravity.  The image shows a person at the equator, a person at each of the poles, and a 

person at mid-latitude.  There was one distractor (answer C) that indicated the student 

associated the gravitational strength to magnetism.   On the pre-test 9.8% of the class 

 

 
28) The following planets are viewed from above, with more arrows 
representing a faster rotation.  All planets have the same mass and 
radius. Rank, from greatest to least, the strength of gravity on each 
planet.  
A. C=D, B, A because faster rotation creates more gravity.  
B. A, B, C=D because less rotation creates more gravity. 
C. All have the same gravity.  
D. There is not enough information to answer the question. 
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chose this distractor, and on the post-test 4.9% of the class chose the magnetism 

distractor (p=0.0681, d= -0.41).  While this result is not significant, it is interesting to 

note for this particular problem 76.8% of the class got this problem correct on the pre-test 

and only 70.7% of the class answered correctly on the post-test (p=0.0951, d=0.17).  The 

calculated effect size is 0.17.   

 
Figure 8. Pre/Post-Test Question 21 

Question 25, the other magnetism question, asks students to rank the strength of 

gravity on each of the planets (see Figure 9).  The image accompanying the item shows 

four planets, all of the same mass and radius, and various black loops representing 

magnetic fields, where more loops represent stronger magnetic fields.  There were two 

distractors (answers A and B) that linked gravitational strength to magnetism.  On the 

pre-test, 42.7% of the class chose these distractors, and on the post-test 26.8% of the class 

chose the magnetism distractors (p=0.0018, d=-0.39). Class performance on Question 25 

went from 50% of the students getting this question correct on the pre-test to 68.3% of 

the students answering correctly on the post-test (p=0.0005, d=0.42).  The effect sizes 

show low practical significance, but the p-values indicate significant results. While this 

 
 
21) Which person standing on the surface of the  
Earth experiences a stronger force of gravity?  
A. Person C, since they are on the equator. 
B. Person A and D, since they are at the poles. 
C. Person A since they are at the North magnetic pole. 
D. Gravity is the same everywhere on the planet.  
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seems like a large improvement, there is still some confusion regarding gravity and 

magnetism. 

 

Figure 9. Pre/Post-Test Question 25 

The final question I analyzed was Question 26 (see Figure 10).  Question 26 asks 

students to identify if there are any other forces, besides gravity, that hold us to the 

Earth’s surface.  Answer choices are “atmospheric forces,” “rotational dynamics,” 

“friction,” “magnetic forces,” “more than one of the previous choices,” or  

“nothing else.”  Choosing anything but the correct choice of “nothing else” indicated that 

the student still has some misconception about gravity. On the pre-test 82.9% of the class 

chose one of these distractors, and on the post-test 69.5% of the class chose a distractor 

(p=0.0006, d=-0.42).  Class performance on this question went from 17.1% of the 

students getting this question correct on the pre-test to 30.5% of the students answering 

correctly on the post-test (p=0.0006, d=0.42).  Again the effect sizes show low practical 

 
25) Rank the strength of gravity (greatest to least) on each of the 
following planets (if any), where more black loops represent stronger 
magnetic fields. All planets have the same mass and radius. 
A. D, C, B, A  because stronger magnetic fields make stronger gravity.  
B. A, B, C, D  because the magnetic fields cancel out a planet’s gravity. 
C. All have equal ranking because gravity and magnetism have no 
relationship.  
D. There is not enough information to answer the question. 
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significance, but the p-values are significant. Thus, many students still incorrectly 

associated some unrelated idea to gravity. 

 
Figure 10. Pre/Post-Test Question 26 

 

Do personal characteristics or educational background appear to influence these 

conceptions? 

There are eight demographic questions on the pre and post-test.  These questions 

are typical to educational research and were included to make it possible to explore 

potential performance differences between various groups.  I performed a t-test for 

independent means and two statistically significant results emerged for student 

performance based on age and sex (see Table 4.8). 

  

26) Besides gravity, are there any other forces that hold us to the 
Earth’s surface?  
A. Atmospheric forces.  
B. Rotational dynamics.  
C. Friction.  
D. Magnetic Forces. 
E. More than one of the above factors. 
F. Nothing else. 
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Table 4.8  
 
Results for Questions 29 & 30 

Question/Response Pre- Test Post-Test 
Age n M SD n M SD 

18-22 56 47 14.7 54 63.8 18.3 
23 & over 39 57.4 20.8 31 74.6 17.3 

p 0.0025* 0.0044* 
Cohen's d 0.58 0.61 
Effect size 

correlation r 0.28 0.29 
Sex n M SD n M SD 

Female 38 42.5 13.8 34 59.7 18.7 
Male 56 57.3 18.5 51 73.1 16.6 

p 
 

< 0.0001* 
 

0.0004* 
Cohen's d 0.91 0.76 
Effect size 

correlation r 0.41 0.35 
 

Ages were grouped into 18-22 and 23 and over.  These two groups performed 

consistently different from each other pre (p=0.0025, d=0.58) and post instruction/lab 

(p=0.0044, d=0.61), but had similar gains in average percentage points.  The effect sizes 

indicate moderate practical significance, while the p-values indicate significant 

differences in both the pre-test and post-test scores.  The older age group performed 

significantly better. 

The second significant result came from comparing male to female gains.  

Females started out far behind the males (p<0.0001, d=0.91), had similar gains in average 

percentage points, but the females’ post-test scores (p=0.0004, d=0.76) were slightly 

above the pre-test scores for males.  The effect sizes indicate high practical significance, 
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and the p-values indicate significant differences in both the pre-test and post-test scores.  

The males consistently performed significantly better. 

In my exploration of native and non-native English speakers, the statistical 

analyses did not reveal a statistically significant difference between the groups.  On the 

pre-test, non-native English speakers (50.5%) performed similarly to native English 

speakers (52.3%) (p=0.66, d=0.09).  On the post-test, non-native English speakers 

(60.9%) showed much less gain in scores when compared to the native English speakers 

(70.2%) (p=0.06, d=0.24).  The average percentage-point gain for non-native English 

speakers was 10.4%, while native English speakers had an average percentage-point gain 

of 19.7%. 

I conducted an ANOVA for all other demographic questions and there were no 

other significant results (see Appendix D).  For example, students with prior physics 

experience and high levels of mathematics did not perform any better than students with 

no prior experience or low levels of mathematics achievement.  
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CHAPTER FIVE: DISCUSSION 

In this chapter, I discuss the relevant results. The discussion is organized by my 

research questions.  In addition, I address instructional implications and propose potential 

directions for future research.  

Interpreting the Results 

Based on the pre/post-test results, students’ understanding of gravitational fields 

had an average gain of 30.3%.  Related literature indicates this is a moderate gain for 

student performance (Coletta & Philips, 2005).  If I take a more conservative cut of my 

data, and limit the normalized gain scores to only positive values, the average normalized 

gain score for the class increases to 41.9%, a value closely aligned with the peak on the 

histogram in Figure 4.  This is not unusual to do; in the study completed by Coletta and 

Phillips (2005), normalized gain scores on the FCI were computed, and analysis was 

limited to only scores between 15 and 80 percent.   

Interpretation of the normalized gain hinges significantly on the students 

reasoning ability.  Coletta and Philips (2005) claim that only one-third of college students 

are able to reason abstractly and scientifically.  These formal reasoning skills are required 

for the study of physics.  Kang, et al., (2005) found that a student’s logical thinking 

ability was a significant predictor of achievement level on their study’s conception test.   

It is possible that if a student is stuck in a transitional stage of reasoning, then there is 

little hope the student can fully appreciate the intricacies of a topic discussed in physics 
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class. Limón (2001) also argues that radical conceptual change might not be possible at 

all developmental stages.  If this is true for the participants of my study, then 

interpretation of my results and the assessment of the overall approach of using the 

rubber sheet analogy to teach gravity is complicated.  Since I did not test the reasoning 

ability of the class, I cannot claim to know my students’ reasoning ability.  The histogram 

(Figure 4) roughly shows 1/3 of the class achieving high gain scores.  This is consistent 

with 40% of Baldy’s (2007) students achieving an overall global understanding of gravity 

where students were able to extrapolate principles of gravity beyond a Earth-centered 

context. 

One way I attempted to gauge the effectiveness of the gravity lab was to compare 

student gain scores for questions highly correlated with the concepts addressed in the lab 

versus overall gain scores.  The effect size was 0.04, indicating low practical 

significance.  These results could imply that students were capable of transferring their 

knowledge to more situations than just those focused on in lab.   

Another way I attempted to gauge the effectiveness of the gravity lab was to 

compare post-test scores for various lab students.  For the few students who did not 

complete the lab, results indicate that completion of the lab did not make a difference in 

student performance on the post-test.  The average score for “No Lab” (66.7%, n=9) 

versus “Other Lab” (66.2%, n=58) were not significantly different.  I am not sure who 

these nine students are who did not attend lab.  There are many scenarios that could 

explain the lack of difference.  Without additional information about these students, it is 

difficult to explain.  Of course, this could be an indication the lab was not effective.   
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Students also improved in their associations with gravity and other factors often 

deemed influential such as atmosphere, rotation, and magnetism.  Table 4.6 shows that 

the proportions of students who answered correctly was significant for at least one 

question directly related to each concept.  Fewer students also chose the specific 

distractor at a significant level.   

The results from the atmosphere section had high effect sizes.  For Question 14, 

more of the class chose the correct choice at a significant effect level (d=0.85), but 45.1% 

of the class was still choosing an incorrect option.  Question 27 had a significant decrease 

in the number of students choosing the distractor (d=0.95), but the percent of the class 

who answered correctly did not increase significantly.  These two questions have very 

different contexts, which could explain the differences in results.  The context of 

Question 14 is Earth, while the context of Question 27 is Pluto. 

Rotation was a concept that did not show significant improvement overall.  A 

large portion of the class still chose the rotation distractor (43.9%) on the post-test. Thus, 

a significant portion of the students who took the post-test still associated rotation with 

gravity.  

The concept of magnetism also had an interesting result.  Question 21 did not 

have significant results for either analysis.  The class actually scored worse on the post-

test when looking at the percent correct (76.7% to 70.7%).  This could be because 

students might perceive answers A and B to be associated with rotation, which is a 

concept close to half the class still associates with gravity.  Regardless of the explanation, 

student conceptions appear to be entrenched and hard to change. 
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It is interesting to note that even though the class did improve on most 

conceptions, on Question 26 close to 70% of the class still associated some other factor 

with gravity.  These associations seem to persist in the class even after explicit lecturing, 

videos, and a hands-on lab experience.  This is similar to the results found by Baldy 

(2007) in her study using the Einstein approach.  Baldy found that approximately 56% of 

her sample still thought of gravity on a local scale (unique to Earth or other celestial 

bodies). 

It is unfortunate that female students were so far behind their male counterparts.  

They start out about 20 percentage points behind, have similar gains in percentage points, 

but barely surpass the mean of male pre-test scores.  More information is needed to better 

understand the factors influencing the gap in performance between sexes.  

Also, the comparison of the two age groups shows significant differences 

between.  This result demonstrates older students generally had a better scientific 

understanding of gravity, which is consistent with other studies (Bar, et al., 1997; Borun, 

et al., 1993; Bradamante & Viennot, 2007; Palmer, 2001).  My findings could also be 

related to the formal reasoning ability of each group, and could explain why the older 

students have higher scores.   

While the results from comparing non-native versus native English speakers were 

not statistically significant, the percentage point gain between the pre- and post-test for 

non-native English speakers was about half that of the English speakers (10.4% versus 

19.7%).   This is potentially relevant for most university instructors because of the large 

number of refugee and international students attending American universities.  There has 

been a 40% increase in international students attending schools in the American 



47 

 

university system over the past decade (DeSilver, 2013).   International students account 

for about 4% of the student population (DeSilver).   More research is needed to explain 

why the non-native English speakers who participated in my study did not have 

comparable average percentage point gains when compared to native English speakers.  

Limitations 

One limitation to this study is the lack of communication with the lab instructors.  

For future iterations, I recommend instructors take the necessary steps to make sure all 

lab instructors understand every aspect of the lab write-up. One possibility would be to 

require lab instructors to attend a short meeting the week prior to lab.  During this 

meeting, it may also be helpful to include a discussion of the pre-/post-test.  

Another limitation of this study pertains to questions on the lab write-up.  For 

example, students communicated confusion on question B3, which asked them about the 

physical set-up required to test relativity by measuring the apparent shift in location of a 

star as its light passes near the Sun.  No one in my lab section was able to answer this 

question without help.  I took some time in the middle of lab to talk about this and draw a 

diagram of the physical set-up.  When I went to visit another lab to see how they were 

doing, there was confusion on this part too.  The confusion was not set straight by the lab 

instructor because he did not know what the question was asking either.  He had 

interpreted it to be somehow related to a Doppler shift. 

Further development of the lab should challenge some of the lasting beliefs 

students have about atmosphere, rotation, and magnetism.  I propose adding a hands-on 

component directly related to these misconceptions.  For example, students could use 

magnetic balls, or rotate objects.  This would likely make the lab more useful in changing 
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students’ common connections to atmosphere, rotation, and magnetism and could be 

tested by noting test score differences in future iterations.   

There were limitations to my study associated with the pre/post-test.  I did not 

establish external validity and reliability of the instrument.  However, prior to initiating 

further tests for validity and reliability, the instrument could also benefit from some 

additional editing.  Most importantly is the addition of specific questions that require 

students to use the rubber sheet analogy, which I have not been able to find in the 

literature and thus will need to be developed.  All studies that I have found solely rely on 

testing the Newtonian aspect of gravity.  Revision of a few questions is also needed.  For 

instance, Question 3 should more explicitly state that the observer is located on the 

surface (like I had intended), and not at some far off point (like some might interpret). 

Interpretation of the normalized gain scores was limited because I did not include 

a measure of formal reasoning ability.  Knowing the percentage of students that have 

reached a formal reasoning stage would inform expectations for possible gains.  This 

information could help indicate the effectiveness (or lack of effectiveness) of the rubber 

sheet analogy. 

Instructional Implications 

There is evidence that the rubber sheet analogy with accompanying lab activities 

is worth continued pursuit.  The gains in performance, coupled with reductions in 

misconceptions, suggest the rubber sheet analogy is worth considering for future 

instruction. The analogy could provide the scaffold upon which students need to attach 

their existing ideas, and therefore it could be helpful in laying a good conceptual 

foundation.    
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Additionally, using the rubber sheet analogy in an astronomy class would allow 

for many more applications to be discussed.  Educators could use the rubber sheet to talk 

about, and demonstrate, orbits, gravitational lensing, planetary formation, and black 

holes.  Also, testing this method in various contexts would add to the sparse literature on 

this topic and address the external validity of the instrument. 

I suspect that more explicit attention needs to be given to the three commonly 

associated concepts (atmosphere, rotation, and magnetism) since approximately 70% of 

the class still associated some other factor besides mass and separation distance.  It is 

important for educators to know the common conceptions in their classroom, especially 

since the above list is not exhaustive.  Students in my class watched videos, participated 

in lecture, and completed a hands-on lab, and still the misconceptions persist.   

Students used a virtual rubber sheet in a portion of the gravity lab and in their 

online homework.  This applet simulates what happens to the rubber sheet as one changes 

the radius for the same given mass.  It has a slider bar that allows the user to smoothly 

change through a large span of masses.  In the future, I plan on more extensive use and 

tracking of the virtual rubber sheet applet through student homework.  The online 

homework system that uses this applet will easily allow for further analysis of student 

responses.  This is especially important since these questions are directly related to 

students’ use of the analogy in solving problems.  

Future Research 

Research into student understanding of gravity may be expanded by including 

opportunities for student interaction with the rubber sheet analogy and associated lab 

across more sections of physics and astronomy courses.  Such follow up studies are 
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necessary to determine if age and sex are independent from understanding gravity 

concepts. A more in-depth analysis that compares the performances of various 

demographic groups (young women/men to old women/men) could be insightful.  Would 

we still see an achievement gap from this type of higher-order analysis? 

With refinement, the instrument I developed for my study could serve as a 

standard assessment of gravity, similar to how the FCI is the standard for student 

understanding of force.  With a revised instrument, I intend to expand this work to other 

courses. 

Since there is little research into using the rubber sheet analogy, expanding my 

study to include different ages, as well as courses, could be useful to the education 

community. It could add more documentation about student misconceptions associated 

with gravity.  Additional research regarding the use of the rubber sheet analogy could 

also demonstrate the effectiveness of hands-on lab activities and their ability to affect 

change in student understanding.   

The intent of my study was to assess the potential effectiveness of the rubber 

sheet analogy and its ability to affect student understanding of gravitational fields.  I 

developed instructional materials, including a hands-on lab, to engage university students 

in thinking about gravity using the rubber sheet analogy.  The results showed promise in 

using this approach in the classroom and should be further explored. 
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APPENDIX A 

Gravity and Spacetime Lab 

 

 



 

 

 

Gravity and Spacetime 
Humans are not very good at 
visualizing situations in four 
dimensions.  Instead, a two 
dimensional analogy can be used 
when describing the curvature of 
spacetime.  It is called the rubber sheet 

analogy.  Imagine a large stretchy sheet of rubber pulled out to be completely 
flat.   

What will happen when you place different objects onto the sheet? How will 
multiple objects interact?  The curvature of the rubber sheet is representative of 
how matter distorts the space around it, and objects follow this distorted space.  
This is what we perceive as a gravitational force, and is distinctly different from 
Newton’s way of describing gravity. 

Equipment: A large stretchy sheet, various sized balls (some should vary in 
radius while holding the mass constant, and vice versa), and internet access. 

A. Introduction 
A1.  Gather a variety of masses.  Place each on the rubber sheet.  Describe what 
happens when: 

• The mass increases 

• The radius increases 

• More than one object is located on the sheet 

• Compare effects from two objects of equal mass, but different radii (or 
same radii, but different mass) 
 
 

A2.  The strength of the gravitational force between two objects can be 
calculated using Newton’s Universal Gravitational force law.  It states the force is 
directly proportional to the mass of the two objects.  How does this relate to your 
above observations? 



58 

 

A3.  The strength of the gravitational force also depends on how far apart the two 
objects are from one another.  It has an inverse-square relationship.  What does 
this mean and how does it relate to your above observations? 

 

B. Verification 
In 1916 Einstein proposed three classical tests of general 
relativity: precession of Mercury’s orbit, gravitational 
redshift, and deflection of light by the Sun.  We will focus 
on the last. 

B1. Select a mass and place it in the center of your sheet.  
This mass will act as your star.  Practice rolling a second 
ball so that it goes around it without a collision.  What 
happens to the path of the rolling ball as it passes the 
star? 

 

B2.  Now vary the mass of the star.  Try at least three different masses.  What 
happens to the rolling balls path as the mass of the star increases?  

 

B3.  As the above image shows, this deflection of the rolling mass makes it 
appear to come from another location.  Measuring the apparent shift in location 
of a background star was done in 1919.  What are the required conditions on 
Earth for an observer to verify this?  Why is this so?  

 

During the 1919 solar eclipse, experimenters in various locations across the 
globe made measurements of this deflection.  The success of this experiment 
was published in newspapers around the world and raised Einstein and his 
theory to rock star status.  

B4.  The object that bends spacetime does not have to be a star. Any mass 
distorts the fabric of spacetime and can cause changes to the path of light 
passing through it.  In general, this method is called Gravitational Lensing.  It can 
cause an increase in light from the background object.  Can you name other 
objects, besides a single star, that can bend light that astronomers might use? 
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 B5.  Watch the short film created by The Max Plank Institute of Astrophysics 
regarding Gravitational Lensing: http://www.youtube.com/watch?v=yamVbK-
J69M.  Our rubber sheet analogy is two-dimensional.  What kind of images do we 
actually get from our four-dimensional observations? 

C. Virtual Rubber Sheet  
C1.  Go to the virtual lab: 
http://media.pearsoncmg.com/aw/aw_0media_astro/if/SWF/Spacetime_Mass_Rad_Orbit.swf 

Describe what happens when: 

• The mass increases 
• The radius increases 

Is this consistent with your answers in part A?  If not, what is different? 

C2. How do each of the following parameters effect the curvature of space, and 
hence, the strength of gravity on a planet’s surface? 

• The mass of the planet 
• The atmosphere of the planet 
• The radius of the planet 
• The rotation rate of the planet 
• The planets magnetic field 

 
C3. What would happen to Earth’s orbit if the Sun became a black hole? 

 

 

 

Permanent link to this comic: http://xkcd.com/895/ 

http://www.youtube.com/watch?v=yamVbK-J69M
http://www.youtube.com/watch?v=yamVbK-J69M
http://media.pearsoncmg.com/aw/aw_0media_astro/if/SWF/Spacetime_Mass_Rad_Orbit.swf


60 

 

APPENDIX B 

Pre/Post-Test for Study 
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Please bubble in your LAST NAME, FIRST NAME on the provided scantron.  
Your answers will help inform our later lectures on gravity.  You will not be 
graded on this.  Your name will be removed before the data is given to 
Tiffany Watkins. 
 
Use the following for questions 1 through 12: 
If you are certain it is true, choose A. 
If you think it is true, but are not so sure, choose B. 
If you do not know, or are uncertain, choose C. 
If you think it is false, but are not sure, choose D. 
If you are certain it is false, choose E. 
 
1)  A   B   C   D   E A planet’s atmosphere affects its gravitational 

pull. 
 
2)  A   B   C   D   E A planet’s rate of rotation affects its gravitational 

pull. 
 
3)  A   B   C   D   E A planet’s radius affects its gravitational pull. 
 
4)  A   B   C   D   E A planet’s mass affects its gravitational pull. 
 
5)  A   B   C   D   E A planet’s distance from the Sun affects its 

gravitational pull. 
 
6)  A   B   C   D   E A planet’s gravitational pull affects how fast an 

object falls towards its surface. 
 
7)  A   B   C   D   E There is no gravity in outer space. 
 
8)  A   B   C   D   E There is no gravity on the moon. 
 
9)  A   B   C   D   E In low gravity, some objects may be too light to be 
                                           affected by the gravitational force. 
 
10)  A   B   C   D   E Gravity affects how fast an object falls. 
 
11)  A   B   C   D   E Gravity does not affect the weight of an object. 
 
12)  A   B   C   D   E Heavy objects are hard to lift because Earth’s 
                                           gravitational force increases as you lift. 
 
 
 
 



62 

 

13) Suppose you were standing on the moon holding an apple. If you were 
to let go of the apple, in what direction will it move? 
A. The apple will float upward from the lunar surface. 
B. The apple will float around, staying about the same height and location. 
C. The apple will float around, but also move away horizontally. 
D. The apple will fall toward the lunar surface. 
E. Other/None of the above. 
 
14) As you move up and away from the Earth’s surface, what happens to 
the Earth’s gravitational force on you? 
A. The gravitational force on you decreases, but never reaches zero. 
B. The gravitational force on you increases. 
C. The gravitational force on you stays the same. 
D. The gravitational force on you decreases until you leave the Earth’s 
atmosphere, 
     where it then reaches zero. 
E. The gravitational force on you stays the same until you leave the Earth’s 
     atmosphere, where it then reaches zero. 
 
Use the following for questions 15 through 18:   
Venus is sometimes called Earth’s sister planet, and is the second planet 
from the Sun. It is nearly the same size and mass, but Venus rotates once 
on its axis every 243 Earth days, has an atmospheric pressure 90 times that 
of the Earth, and practically no intrinsic magnetic field. 
 
 

15) If you could weigh yourself on Venus, using a standard bathroom scale, 
you would weigh 
A. A lot more. 
B. A lot less. 
C. About the same. 
D. Exactly the same. 
E. There is not enough information to answer the question. 
 
16) Your mass on Venus would be 
A. A lot more. 
B. A lot less. 
C. About the same. 
D. Exactly the same. 
E. There is not enough information to answer the question. 
 
17) The gravitational force of Venus is _____ the gravitational force of 
Earth. 
A. Much greater than 
B. Much less than 
C. About the same as 
D. Exactly the same as 
E. There is not enough information to answer the question. 
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18) Suppose you let go of an apple while standing on the surface of Venus. 
Compared to releasing an identical apple at the same height while standing 
on the surface of the Earth, the apple on Venus 
A. Will hit the ground in much less time (fall a lot faster) than the apple on Earth. 
B. Will hit the ground in much greater time (fall a lot slower) than the apple on 
    Earth. 
C. Will hit the ground in about the same amount of time (fall about the same way) 
    as the apple on Earth. 
D. Will hit the ground in exactly the same amount of time (fall exactly the same 
     way) as the apple on Earth. 
E. Will not fall. 
 
19) It is the year 2156 and people are living on the surface of the moon 
inside giant domes. These domes are filled with air so that people can live 
inside the dome without having to wear space suits. Suppose someone is 
standing inside one of the domes, with an apple in hand. What will happen 
to the apple if they let go of it? 
A. The apple will float upward from the lunar surface. 
B. The apple will float around, staying about the same height and location. 
C. The apple will float around, but also move away horizontally. 
D. The apple will fall toward the lunar surface. 
E. Other/None of the above. 
 
20)  Why do astronauts appear to float in their spacecraft while orbiting?  
A. There is no gravity in space.  
B. Gravity is much weaker in space.  
C. They are too far away from Earth or any massive body.  
D. They are in a constant state of free-fall.  
E. The spacecraft’s gravity isn’t strong enough. 
 
21) Which person standing on the surface of the Earth 
experiences a stronger force of gravity?  
A. Person C, since they are on the equator. 
B. Person A and D, since they are at the poles. 
C. Person A since they are at the North magnetic pole. 
D. Gravity is the same everywhere on the planet.  
 
22)  How heavy or light does something have to be to 
create its own gravitational field?  
A. Every object has some gravitational field. 
B. Very, very heavy. 
C. Planet or moon sized.  
D. It needs to at least have a weight I can detect. 
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23) Each of the following planets has the same 
mass M, but each is made of a different material. A 
darker planet indicates a denser material. Each 
rocket is at a distance R from the center of each 
planet.  Which rocket experiences a stronger force 
of gravity?  
A. A is the strongest because of its greatest density. 
B. D is the strongest because of its least density. 
C. A is the strongest because it’s furthest from the 
planet. 
D. D is the strongest because it’s closest to the planet. 
E. Gravity is the same for all. 

 
24)  Why don’t the planets fall into the Sun? 
A. Gravity  
B. Orbiting is a special case of falling.  
C. An orbiting body does not fall.  
D. Gravity from other bodies in the solar system is pulling them out.  
E. Sun’s gravity isn’t strong enough to pull them in, only to hold them in place.  
F. The planets have their own gravity that counteracts the Sun’s.  

 
25) Rank the strength of gravity (greatest to least) on each of the following 
planets (if any), where more black loops represent stronger magnetic 
fields. All planets have the same mass and radius. 
A. D, C, B, A  because stronger magnetic fields make stronger gravity.  
B. A, B, C, D  because the magnetic fields cancel out a planet’s gravity. 
C. All have equal ranking because gravity and magnetism have no relationship.  
D. There is not enough information to answer the question. 

 
26) Besides gravity, are there any other forces that hold us to the Earth’s 
surface?  
A. Atmospheric forces.  
B. Rotational dynamics.  
C. Friction.  
D. Magnetic Forces. 
E. More than one of the above factors. 
F. Nothing else. 
 
 
 



65 

 

27)  How would you compare the strength of gravity at the surface of Pluto 
with the strength of gravity at the surface of the Earth? 
A. Weaker because Pluto has less mass.  
B. Weaker because Pluto is further from Sun.  
C. Weaker because Pluto has less atmosphere. 
D. They are the same.  
E. Greater 
 

 
28) The following planets are viewed from above, with more arrows 
representing a faster rotation.  All planets have the same mass and radius. 
Rank, from greatest to least, the strength of gravity on each planet.  
A. C=D, B, A because faster rotation creates more gravity.  
B. A, B, C=D because less rotation creates more gravity. 
C. All have the same gravity.  
D. There is not enough information to answer the question. 
 
For this research project we are requesting demographic information.  Due 
to the make-up of Idaho’s population, the combined answers to these 
questions may make an individual person identifiable.  We will make every 
effort to protect a participants’ confidentiality.  However, if you are 
uncomfortable answering any of these questions, you may leave them 
blank. 
 
29)  What is your age? 
A) under 18 
B) 18-22 
C) 23-28 
D) 29-33 
E) 34-39 
F) 40 and over 
 
30)  What is your sex? 
A) Female 
B) Male 
 
31)  Do you consider yourself to be a non-native English speaker? 
A) No 
B) Yes 
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32) What is your class standing? 
A) Freshman 
B) Sophomore 
C) Junior  
D) Senior 
E) Graduate 
 
33) What is your major? 
A) Science (Physics, Chemistry, Biology, Geology) or Mathematics  
B) Engineering 
C) Art (Music, Art, Theater, etc.) 
D) Humanities (Modern Languages, English, etc.) 
E) Social Sciences (Psychology, Sociology, etc.) 
F) Business or Economics 
G) Education 
H) Other 
 
34) What is your physics background? 
A) I have never taken physics before 
B) I took physics in high school 
C) I took another physics course at a university  
D) I have taken multiple physics classes 
 
35) How long since your last math class? 
A) I am currently enrolled in a math class 
B) One semester 
C) over 1 year 
D) 2 – 5 years 
E) over 5 years 
 
36) What is your highest level of college math completed? 
A) I have not taken college math 
B) Intermediate Algebra (Math 025) 
C) College Algebra (Math 108) 
D) Pre-calculus or Trigonometry (Math 143/144) 
E) Calculus (Math 160 or 170) or Higher 
 
37) Do you give consent for your answers to be included in the Gravity & 
Einstein Research study? 
A) Yes 
B) No 
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APPENDIX C 

Masses Used 
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Masses were chosen such that it would allow for same mass, but different radius, 

and same radius, different mass.  See list below of the masses used in the lab. They are 

listed in descending radius length. 

Picture 3. Masses used in Lab 

1. Bocce Ball:  This was chosen because it is hard to find an inexpensive large 

mass with a reasonably sized radius. 

2. Cue Ball 

3. Racquet Ball 

4. Ping Pong Ball 

5. Golf Ball:  This has a similar mass to the wooden ball and small brass ball. 

6. Lead Ball: Similar in mass to the cue ball. 

7. Wooden Ball 

8. Black Glass Ball 

9. Small Brass Ball 

10. Small Cork Ball 
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APPENDIX D 

Tables of Demographic Results  
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Question/Response Pre- Test Post- Test 

Non-native Engl. N M SD n M SD 
No  81 52.3 17.7 66 70.2 17.4 
Yes 13 50.5 22.6 19 60.9 20.3 

p 0.66 0.06 
Cohen's d 0.09 0.49 
Effect size 

correlation r 0.04 0.24 

Class Standing N M SD n M SD 
Freshman 33 48 14.2 28 66.4 18.5 
Sophmore 29 57.9 21.1 30 68.9 16.6 

Junior 20 49.3 16.7 20 69.1 17.9 
Senior 8 51.6 19.7 7 60.8 27.1 

Graduate 2 49.1 35.4 1^^ 96.4 - 
p 0.28 0.45 

Effect size η2 0.06  0.04  

Major N M SD n M SD 
Sci. or Math. 19 54.9 17.0 19 74.1 15.7 

Engin. 9 53.4 20.7 8 66.5 17.6 
Art 9 57.8 18.6 7 58.3 10.8 

Humanities 5 48.0 14.7 4 66.5 15.9 
Soc. Sci. 9 51.2 23.6 7 66.8 23.8 

Bus. or Econ. 19 46.1 15.7 20 65.5 20.1 
Educ. 6 43.9 9.3 5 60.4 25.6 
Other 18 50.5 20.5 16 71.1 18.8 

p 0.70 0.58 
Effect size η2  0.05 0.07  
^^ Not included in ANOVA test 
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Question/Response Pre- Test Post- Test 

Physics Backgrd. N M SD n M SD 
None 54 49.0 17.3 49 67.1 18.9 

High School 32 53.6 18.8 28 68.5 19.2 
Other Univ. 7 58.4 22.5 9 69.7 14.7 

Multiple 0 - - 0 - - 
p 0.30 0.90 

Effect size η2    0.03      0.002   

Time since Math N M SD n M SD 
Currently Enrolled 38 51.5 18.4 41 66.6 17.3 

One semester 19 45.7 18.0 20 67.9 22.1 
over 1 year 17 55.7 15.5 15 71.2 16.5 
2-5 years 13 53.8 20.9 8 66.3 19.5 

over 5 years 2 43.8 29.0 1^^ 95.5 - 
p 0.65 0.86 

Effect size η2   0.04     0.009    
Highest Math n M SD n M SD 

No college math 9 58.6 18.4 7 63.0 17.7 
Interm. Alg. 6 60.6 22.8 4 74.1 12.9 
Coll. Alg. 18 50.1 18.2 17 62.5 18.1 

Pre-calc. or Trig. 32 51.8 19.0 31 72.6 18.5 
Calc. or Higher 23 47.3 15.3 25 66.6 19.6 

p 0.53 0.40 
Effect size η2    0.04     0.06    

^^ Not included in ANOVA test 
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APPENDIX E 

IRB Exemption Approval 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1910 University Drive  Boise, Idaho 83725-1138 
Phone 208.426.5401 | Fax 208.426.2055 | http://research.boisestate.edu/compliance/ 

DIVISION OF RESEARCH & ECONOMIC DEVELOPMENT 
Office of Research Compliance 

Institutional Review Board 
humansubjects@boisestate.edu | (phone) 208.426.5401 | MS 1138 

  
 
DATE:  December 18, 2013 
 
TO:  Tiffany Watkins  (PI) 
   Laurie Cavey (co-PI) 
 
FROM:  Office of Research Compliance  

Institutional Review Board (IRB) 
   
SUBJECT: IRB Notification of Exemption 

Project Title: Gravity & Einstein: Assessing the Rubber Sheet Analogy in Undergraduate Conceptual 

The Boise State University ORC has reviewed your protocol application and has determined that your research is exempt 
from further IRB review and supervision under 45 CFR 46.101(b). 
 

Review Type: Exempt, Category #1 Date of Approval: December 18, 2013 
Exemption Approval Number: 024-SB13-134 

 
This exemption covers any research and data collected under your protocol as of the date of approval indicated above, 
unless terminated in writing by the principal investigator or the Boise State University IRB.  All amendments or changes 
(including personnel changes) to your approved protocol must be brought to the attention of the Office of Research for 
review and approval before they occur, as these modifications may change your exempt status.  Complete and submit a 
MODIFICATION FORM indicating any changes to your project.   
 
Annual renewals are not required for exempt protocols.  When the research project is completed, please notify our 
office by submitting a FINAL REPORT FORM.  The exempt status expires when the research project is completed (closed) or 
when the review category changes as described above.    
 
All relevant forms are available online.  If you have any questions or concerns, please contact the Office of Research 
Compliance, 208-426-5401 or humansubjects@boisestate.edu.   
 
Thank you and good luck with your research. 
 
 
Office of Research Compliance 

jodichilson
Typewritten Text
73

jodichilson
Typewritten Text


	GRAVITY & EINSTEIN: ASSESSING THE RUBBER SHEET ANALOGY  IN UNDERGRADUATE CONCEPTUAL PHYSICS
	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER ONE: INTRODUCTION
	Research Questions

	CHAPTER TWO:  REVIEW OF THE LITERATURE
	Research into Conceptual Understanding
	Scientific Views of Gravity
	Research into Student Understanding of Gravity
	An Analogy for Gravity

	CHAPTER THREE: METHODOLOGY
	Participants
	Gravity Lab & Equipment Design
	Pre/Post-Test Design
	Conceptual Analysis of the Instrument
	Pre/Post-Test Scoring
	Analogy in the Classroom
	Statistical Analysis

	CHAPTER FOUR: RESULTS
	Is the rubber sheet analogy an effective model for teaching gravity?
	What are student conceptions of gravity pre and post instruction?
	Do personal characteristics or educational background appear to influence these conceptions?

	CHAPTER FIVE: DISCUSSION
	Interpreting the Results
	Limitations
	Instructional Implications
	Future Research

	REFERENCES
	APPENDIX A
	Gravity and Spacetime Lab
	Permanent link to this comic: http://xkcd.com/895/


	APPENDIX B
	Pre/Post-Test for Study

	APPENDIX C
	Masses Used

	APPENDIX D
	Tables of Demographic Results

	APPENDIX E
	IRB Exemption Approval




