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ABSTRACT 

 Deterioration of freeway traffic flow condition due to bottlenecks can be 

ameliorated with ramp metering.  A challenge in ramp metering is that it is not possible 

to process data in real-time and use the output in a control algorithm.  This is due to the 

fact that by the time processing is completed and a control measure applied, the traffic 

state will have changed.  A solution to this problem is to forecast the traffic state and 

implement a control measure based on the forecast. 

 A dual-state Kalman filter was used to forecast traffic data at two locations on a 

freeway (I-84).  A Kalman filter is an optimal recursive data processing algorithm; 

predictions are based on only the previous time-step’s prediction and all previous data do 

not need to be stored and reprocessed with new measurements.  A coordinated feedback 

ramp metering control logic was implemented.  The closed-loop system seeks to control 

the traffic density on the mainline while minimizing on-ramp queues through weighting 

functions.  

 The integration of the Kalman filter with the ramp meter control logic 

accomplishes the ramp meter algorithmic scheme, which is proactive to changes in 

freeway conditions by controlling a forecasted state.  In this closed-loop framework, real-

time forecasts are produced with a continuously updated prediction that minimizes errors 

and recursively improves with each successive measurement.  MATLAB was used to 



viii 

model the closed-loop control system as well as modify the input output constraints to 

evaluate and tune controller performance.   
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CHAPTER 1: INTRODUCTION 

 Traffic congestion is often an adverse effect of population increase and economic 

expansion.  As the Treasure Valley experiences rapid growth, congestion management 

will be vital as there is an increase in demand for highway travel and vehicle miles 

traveled.  An increase in capacity can result in congestion levels that quickly become 

similar to those prior to adding the additional capacity and it is unlikely new construction 

will ever catch up due to funding and land use limitations.  Since new construction is 

often the last resort to improve the operations of a freeway, strategies that are more cost-

effective and utilize existing infrastructure or require minimal expansion are needed to 

alleviate congestion in the region.   

1.1 Background 

 Interstate-84 (I-84) and Interstate-184 (the Connector), a freeway linking 

downtown Boise with I-84, are the backbones of the Treasure (Boise) Valley’s 

transportation system.  I-84 and I-184 are the primary connections between the region’s 

major employment, activity, and retail centers.  Current weekday traffic volumes on I-84 

range from 20,000 north of Canyon County to 120,000 between the Eagle Road and Wye 

Interchanges in Ada County.  By 2035, it is forecast that the travel demands on this 

corridor will double (COMPASS, 2013).  

 The 2010 census reported the population of Boise and the metropolitan area were 

205,671 and 616,561, respectively (US Census, 2012).  This is an increase in the 
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metropolitan area by almost 138,000 since 2002 (Idaho Department of Labor, 2013).  The 

metropolitan area, consisting of Ada and Canyon Counties, is home to about 600,000 

people and The Community Planning Association of Southwest Idaho (COMPASS) 

forecasts by 2040 Ada and Canyon Counties will have combined a population of 

1,022,000 and 462,000 jobs (COMPASS, 2014).  The existing delay on the average 

weekday is 27,670 hours (COMPASS, 2014). 

 In the U.S., traffic congestion cost drivers more than $ 100 billion in 2011 

(Schrank, Eisele, & Lomax, 2012).  Nonrecurring congestion predominantly results from 

incidents (accidents or breakdowns), work zones, and weather.  Recurring congestion 

most often occurs routinely during peak hours and is simply the result of traffic demand 

exceeding freeway capacity usually at a bottleneck.  A freeway bottleneck is a critical 

point on the road characterized by freely flowing traffic downstream with queues 

upstream.  This can occur wherever there is a constriction of capacity or demand exceeds 

capacity.  Hidden bottlenecks exist at locations where the demand exceeds the capacity, 

but the demand cannot reach the hidden bottleneck location because of the presence of 

upstream or downstream primary bottlenecks.  A micro-bottleneck is identified by 

perturbations from slow-and-go wave oscillations and a downstream critical bottleneck.  

Geometric features that contribute to the occurrence of freeway bottlenecks include:  

• On-ramp sections with no auxiliary lane additions, or with short 

acceleration lanes  

• Weaving sections, particularly out of dropped lanes  

• Lane drops on basic segments, or following an off-ramp  

• Long upgrades, particularly in the presence of heavy vehicles  
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• Narrowing lane conditions  

• Lateral obstructions which reduce free flow speed (FFS), particularly on 

bridge sections 

 I-84 experiences recurring and nonrecurring congestion resulting from bottleneck 

formations, especially between Eagle Road and Meridian Road interchanges.  By 2040, 

the average weekday delay will increase by a forecasted 1500 percent to approximately 

440,980 hours (COMPASS, 2014).  Utilizing technology and innovative solutions are 

crucial to accommodate the forecasted growth and manage its certain congestion.  One 

such solution is ramp metering, which was reported to have saved $1.8 billion in 

congestion costs from 1982 to 2002 (Schrank & Lomax, 2004). 

1.2 Problem Statement 

 Currently, ramp metering is not used in Idaho.  In this thesis study, we investigate 

new ramp metering to alleviate congestion.  The methodology combines the use of 

Kalman filters for short-term forecasting of traffic variables and the use of feedback 

control theory to develop the ramp metering scheme.  The need to forecast traffic 

variables with an adaptive tuner arose from a challenge in processing real-time traffic 

data.  Many ramp metering schemes attempt to maximize throughput by metering to a 

predetermined optimal occupancy or maximum capacity level.  This suffers from the fact 

that capacity is known to not be a fixed value and the optimal measure of it may change 

under a wide range of conditions.  The method proposed in this study is a stochastic 

modeling approach that is adaptive to conditions (e.g., driver behaviors, adverse weather, 

incidents, and etc.) and is applied in an on-line manner, yielding real-time forecasts. 
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 The Eagle interchange currently contributes the most vehicles to I-84 and is 

within two miles of the Meridian Road interchange.  The Eagle Road East Bound (EB) 

loop on-ramp enters vehicles on the mainline 2,400 feet upstream of the merge of the 

Eagle Road EB on-ramp.  Ramp metering at the EB on-ramp has been shown through 

simulation to improve flow entering the mainline, allowing throughput speeds to be 

maintained, eliminating potential shockwave effects due to the on-ramps close proximity 

of one another.  With the recent construction of the new interchange at Ten Mile Road 

and the planned construction of the Meridian Road interchange, system-wide 

improvements in travel time and reduction in delays could result with ramp meters at 

these locations.   

 These areas highlight the significance for a ramp metering system that is locally 

adaptive to the on-ramp conditions and dynamically coordinated between the 

interchanges, to effectively manage the overall flow through the corridor.  However, few 

reliable automatic control strategies exist due to the complexity of the traffic flow 

phenomenon (Adeli & Karim, 2005).  Though a number of coordinated traffic-responsive 

strategies have been proposed, few have been implemented due to the computational time 

required for the alorithms (Gokasar, Ozbay, & Kachroo, 2013). 

1.3 Thesis Summary 

 Based on these relationships, a predictive feedback on-ramp metering control 

strategy that is proactive to the onset of congestion breakdown was developed.  It uses a 

Kalman filter, a recursive forecasting algorithm, to predict traffic density and estimate 

on-ramp queue lengths.  The adaptive control scheme works by controlling the traffic 

density on the mainline while considering on-ramp queues through weighting functions.  
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The design of the overall system was separated into three stages containing two major 

research components.  In the first component, the design of dynamic linear models 

(DLM) and Kalman filters, used for prediction of the state of traffic, was performed.  

Next was the design of the metering control logic algorithm.  Lastly, the two components 

were combined into a single integrated algorithmic program.  

 The remainder of the thesis is organized as follows.  A literature review is 

presented in Chapter 2 of ramp metering, Kalman filtering, and stochastic capacity.  

Chapter 3 contains the methodological framework for state-space models, Kalman 

filtering, a review of traffic flow theory and feedback control theory, and the 

implemented ramp metering control design.  Chapter 4 presents the modeling efforts for 

the DLM and Kalman filters in R (R Core Team, 2013), a programming language and 

environment for statistical computing.  Chapter 5 describes the numerical programming 

of the control logic and the amalgamation of the prediction and control algorithms in in 

MATLAB (MATLAB, 2013), a high-level language for numerical computation and 

programming.  Chapter 6 is the concluding chapter which, contains a summary of the 

work performed and recommendations for future work. 
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CHAPTER 2: LITERATURE REVIEW  

 A literature review was conducted on existing ramp metering systems and the 

control algorithms they employ, Kalman filtering uses in transportation applications, and 

stochastic capacity.  Besides that, properties that have to be taken into account when 

developing a proactive control strategy will be provided.   

2.1 Ramp Metering 

 To combat the onset of breakdown, the most widely adopted freeway control is 

ramp metering.  Ramp meters are traffic signals at the entrances of freeways that regulate 

the flow of vehicles onto the freeway.  By regulating the amount and timing of vehicles, 

ramp meters break up platoons (i.e., groups) and reduce freeway demand.  When a 

vehicle is given a green light, it is allowed to smoothly enter the flow of freeway traffic 

by theoretically taking advantage of existing gaps in the mainline traffic (Arnold, 1998).   

 The primary objective of ramp metering systems is to reduce freeway congestion; 

however, secondary objectives may be identified and accomplished with ramp metering 

such as the reduction of freeway crashes.  The Federal Highway Administration’s 

(FHWA) Ramp Management and Control Handbook advises practitioners consider the 

following seven aspects before determining a ramp metering plan (FHWA, 2006): 

1. Metering strategy – A strategy should reflect the goals and objectives of 

the system but in general seeks to improve conditions on the freeway, 

while minimizing queuing and delay. 



7 

 

2. Geographic extent – The extent that metering occurs, i.e. at a single ramp 

that’s isolated or over multiple ramps and will they be linked. 

3. Metering approaches – Pre-timed or adaptive. 

4. Metering Algorithms – Programming logic to determine metering rate. 

5. Queue Management – How ramp queues will be maintained to an 

acceptable length and what is acceptable. 

6. Flow Control – The manner and rate by which vehicles are allowed to 

enter a freeway ramp meter.  

7. Signing – Appropriate signing needs to be implemented along the ramp as 

well as on nearby arterials to alert motorists to the presence and operation 

of ramp meters and to the specific driving instructions they need to 

perform when approaching a ramp.  

2.1.1 Benefits and Impacts 

 There are more than 2,200 ramp meters in 29 metropolitan areas in the U.S. 

controlled by agencies with varying strategies and objectives for their use (FHWA, 

2006).  Because of this, benefits and impacts of metering is measured by the 

implementing agency or practitioners “metering philosophy” and may not be assessed 

similarly by the public. 

Generally, the reported benefits of ramp meters include:  

• Improved system operation. 

o Increased vehicle throughput. 
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o Increased vehicle speeds. 

o Improved use of existing capacity. 

• Improved safety. 

o Reduction in number of crashes and crash rate in merge zones. 

o Reduction in number of crashes and crash rate on the freeway 

upstream of the ramp/freeway merge zone. 

• Reduced environmental effects. 

o Reduced vehicle emissions. 

o Reduced fuel consumption. 

• Promotion of multi-modal operation. 

 The main disadvantage to ramp metering is that it can create long queues and 

delays on the on-ramps.  Although metering can shift traffic to portions of the network 

where capacity is underutilized, the potential to inadvertently shift congestion to the 

arterial streets is possible.  In a study aimed to measure the equity and efficiency of ramp 

meters, Levinson, Zhang, Das, and Sheikh, (2004) found the most efficient ramp control 

algorithm was also the least equitable one.  The public’s opposition to ramp metering has 

been linked to the equity issues associated with ramp metering policy (Yin, Liu, & 

Benouar, 2004). 

 Overall, there are two broad types of ramp metering control systems: local and 

coordinated.  Local ramp metering consists of a section of freeway with one on-ramp in 

which the controller responds only to measurements in the vicinity of the ramp.  

Coordinated ramp metering consists of the application of metering at a series of on-ramps 

and may use available traffic measurements from greater portions of the freeway 
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(Smaragdis, Papageorgiou, & Kosmatopoulos, 2004).  Within those systems, two 

methods of controlling ramp meters are pre-timed (also referred to as time-of-day or 

fixed-time) and traffic-responsive (FHWA, 2006). 

 Pre-timed metering is the simplest and cheapest form of ramp metering.  Metering 

rates are determined from off-line, historical demands.  In general, time-of-day’s 

metering rate is independent of the existing traffic conditions.  Traffic-responsive 

metering rates are determined or selected based on prevailing traffic conditions measured 

in real-time.  Most modern ramp metering systems are traffic-responsive. 

2.1.2 Local Ramp Metering 

 Local ramp metering considers an isolated section of the network that consists of 

a freeway segment with a single on-ramp and a controller that responds only to changes 

in the local conditions (Papageorgiou & Kotsialos, 2002; Kachroo & Ozbay, 2003; 

Smaragdis et al., 2004).   

2.1.2.1 Demand-Capacity Strategy 

 Popular in North America, the local demand-capacity (DC) strategy calculates 

metering rates (Masher et al., 1975): 

 
min

( 1), if   ( 1)
( )

, else
cap in in crk oq q k o

r k
r

− − ≤
=

−



 (2.1)  

where k=1,2,… is the discrete time index; r(k) is the ramp flow (veh/hr) to be 

implemented during the new period k; qcap is the freeway capacity downstream of the 

ramp; qin (k-1) is the last measured upstream freeway flow measurement, upstream of the 

ramp; oin (k–1) is the last measured upstream freeway percent occupancy; ocr is the 
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critical occupancy; and rmin is a prespecified minimum ramp flow rate (Papageorgiou & 

Kotsialos, 2002).  This strategy aims to add to the upstream flow qin (k-1) the amount of 

ramp flow r(k) necessary to reach the downstream capacity qcap (Smaragdis & 

Papageorgiou, 2003).  If the occupancy out oout becomes overcritical, the ramp flow is 

reduced to rmin until traffic has dissolved.  The rmin is a parameter that would be 

determined by the agency controlling the system and is typically a function of storage 

capacity and vehicle arrival rate. 

2.1.2.2 Occupancy Control 

 The occupancy control (OCC) strategy uses the same philosophy as the DC 

strategy, but uses occupancy based measurements for qin.  If the left-hand side of the 

fundamental diagram (Figure 1) is approximated by a straight line, qin is:  

 f out
in

v o
q

g
=  (2.2) 

where vf is the free speed of the freeway and g is the g-factor (Smaragdis & 

Papageorgiou, 2003). 
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Figure 1.  Fundamental Diagram with Left Side Approximated by a Straight Line 
Substituting (2.2) into (2.1) gives:  

 ( ) ( 1)f
cap out
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r k o k

g
q= − × −  (2.3) 

 Both DC and OCC strategies are considered feed forward, or open-loop.  In open-

loop systems, the system output is not used as input in the next iteration.  This type of 

feed forward controller is blind to the control outcome.  Conversely, in feedback control, 

or closed-loop control, the control input is based on the system output.  In a closed-loop 

control system, output is fed back recursively so the control variable is a function of the 

output of a system (Kachroo & Ozbay, 2003). 

2.1.2.3 ALINEA 

 The most widely used closed-loop local ramp metering algorithm is called 

Asservissement LINéaire d’Entrée Autoroutière (ALINEA) (Papageorgiou, Hadj-Salem, 

& Blosseville, 1991).  ALINEA works by attempting to maximize throughput by 
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maintaining a desired occupancy, measured downstream of the ramp.  ALINEA 

calculates metering rates by:  

 ( ) ( 1) [ ( )]R des outr k r k K o o k= − + −  (2.4)  

where r(k) is the metering rate at time step k; Kr > 0 is a regulator parameter (veh/hr); odes 

is a set (desired) vale for the downstream occupancy.  ALINEA is a feedback control 

algorithm because it uses the previous time step (k-1) metering rate in the next iteration 

r(k) and in control theory is known as an integral feedback regulator (Papageorgiou, 

Blosseville, & Haj-Salem, 1990b).  The ramp metering rate needs to be converted into a 

cycle time with a green-phase and red-phase; typical to standard traffic signals (but 

without a yellow phase).  For ALINEA, the green-phase duration is determined by: 

 min max( ) ( 1) [ ( )],R des out
sat

Cg k g k K o o k g g g
r

= − + − ≤ ≤  (2.5) 

where g(k) is the green-phase duration at time interval k (seconds); g(k-1) is the green-

phase duration at previous time interval k-1 (seconds); C is the cycle duration (red-phase 

+ green-phase) (seconds); rsat is the ramp saturation flow (capacity flow) (veh/hr); gmin is 

the minimum green-phase duration (seconds); gmax is the maximum green-phase duration 

(seconds) (Papageorgiou, Hadj-Salem, & Middelham, 1997). 

 ALINEA requires a single detector station placed downstream of the merge area, 

has few parameters, and has not been very sensitive to the choice of the regulator 

parameter Kr  (veh/hr) (Papageorgiou & Kotsialos, 2002).  ALINEA has been one of the 

most widely used and effective algorithms and has required little modifications since its 
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inception in 1991, demonstrating superiority compared to the DC and OCC strategies 

(Smaragdis & Papageorgiou, 2003).   

 Other implemented coordinated ramp metering strategies include the Zone 

algorithm along I-35 East in Minneapolis/St. Paul, Minnesota (Stephanedes, 1994).  In 

this metering strategy, a freeway network is divided into zones where the upstream end is 

typically represented by free flow conditions and the downstream end is at the location of 

a bottleneck (Zhang et al., 2001).  Free flow speed (FFS) is the average speed a motorist 

would travel with no traffic that would affect their speed decisions. 

 A number of modifications and extensions of ALINEA have been presented 

(Smaragdis & Papageorgiou, 2003).  FL-ALINEA, a flow based strategy, was introduced 

to provide alternatives to ALINEA’s occupancy based measurements.  In cases where 

uncertainties existed in the g-factor or where network-wide specification of target values 

was sought, Smaragdis and Papageorgiou (2003) claim it may be easier to specify target 

values for flows rather than occupancies.  FL-ALINEA, an integral regulator, attempts to 

meter to the capacity qcap; however, because qcap may underestimate the freeway capacity, 

FL-ALINEA is not recommended as a flow maximizing ramp metering strategy. 

 In some instances, sensors may exist only upstream of an on-ramp.  UP-ALINEA 

is a feedback strategy based on estimates of downstream occupancy by means of 

upstream measurements.  By combining FL-ALINEA and UP-ALINEA, a methodology 

using upstream measurements of flows is UF-ALINEA (Smaragdis & Papageorgiou, 

2003). 

 The performance of the ALINEA algorithm is dependent upon the values selected 

for critical occupancy and the regulator gain.  Sensitivity analysis performed in a 
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comparative study of control algorithms found ALINEA to be robust under critical 

occupancies ranging from 0.10 to 0.15 and regulator gains ranging from K = 5,000 to 

30,000 (Chu, Liu, Recker, & Zhang, 2004).  The above reported gain values are 

significantly more than the reported K = 70 in (Papageorgiou et al., 1991) and K = 16 

(Papageorgiou et al., 1990b). 

2.1.3 Coordinated Ramp Metering 

 Coordinated ramp metering (also referred to as system-wide) employs multiple 

ramp meters as part of a series of on-ramps where the response of all the ramps takes into 

account conditions beyond the local zone.  Coordinated systems are designed to optimize 

flow through a corridor or network, rather than a single ramp.  Coordinated algorithms 

can be divided into three types: cooperative, competitive, and integral (Zhang et al., 

2001).   

2.1.3.1 Cooperative Algorithms 

 Cooperative algorithms are similar to local except that changes in one metering 

rate affects metering rates of upstream ramps.  An example of a cooperative algorithm is 

the Helper ramp algorithm used along the I-25 freeway in Denver, Colorado (Lipp, 

Corcoran, & Hickman, 1991).   

2.1.3.2 Competitive Algorithms 

 In competitive ramp metering, two metering rates are computed; one based on 

local conditions and the other based on the network conditions, and the most restrictive 

one is chosen.  Examples of the competitive algorithms include the Bottleneck algorithm 

on I-5 in Seattle, Washington (Jacobson, Henry, & Mehyar, 1989); FLOW (Jacobson et 



15 

 

al., 1989), and SWARM (Paesani, Kerr, Perovich, & Khosravi, 1997).  SWARM consists 

of two independent competing algorithms.  The first level of SWARM attempts to 

estimate the density trend based on past detector measurements by performing linear 

regression and a Kalman filtering process to forecast the traffic trend (Zhang et al., 2001).  

The second level of SWARM can actually be any traditional local algorithm traffic-

responsive system. 

2.1.3.3 Integral Algorithms 

 Integral ramp metering considers both local and system-wide traffic conditions to 

achieve some network objective, such as travel time through the network.  The Sperry 

ramp metering algorithm implemented in 1985 in northern Virginia along I-395 and I-66 

(Bogenberger & May, 1999) and the Fuzzy Logic algorithm in use today along I-405 

Seattle, Washington  (Meldrum & Taylor, 1995) are examples of integral algorithms. In 

the Fuzzy Logic algorithm, system-wide traffic data are converted into qualitative 

categories.  So called ‘fuzzy rules’ are used to weight the qualitative categories and 

convert the “fuzzified” measurements into a metering level (Bogenberger & May, 1999).  

According to Zhang et al. (2001), this algorithm is theoretically attractive but not 

straightforward to implement and requires a great amount of effort to calibrate and tune, 

which when done improperly, performs very poorly. 

 Linear programming based algorithms (Yoshino, Sasaki, & Hasegawa, 1995) 

maximize/minimize an objective function based on a series of constraints.  The 

METALINE algorithm is the ALINEA algorithm extended to multiple, coordinated 

ramps that make use of occupancy measurements oi(k), i = 1,…,n, to simultaneously 

calculate ramp metering rates ri(k), i = 1,…,m (Papageorgiou et al., 1990b).  The 
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metering rate of each ramp is computed through an analogous vector form of the 

ALINEA equation:  

 [ ] [ ]1 2( ) ( 1) ( ) ( 1) ( )desk k k k k= − − − − + −r r K o o K O O  (2.6)  

where ( )kr  is the vector of metering rates for m controlled ramps at time step k; ( )ko is 

the vector of n available measured occupancies; ( )kO  is a subset of o  for which the 

desired occupancy is given at m controlled ramps, respectively.  K1, K2 are two gain 

matrices.  In control theory, the control law (2.5) is called a proportional-integral 

feedback regulator (Papageorgiou et al., 1990b) and will be shown why in Section 3.3.2. 

 Gokasar et al. (2013) proposed two coordinated strategies, D-MIXCROS and C-

MIXCROS, that explicitly consider queues through weighting factors, w1(i) and w2(i), 

applied to on-ramps and the mainline sections where they enter, for i = 1, 2,…n sections.  

The proportional-derivative feedback logic attempts to minimize the error: 

 
1(1) 1 (1) 2(1) 1 1(2) 2 (2)

2(2) 2 1(n) (n) 2( )

( ) ( ) ( ) ( )

( ) ... ( ) ( )

cr ramp cr

ramp n cr n ramp n

e t w t w queue t w t

w queue t w t w queue t

ρ ρ ρ ρ

ρ ρ

= − + + −

+ + + − +
 (2.7) 

where ρ and ρcr are the measured density and critical density (veh/mi) of the freeway 

sections, respectively; queueramp1,2 are calculated queue lengths.  The parameters are 

determined so that they ensure maximization of freeway throughput (w1(i)) without 

creating long queues on the on-ramps (w2(i),) (Gokasar et al., 2013). 

  

desO
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2.1.4 Queue Management 

 Possibly the greatest unappealing aspects of ramp metering are ramp delays, ramp 

queues, and queue spillback into arterials.  Most modern ramp metering algorithms 

incorporate some form of queue management.  Queue detectors are placed near the 

beginning of the ramp, or at critical locations where excess queues would cause 

undesirable effects.   

 A strategy most ramp meter algorithms take when a queue is detected is to adjust 

the metering rate to a less aggressive level, as to disperse the queue more quickly.  

Another solution known as queue flushing, or queue override, completely disables ramp 

metering and resumes when queues return to acceptable levels.  This has the potential to 

cause oscillatory patterns.  For example, when a metering rate becomes more restrictive, 

an excessive ramp queue can form and queue flushing is activated, temporarily disabling 

the meter.  Those vehicles inundate the freeway, exacerbating congestion, causing a more 

restrictive metering rate and repeating the cycle. 

2.2 Kalman Filtering 

 Kalman filters have been used in transportation engineering to estimate traffic 

variables (Fei, Lu, & Liu, 2011; Gazis & Liu, 2003; Ghosh, 1978; Ojeda, Kibangou, & 

Wit, 2013; Okutani & Stephanedes, 1984; Portugais & Khanal, 2014) as well as extended 

Kalman filters (Tampere & Immers, 2007; van Hinsbergen, Schreiter, Zuurbier, van Lint, 

& van Zuylen, 2012; Wang & Papageorgiou, 2005; Wang et al., 2009; Wang, 

Papageorgiou, & Messmer, 2008).  The Kalman filter is a set of mathematical equations 

used to recursively estimate the state of a dynamic process in a way that minimizes the 

mean of the squared error (Welch & Bishop, 2006).   
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 The term “filter” is actually a bit of a misnomer and actually implies data 

processing algorithm.  The algorithm estimates the state of a discrete time linear dynamic 

system containing noise with a two-step feedback control process.  In the first step, a 

prediction is made of the current value state variable along with their uncertainties.  

 When a measurement of the state process is made, the new information is 

incorporated to obtain an improved prediction.  In this sense, the equations for the 

Kalman filter can be thought of as a time-update (prediction) and measurement-update 

(correction) feedback control. 

2.3 Stochastic Capacity 

 Capacity is a random quantity that is difficult for practitioners to determine and 

apply in real-world settings.  Volume is described by the demand, the actual number of 

observed or predicted vehicles, and restricted by the capacity.  Capacity can be defined as 

theoretical/design capacity or operational capacity (Wu, Michalopoulos, & Liu, 2010).  

Freeway operational capacity has been defined by Minderhoud, Botma, and Bovy (1997) 

as the capacity value representing the actual maximum flow rate of the roadway.  

Haboian (1993) described a reduction in capacity due to congestion resulting from a 

reduction in traffic flow.  When demand exceeds capacity, there will be some reduction 

in the capacity of the freeway segments, normally 3 percent to 10 percent, and as high as 

up to 24 percent (Aghdashi, 2013).  Although some studies have reported that bottlenecks 

can support very high flows prior to their activation, these high flows have typically been 

observed only for time periods that are short relative to the rush (Cassidy, 2003).   

 The capacity of a freeway is traditionally treated as a constant value in traffic 

engineering guidelines around the world, such as the most widely used, The Highway 
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Capacity Manual (HCM) (Brilon, Geistefeldt, & Regler, 2005; Transportation Research 

Board, 2010).  However, many studies have shown that different capacities can be 

observed on freeways even under constant external conditions (Brilon et al. 2005; 

Geistefeldt and Brilon 2009; Wu et al., 2010; Elefteriadou et al. 2011).   

 Research investigating the stochastic nature of freeway capacity and breakdowns  

have been applied to ramp metering algorithms (Stratified Zone Metering, COMPASS) 

by modifying them to incorporate the breakdown probability in the control scheme 

(Elefteriadou et al., 2011; Geistefeldt & Brilon, 2009).  Modifications have included 

adjusting the metering rates based on the maximum capacity prior to the onset of 

breakdown.  These studies have shown that the freeway breakdown phenomenon is 

stochastic, meaning it is a probabilistic event and can occur over a range of flow values 

(Jia, 2013; Elefteriadou et al., 2011) and capacity values (Wu et al., 2010).  The term 

‘breakdown’ describes the transition from free-flowing traffic to congestion.  A more 

common intermediary state, termed ‘slow-and-go waves,’ is used to describe less than 

congested traffic and characterized by speeds of 20-40 mph and somewhat erratic 

acceleration and braking. 

 Brilon et al. (2005) developed a nonparametric model using the “Product Limit 

Method” (PLM), which is based on the statistics of lifetime data analysis (Kaplan and 

Meier, 1958), to derive a theoretical transformation between capacities identified for 

different interval durations.  The method, however, could not estimate an appropriate 

distribution function so various distribution types were examined.  By comparing 

different types of functions based on the value of maximum likelihood, it was determined 

that the Weibull distribution was the best fit.  Brilon et al. (2005) assert that higher 
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demand volumes are less likely to be observed in the field since there is a higher 

probability that a breakdown occurred during a preceding interval but claim traffic 

breakdowns in succeeding intervals are independent of one another.   

 Elefteriadou et al. (2011) identified critical bottlenecks as those where congestion 

was recurring due to merging operations and was distinguished by low speeds 

propagating upstream, whereas free-flowing (or near free-flowing) conditions occurred 

downstream.  Using a nonparametric technique, two ramp metering algorithms (Stratified 

Zone Metering; Minnesota and COMPASS Ontario, Canada) were modified to 

incorporate the breakdown probability as the basic foundation for control activities.  The 

distribution function of breakdown volume was generated using the PLM (Kaplan and 

Meier, 1958; Brilon et al., 2005; Geistefeldt and Brilon, 2009).  Again, the complete 

distribution function was obtained using a Maximum-Likelihood technique and was fit to 

a log-normal distribution.  At the highest observed flows, the probability of breakdown 

using this method did not reach 0.25, a calculation that makes the results questionable.  
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 CHAPTER 3: METHODOLOGY 

 The proposed solution to ramp metering uses a prediction algorithm, known as a 

Kalman filter, and a control scheme that regulates timing of the vehicles released onto the 

freeway.  The algorithmic scheme then can be thought of as a recursive prediction 

algorithm producing forecasts that the control algorithm uses as inputs.  The Kalman 

filter is used to predict the state process (state of traffic) through observations collected 

by roadway sensors.  The Kalman filter is employed within a special class of time-series 

models called state-space models.   

 Understanding traffic flow theory is critical for a successful ramp metering 

strategy.  A review of traffic flow theory is given in Section 3.3. 

3.1 State-Space Framework 

 The state-space framework considers a time-series as the output of a dynamic 

system perturbed by random disturbances and ones in which parameters are allowed to 

vary over time (Casdagli, 1992).  State-space models can be used for modeling univariate 

non-stationary time-series that allow for natural interpretation as a result of trend and 

seasonal (periodic) components (Durbin & Koopman, 2012; Petris, Petrone, & 

Campagnoli, 2009).  The state-space local level model is a time-series where 

observations can be modeled as random fluctuations around a stochastic level described 

by a random walk.  A random walk is defined as a process where the current value of a 

variable is composed of the past value plus an error term defined as a white noise 
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sequence (Shumway & Stoffer, 2011).  A special case of general state-space models that 

are linear and Gaussian are also called dynamic linear models.  

3.1.1 Dynamic Linear Model 

 The main tasks for the DLM were to make inferences on the unobserved traffic 

state and predict future observations based on part of the observation sequence.  The 

DLM models were constructed and estimated using maximum likelihood estimation 

(MLE) in R, the Statistical Environment and Language (R Core Team, 2013).  Kalman 

(1960) presented a new look into stochastic processes and forecasting using the “state 

transition” method of analysis of dynamic systems known as the Kalman filter.  In 

dynamic state-space models, the Kalman filter provides the formulas for updating our 

current inference on the state vector xk as new data yk become available.  The use of the 

DLM in this research allowed for trends and seasonal patterns to be captured and the 

matrices structure determined to pass to the Kalman filter.  The details of those matrices 

will be discussed in Chapter 4. 

3.2 Kalman Filtering 

 The Kalman filter works by making a prediction of the future and comparing the 

estimate with real-time measurements.  Along with the prediction, an error covariance is 

calculated.  A Kalman filter is an optimal recursive data processing algorithm, meaning 

that predictions are based on only the previous time-step’s prediction and the filter does 

not require all previous data to be stored and reprocessed with new measurements.  The 

filter is optimal in the sense that it minimizes the variance of the estimation error at each 

iteration process.  When the next measurement is taken, the algorithm calculates a 

correction of the state prediction using the new measurement along with the error 
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covariance.  The recursive algorithm uses only the current measurement and error 

covariance allowing for low computational cost and on-line forecasting. 

  The general problem that the Kalman filter addresses is the estimation of the state 

xk of a discrete-time controlled process that is governed by the general state equation 

 1kk k k−= +x G x w  (3.1)  

based on measurements yk, according to the observation equation: 

 k k k k= +y F x v   (3.2) 

where Gk and Fk are known matrices and vk and wk are Gaussian independent white noise 

sequences, where  

 wk ~ Ɲ(0,Qk) (3.3)  

and 

 vk ~ Ɲ(0,Rk) (3.4) 

The Kalman filter can be thought of as a recursive two-stage prediction and measurement 

update algorithm with the prediction stage equations given by: 

State estimate (a priori): 

 | 1 1| 1ˆ ˆk k k k k− − −= Gx x  (3.5) 

Error covariance estimate (a priori): 

 | 1 1| 1k k k k k k k− − −= +P G P G QT  (3.6) 

 The predicted state estimate is also known as the a priori state estimate because it 

does not include information from the current time step.  In the measurement update 
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stage, the prediction is combined with the current observation information to refine the 

state estimate and is known as the a posteriori state estimate.  The innovation is defined 

as the difference between the observation (measurement) and its prediction using the 

information available when the new measurement is taken.  It is known as an 

“innovation” because it effectively provides new information.  The measurement update 

equations are given by: 

Measurement innovation (or residual): 

 | 1ˆk k k k k−−=y y F x  (3.7) 

The innovation covariance:  

 | 1k k k k k
T
k−= +S F P F R   (3.8) 

The weight of the correction term is given by the Kalman filter gain: 

 1
| 1

T
k k k k k

−
−=K P F S  (3.9) 

which is the adaptive coefficient and can be regarded as an information tuner (Fei et al., 

2011; Petris et al., 2009). 

State estimate (a posteriori): 

 | | 1ˆ ˆk k k k k k−= +x x K y  (3.10) 

Error covariance estimate (a posteriori): 

 | | 1 | 1k k k k k k k k− −= −P P K F P  (3.11) 
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Commonly it is assumed that the noise terms wk and vk are Gaussian and under these 

conditions the KF will provide the optimal estimate of xk.  Otherwise, the KF is the best 

linear estimate, which is often sufficient in stochastic linear estimation. 

3.3 Traffic Flow Theory 

 Traffic flow is characterized by three fundamental characteristics: speed v, flow q, 

and density ρ and are mathematically related:  

 q v ρ= ×  (3.12) 

Flow is defined as the rate at which vehicles travel through a particular point or freeway 

segment, typically expressed in vehicles per hour (veh/hr).  Density is expressed in units 

of vehicles per unit of distance, typically vehicles per mile (veh/mi).  Density is a 

difficult variable to measure; however, it is a very useful performance measure 

(Elefteriadou, 2014).  Because density is difficult to measure, occupancy is often a 

surrogate for density and is measured: 

 5, 280

v d

OD
L L

×
=

+
 (3.13) 

where O, occupancy, is defined as the percentage of time that the detection zone of an 

instrument, often an inductance loop, is occupied by a vehicle; Lv is the average length of 

a vehicle (feet), Ld is the length of the detector (feet).  Inductance loop traffic detectors 

are the most common freeway traffic detector and work by transmitting an electrical 

current through wires installed in the pavement.  When a vehicle passes over the loops, it 

causes a change in the wire’s inductance and sends a pulse to a controller signifying the 
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presence of a vehicle.  The fundamental diagrams (FD) of traffic flow graphically gives 

the relation between two of the fundamental variables of traffic flow.   

 The de facto guide for procedural guidelines and concepts for computing capacity 

and quality of service of various highway facilities is the 2010 Highway Capacity 

Manual.  The 2010 HCM uses a three-regime speed-flow model where flows can be in 

the undersaturated, oversaturated, or queue discharge regions as shown in Figure 2. 

 

Figure 2.  HCM Three-Regime Speed-Flow Relationship 

 Undersaturated conditions are typically represented by free flow conditions (or 

FFS) whereas oversaturated conditions are the result from a bottleneck.  In oversaturated 

conditions the arrival flow rate is greater than the capacity at a point along the road 

segment.  Queue discharge is flow from a bottleneck that accelerates back to FFS in the 

absence of a downstream bottleneck (Edara, 2010).  The HCM diagram above shows that 

speeds are constant for low flows and begins to decrease as flow reaches 1,350 to 1,750 

passenger cars/hr/lane (Transportation Research Board, 2010).  This curve was developed 
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with the assumption that capacity is reached when density is 45 veh/mi (Elefteriadou, 

2014). 

 The relationship between flow and density in the 2010 HCM model is parabolic in 

the uncongested region and linear in the congested flow region, as depicted in Figure 3.  

Jam density, represented by the intersection of the curve and x-axis, is the density of 

vehicles that are stopped in traffic due to severely congested conditions.  The critical 

density (or optimal density) corresponds to the maximum flow. 

 

Figure 3.  HCM Flow-Density Relationship 

  In the undersaturated region, one of the model parameters is FFS, which is 

estimated by averaging all speed observations with flow rates less than 1000 (pc/h/ln) 

(Sajjadi, 2013; Transportation Research Board, 2010).  All HCM calculations and 

analysis are based on the assumption that the capacity of different freeway segments is a 

deterministic value.  A flaw in this approach is that it does not exclude congested 

observations and considers them in FFS estimation. 
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3.3.1 Traffic Bottlenecks and Shockwave Theory 

 As stated, traffic bottlenecks are locations where congestion originates and can be 

stationary or moving.  Stationary bottlenecks occur due to road design, accidents, or 

traffic poorly timed traffic signals.  Moving bottlenecks are caused by slow moving 

vehicles that cause disruption in traffic.  The propagation of a congestion wave-front 

from a bottleneck is known as a shockwave.  Shockwaves can be created when platoons 

of vehicles attempt to enter the freeway causing turbulence in the mainline stream of 

vehicles.   

 Lighthill and Whitham (1955) introduced shockwave theory, which describes the 

propagation of different traffic states and provides an analytical method to describe the 

fundamental relationship between speed, flow, and density.  In shockwave theory, 

regions between two traffic states characterized by different speeds, densities, and/or 

flow rates boundary is propagated at speed ω. 

 

Figure 4.  Graphical Representation of Shockwave Speed 
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If one considers a line that connects two traffic regions 1 and 2 in the flow-density 

diagram, then slope of the line represents the speed of the shockwave as determined by: 

 2 1

2 1

q q
k k

ω −
=

−
 (3.14) 

where q2, q1 and k1, k2 are the flows and densities between regions 1 and 2, respectively 

as shown in Figure 4.  
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3.4 Feedback Control Theory 

 Control theory is the study of behavior of dynamical systems with a view towards 

controlling them (Simrock, 2007).  In closed-loop (or feedback) systems, the variable 

being controlled is a function of the output of the system.  Therefore our control variable, 

the metered ramp outflow, should be a function of the state of the system, traffic density 

and queue length (Kachroo & Ozbay, 2003).   

 In describing feedback controls, three components generally make up the 

elementary feedback control system as shown in Figure 5: a plant (the system or process 

to be controlled), a sensor to measure the output of the plant, and a controller to generate 

input to the plant (Doyle, Francis, & Tannenbaum, 1990).   

 

Figure 5.  Components of the Elementary Feedback Control System 

 The model of the system to be controlled, the freeway traffic system, is 

represented by the plant block.  The three outside signals (reference input, external 

disturbances, and sensor noise) are exogenous inputs.  The output from the plant should 

approximate some prespecified function of the reference input, and it should do so in the 
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presence of disturbance, sensor noise, and uncertainty in the plant (Doyle et al., 1990).  

To achieve this purpose, the manipulated plant input is changed at the directive of the 

controller.  One such controller is the widely used feedback Proportional-integral-

derivative controllers (PID) or some variant of them. 

 The proportional-integral-derivative terms are actions that the controller takes in 

response to the feedback error and its basic form is (Astrom & Murray, 2012): 

 
0

( ) ( ) ( )
t

p i d
deu t k e t k e d k
dt

τ τ= + +∫  (3.15) 

where u is the control signal and e is the control error, the difference between the desired  

input r and the actual output y.  Along with the PID controller response, tuning 

parameters known as gains are used to adjust the response.  An explanation of each of the 

above term follows. 

3.4.1 Proportional Response 

 The proportional control term produces an output value that is proportional to the 

error: 

 ( )out pP k e t=  (3.16) 

where kp, a tuning parameter, is the proportional gain constant used to adjust the P-

control response Pout.  The P-term can be thought of as adjusting for the “present” error 

(Araki, 2002).  When the P-gain kp is high, the action taken by the controller results in a 

large change in u for a given change in e.  Conversely, the same is true for a low kp; the 

controllers response to a given error will be small.   
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3.4.2 Integral Response  

 The integral response is proportional to the magnitude and duration of the error 

and can be thought of as the accumulation of the “past” error that should have been 

previously corrected (Araki, 2002).  It is calculated by the integral of the error: 

 
0

( )
t

out iI k e dτ τ= ∫  (3.17) 

where ki, a tuning parameter, is the integral gain constant used to adjust the I-control 

response Iout.  When the I-term is added to the P-term, it accelerates the movement of the 

control action towards the desired input r.  However, because the I-term is the response to 

accumulated past errors, it can cause the present value to exceed the desired input r 

(Bisen & Sharma, 2012). 

The control error for ALINEA is ( ) ( )des oute k o o k= − ; rewriting (2.4) gives: 

 ( ) ( 1) ( )Rr k r k K e k− − =  (3.18) 

Dividing both sides by the sampling time ∆t and taking the limits gives:  

 
0 0

( )( ) ( 1)lim lim R
t t

K e kr k r k
t t∆ → ∆ →

− −
=

∆ ∆
 (3.19) 

Which gives: 

 ( ) ( )Rr t K e k=  (3.20) 

The ALINEA control law is obtained by integration of (3.20) (Kachroo & Ozbay, 2003), 

thus making it an integral-response. 
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3.4.3 Derivative Response 

 The derivative-response has the effect of making changes to the control output 

that are dependent on the rate of change of the process error (i.e., its first derivative with 

respect to time) and is: 

 out d
deD k
dt

=   (3.21) 

where kd, a tuning parameter, is the derivative gain constant used to adjust the D-control 

response Dout.  The derivative-term can be thought of as a “prediction” of future error 

based on the current slope of error (Araki, 2002).  The Proportional-integral-derivative 

control structure is shown below in Figure 6. 

 

Figure 6.  Proportional-Integral-Derivative Control Structure 

3.5 Feedback Coordinated Ramp Metering Control Design 

 The aim of our control law is to maximize the throughput of the freeway sections 

while taking into consideration on-ramp queues.  Considerations for design of the 

feedback controller are not only maximizing throughput and balancing equity for ramp 
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delays, but also coordinating between the two ramps.  The design uses two coordinated 

feedback-based control strategies, D-MIXCROS and C-MIXCROS, presented by 

Gokasar et al. (2013).   

 In these feedback strategies, the coordinated ramp metering problem is expressed 

as a problem of controlling the traffic density on the mainline while minimizing ramp 

queues through weights wi.  The weighting parameters wi determine how much influence 

the mainline freeway density and queue lengths on the ramps should be given.  A model 

for the freeway traffic flow is presented next. 

 The freeway is discretized into 2 sections each of which contains one on-ramp as 

shown in Figure 7 with traffic detectors shown as dashed lines.  

 

Figure 7.  Discretized Freeway with Meter and Traffic Sensors Located 

 A section can be defined as a portion of the freeway between two mainline detectors and 

contains one on-ramp.  As seen in the above figure, the flow out of the first section q1 is 

the flow in for the next section.  Flow in f (veh/hr) represents the flow into section 1 of 

the mainline.  The ramp demand is represented by r1 and r2 and the controlled metered 

∆x1 ∆x2 

q1  q2  

Ramp 1 Ramp 2 

Section 1 Section 2 

r1 r2 

u2 u1 

Flow in f  
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outflow to the mainline is u1 and u2.  The length of sections 1 is ∆x1; length of section 2 is 

∆x2; length of ramp 1 is ∆xr1; length of ramp 2 is ∆xr2, respectively.  In discrete time step 

k, the ramp 1 and ramp 2 queue lengths l1 and l2, and the traffic density ρi of each section 

changes through the equations: 

 

[ ]

( )

[ ]

( )

1 1 1 1
1

1 1 1 1
1

2 2 2 2 1
2

2 1 2 2
2

( 1) ( ) ( ) ( ) ( )

( 1) ( ) ( ) ( )

( 1) ( ) ( ) ( ) ( )

( 1) ( ) ( ) ( )

r

r

Tk k q k u k f k
x

Tl k l k r k u k
x
Tk k q k u k q k
x

Tl k l k r k u k
x

ρ ρ

ρ ρ

+ = + − + +
∆

+ = + −
∆

+ = + − + +
∆

+ = + −
∆

 (3.22) 

where T is the sampling time interval, qi+1 is the downstream flow, and qi is the upstream 

flow.  The first and third equations describe the conservation of vehicles, which holds 

strictly in any case.  The second and fourth equations compute the queue growth.  A 

queue is formed when the ramp demand r exceeds the metered output u.  The control 

design is presented in the proceeding sections.  

3.5.1 Control Objective 

 The objective of the algorithm is to keep vehicle density levels near the critical 

density so as to allow the maximum flow throughput possible while constraining the 

development of on-ramp queues.  With this, ramp metering rates are designed to become 

stricter as the mainline approaches critical density, the threshold between congested and 

uncongested conditions.  The objective of the feedback control design is to make the 

error term go to zero asymptotically: 
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 Lim ( ) 0
k

e k
→∞

=  (3.23) 

Equation 3.23 can be satisfied by use of a proportional-derivative state feedback control 

logic that follows the closed-loop dynamics: 

 ( 1) ( ) 0e k Ke k+ + =  (3.24) 

where K is the control gain, and e is the error represented by the error function: 

 1 1 1 2 1

3 2 2 4 2

( ) ( ) ( )

( ) ( )
cr

cr

e k w k w l k

w k w l k

ρ ρ

ρ ρ

= − +

+ − +
 (3.25) 

where l1,2 are queue lengths on ramps 1 and 2; w1 and w2 are the weighting factors 

assigned to section 1 mainline and ramp 1, respectively with w1 and w2 = 1; w3 and w4 are 

the weight factors assigned to section 2 mainline and ramp 2, respectively with w3 and w4 

= 1; ρ1 is the density of section 1 and ρ2 is the density of section 2; ρcr1 is the critical 

density of section 1 and ρcr2 is the critical density of section 2.   

 If a nonzero weight is given to either section weights w1 or w3 or the ramp queue 

weights w2 or w4, the controller tries to reduce on-ramp queues while attempting to keep 

mainline density near critical.  If zero is given to w2 or w4, then the controller will not 

take into account ramp queues.  This way, the buildup of queues can be handled more 

meticulously and in a proactive manner than a queue flushing or queue override system. 

 The system can be in four regions.  In region 1, the traffic density of both sections 

is greater than the critical density.  The error function in this region is: 

 
( )
( )

1 1 1 2 1

3 2 2 4 2

( ) ( ) ( )

( ) ( )
cr

cr

e k w k w l k

w k w l k

ρ ρ

ρ ρ

= − +

+ − +
 (3.26) 
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Incrementing (3.26) gives: 

 
( )
( )

1 1 1 2 1

3 2 2 4 2

( 1) ( 1) ( 1)

( 1) ( 1)
cr

cr

e k w k w l k

w k w l k

ρ ρ

ρ ρ

+ = + − + +

+ + − + +
 (3.27) 

Using (3.22) here gives: 

 

( )

( )

( )

( )

1 1 1 1 1
1

2 1 1 1
1

3 2 2 2 2 1
2

4 2 2 2
2

( 1) ( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )

( ) ( ) ( )

cr

r

cr

r

Te k w k q k u k f k
x

Tw l k r k u k
x

Tw k q k u k q k
x

Tw l k r k u k
x

ρ ρ

ρ ρ

 + = − + − + + ∆ 
 + + − ∆ 
 + − + + + ∆ 
 + + − ∆ 

 (3.28) 

Rearranging the right-hand side of (3.28) and dropping time index k for brevity gives: 

 

( )

( )

1 1 1 1
1

2 1 1 1 2 1
1 1 1

3 2 2 2 1
2

4 2 2 3 4 2
2 2 2
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ρ ρ

ρ ρ
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   + + + −   ∆ ∆ ∆   
 + − + − + ∆ 
   + + + −   ∆ ∆ ∆   

 (3.29)  

Equation 3.29 is a difference equation and can be written as: 

 ( 1) ( ) ( )e k F k u k+ = +  (3.30) 

where 
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x
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x

Tw q q
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ρ ρ
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 + + ∆ 
 + − + − + ∆ 
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  (3.31) 

and 

 1 2 1 3 4 2
1 1 2 2

( )
r r

T T T Tu k w w u w w u
x x x x

   = − + −   ∆ ∆ ∆ ∆   
 (3.32) 

 In region 2, the traffic density in both sections is less than or equal to the critical 

density.  In region 3, the traffic density of the first section is greater than the critical 

density and less in the second section.  Region 4 has traffic density less than the critical 

density in the first section and greater in the second section (Gokasar et al., 2013; 

Kachroo & Ozbay, 2003).  The derivation of control function in the other three regions is 

not shown but can be found in Kachroo and Ozbay (2003).   

3.5.1.1 Overall Control Law 

 To satisfy the closed-loop dynamics (3.24), the overall control law for the 

coordinated ramp control is: 

 ( ) ( ) ( )u k F k Ke k= − −  (3.33) 

where: 
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 (3.34) 

where “sgn” denotes the signum function and 

 
( )
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1 1 1 2 1
1 1

2 2 3 4 2
2 2

( ) sgn
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r

T Tu k w w u
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T Tw w u
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ρ ρ

 = − − ∆ ∆ 
 + − − ∆ ∆ 

 (3.35)  

Substituting (3.33) into (3.30) satisfies the desired dynamics of (3.24).  The control 

output Equation 3.35 does not give the control laws, but it provides the condition that the 

control variables u1, u2 should satisfy.   

 The feedback, traffic-responsive ramp metering control system can be seen in 

Figure 8.   The reference input signal is the desired traffic density ρcr, which is the 

objective density for the system. 
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Figure 8.  Feedback Control System 

In our traffic system, the freeway flows f and qi and ramp demand ri are disturbances, 

measurable in real-time with detectors, such as inductive loops.  The control law is 

designed as decoupled (D-MIXCROS) or coupled (C-MIXCROS) (Gokasar et al., 2013; 

Kachroo & Ozbay, 2003). 

3.5.2 Decoupled D-MIXCROS 

 In the decoupled setting, the ramp controls are treated independently as isolated 

ramp meter control systems.  The F term in (3.34) is “decoupled” so that F = F1 + F2 

With the time index k added, these become: 

Sensor  
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Freeway 
System 

Controller 

Output ρi, li 
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Decoupling (3.35), the decoupled control law becomes: 
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 (3.37) 

where the error terms are defined: 

 1 1 1 1 2 1

2 3 2 2 4 2

( ) ( ) ( )

( ) ( ) ( )
cr

cr

e k w k w l k

e k w k w l k

ρ ρ

ρ ρ
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 (3.38) 

The application of (3.36) results in the decoupled closed-loop dynamics: 

 1 1

2 2

( 1) ( ) 0
( 1) ( ) 0

e k Ke k
e k Ke k

+ + =
+ + =

 (3.39) 

  



42 

 

3.5.3 Coupled C-MIXCROS 

 In the coupled setting, the ramp and mainline are coordinated through weight 

factors wi and the controllers are coupled between one another through distribution 

factors.  In this scheme, the control effort is divided between the two controllers by 

distribution factors α1 and α2.  The distribution factors α1 and α2 can be thought of as 

providing the communication between the on-ramp systems (Gokasar et al., 2013).  For 

example, if congestion was propagating from the Eagle Road EB on-ramp (controller 2) 

towards the EB loop on-ramp (controller 1), the control effort could be increased at 

controller 1 making it more restrictive. The coupled control law is: 
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 (3.40) 

where α1 + α2 = 1, the error term is defined by (3.25) and 
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3.6 Field Site and Data Collection 

3.6.1 Site Selection 

 Interchanges from Gowen Road to Franklin Road (Canyon County) were 

examined as potential locations for ramp metering.  Average daily traffic volumes on 

ramp interchanges and mainline throughput were examined as well as travel times for the 

corresponding segments.  Volume and travel time data were obtained from the Idaho 

Transportation Department (ITD) and COMPASS, respectively.  Detailed analysis of 

travel time with respect to changes in volume was not performed.  The initial screening of 

interchanges was those with significant ramp volume with respect to mainline/arterial 

volume.  Ramps with no practicable solution due to right-of-way, limited access, and 

freeway-to-freeway connection were eliminated.   

 The connector originating from the downtown area was not selected for these 

reasons.  Gowen Road, Vista Avenue, and Orchard Street interchanges do not have traffic 

volumes that warrant ramp metering.  The Cole-Overland ramp interchange experiences 

average daily traffic of approximately 16,000 vehicles (ITD, 2012) that may either merge 

onto I-84 or I-184.  Additional data is needed to justify metering at this location; 

however, it is believed to be unnecessary due to acceleration lanes of approximately 

2,625 feet and 5,165 feet for the entrances to I-84 and I-184, respectively.   

 A bottleneck condition exists at the area between the Eagle Road EB-loop and EB 

on-ramp.  Eagle Road and Meridian Road have the highest arterial traffic volumes in the 

corridor, occurring north of the interchanges.  At the Eagle Road interchange, the 

presence of traffic signals 1,300 feet apart at St. Luke’s Road and the northern on/off 

ramps can have the potential to cause significant platooning for vehicles entering on the 
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I-84 EB loop and WB on-ramps.  The Eagle Road interchange with EB loop on-ramp 

(Ramp 1) and EB on-ramp (Ramp 2) is shown in Figure 9.  Signals at the southern on/off 

ramps and Overland Road, separated by approximately 850 feet, have the potential to 

cause platooning on the EB on-ramp.   

 

Figure 9.  The Eagle Road Interchange with Ramps 1 & 2 Shown 

 The capacity of a freeway section can be analyzed most precisely at a clearly 

distinguishable bottleneck and therefore any breakdowns occurring can be said to be 

caused by oversaturation of the bottleneck itself (Brilon et al., 2005; Geistefeldt & Brilon, 

2009).  A persistent bottleneck condition occurs in the area at the Meridian Road 

Interchange where the mainline tapers from four lanes to three lanes in the WB direction. 

 An annual performance monitoring report released by COMPASS indicated the 

overall population center for the Treasure Valley was near the intersection of Linder 

Road and Pine Avenue in Meridian; and the employment center was halfway between 

Eagle Road and Cloverdale Road on the railroad corridor in Meridian (COMPASS, 

2011).  Moreover, the report indicated the trends for the overall population center has 

EB On-ramp  
Ramp 2 

Section 1 Section 2 

EB loop  
On-ramp 

Ramp 1 
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drifted westward faster than the employment center increasing the number of vehicle 

miles travelled for commutes.  For these reasons, the Eagle Road interchange’s EB on-

ramps were selected for ramp metering.   

3.6.2 Data Collection and Description 

 Data for traffic volume, occupancy, vehicle classification, and average lane speed 

were not available on I-84 near Meridian Road and Eagle Road interchanges and needed 

to be collected at resolutions previously unavailable.   

 Six radar based (SmartSensor105™ from Wavetronix) sensing devices were 

chosen to capture five-minute averaged volume, speed, and occupancy data from 

November 6 through November 15 in 2013 on the EB direction of I-84 from the Meridian 

Road interchange to the Eagle Road interchange as shown in Figure 10.   

 

Figure 10.  Approximate EB locations of Wavetronix Radar Detectors 
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 Data collection for the WB direction took place from November 20 through 

November 29, 2013.  The locations for WB sensors are below in Figure 11.  Sensors were 

deployed based on knowledge of existing prevailing traffic conditions to capture the 

effects of downstream bottlenecks, exit and entrance ramps, and weaving and merging 

due to ramps.  Shockwave perturbations between bottlenecks and slow-and-go wave 

oscillations were observed in the study area from Meridian Road to Eagle Road, most 

notably.  

 

Figure 11.  Approximate WB locations of Wavetronix Radar Detectors   

Displayed in Figure 12 are 24-hour time-series plots for traffic speeds, flows, and 

densities collected at EB site 6.  At 8:00 AM, the peak of the rush-hour, it is characterized 

by high traffic densities and flows accompanied by significant speed reductions.  In order 

to minimize the turbulence caused from the decreased speeds, the density needs to be 

controlled. 
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Figure 12.  Time-Series Plots for Traffic Speeds, Flows, and Density, EB Site 6 

   In the above example, if the demand were 1632 veh/hr and the speeds were 

desired to be maintained at 52 mph, the traffic density would need to be approximately 

31.4 veh/mi.  By controlling the density, speeds and maximum flows can be maintained.   

 Data collected from Bluetooth sensors were also utilized.  Permanent installations 

of traffic monitoring equipment based on Bluetooth technology are in place throughout 

sections of I-84.  The Bluetooth devices collects and time-stamps media access control 

(MAC) addresses from Bluetooth devices in vehicles traveling on a road and, by 

matching these addresses collected at the two end points, can yield travel times and 

speeds between those points. 
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CHAPTER 4: DLM & KALMAN FILTER SIMULATION 

 R was used to model and forecast traffic speeds and volumes collected from radar 

based sensors.  R was used mainly for parameter estimation of variance of noise 

sequences wt and vt, state matrix Gt, and observation matrix Ft.  Kalman filtering was 

performed initially in R on the DLMs, then completed in MATLAB, where the ramp 

metering controls were constructed.  The data set for this task contains five-minute 

average lane speeds collected from midnight November 11 through noon on November 

14, 2013. 

4.1 R Language and Environment 

 One of the difficulties in formulating the Kalman filter can be determining the 

state and observation matrices and their error covariances.  In fact, in most engineering 

literature, it is common to assume that the model structure is known, except for 

disturbances of the noise and state process.  In time-series analysis, the physical process 

of the underlying states of the dynamic system is often less apparent and what is most 

relevant is the problem of forecasting (Petris et al., 2009).  In this setting, model building 

tends to be more difficult and even when a state-space model is obtained, there can be 

parameters or unknown values remaining in the model.  

 R was used to solve this problem.  R is a free, open-source software programming 

language and environment, mainly used for statistical computing.  Many user-created 

packages exist that allow for specialized modeling, with the focus here being on time-
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series analysis, specifically state-space models.  DLMs were produced to model traffic 

volumes and traffic speeds that were recorded during the radar data collection effort and 

originated from the EB Site 4 Lane 1 (See Figure 10) location. 

4.2 R Model Specification, Parameter Estimation: Traffic Volume 

 Dynamic linear models allow for periodic and seasonal trend components to be 

captured efficiently.  The dlm package provides build functions for creating standard 

types of DLMs including: dlmModARMA for ARMA process; dlmModPoly for nth 

order polynomial DLMs; dlmModReg for linear regression of a dlm; dlmModSeas for 

periodic and seasonal factors; dlmModTrig for representing periodicity with Fourier-

form (Petris, 2009, 2010).  These functions can be combined to create DLMs with those 

various components that particular function represent.  See (Petris et al., 2009; Petris, 

2009) for a complete description. 

 One of the simplest DLMs is the already mentioned random walk (RW) plus 

noise model.  This type of model was constructed in R to model and forecast freeway 

traffic volumes as follows (R code given in Lucida Console font size 10): 

 

( ) {
[ ](

[ ])}

buildvol < - function theta  

dlmModPoly order = 1, dV = theta 1 , 

dW = theta 2

 (4.1) 

The above model represents a random walk plus noise model where dV (analogous to 

(3.4)) represent the unknown variance of the observation noise and dW (analogous to 

(3.3)) represents the unknown variance of the system noise.  By using the 

“function(theta)” argument, one is essentially saying any “theta” that follows is an 

unknown parameter to be estimated with MLE. 
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 Three types of models were constructed in R: a RW with noise, a RW with noise 

and seasonal components, and a RW with Fourier-form seasonal components.  The model 

specification was completed by using build functions that served as skeleton models with 

empty parameters to be later estimated by MLE.  Once the model parameters were fit 

with the MLE of their parameters, the KF algorithm was applied.  The remainder of this 

section describes the MLE and results for the three models and then applies the KF 

algorithm to the fitted model and presents the results. 

4.2.1 Maximum Likelihood Estimation 

 The model specifications and parameter estimation for the DLMs were completed 

in R using the package dlm (Petris, 2010).  This package focuses on Bayesian analysis of 

DLMs.  The package also includes functions for determining the parameters of a DLM 

with MLE and for Kalman filtering.  Estimating unknown parameters in a DLM requires 

numerical techniques that rely on optim, an optimizer that is built-in with R. 

 The function dlmMLE uses the MLE to estimate the unknown parameters 

starting at user defined initial values.  In general, dlmMLE evaluates a user defined 

function build, such as (4.1), and uses it to define the negative loglikelihood function 

(Petris, 2010).  Optim then minimizes the negative loglikelihood function.  In R, this is 

coded: 

 
( ( )

( ))
fitvol < - dlmMLE vol, parm = c 0, 150 , buildvol,

  hessian = T,lower = rep 1e-4
 (4.2) 

where vol is the data set; parm gives the vector of initial values; buildvol is the build 

function (4.1); hessian=T forces optim to return a numerically evaluated Hessian at the 
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minimum and lower (Petris, 2009, 2010) recommends using 1e-4) defines the lower 

bound for the parameter space.   

 It’s recommended to repeat the optimization process multiple times, starting at 

different parameter values and to verify the Hessian of the negative loglikelihood at the 

maximum is positive definite (Petris, 2009, 2010).  He also recommends checking the 

inverse of the Hessian matrix of the negative loglikelihood function at the MLE.  It 

provides an estimate of the asymptotic variance of the MLE where the standard errors can 

be derived from the diagonal elements (Petris, 2009, 2010).  In R, this is coded: 

( )

( )( )
( )( )

( )

[1]modvol < - buildvol fitvol$par  ## Fitted model

[2]fitvol$convergence  ## Check Convergence

[3]drop W modvol   ## System Variance

[4]drop V modvol   ## Observation Variance

[5]hs < - hessian function x  dlmLL vol, b ( ))(( )
( )( )

( )
( )( )

uildvol x , fitvol$pa)  

[6]all eigen hs, only.values = TRUE $values > 0  ## Positive Definite?

[7]aVar < - solve hs  ##  Asymptotic Variance / Covariance Matrix

[8]sqrt diag aVar   ## Standard Errors

 

where comments follow ##.  Line [1] represents the fitted model with the MLE of the 

parameters; [2] checks convergence of the fitted model; [3]-[4] display the system and 

observation variances; [5] – [8] checks the asymptotic variance of the MLE and standard 

errors.  The results of [1] – [8] are below where the symbol > designates a line of code 

entered into R and the response of that command (if any) is followed by [ans]: 
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( )

( )
( )( )

( )( )

[ ]

[ ]

[ ]

ans

ans

ans

> modvol < - buildvol fitvol$par  ## Fitted model

> fitvol$convergence ## Check Convergence

TRUE

> drop W modvol ## System Variance

11.84381

> drop V modvol  ## Observation Variance

 61.15916

> hs < - h

 

essi ( ) ( )( )( )
( )( )

( )
( )( )

[ ]ans

an function x  dlmLL vol, buildvol x , fitvol$pa

> all eigen hs, only.values = TRUE $values > 0  ## Positive Definite?

 TRUE

> aVar < - solve hs  ## Asymptotic Variance / Covariance Matrix

> sqrt diag aVar  ## Standard E

[ ]ans

rrors

 2.662735  1.234964  

4.2.2 Seasonal Models 

 Models that show a cyclical behavior or “seasonality” can be modeled by their 

seasonal factors or a Fourier-form representation of the seasonality.  An example of what 

a seasonal time-series model may look like in transportation engineering is the periodic 

behavior of rush hour traffic.  In fact, recurrent congestion conditions could be 

considered to be daily components of a weekly seasonal pattern.  A seasonal model can 

be thought of having s periods.  In the above example, if the observation period is one-

hour, the recurrent congestions may occur every 12 periods, or every 12 hours.  Meaning 

similar congestion conditions may appear at 7:00 AM and 7:00 PM every day.  In R, this 

is coded into the build function: 
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( ) {
[ ](

[ ])
( )}

 < - function theta  

dlmModPoly order = 1, dV = theta 1 , 

dW = theta 2

buildvolseas

+

dlmModSeas 12

 (4.3) 

Finding the MLE of unknown parameters in (4.3) in R: 

 
( ( )

( ))
fitvolseas < - dlmMLE vol, parm = c 0, 150 , 

buildvolseas, hessian = T,lower = rep 1e-4
 (4.4) 

Fitting the model with the MLE of parameters, verifying convergence, viewing the 

system and observation variance, checking the Hessian positive definite, and standard 

errors gives: 

( )

( )
( )( )

( )( )

[ ]

[ ]

ans

ans

> modvolseas < - buildvolseas fitvolseas$par  ## Fitted model

> $convergence ## Check Convergencefitvolsea

 0 TRUE

> drop W modvolseas ## System Variance

 11.66658

> drop V modvolseas  ## Observation V

s

 

arianc

( ) ( )( )( )
( )( )

( )

[ ]

[ ]

ans

ans

e

 57.30299

> hs < - hessian function x  dlmLL vol, buildvolseas x , fitvolseas$pa

> all eigen hs, only.values = TRUE $values > 0  ## Positive Definite?

 TRUE

> aVar < - solve hs  ## Asymptotic Variance / Covarianc

( )( )
[ ]ans

e Matrix

> sqrt diag aVar  ## Standard Errors

 2.648271  1.235673  

 The Fourier-form representation usually allows for a more realistic representation 

of real-world seasonal phenomena; although, more modeling parameters are needed.  A 

seasonal time-series might be represented as Yt = g(t – 1) + vt, where g(⋅) is a periodic 



54 

 

function and vt is the observation noise (Petris et al., 2009).  Consider a zero-mean 

periodic function g(t) having even period s, which can be written as: 

 
/2

1
( ) cos( ) sin( )

s

j j
j

jth harmonic

g t a t j b t jω ω
=

= +∑
  (4.5) 

where ωj = 2πj/s are the Fourier frequencies.  In R, this is coded into the build 

function: 

 

( ) {
[ ](

[ ])
( )}

 < - function theta  

dlmModPoly order = 1, dV = theta 1 , 

dW = theta 2

buildvolTrig

+

dlmModTrig s = 12,q = 6

 (4.6) 

where s is the number of periods and q is the number of harmonics.  Finding the MLE of 

unknown parameters in (4.6) in R: 

 
( ( )

( ))
fitvolTrig < - dlmMLE vol, parm = c 0, 150 , 

buildvolTrig, hessian = T,lower = rep 1e-4
 (4.7) 

Fitting the model with the MLE of parameters, verifying convergence, viewing the 

system and observation variance, checking the Hessian positive definite, and standard 

errors gives: 
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( )

( )
( )( )

( )( )

[ ]

[ ]

ans

ans

> modvolTrig < - buildvolTrig fitvolTrig$par  ## Fitted model

> rig$convergence ## Check Convergence

 0 TRUE

> drop W modvolTrig ## System Variance

 11.66042

> drop V modvolTrig  ## Observation 

fitv

Var

olT

 

ianc

( ) ( )( )( )
( )( )

( )

[ ]

[ ]

ans

ans

e

 60.21902

> hs < - hessian function x  dlmLL vol, buildvolTrig x , fitvolTrig$pa

> all eigen hs, only.values = TRUE $values > 0  ## Positive Definite?

 TRUE

> aVar < - solve hs  ## Asymptotic Variance / Covarianc

( )( )
[ ]ans

e Matrix

> sqrt diag aVar  ## Standard Errors

 2.610215 1.202532  

4.2.3 KF Results: Traffic Volume RW Model  

 The fitted model modvol is: 

 

[1]
[11.844]
[1]
[61.159]

=
=
=
=

G
W
F
V

 (4.8) 

where G is the system matrix and W is its noise variance; F is the observation matrix and 

V is its noise variance.  The Kalman filter recursive algorithm was applied to (4.8) and 

the results of the one-step-ahead forecasts are shown in Figure 13. 
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Figure 13.  Kalman Filter Applied to Traffic Volume Random Walk with Noise 
Model 

The top plot of Figure 13 is the entire filtering process of observed data and one-step 

ahead forecasts.  The plot clearly shows 6 days of observations where one day is 288 

five-minute time steps.  As shown in the second plot, the filter converged to the 

approximate observed state at time index (TI) 15.  The MLE of the state noise variance 

was able to track the observed state relatively well; however, when large changes in 
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measurements occur rapidly, the filter’s response is limited.  In general, this limitation is 

controlled by the ratio of the measurement noise to state noise, known as the signal-to-

noise ratio.   

 After a prediction is made a priori, a measurement is taken and compared with 

the estimate and an innovation, or residual, is generated.  Although the innovation is an 

error, it is aptly termed an innovation because of the fact that the new data reveals 

information that the filter uses to improve its estimates.  The amount of corrective action 

taken in response to this innovation is weighted by the Kalman gain.  Consequently, the 

Kalman gain depends upon the covariances of errors between the predicted and actual 

state and measurement. 
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4.2.4 KF Results: Traffic Volume RW with Seasonal Component Model  

 The fitted model modvolseas is: 

 

1 0 0 0 0 0 0 0 0 0 0 0
0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0

11.903 0 0 0 0 0

=

=

 
 
 
 
 
 
 
 
 
 
 
 
  

G

W

  

[ ]

0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0

[

0 0 0 0 0

55.747]

=

=

 
 
 
 
 
 
 
 
 
 
 
 
  

F

V

 (4.9) 

The Kalman filter recursive algorithm was applied to (4.9) and the results of the one-step-

ahead forecasts are shown in Figure 14.  A seasonal component was added to the RW 

plus noise model to capture the effects of recurring traffic.  As seen in the top plot of 

Figure 14, the traffic clearly exhibits patterns that repeat daily.  A seasonal component 

was added to the RW model to exploit this regularity; however, the seasonal component 

did not improve the model. 

 The seasonal component is specified by describing the frequency at which this 

regularity is occurring.  Obviously, with five-minute data, a frequency of 288 periods 
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would suggest that the traffic was regularly occurring every 24 hours.  The computing 

resources were not available to model this period since the size of the state G and noise 

W matrices would have been 288 x 288.  A 12-hour period was selected to attempt to 

capture the seasonal component as shown in Figure 14. 

 
Figure 14.  Kalman Filter Applied to Traffic Volume Random Walk with 12-Period 

Seasonal Component Model 
  

Five-Minute Intervals

ve
hi

cl
e 

v

500 1000 1500

0
40

80
12

Five-Minute Intervals

ve
hi

cl
e 

vo

0 20 40 60 80 100

0
40

80

Five-Minute Intervals

ve
hi

cl
e 

vo

100 120 140 160 180 200

0
40

80

Five-Minute Intervals

ve
hi

cl
e 

vo

900 920 940 960 980 100

0
40

80

Measured One-Step Ahead Forecasts  



60 

 

4.2.5 KF Results: Traffic Volume RW with Fourier-Form Model 

 The fitted model modvolTrig is: 

 

1 0 0 0 0 0 0 0 0 0 0 0
0 0.87 0.5 0 0 0 0 0 0 0 0 0
0 0.5 0.87 0 0 0 0 0 0 0 0 0
0 0 0 0.5 0.87 0 0 0 0 0 0 0
0 0 0 0.87 0.5 0 0 0 0 0 0 0
0 0 0 0 0 2.8 16 1 0 0 0 0 0
0 0 0 0 0 1 2.8 16 0 0 0 0 0
0 0 0 0 0 0 0 0.5 0.87 0 0 0
0 0 0 0 0 0 0 0.87 0.5 0 0 0
0 0 0 0 0 0 0 0 0 0.87 0.5 0
0 0 0 0 0 0 0 0 0 0.5 0.87 0
0 0 0 0 0

e
e

−

−
−

− −
−
− −

−
− −

=G

0 0 0 0 0 0 1

11.760 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

−

=

 
 
 
 
 
 
 


 
 








 
 
 












W

[ ]
[ ]
1 1 0 1 0 1 0 1 0 1 0 1

59.395










=




=



F

V

 (4.10) 

The Kalman filter recursive algorithm was applied to (4.10) and the results of the one-

step-ahead forecasts are shown in Figure 15. 
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Figure 15.  Kalman Filter Applied to Traffic Volume Random Walk with Fourier-
form Seasonal Component Model 

 Since any periodic function on the real numbers can be approximated by a sum of 

harmonic functions, known as Fourier sums, seasonality can be modeled by a 

combination of sine waves (Petris et al., 2009).  This seasonal representation is known as 

the Fourier-form and usually allows for a better representation of the seasonality in real-

world phenomena (Petris et al., 2009).  The model was not an improvement over the RW 
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plus noise model; however, the results for this representation are given for demonstrative 

purposes only. 

4.3 R Model Specification, Parameter Estimation: Traffic Speeds 

 The methodology presented in the previous section to model traffic volumes was 

applied to the traffic speeds data and not shown to avoid redundancy.  A random walk 

plus noise model was used as the base model, then seasonal components were added as 

seasonal factors and as Fourier-form.  The data used for the traffic speed modeling effort 

originated from the EB Site 4 Lane 1 (See Figure 10) location.  The data, containing 720 

observations, was five-minute average lane speeds collected from midnight November 12 

through noon on November 14, 2013.  

 A random walk was constructed to model and forecast freeway traffic speeds 

using the build function as follows: 

 

( ) {
[ ](

[ ])}

buildspd1 < - function theta  

dlmModPoly order = 1, dV = theta 1 , 

dW = theta 2

 (4.11) 

4.3.1 Maximum Likelihood Estimation 

 The parameters of the model (4.11) were estimated with MLE as follows: 

 
( ( )

( ))
fitspd1 < - dlmMLE spd1, parm = c .2, 25 , buildspd1,

  hessian = T,lower = rep 1e-4
 (4.12) 

Fitting the model with the MLE of parameters, verifying convergence, viewing the 

system and observation variance, checking the Hessian positive definite, and standard 

errors gives: 
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( )

( )
( )( )

( )( )

[ ]

[ ]

[ ]

ans

ans

ans

> modspd1 < - buildspd1 fitspd1$par  ## Fitted model

> spd1$convergence ## Check Convergence

 0 TRUE

> drop W modspd1 ## System Variance

 9.130866

> drop V modspd1  ## Observation Variance

 4.36712

fit

 

5

> hs ( ) ( )( )( )
( )( )

( )
( )( )

[ ]ans

 < - hessian function x  dlmLL spd1, buildspd1 x , fitspd1$pa

> all eigen hs, only.values = TRUE $values > 0  ## Positive Definite?

 TRUE

> aVar < - solve hs  ## Asymptotic Variance / Covariance Matrix

> sqrt diag aVar  #

[ ]ans

# Standard Errors

 0.7491558 1.1587165  

4.3.2 Seasonal Models 

 Traffic speeds are less likely to exhibit trends that can be modeled than traffic 

volumes.  A similar volume of traffic may travel a road on any given day from week to 

week, but not at the same speed.  This is why traffic speeds are a good indication of the 

quality of flow that is occurring in the traffic stream.  The data was fit to one-hour 

frequency periods, rather than five-minute, to attempt to capture some seasonality that is 

not possible in 5-minute observations.  A seasonal model was fit to traffic speeds in R: 

 

( ) {
[ ](

[ ])
( )}

 < - function theta  

dlmModPoly order = 1, dV = theta 1 , 

dW = theta 2

buildspdseas

+

dlmModSeas 12

 (4.13) 

Finding the MLE of unknown parameters in (4.13) in R: 
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( ( )

( ))
fitspdseas < - dlmMLE spd2, parm = c .1, 25 , 

buildspdseas, hessian = T,lower = rep 1e-4
 (4.14) 

Fitting the model with the MLE of parameters, verifying convergence, viewing the 

system and observation variance, checking the Hessian positive definite, and standard 

errors gives: 

( )

( )
( )( )

( )( )

[ ]

[ ]

ans

ans

> modspdseas < - buildspdseas fitspdseas$par  ## Fitted model

> spdseas$convergence ## Check Convergence

 0 TRUE

> drop W modspdseas ## System Variance

 10.65023

> drop V modspdseas  ## Observation Var

fit

 

ianc

( ) ( )( )( )
( )( )

( )

[ ]

[ ]

ans

ans

e

 1.475796

> hs < - hessian function x  dlmLL spd2, buildspdseas x , fitspdseas$pa

> all eigen hs, only.values = TRUE $values > 0  ## Positive Definite?

 TRUE

> aVar < - solve hs  ## Asymptotic Variance / Covarian

( )( )
[ ]ans

ce Matrix

> sqrt diag aVar  ## Standard Errors

 0.8018066 1.3085438  

The Fourier-form representation of seasonal components was coded into the build 

function in R as follows: 

 

( ) {
[ ](

[ ])
( )}

 < - function theta  

dlmModPoly order = 1, dV = theta 1 , 

dW = theta 2

buildspdTrig

+

dlmModTrig s = 12,q = 6

 (4.15) 

where s is the number of periods and q is the number of harmonics.  Finding the MLE of 

unknown parameters in (4.15) in R: 
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( ( )

( ))
fitspdTrig < - dlmMLE spd1, parm = c .1, 25 , 

buildspdTrig, hessian = T,lower = rep 1e-4
 (4.16) 

Fitting the model with the MLE of parameters, verifying convergence, viewing the 

system and observation variance, checking the Hessian positive definite, and standard 

errors gives: 

 

( )

( )
( )( )

( )( )

[ ]

[ ]

ans

ans

> modspdTrig < - buildspdTrig fitspdTrig$par  ## Fitted model

> spdTrig$convergence ## Check Convergence

 0 TRUE

> drop W modspdTrig ## System Variance

 9.167269

> drop V modspdTrig  ## Observation Var

fit

 

ianc

( ) ( )( )( )
( )( )

( )

[ ]

[ ]

ans

ans

e

 4.201806

> hs < - hessian function x  dlmLL spd1, buildspdTrig x , fitspdTrig$pa

> all eigen hs, only.values = TRUE $values > 0  ## Positive Definite?

 TRUE

> aVar < - solve hs  ## Asymptotic Variance / Covarian

( )( )
[ ]ans

ce Matrix

> sqrt diag aVar  ## Standard Errors

 0.7445461 1.1636410  

4.3.3 KF Results: Traffic Speeds RW Model 

 The fitted model modspd1 is: 

 

[1]
[9.13]
[1]
[4.37]

=
=
=
=

G
W
F
V

 (4.17) 

The Kalman filter recursive algorithm was applied to (4.17) and the results of the one-

step-ahead forecasts are shown in Figure 16.  The KF results are excellent and converge 
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within three intervals.  The model is able to track the measurements exceptionally even in 

speed reductions of 35 mph occurring in a 15 minute period as shown at TI 665 to TI 

668.  The fact that the drop in speed occurred over 15-minutes is insignificant; the fact 

that it occurred over three observations without much error is.  Another words, the 

sampling time is arbitrary compared to the intervals it occurred over. 

 

Figure 16.  Kalman Filter Applied to Traffic Speed Random Walk with Noise Model 
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4.3.4 KF Results: Traffic Speeds RW with Seasonal Component Model  

 The fitted model modspdseas is: 

 

1 0 0 0 0 0 0 0 0 0 0 0
0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0

10.65 0 0 0 0 0 0

=

=

 
 
 
 
 
 
 
 
 
 
 
 
  

G

W

  

[ ]

0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

1

1 1 0 0 0 0 0 0 0 0 0 0

[ .48]

=

=

 
 
 
 
 
 
 
 
 
 
 
 
  

F

V

 (4.18) 

The Kalman filter recursive algorithm was applied to (4.18) and the results of the one-

step-ahead forecasts are shown in Figure 17.  The data was converted into one-hour 

intervals, and although not representative of real-world, the goal was to capture any 

seasonal patterns that may have existed.  Unexpectedly, the signal-to-noise ratio was the 

largest, thus the model had the greatest adaptive capabilities of the three speed models. 

The signal-to-noise ratios were similar for the RW, with 2.09, and the Fourier-form, with 

2.29, models.  
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Figure 17.  Kalman Filter Applied to Traffic Speed Random Walk with Seasonal 
Component Model 
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4.3.5 KF Results: Traffic Speeds RW with Fourier-Form Model 

The fitted model modspdTrig is: 
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(4.19) 

The Kalman filter recursive algorithm was applied to (4.19) using five-minute interval 

data and the results of the one-step-ahead forecasts are shown in Figure 18. 
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Figure 18.  Kalman Filter Applied to Traffic Speeds Random Walk with Fourier-
form Seasonal Component Model Five-Minute Frequency Data 

4.4 Results Analysis 

 The DLMs constructed for the modeling of traffic volume all performed 

exceptionally well with Fourier-form seasonal component model having the smallest 
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k
k

RMSEP
N =

×= ∑y   (4.20) 

and the Mean Absolute Deviation (MAD): 

 
1

1
k

k

N

N
MAD

=

= ∑ y  (4.21) 

where N is the number of observations, and ỹk is the residual.  

The performance statistics for the traffic volume DLMs can be found in Table 4.1. 

Table 4.1.  DLM Volume Models Performance statistics 

Model MAD RMSEP 

Random Walk with Noise 7.08 9.74 

RW with Seasonal Component 7.64 10.43 

RW with Fourier-form 7.59 10.91 
 

As seen in Table 4.1, the RW with noise model performed better than the other two 

models.  It should be noted that these statistics are not used for any other purposes than 

ranking the models among one another.   

The performance statistics for the traffic speeds DLMs can be found in Table 4.2. 

Table 4.2.  DLM Speed Models Performance statistics 

Model MAD RMSEP 

Random Walk with Noise 3.00 3.19 

RW with Seasonal Component 3.53 3.78 

RW with Fourier-form 3.70 4.77 
 

As seen in the above table, the RW model performed better than the other two models. 
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 The R environment provided a platform to model data from traffic speeds and 

traffic volumes.  The results from the DLM and KF models were used as the beginning 

point for the matrices used in MATLAB, described in the next section.  The RW plus 

noise traffic and speed models were chosen for this task.  The R file, Section_4.2.R, for 

the traffic volume DLMs and KF, can be found in Appendix C.  The file, Section_4.3.R, 

contains the R code for the traffic speed DLMs and KF and can be found in Appendix D. 
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CHAPTER 5: PREDICTION & CONTROL INTEGRATION 

 This chapter combines, in MATLAB, the Kalman filter algorithm presented in 

Section 3.2 with the control logic presented in Section 3.5.  The KFs role is to recursively 

forecast the traffic state variables to be used in the control scheme.  The traffic state can 

be represented by variables that describe the state of the freeway system such as traffic 

flow, speed, density, or occupancy.  The integration of the KF with the ramp meter 

control logic completes the ramp meter algorithmic scheme which is proactive to changes 

in freeway conditions by controlling a forecasted state. 

 Numerical implementation of the KF generates numerical errors, even when the 

optimal filter is utilized – e.g., due to round-off errors (Bucy & Joseph, 2005).  Joseph 

(Bucy & Joseph, 2005) suggested a form for the error covariance update that avoids this, 

although, at the expense of computational burden, this form was used in our Kalman 

filtering routine.  The Joseph-form error covariance estimate (a posteriori): 

 ( ) ( )k|k | 1
T

k k k k k k k k k
T

−= − − +P I K F P I K F K R K  (5.1) 

where I is and identity matrix with dimensions equal to the length of the observation 

matrix (or vector).  Equation 5.1 was used in place of the posteriori covariance Equation 

3.11 to avoid numerical errors associated with round-off. 
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5.1 Integration Methodology 

 The KF makes predictions based on the freeway system output (i.e., the state of 

the traffic) for each sections density ρi and the on-ramp queue lengths li.  The queue 

lengths are estimated by the KF because they are used by the state feedback controller in 

the calculation of the metered flow ui.  Also, there is continuity of inputs and outputs 

between algorithms, meaning the output from the KF is feeding the input of the 

controller.  The KF compares its prediction with the system outputs, obtained from 

roadway sensors, and the controller compares its error signal based on the difference in 

the KF output and reference signal.  The integration of the KF and the control algorithm 

is represented in a block diagram in Figure 19.   

 

Figure 19.  Kalman Filter and Control System Block Diagram 

 The error term for the controller is a function of the mainline density ρ and queue 

length l.  However, since the reference input for the controller is the critical density ρcr 
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state feedback logic calculates the error as a function of the absolute value of (ρcr – ρi) 

and the queue length li given by: 

 1 1 1 2 1

3 2 2 4 2

( ) ( ) ( )

( ) ( )
cr

cr

e k w k w l k

w k w l k

ρ ρ

ρ ρ

= − +

+ − +
 (5.2)  

where the queue length is calculated from the difference in measurable disturbances ri 

and the controllers output ui, plus the previous time steps queue length.  Therefore, the 

“state” of the freeway system is used in the feedback loop to adjust the metering rate ui.  

Clearly, the weighting factors determine the significance given to the mainline sections or 

ramps through (5.2).   

 The action taken by the controller to adjust the control output based on the error is 

proportional-derivative (PD), as described in Section 3.4.  The controller’s block diagram 

for the PD action is shown in Figure 20. 

 

Figure 20.  Proportional-Derivative Controller Action 

 The integration of the prediction algorithm and control logic can be thought of as 

the complete ramp metering algorithmic scheme.  The complete ramp meter scheme 

includes the detectors that collect traffic data both on the mainline and the on-ramps, the 

ramp meter signal actuators, and the algorithmic scheme. 
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5.2 MATLAB Programming: Kalman Filter & Extended Kalman Filter 

 The observation vector consisted of density measurements from EB sites 5 and 6 

that were calculated from flow (veh/hr) and speed (mph) measurements.  The 

measurements recorded at site 5 were assumed to correspond to the density of section 1, 

containing the Eagle Road EB loop on-ramp (Ramp 1) as shown in Figure 21.  The 

measurements recorded at site 6 were assumed to correspond to the density of section 2, 

containing the Eagle Road EB on-ramp (Ramp 2).  These measurements can be collected 

in real-time with roadway detectors, shown below by the blue dashed lines. 

 

Figure 21.  Linearized Freeway System with Radar Sensor’s Locations 

5.2.1 Kalman Filter 

 The discrete-time Kalman filter performs the recursive prediction-correction 

estimation.  The methodology present in Sections 3.2, 4.2, and 4.3 were numerically 

programmed into MATLAB.  A Kalman filter was conceptualized and programmed as a 

“dual-state” estimation algorithm, computing one-step ahead densities at Section 1 and 

Section 2 (as shown in Figure 21).  One-step ahead refers to the next discrete time k+1 
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prediction in which some time interval, Δt, has lapsed.  The discrete time step from k to 

k+1 is usually equal to the sampling time (T) where kT = Δt.   

 The dual-state Kalman filter matrices were programmed in MATLAB as: 

 

1 0
0 1

3.7330 0
0 5.6221

1 0
0 1

1.1034 0
0 2.8308

k

k

k

k

 =   
 =   
 =   
 =   

G

Q

F

R

 (5.3)  

where Gk is the state design matrix, Qk is the variance of the state noise wk, Fk is the 

observation matrix, and Rk is the variance of the observation noise vk.  The parameters of 

the model were fitted in R using MLE with similar methodology as outlined in Section 

4.2.1.  The filter was initialized with the following state process matrix x0 and its error 

covariance P0: 

 
0

0

25
35

15 0
0 10

 =   
 =   

x

P
 (5.4) 

The initial state and error matrices (5.4) were estimated from EB site 5 and site 6 radar 

data.  In MATLAB, the Kalman filter recursions were programmed rather instinctively 

with a “for-loop”: 
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( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( )

3.5

3.6

3.7

3.9

3.10

∗

∗ ∗

∗

∗ ∗ ∗

for ii= 1:length flow5

    xpred = G x_hat;  

       predrho ii,: = xpred :,1 '; 

    ppred = G pplus G'+Q;   

    y_hat = meas ii,: '-F xpred; 

       resid ii,: = y_hat'; 

    K = ppred F' / F ppred F'+ R ; 

  

( ) ( )( ) ( )( )5.1

∗

∗ ∗ ∗ ∗ ∗ ∗

 x_hat = xpred+K y_hat; 

    pplus = eye 2 -K F ppred eye 2 -K F '+K R K';

end

 

where the equation number in the left margin corresponds to those found herein.   

 To build a suitable KF, there are four tuning parameters that are determined prior 

to the filters implementation (Saha, Goswami, & Ghosh, 2013).  These are the initial state 

estimate x0 and the three noise covariance matrices: the initial state estimation error 

covariance P0, the state noise covariance Qk, and the measurement noise covariance Rk.  

Since x0 and P0 change after the first iteration of the algorithm, the state and the 

measurement noise covariances Qk, Rk are more critical in tuning.  Subsequently, the 

covariance Rk can be determined from knowledge of the sensors characteristics so the 

state noise covariance Qk is considered to be the most critical tuning parameter (Saha et 

al., 2013). 

5.2.2 Extended Kalman Filter 

 The Kalman filter is only optimal under certain conditions.  The process being 

estimated is assumed to be a linear dynamical system driven by stochastic processes in 

the presence of noise.  The noise corrupting the system and its measurements are 

assumed to be Gaussian, white noise processes, and independent, or not correlated in 
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time.  Most processes occurring in the real-world violate one or both of these 

assumptions; however, there are justifications in relaxing these assumptions.  For 

example, if the Gaussian assumption is removed, the Kalman filter can still be the best 

minimum error variance filter (Maybeck, 1982).   

 Other variants of the Kalman filter exist such as the Extended Kalman filter 

(EKF), a non-linear estimator.  An EKF was constructed where the nonlinear state and 

observation models were described by: 

 ( )1 1k k kf − −= +x x w  (5.5) 

and 

 ( )k k kh= +y x v  (5.6) 

where f(∙) and h(∙) are nonlinear functions and vk and wk are Gaussian independent white 

noise sequences, as in the KF.   

 The EKF is similar to the KF except that the nonlinear functions f(∙) and h(∙) 

cannot be used directly for estimation, instead, their partial derivatives, known as 

Jacobian matrices are used.  The state and observation matrices are defined by the partial 

derivative Jacobians (which are not given in vector notation to distinguish from previous 

KF equations) by: 

 
1| 1

1
ˆ k k

k
fF

− −

−

∂
=
∂ xx

 (5.7) 

and 
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| 1ˆ k k

k
hH

−

∂
=
∂ xx

 (5.8) 

The state estimate (a priori): 

 ( )| 1 1| 1ˆ ˆk k k kf− − −=x x  (5.9) 

Error covariance estimate (a priori): 

 | 1 -1 1| 1 -1k k k k k k kF F− − −= +P P Q  (5.10) 

where Fk-1 is the Jacobian of function f(∙) with respect to x. 

Measurement innovation (or residual): 

 ( )| 1ˆk kk kh −= −y y x  (5.11) 

The innovation covariance:  

 | 1
T

k k k kk kH H−= +S P R  (5.12) 

Kalman filter gain: 

 1
| 1

T
k k k k kH −

−=K P S  (5.13) 

Updated state estimate (a posteriori): 

 | | 1ˆ ˆk k k k k k−= +x x K y  (5.14) 

Updated error covariance estimate (a posteriori): 

 | | 1 | 1k k k k k k k kH− −= −P P K P  (5.15) 

The EKF model were initialized with the following state, error covariance, and noise 

matrices in MATLAB: 
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 (5.16) 

The first and third parameters for x̂ were approximated from the KF estimated densities.  

The second and fourth parameters for x̂, representing queue length, were necessary for 

the algorithm to converge and considered a reasonable initial queue length.  To determine 

the nonlinear function f(⋅) for the state process, a model was determined from 

Greenshields et al. (1935) model for speed and the fundamental traffic Equation (3.12): 

 1,3
1,2 1,2 1,3

ˆˆ 1
rhom

q vf  = − 
 

xx  (5.17) 

where x̂1,3 is the section 1 and section 3 density, from the predicted state vector x̂; vf1,2 

and rhom as previously defined.  The nonlinear function f(⋅) is achieved by substituting 

q1,2 (5.17) into (3.22), and substituting the state vector x̂2,4 in for queue lengths l1,2 into 

(3.22), which gives: 

 ( )

( )

1

1
1 1 1

1

2 1 1

31
3 2 1 2 3

2

4 2 2

ˆˆ ˆ 1
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ˆ
ˆˆˆ ˆ ˆ 1
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ˆ

f

T xx flow vf x
x r

x T ramp u
T xxx vf x vf x
x r r

x T ramp u

=

   + − −   ∆    
+ − 

    + − −     ∆ −     
+ − 

 (5.18) 
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where flow1 is the flow f represented in Equation (3.22) with the Jacobian for the state 

process (5.18) given by: 

 

11

1 21 2

1 1 rhomrhom 1
1
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0 1 0 0
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 (5.19) 

and the Jacobian of the measurement: 

 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

H

 
 

=  
 
  

 (5.20) 

As in the KF, the EKFs Q and R matrices determines to a large extent the behavior of the 

EKF.  Generally, the higher the standard deviation (SD) of the measurement noise 

compared to the state noise, the lower the filter gain.  A lower filter gain results the 

measurements y(k) having a lower impact of on | 1ˆ k k−x  and vice versa (Wang & 

Papageorgiou, 2005).  
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5.3 MATLAB Programming: Ramp Meter Control Files 

 The control logic presented in Section 3.5 was coded into MATLAB.    

Obviously, traffic jams are unavoidable when traffic exceeds the physical limitations of 

the freeway system or external conditions, such as weather or incidents play a role.   

 In this study, the radar data was collected by lane.  However, a general case was 

established by considering Lane 1 data only, the right-most lane in to which on-ramps 

merge, or to which they are adjacent to.  This was a reasonable starting point because it 

was assumed most interactions with the on-ramp and freeway section take place at the 

interface between the merge or where interactions occurring between them, such as 

weaving and merging, are facilitated through. 

 The ramp meter control files were created in MALAB as separate m-files 

(MATLABs file-type).  The main file, rampmeter_runfile.m, contains the user inputs: 

gain regulator parameters, weighting factors, any other known parameters, and initial 

values.  This is the main file that “calls” the other files that contain functions: 

kalman_pred.m, ramp1_meter.m, and ramp2_meter.m.  Functions in MATLAB are 

custom programs that accept user inputs and return outputs, created by the user to 

perform a specific task.  The function kalman_pred.m computes the forecasted system 

dynamics for the section density ρi(k+1) and queue length li(k+1).  Ramp1_meter.m and 

ramp2_meter.m are the on-ramp metering control logic files that controls the release of 

vehicles to the mainline freeway.  The main file also loads the data containing the radar 

measurements at each section (analogous to inductive loop data).  The data file contained 

measurements for traffic flows f and qi, ramp 1 and 2 demand volumes r1 r2., average 

speeds, and the calculated density for sections 1 and 2.  
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 The feedback gain parameters, mainline and ramp weighting factors, and other 

known parameters are shown in Tables 5.1 through 5.3.  The parameters L1, L2, RL1, 

and RL2 of Table 5.1 are measurable parameters.  The remaining parameters were 

determined from the fundamental diagrams of the measured radar data, provided in 

Appendix E Figure 42 and Figure 43.  Because of relatively few observations in the 

congested zone, lanes 1 through 4 were included in those plots.  

Table 5.1.  Known Parameters for Ramp Meter Run-File 

L1 0.298 Length of Freeway Section 1 (mi) 
L2 0.391 Length of Freeway Section 2 (mi) 

RL1 0.38 Length of Ramp 1 EB loop 
RL2 0.29 Length of Ramp 2 EB On-Ramp 
rhom 110 Jam Density (veh/mi) 
rhoc1 33 Critical Density Section 1 (veh/mi) 
rhoc2 41 Critical Density Section 2 (veh/mi) 
vf1 75 Free-Flow Speed Section 1 (mph) 
vf2 62 Free-Flow Speed Section 2 (mph) 
T 5/60 Time-Step (hr) 

 

Table 5.2.  Initial Regulator Gains for Feedback Ramp Meter Control 

dcgain 0.40 Decoupled Gain 
ccgain 0.50 Coupled Gain  
alpha1 0.65 Distribution Factor Ramp 1 
alpha2 0.35 Distribution Factor Ramp 1 

 

Table 5.3.  Weighting Factors for Mainline and Ramp Sections 

w1 0.35 Mainline Section 1 
w2 0.65 Ramp 1 EB Loop 
w3 0.35 Mainline Section 2 
w4 0.65 Ramp 2 EB On-Ramp 
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rampmeter_runfile.m, kalman_pred.m, ramp1_meter.m, and ramp2_meter.m files 

can be found in the Appendix A: MATLAB Ramp Meter Control M-Files. 

5.4 Simulation: KF & Decoupled Feedback Control Integration  

 Simulations were run on the decoupled and coupled control logic.  The initial 

parameters for the decoupled control scheme are shown in Tables 5.1 through 5.3.  The 

KF one-step-ahead predictions and measured sensor data for section 1 Time Interval (TI) 

0 – 500 (where a TI is five-minutes) are shown in Figure 22; TI 500 – 1000 are shown in 

Figure 23.  The KF one-step-ahead predictions and measured sensor data for section 2, TI 

1000 – 1500, are shown in Figure 24; TI 1500 – 2000 are shown in Figure 25.  The KF 

had excellent results and was able to track the density observations throughout the length 

of the simulation. 

  

Figure 22.  Kalman Filter Section 1 Density Predictions TI 0–500 
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Figure 23.  Kalman Filter Section 1 Density Prediction TI 500–1000 

 

Figure 24.  Kalman Filter Section 2 Density Prediction TI 1000–1500 
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Figure 25.  Kalman Filter Section 2 Density Prediction TI 1500–2000 

 

Figure 26.  Decoupled Controls: Ramp Demand, Metered Flow, & Queue Length TI 
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Figure 27.  Decoupled Controls: Ramp Demand, Metered Flow, & Queue Length 
TI1 1000–2000 

 The initial results with the decoupled gain dcgain set equal to 0.40 are shown in 

Figure 26 and Figure 27.  Extended queue lengths began forming at approximately TI 0, 

TI 295, TI 600, TI 1170, TI 1420, and TI 1720, taking approximately 200 TIs to disperse.  

These periods all correspond to morning rush hour.  

 A performance metric named “Ramp 1, Ramp 2 delay,” displayed at the top of 

Figure 27, was developed to assess the controller performance.  This metric is simply the 

number of observation periods that a queue was present.  Since there is no way to 

determine timing of individual cars, details of impacts due to queues is impossible in this 

setting to calculate, without microsimulation.  Ramp 1 experienced more than 1237 of the 

2000 total TIs with a queue present.  Ramp 2 experienced 379 of the total 2000 TIs with a 

queue present.  Equally undesirable is the time the controller took to disperse the queue.  
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Although, nothing more than inference can be made, the number of time intervals with a 

queue can be viewed as a negative performance metric for comparing different controller 

configurations. 

 The residuals from the KF can be seen in Figure 28 and displays the root mean 

square error of the prediction (RMSEP), calculated as:  

 2
| 1

1 ˆk k kN −× −∑ y x   (5.21) 

where N is the number of observations. 

 

Figure 28.  Kalman Filter Section 1 & 2 Residuals 

 The RMSEP for section 1 was 1.99 (veh/mi) and 2.76 (veh/mi) for section 2.  A 
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What that means is the RMSEP was used only as an indicator of performance of similar 

models used in this study.  The RMSEP should therefore be viewed as a tuning 

parameter.  The RMSEP were consequently deemed acceptable with the 5-minute 

resolution data. 

5.4.1 Decoupled Control Testing 

 Because the decoupled setting treats the ramp controllers as isolated controllers, 

the ramp demand was staggered so that a peak flow would occur at separate times for the 

ramps.  They can be viewed as two independent on-ramps with their objectives only 

sought locally.  The ramp 2 demand flows were shifted by approximately 6.7-hours (or 

80 TI) to test the controller’s performance when peak demands occurred at different 

periods.  

 

Figure 29.  Decoupled Results TI 0–1000 for the Shifted Ramp 2 Demands 
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Figure 30.  Decoupled Results TI 1000–2000 for the Shifted Ramp 2 Demands  

The results of the shifted ramp 2 demand are shown in Figure 29 and Figure 30.  Ramp 1 

experienced less than 100 more periods with a queue present while ramp 2 experienced 

only 2 additional periods with a queue.  
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5.5 Simulation: KF & Coupled Feedback Control Integration  

 The integrated, coupled-control scheme was tested with the parameters given in 

Table 5.1 through Table 5.3.  The distribution factors were 0.65 for the Loop On-Ramp 

and 0.35 for the EB On-Ramp.  The values were chosen based on Kachroo and Ozbay, 

(2003). 

 The plots for the ramp demands ri (veh/hr), metered flow ui (veh/hr), and queue 

lengths li (veh) for the Loop On-Ramp and EB On-Ramp are shown in Figure 31 and 

Figure 32.  

 

Figure 31.  Coupled Controls: Ramp Demand, Metered Ramp Flow, & Queue 
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Figure 32.  Coupled Controls: Ramp Demands, Metered Ramp Flow, & Queue 
Length TI 1000–2000 

As seen in Figure 31 and Figure 32, the metered flow has much less turbulence than the 

unmetered ramp demand.  On-ramp queue began forming at approximately TI 1, TI 300, 

TI 600, TI 1170, TI 1450, and TI 1750.  The time to dissipate the queues were about 200 

five-minute periods in all cases.  These periods all correspond to morning rush hour.   

 The above plots reveal that EB on-ramp has periods where its queue formation 

exhibits extreme maximum peaks.  The parameter w4 was adjusted to 0.45 to give more 

weight to the on-ramp queue and the gain ccgain was increased to 0.60; the results can be 

seen in Figure 33 and Figure 34. 
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Figure 33.  Coupled Controls: Adjusted Ramp 2 and Gain Parameters TI 0–1000 

 

Figure 34.  Coupled Controls: Adjusted Ramp 2 and Gain Parameters TI 1000–2000 
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As seen in the above figures, the extreme peaks of ramp 2’s queue was reduced as well as 

the periods a queue was present on ramp 1.  The above weighting parameter settings were 

repeated with an increased ccgain of 0.95; the results are below in Figure 35 and Figure 

36. 

 

Figure 35.  Coupled Controls: Adjusted Gain Parameters TI 0–1000 
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Figure 36.  Coupled Controls: Adjusted Gain Parameters TI 1000–2000 

This control configuration had excellent results with ramp 1 experiencing 118 

observation periods with a queue present while ramp 2 experienced 306 observation 

periods with a queue present.  The overall benefits of increasing the gain and establishing 

the magnitude will need to be tested in microsimulation. 
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5.6 Simulation: Extended KF Results 

 The EKF one-step-ahead predictions and measured sensor data for section 1 Time 

Interval (TI) 0 – 1000 (where a TI is five-minutes) are shown in Figure 37; TI 1000 – 

2000 are shown in Figure 38.  The EKF one-step-ahead predictions and measured sensor 

data for section 2, TI 0 – 1000, are shown in Figure 39; TI 1000 – 2000 are shown in 

Figure 40.  The EKF had excellent results and was able to track the density observations 

throughout the length of the simulation.  The residuals and RMSEP for sections 1 and 2 

can be seen in Figure 41. 

 

Figure 37.  Extended Kalman Filter Prediction Section 1 Density TI 0–1000 
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Figure 38.  Extended Kalman Filter Prediction Section 1 Density TI 1000–2000 

 

Figure 39.  Extended Kalman Filter Prediction Section 2 Density TI 0–1000 
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Figure 40.  Extended Kalman Filter Prediction Section 2 Density TI 1000–2000 

 

Figure 41.  Extended Kalman Filter Prediction Residuals Sections 1 & 2  
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5.7 Results Analysis 

 The KF performed exceptionally well with low RMSEP for sections 1 and 2 of 

2.46 (veh/mi) and 3.26 (veh/mi), respectively.  Surprisingly, given the high non-linearity 

of the traffic data, it characterized the data well.  As shown in the plots for the KF and 

EKF residuals, the errors are not independent.  This is breaking an assumption with the 

Kalman filter.  However, we are not claiming this to be the optimal solution.  The noise is 

most likely correlated as seen in the residuals plots.  The noise may not be Gaussian; 

however, this was less of a concern because the filter was not designed as the optimal 

solution.   

 For the main task of prediction, the filter performed satisfactorily, as the linear KF 

may still provide the best linear prediction.  The EKF is known as being a difficult filter 

to tune and this case was no exception.  Changes in the values for the noise or state 

covariance had significant effects on the performance of the model.  The initial values for 

the state and state covariance error a priori were also particularly sensitive to the 

parameters, more so than the KF. 

 The results for the KF and EKF RMSEP are shown in Table 5.3. 

Table 5.3.  KF & EKF Root Mean Square Error of Prediction 

Model Section 1 Section 2 Total 
Kalman Filter 1.99 2.76 4.75 

Extended Kalman Filter 4.23 4.72 8.95 
 

 The results for the ramp 1 and ramp 2 delays for the most promising decoupled 

and coupled control schemes are shown in Table 5.4.  The coupled control scheme was 
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superior to the decoupled; however, simulation and optimization is needed to determine 

the optimal settings for the weighting functions and control gain.  In a traffic 

microsimulation, the stochastic nature of freeway traffic can be simulated, allowing for 

the results of a parameter’s adjustment to be observed. 

Table 5.4.  Decoupled & Coupled Ramp Delays 

Model Ramp 1 Delay Ramp 2 Delay Total 
Decoupled 1237 379 1616 

Coupled 118 306 424 
 

 In either the decoupled or coupled setting, our metering control logic needs to be 

converted to a green-phase duration time for the ramp meter signal.  The equation to 

convert the metering rate ui(k) to a green phase g is: 

 ( )i

sat

u kg C
u

=   (5.22) 

where C is the cycle length (sec) and usat is the saturated ramp flow (veh/hr).   

When either controller’s distribution factor in the coupled setting is more than 0.65, the 

other ramp experiences queue growth at a much faster rate. 
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CHAPTER 6: CONCLUSIONS 

 With the rapid growth of the Treasure Valley and the distribution of housing and 

employment centers, congestion management will be vital as there is an increase in 

vehicle miles traveled.  An increase in freeway capacity can result in congestion levels 

that quickly become similar to those prior to adding the additional capacity.  Since new 

construction is often the last resort to improve the operations of a freeway, strategies that 

are more cost-effective and utilize existing infrastructure or require minimal expansion 

are needed to alleviate congestion in the region.   

 To accomplish this, it is essential to utilize technologies that generate system-

wide improvement.  The Ada County Highway District is emphasizing technologies 

involving Active Traffic Management, Adaptive Signals, and other Intelligent 

Transportation Systems (ITS) (ACHD, 2012).  A ramp metering strategy that is 

predictive, adaptive, and coordinated aligns with the District’s focus to identify roadway 

improvements that plays a role in the development of the Transportation Improvement 

Plan, which is the regional mid-range transportation plan developed by COMPASS; and 

the Idaho Transportation Investment Plan, the state-level transportation plan developed 

by ITD. 

 I-84 experiences recurring and nonrecurring congestion resulting from bottleneck 

formations, especially near the Eagle Road interchange.  The Eagle Road interchanges 

two East Bound on-ramps experience some of the heaviest traffic volume along I-84.   
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Based on these relationships, a predictive feedback on-ramp metering control strategy, 

that is proactive to the onset of congestion breakdown, was developed.  The two Eagle 

Road EB on-ramps were chosen as test locations for on-ramp metering. 

 The ramp meter scheme uses a Kalman filter, a recursive forecasting algorithm, to 

predict traffic density and estimate on-ramp queue lengths and a feedback control logic to 

adjust the metering rate.  The adaptive control scheme works by controlling the traffic 

density on the mainline while also considering on-ramp queues.  Many ramp meter 

systems in use today have no sophisticated way to handle queues except through queue 

flushing or queue override. 

6.1 Summary of Work 

 A feedback predictive control scheme was designed for two on-ramps at the Eagle 

Road interchange on I-84.  Radar sensors were installed between the Meridian Road and 

Eagle Road interchanges from November 6 through November 15 on the EB side of I-84 

and November 20 through November 29 in 2013 on the WB side of I-84.  The radar 

sensors collected data for traffic volume, average speeds, occupancy, and vehicle 

classification.  The ramp meter control design was separated into two major research 

components: prediction and control.  

 In the first component, the design of dynamic linear models and Kalman filters, 

used for prediction of the state of traffic, was performed in R and MATLAB.  The design 

of the metering control logic algorithm was performed in MATLAB.  Finally, these two 

components were combined into a single integrated algorithmic program.  
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6.2 Implementation 

 The KF appears to be a suitable algorithm for this application.  It is a simple, 

recursive data processing algorithm with relatively few parameters to tune.  The 

conversion from ramp metering rate (how many vehicles are allowed to enter the freeway 

through the ramp per control interval) to the division of signal cycle (the length of 

green/red phase) that actually controls the meter needs to be decided after many 

simulations are made in a traffic microsimulation program, such as Vissim (PTV Planug 

Trasport Verker AG, 2013).  A reasonable minimum cycle is around 4.5 seconds, 

obtained by a red time of 2.5 seconds and a green time of 2 seconds.  Below in Table 6.1 

are the FHWA recommended cycle lengths, approximate range of metering rates, and 

capacities of three ramp scenarios.  

Table 6.1.  FHWA Recommended Cycle Length, Metering Rates, & Associated 
Capacity 

Flow Control Scheme 
No. of 
Lanes 

Cycle 
Length 

(sec) 

Range of 
Metering 

Rates (veh/hr) 
Capacity 
(veh/hr) 

One Vehicle Per Green 1 4 – 4.5 
Seconds 240 – 900 900 

Two Vehicles Per Green 1 6 – 6.5 
Seconds 240 – 1200 1100 –

1200   

Tandem 2 - 400 – 700 1600 – 
1700 

 

 Section 5.4.1 presented the tuning of the controls; however, this was for 

demonstrative purposes only.  This is because it is very difficult to analytically determine 

these values and the impact they will have on the performance of the ramp metering 

control law (Yasar, Ozbay, & Kachroo, 2006).   
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6.3 Recommendations for Future Work 

 With the construction of the new Meridian Interchange, lanes will be increased to 

four, eliminating the effects of a lane drop.  This scenario is advantageous for study 

because it may have the potential to provide posteriori evidence to the effects of adding 

an additional lane to a persistent bottleneck.  To demonstrate the true capabilities of the 

prediction and control logic, the code will need to be converted into a language like C++ 

and converted into a .dll.  This recommendation is ideal for the Vissim traffic 

microsimulation software.  The prediction algorithms are ready to test in a controller.  

The modelling, testing, and validation has been extensive and successful enough to 

warrant the algorithm into a controller for field evaluation. 

 The METANET traffic model has been shown to accurately represent traffic 

under a range of conditions (Papageorgiou, Blosseville, & Haj-Salem, 1990a; 

Papageorgiou et al., 1990b; Wang & Papageorgiou, 2005).  This traffic model should be 

used as the basis for the non-linear equations in the EKF prediction algorithm.   

 The framework for an integrated predictive and control logic algorithm has been 

developed.  Simulation and optimization needs to be performed to determine the optimal 

settings for the controller and locations the controllers are being implemented.  Yasar et 

al. (2006) recommends tuning these parameters through a series of multiple 

microsimulation runs.   
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APPENDIX A: MATLAB RAMP METER CONTROL M-FILES 

rampmeter_runfile.m 

% Main File to Run Feedback Ramp Meter Controls with Dual-State KF and 

% Decoupled or Coupled Control Schemes 

% Data is stochastically Generated Each Run, Based on Observed Data and a 

% Moving Average Random Process 

% Regulator Gains 

    % dcgain: decoupled gain control 

    % ccgain:coupled gain for ramp 

    % alpha1:distribution factor ramp 1 

    % alpha2:distribution factor ramp 2 

% Weighting factors 

    % w1:weight  given to mainline section 1 

    % w2:weight given to ramp 1 EB loop on-ramp 

    % w3:weight given to mainline section 2 

    % w4:weight given to ramp 2 EB on-ramp 

 

clear; clc; 

 

global rhom rhoc1 rhoc2 vf1 vf2 T flow5 ramp1 ramp2 flow4new ... 

     alpha1 alpha2 dcgain ccgain w1 w2 w3 w4 L1 L2 RL1 RL2 ... 

    G H Q R ii m c meas pplus x_hat resids queue ramp1new ramp2new... 

    err RMSEP rampdelay TT uvar1 uvar2 

 

load('rampmeter_wrkspc.mat') 

 

% Input parameters 

 

% c = input('Decoupled D-Mixcros(1), Coupled C-Mixcros(2)); 

c=2; 

 

% Regulator Gains and Weighting Parameters 

dcgain=0.90; 

ccgain=0.95; 

alpha1=0.55; 

alpha2=0.45; 

 

w1=.65; 

w2=.35; 

w3=.65; 

w4=.35; 

 

% Known parameters 

L1=0.298;               % Length of Freeway Section 1 (mi) 
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L2=0.391;               % Length of Freeway Section 2 (mi) 

RL1=0.38;               % Length of Ramp 1 EB Loop 

RL2=0.29;               % Length of Ramp 2 EB On-Ramp 

rhom=110;               % Jam Density (veh/mi) 

rhoc1=33;               % Critical Density section 1 (veh/mi) 

rhoc2=41;               % Critical Density section 2 (veh/mi) 

vf1=73;                 % free flow speed section 1 (mi/hr) 

vf2=62;                 % free flow speed section 2 (mi/hr) 

T=5/60;                 % Time step 

 

% Kalman Filter design 

 

% State matrix 

G = [1 0 

    0 1]; 

% State noise 

Q = [3.7330 0 

    0 5.6221]; 

% Observation matrix 

H = [1 0 

    0 1]; 

% Observation noise 

R = [1.1034 0; 

    0 2.8308]; 

% Initial state and error 

x0 = [25; 35]; % initial densities 

P0 = diag([15 10]); 

x_hat = G*x0; 

pplus = G*P0*G'+Q; 

 

% Prealocate 

m=length(flow5); 

X=zeros(m,length(x0)); 

uvar1=zeros(m,1); 

uvar2=zeros(m,1); 

ramp1new=zeros(m,1); 

ramp2new=zeros(m,1); 

flow4new=zeros(m,1); 

queue=zeros(m,2); 

resids=zeros(m,2); 

err=zeros(m,2); 

 

% Begin Ramp Meter Prediction & Control Algorithm 

 

meas=[rho1(1) rho2(1)]; 

 

for ii=1:m-1; 

    % Stochastic Inflow, Ramp 1 and Ramp 2 Volumes 

    ramp1new(ii)=ramp1(ii)+(.95+.10.*rand(1)).*(ramp1(ii)); 

    ramp2new(ii)=ramp2(ii)+(.95+.10.*rand(1)).*(ramp2(ii)); 

    flow4new(ii)=flow4(ii)+(.95+.10.*rand(1)).*(flow4(ii)); 

 

    k=feval('kalman_pred')'; 
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    X(ii,:)=k; 

    input=[k(1),queue(ii,1),k(2),queue(ii,2)]; 

    uvar1(ii)=ramp1_meter(ii,input); 

    uvar2(ii)=ramp2_meter(ii,input); 

    meas(ii+1,:)=[rho1(ii)+(T)*uvar1(ii), rho2(ii)+(T)*uvar2(ii)]; 

 

       if (X(ii,1)<0), % Variable Constraints 

           X(ii,1)=0; 

       end 

       if (X(ii,1)>rhom), 

           X(ii,1)=rhom; 

       end 

       if (X(ii,2)<0), 

           X(ii+1,2)=0; 

       end 

       if (X(ii,2)>rhom), 

           X(ii,2)=rhom; 

       end 

       if (queue(ii,1)<0), 

           queue(ii,1)=0; 

       end 

       if (queue(ii,2)<0), 

           queue(ii,2)=0; 

       end 

 

       queue(ii+1,:)=[(queue(ii,1)+T*(ramp1new(ii)-uvar1(ii))),... 

                      (queue(ii,2)+T*(ramp2new(ii)-uvar2(ii)))]; 

end 

 

rampdelay = (sum(queue>0)); 

 

% Root mean square prediction error (RMSEP) 

RMSEP=sqrt((1/length(flow5))*sum(abs(resids).^2)); 

 

rho1res=meas(:,1)-X(:,1);               % Store the Residuals 

rho2res=meas(:,2)-X(:,2);               % Store the Residuals 

rho1pred=X(:,1);                        % Store the Prediction Section 1 

rho2pred=X(:,2);                        % Store the Prediction Section 2 

rho1new=meas(1:end,1);                  % Store the new Density Section 1 

rho2new=meas(1:end,2);                  % Store the new Density Section 2 

TT=1:m; % Time for plots 

 

if c == 1 

    c='Decoupled Control'; 

    Decoupled_Plots 

    % Writes results to Excel 

    D=[dcgain,rampdelay(1),rampdelay(2),w1,w2,w3,w4]; 

    dlmwrite('Deoupled_Tune.csv',D,'-append', 'delimiter', ','); 

 

end 

if c == 2 

    c='Coupled Control'; 

    Coupled_Plots 
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    % Writes results to Excel 

    D=[ccgain,alpha1,alpha2,rampdelay(1),rampdelay(2),w1,w2,w3,w4]; 

    dlmwrite('Coupled_Tune.csv',D,'-append', 'delimiter', ','); 

end 

 

% Plot the results 

% Control Variable TI 0-1000 

figure 

subplot(311) 

set(gca,'FontSize',9); set(gcf,'Color','White'); 

plot(TT,ramp1,TT,ramp2,'r-','linewidth',.02); 

title(sprintf('w1 =%2.2f, w2 =%2.2f, w3 =%2.2f, w4 =%2.2f, dcgain =%2.2f',... 

   w1,w2,w3,w4,dcgain)); 

legend('Ramp 1','Ramp 2','Location',... 

    'Best','Orientation','horizontal'); 

ylabel('Flows (veh/hr)'); 

ylim([0 150]) 

xlim([0 1000]) 

hold on 

subplot(312) 

plot(TT,uvar1,TT,uvar2,'r-'); 

set(gca,'FontSize',9); set(gcf,'Color','White'); 

ylabel('Metered flow (veh/hr)'); 

xlim([0 1000]) 

ylim([0 150]) 

hold on 

subplot(313) 

plot(TT,queue(2:end,1),'-',TT,queue(2:end,2),'r-'); 

ylabel('Queue Length'); xlabel('Five-minute Intervals'); 

xlim([0 1000]) 

ylim([0 20]) 

set(gca,'FontSize',9); set(gcf,'Color','White'); 

h=suptitle(sprintf('%s',c));% \n alpha1 = %2.2f, alpha2 = %2.2f',c));%,alpha1,alpha2)); 

set(h,'FontSize',10,'FontWeight','normal'); 

set(gca,'FontSize',9); set(gcf,'Color','White'); 

hold off 

 

% Control Variable TI 1000-2000 

figure 

subplot(311); 

set(gca,'FontSize',8); set(gcf,'Color','White'); 

plot(TT,ramp1,TT,ramp2,'r-','linewidth',.02); 

title(sprintf('Ramp 1 delay =%2.0f, Ramp 2 delay=%2.0f',... 

    rampdelay(1),rampdelay(2))); 

legend('Ramp 1','Ramp 2','Location',... 

    'Best','Orientation','horizontal'); 

ylabel('Flows (veh/hr)'); 

xlim([1000 2000]) 

ylim([0 150]) 

hold on 

subplot(312) 

plot(TT,uvar1,TT,uvar2,'r-'); 

set(gca,'FontSize',8); set(gcf,'Color','White'); 
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ylabel('Metered flow (veh/hr)'); 

xlim([1000 2000]) 

ylim([0 150]) 

hold on 

subplot(313) 

plot(TT,queue(2:end,1),'-',TT,queue(2:end,2),'r-'); 

ylabel('Queue Length'); xlabel('Five-minute Intervals'); 

xlim([1000 2000]) 

ylim([0 20]) 

set(gca,'FontSize',8); set(gcf,'Color','White'); 

h=suptitle(sprintf('%s',c)); 

set(h,'FontSize',10,'FontWeight','normal'); 

set(gca,'FontSize',8); set(gcf,'Color','White'); 

hold off 

 

% ONE-STEP AHEAD DENSITY SECTION 1 

figure 

subplot(211) 

plot(TT,rho1pred,'b-o','MarkerSize',4.5); 

set(gca,'FontSize',10); set(gcf,'Color','White'); 

title('Density Section 1'); 

ylabel('veh/mi') 

xlim([0 250]) 

hold on 

plot(TT,rho1,'r:*','MarkerSize', 2) 

legend('KF', 'Measured','Location','Best','Orientation','horizontal'); 

subplot(212) 

plot(TT,rho1pred,'b-o','MarkerSize',4.5); 

ylabel('veh/mi') 

hold on 

plot(TT,rho1,'r:*','MarkerSize', 2) 

h = suptitle('Dual-State KF'); 

set(h,'FontSize',10,'FontWeight','normal'); 

set(gca,'FontSize',10); set(gcf,'Color','White'); 

xlim([250 500]) 

xlabel('Five-minute Intervals'); 

hold off; 

 

figure 

subplot(211) 

plot(TT,rho1pred,'b-o','MarkerSize',4.5); 

set(gca,'FontSize',10); set(gcf,'Color','White'); 

title('Density Section 1'); 

ylabel('veh/mi') 

xlim([500 750]) 

hold on 

plot(TT,rho1,'r:*','MarkerSize', 2) 

legend('KF', 'Measured','Location','Best','Orientation','horizontal'); 

subplot(212) 

plot(TT,rho1pred,'b-o','MarkerSize',4.5); 

ylabel('veh/mi') 

hold on 

plot(TT,rho1,'r:*','MarkerSize', 2) 
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h = suptitle('Dual-State KF'); 

set(h,'FontSize',10,'FontWeight','normal'); 

set(gca,'FontSize',10); set(gcf,'Color','White'); 

xlim([750 1000]) 

xlabel('Five-minute Intervals'); 

hold off; 

 

% ONE-STEP AHEAD DENSITY SECTION 2 

figure; 

subplot(211) 

plot(TT,rho2pred,'b-o','MarkerSize',4.5); 

set(gca,'FontSize',10); set(gcf,'Color','White'); 

title('Density Section 2'); 

hold on 

ylabel('veh/mi') 

xlim([1000 1250]) 

hold on 

plot(TT,rho2,'r:*','MarkerSize', 2); 

legend('KF', 'Measured','Location','Best','Orientation','horizontal'); 

subplot(212) 

plot(TT,rho2pred,'b-o','MarkerSize',4.5); 

hold on 

plot(TT,rho2,'r:*','MarkerSize', 2); 

h = suptitle('Dual-State KF');... 

set(h,'FontSize',10,'FontWeight','normal'); 

set(gca,'FontSize',10); set(gcf,'Color','White'); 

ylabel('veh/mi') 

xlim([1250 1500]) 

xlabel('Five-minute Intervals'); 

hold off; 

 

figure; 

subplot(211) 

plot(TT,rho2pred,'b-o','MarkerSize',4.5); 

set(gca,'FontSize',10); set(gcf,'Color','White'); 

title('Density Section 2'); 

hold on 

ylabel('veh/mi') 

xlim([1500 1750]) 

hold on 

plot(TT,rho2,'r:*','MarkerSize', 2); 

legend('KF', 'Measured','Location','Best','Orientation','horizontal'); 

subplot(212) 

plot(TT,rho2pred,'b-o','MarkerSize',4.5); 

hold on 

plot(TT,rho2,'r:*','MarkerSize', 2); 

h = suptitle('Dual-State KF');... 

set(h,'FontSize',10,'FontWeight','normal'); 

set(gca,'FontSize',10); set(gcf,'Color','White'); 

ylabel('veh/mi') 

xlim([1750 2000]) 

xlabel('Five-minute Intervals'); 

hold off; 
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% Residuals 

figure 

subplot(211) 

plot(TT,resids(:,1),'-'); 

set(gca,'FontSize',10); set(gcf,'Color','White'); 

title(sprintf('RMSEP Sec 1 = %2.2f,  Sec 2 = %2.2f',... 

    RMSEP(1),RMSEP(2))); 

hold on 

ylabel('Section 1'); 

xlim([0 2000]) 

hold on 

subplot(212) 

plot(TT,resids(:,2),'-') 

xlabel('Five-minute Intervals'); ylabel('Section 2') 

set(gca,'FontSize',9); set(gcf,'Color','White'); 

h=suptitle('Dual-State KF Residuals'); 

set(h,'FontSize',10,'FontWeight','normal'); 

set(gca,'FontSize',10); set(gcf,'Color','White'); 

xlim([0 2000]) 
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ramp1_meter.m 

function u1 = ramp1_meter(t,x) 

% Ramp 1 Metered  Outflow 

 

global c rhoc1 rhoc2 rhom vf1 vf2 flow4new w1 w2 w3 w4 L1 L2 RL1 RL2... 

    dcgain ccgain alpha1 T queue ramp1new ramp2new err 

 

q1out=vf1*x(1)*(1-(x(1)/rhom)); % flow out section 1 

q2out=vf2*x(3)*(1-(x(3)/rhom)); % flow out section 2 

 

% Decoupled Coordinated Control 

% D-MIXCROS 

if c == 1 

    F1=w1*sign((x(1)-rhoc1)+(T/L1)*(-q1out+flow4new(t)))+... 

        w2*(x(2)+(T/RL1)*ramp1new(t));              % (veh/mi) 

    G1=(sign(x(1)-rhoc1)*w1*(T/L1)-w2*(T/RL1))^-1;  % (mi/hr) 

    e = w1*abs(x(1)-rhoc1) + w2*abs(x(2));          % (veh/mi) 

    err(t,1)=e;                                    % store error 

    u1 = max(0,(-F1-dcgain*e)*G1);                  % (veh/hr) 

 

% Coupled Distributed Coordinated Control 

% C-MIXCROS 

elseif c == 2 

    F1=w1*sign((x(1)-rhoc1)+(T/L1)*(-q1out+flow4new(t)))+... 

        w2*(x(2)+(T/RL1)*ramp1new(t)); 

    F2=w3*sign((x(3)-rhoc2)+(T/L2)*(-q2out+q1out))+... 

        w4*(x(4)+T/RL2*ramp2new(t)); 

    F=F1+F2;                                        % (veh/mi) 

    G1=(sign(x(1)-rhoc1)*w1*(T/L1)-w2*(T/RL1))^-1;  % (mi/hr) 

    e = w1*abs(x(1)-rhoc1)+w2*abs(x(2))+... 

        w3*abs(x(3)-rhoc2)+w4*abs(x(4));            % (veh/mi) 

    err(t,2)=e;                                    % store error 

    u1 = max(0,(G1*(alpha1*(-F-ccgain*e))));        % (veh/hr) 

 

    if queue(t,1) <= 0 

        if ramp1new(t) < u1 

            u1 = ramp1new(t); 

        end 

    end 

    if x(1) > rhom 

        u1 = 0; 

    end 

 

% Ramp Meter Off 

else 

    u1=ramp1new(t); 

end 
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ramp2_meter.m 

function u2 = ramp2_meter(t,x) 

% Ramp 2 Metered  Outflow 

 

global  c rhoc1 rhoc2 rhom vf1 vf2 flow4new w1 w2 w3 w4 L1 L2 RL1 RL2... 

    dcgain ccgain alpha2 T queue ramp1new ramp2new err 

 

q1out=vf1*x(1)*(1-(x(1)/rhom)); % flow out section 1 

q2out=vf2*x(3)*(1-(x(3)/rhom)); % flow out section 2 

 

% Decoupled Coordinated Control 

% D-MIXCROS 

if c == 1 

    F2=w3*sign((x(3)-rhoc2)+(T/L2)*(-q2out+q1out))+... 

        w4*(x(4)+T/RL2*ramp2new(t));                % (veh/mi) 

    G2=(sign(x(3)-rhoc2)*w3*(T/L2)-w4*(T/RL2))^-1;  % (mi/hr) 

    e = w3*abs(x(3)-rhoc2) + w4*abs(x(2));          % (veh/mi) 

    err(t,2)=e;                                    % store error 

    u2 = max(0,(-F2-dcgain*e)*G2);                  % (veh/hr) 

 

 

% Coupled Distributed Coordinated Control 

% C-MIXCROS 

elseif c == 2 

    F1=w1*sign((x(1)-rhoc1)+(T/L1)*(-q1out+flow4new(t)))+... 

        w2*(x(2)+(T/RL1)*ramp1new(t)); 

    F2=w3*sign((x(3)-rhoc2)+(T/L2)*(-q2out+q1out))+... 

        w4*(x(4)+T/RL2*ramp2new(t)); 

    F=F1+F2;                                        % (veh/mi) 

    G2=(sign(x(3)-rhoc2)*w3*(T/L2)-w4*(T/RL2))^-1;  % (mi/hr) 

    e = (w1*abs(x(1)-rhoc1)+w2*abs(x(2))+... 

        w3*abs(x(3)-rhoc2)+w4*abs(x(4)));           % (veh/mi) 

    err(t,2)=e;                                    % store error 

    u2 = max(0,(G2*(alpha2*(-F-ccgain*e))));        % (veh/hr) 

 

    if queue(t,2) <= 0 

        if ramp2new(t) < u2 

            u2 = ramp2new(t); 

        end 

    end 

    if x(3) > rhom 

        u2 = 0; 

    end 

 

% Ramp Meter Off 

else 

    u2=ramp2new(t); 

end 
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kalman_pred.m  

function [predrho] = kalman_pred 

% Kalman Filter for density prediction sections 1 & 2 using measured 

% flows & speeds from EBS5 and EBS6 

 

global meas F H Q R ii pplus x_hat resids 

 

% Filter 

xpred = G*x_hat;                              % eq (3.5) 

predrho=[xpred(1); xpred(2)];                 % store predictions 

ppred = G*pplus* G '+Q;                        % eq (3.6) 

y_hat = meas(ii,:)' - F*xpred;                % eq (3.7) Innovation 

resids(ii,:)=y_hat';                          % store residual 

K = (ppred*F')/(F*ppred*F'+ R);               % eq (3.9) Kalman Gain 

x_hat = xpred + K*y_hat;                      % eq (3.10) 

pplus =(eye(2)-K*F)*ppred*(eye(2)-K*F)'+ K*R*K'; % eq (5.1) (Joseph form) 



123 

 

APPENDIX B: EXTENDED KALMAN FILTER MATLAB M-FILE 

EKF.m 

% Extended Kalman Filter for Density Predictions 

 

clear; clc; 

 

global xhat Q R P flow5 vf1 vf2 L1 L2 rhom1 rhom2 

load('rampmeter_wrkspc.mat') 

 

% Known Parameters 

L1=0.298;             % length of freeway section 1 (mi) 

L2=0.391;             % length of freeway section 2 (mi) 

rhom1=85;             % Jam Density section 1 (veh/mi) 

rhom2=105;            % Jam Density section 2 (veh/mi) 

rhoc1=32;             % Critical Density section 1 (veh/mi) 

rhoc2=24;             % Critical Density section 2 (veh/mi) 

vf1=72;               % free flow speed section 1(mi/hr) 

vf2=65;               % free flow speed section 2 (mi/hr) 

T=5/60;               % Time-step 

TT=1:2151;            % Time for plots 

 

% Preallocate 

rho1pred=zeros(length(flow5),1); 

queue1=zeros(length(flow5),1); 

rho2pred=zeros(length(flow5),1); 

queue2=zeros(length(flow5),1); 

r1=zeros(length(flow5),1); 

r2=zeros(length(flow5),1); 

res=zeros(length(flow5),2); 

measured=zeros(length(flow5),2); 

residuals = zeros(length(flow5),2); 

 

% Filter Design 

 

% Initialization 

xhat = [45; 58]; 

P = [80 .90 

    .02 19]; 

Q = [3.2 .020^2 

    1 25]; 

R = [5 3.1 

    1.9 .90]; 
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% Jacobian for the state 

F= [(T*(vf1*(xhat(1)/rhom1-1)+(vf1*xhat(1))/rhom1))/L1, 0; 

    -(T*(vf1*(xhat(1)/rhom1-1)+(vf1*xhat(1))/rhom1))/L2,... 

    (T*(vf2*(xhat(2)/rhom2-1)+(vf2*xhat(2))/rhom2))/L2]; 

 

% Jacobian for the measurement equations 

H = [1 0; 

    0 1]; 

 

% Begin Algorithm 

for ii=1:2151 

 

% Measurement 

meas=[rho1(ii); rho2(ii)]; 

measured(ii,:)=meas; 

 

% Propogate the State Matrix 

xhat=F*xhat; 

 

    % store the predictions 

    rho1pred(ii)=xhat(1); 

    rho2pred(ii)=xhat(2); 

 

% Propogate the Covariance Matrix 

P = F*P*F' + Q; 

 

% Calculate the Kalman gain 

K = P*H'/(H*P*H' + R); 

 

% Calculate the Measurement Residual 

yhat = [xhat(1); xhat(2)]; 

resid = meas - yhat; 

residuals(ii,:) = resid(:,1)'; 

 

% Update the State and Covariance Estimates 

xhat = xhat + K*resid; 

P = (eye(size(K,1))-K*H)*P; 

end 

 

RMSEP=sqrt((1/length(flow4))*sum(abs(residuals).^2)); 

rho1res=measured(:,1)-rho1; 

rho2res=measured(:,2)-rho2; 

 

% Plot the results 

% One-Step Ahead Predictions Density Section 1 

figure 

subplot(211) 

set(gca,'FontSize',9); set(gcf,'Color','White'); 

plot(TT,rho1pred,'r-*','MarkerSize',4); 

title('Density Section 1'); 

ylabel('veh/mi') 

hold on 

plot(TT,rho1,'b:o','MarkerSize', 3); 
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legend('EKF', 'Measured','Location','Northeast'); 

set(gca,'FontSize',9); set(gcf,'Color','White'); 

xlim([0 500]) 

ylim([0 40]) 

subplot(212) 

title('Density Section 1'); 

plot(TT,rho1pred,'r-*','MarkerSize',4); 

hold on 

plot(TT,rho1,'b:o','MarkerSize', 3); 

set(gca,'FontSize',9); set(gcf,'Color','White'); 

xlim([500 1000]) 

h = suptitle('Extended Kalman Filter'); 

set(h,'FontSize',11,'FontWeight','normal'); 

xlabel('Five-minute Intervals');ylabel('veh/mi') 

hold off 

 

figure 

subplot(211) 

set(gca,'FontSize',9); set(gcf,'Color','White'); 

plot(TT,rho1pred,'r-*','MarkerSize',4); 

title('Density Section 1'); 

ylabel('veh/mi') 

hold on 

plot(TT,rho1,'b:o','MarkerSize', 3); 

legend('EKF', 'Measured','Location','Northeast'); 

set(gca,'FontSize',9); set(gcf,'Color','White'); 

xlim([1000 1500]) 

ylim([0 40]) 

subplot(212) 

title('Density Section 1'); 

plot(TT,rho1pred,'r-*','MarkerSize',4); 

hold on 

plot(TT,rho1,'b:o','MarkerSize', 3); 

set(gca,'FontSize',9); set(gcf,'Color','White'); 

xlim([1500 2000]) 

ylim([0 40]) 

h = suptitle('Extended Kalman Filter'); 

set(h,'FontSize',11,'FontWeight','normal'); 

xlabel('Five-minute Intervals');ylabel('veh/mi') 

hold off 

 

% One-Step Ahead Predictions Density Section 2 

figure; 

subplot(211) 

plot(TT,rho2pred,'r-*','MarkerSize',4); 

set(gca,'FontSize',9); set(gcf,'Color','White'); 

title('Density Section 2'); 

ylabel('veh/mi') 

xlim([0 500]) 

ylim([0 40]) 

hold on 

plot(TT,rho2,'b:o','MarkerSize', 3); 

legend('EKF', 'Measured','Location','Best'); 
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subplot(212) 

plot(TT,rho2pred,'r-*','MarkerSize',4); 

set(gca,'FontSize',9); set(gcf,'Color','White'); 

hold on 

plot(TT,rho2,'b:o','MarkerSize', 3); 

xlim([500 1000]) 

ylim([0 30]) 

h = suptitle('Extended Kalman Filter'); 

set(h,'FontSize',11,'FontWeight','normal'); 

xlabel('Five-minute Intervals');ylabel('veh/mi') 

hold off; 

 

figure; 

subplot(211) 

plot(TT,rho2pred,'r-*','MarkerSize',4); 

set(gca,'FontSize',9); set(gcf,'Color','White'); 

title('Density Section 2'); 

ylabel('veh/mi') 

xlim([1000 1500]) 

ylim([0 40]) 

hold on 

plot(TT,rho2,'b:o','MarkerSize', 3); 

legend('EKF', 'Measured','Location','Best'); 

subplot(212) 

plot(TT,rho2pred,'r-*','MarkerSize',4); 

set(gca,'FontSize',9); set(gcf,'Color','White'); 

hold on 

plot(TT,rho2,'b:o','MarkerSize', 3); 

xlim([1500 2000]) 

ylim([0 30]) 

h = suptitle('Extended Kalman Filter'); 

set(h,'FontSize',11,'FontWeight','normal'); 

xlabel('Five-minute Intervals');ylabel('veh/mi') 

hold off; 

 

% Residuals 

figure 

subplot(211) 

plot(1:length(flow4),residuals(:,1),'-') 

ylabel('Section 1'); 

xlim([0 2000]) 

ylim([-25 25]) 

title(sprintf('RMSEP Section 1 = %2.2f,  Section 2 = %2.2f',... 

    RMSEP(1),RMSEP(2))); 

set(gca,'FontSize',9); set(gcf,'Color','White'); 

subplot(212) 

plot(1:length(speed4),residuals(:,2),'-') 

set(gca,'FontSize',9); set(gcf,'Color','White'); 

xlabel('Five-minute Intervals'); ylabel('Section 2') 

h=suptitle('EKF Residuals'); 

set(h,'FontSize',10,'FontWeight','normal'); 

ylim([-25 25]) 

xlim([0 2000]) 
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APPENDIX C: R CODE: TRAFFIC VOLUME DLMS & KF 

Section_4.2.R 

## Code for Thesis Chapter 4.2 DLM & KF ## 

## 4.2 R Model Specification and Parameter Estimation: Traffic Volume ## 

 

library(dlm) 

library(forecast) 

library(numDeriv) 

 

## 4.2.3 Random Walk ## 

buildvol <- function(theta) { 

  dlmModPoly(order = 1, dV = theta[1], dW = theta[2])} 

 

fitvol <- dlmMLE(vol, parm = c(0,150), buildvol,hessian=T, lower = rep(1e-4, 2))         

## MLE of Unknown parameters 

modvol <- buildvol(fitvol$par)  ## Fitted model 

fitvol$convergence  ## Check Convergence 

drop(W(modvol))[1]  ## System Variance 

drop(V(modvol))  ## Observation Variance 

 

hs <- hessian(function(x) dlmLL(vol, buildvol(x)), fitvol$pa) 

all(eigen(hs, only.values = TRUE)$values > 0) ## Positive Definite? 

aVar <- solve(hs) ##  Asymptotic Variance/Covariance Matrix 

sqrt(diag(aVar))  ## Standard Errors  

                                                                                         

## Kalman Filter ## 

volFilt <- dlmFilter(vol, modvol) # Kalman Filter 

RW_res <- residuals(volFilt, sd=FALSE) 

 

## Plots Random Walk ## 

x11(width=6, height=6.25, pointsize=12) 

par(mar=c(5,4.4,1,2)-.6,mex=0.9) 

par(mfrow=c(4,1)) 

plot.ts(vol,xlab="Five-Minute Intervals",ylab="vehicle volume",type='o', 

        ylim=c(0,120),xaxs="i") 

lines(window(volFilt$f, start = start(vol)+ 

c(1,0)),lty=4,pch=4,lwd=.25,type="o",col="red") 

plot.ts(vol, xlab="Five-Minute Intervals ", type='o',ylab="vehicle volume", 

        xlim=c(0,100),ylim=c(0,110),xaxs="i") 

lines(window(volFilt$f, start = start(vol)+ 

c(0,0)),lty=4,pch=4,lwd=1.5,type="o",col="red") 

plot.ts(vol, xlab="Five-Minute Intervals", type='o',ylab="vehicle volume", 

        xlim=c(100,200),ylim=c(0,110),xaxs="i") 
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lines(window(volFilt$f, start = start(vol)+ 

c(0,0)),lty=4,pch=4,lwd=1.5,type="o",col="red") 

plot.ts(vol, type='o',ylab="vehicle volume",xlab="Five-Minute Intervals", 

        xlim=c(900,1000),ylim=c(0,110),xaxs="i") 

lines(window(volFilt$f, start = start(vol) + 

c(0,0)),lty=4,pch=4,lwd=1.5,type="o",col="red") 

legend("bottomright",leg = c("Measured","One-Step Ahead Forecasts"), 

       cex = 0.9,lty = c(1, 2), col = c("black","red"), 

       pch=c(1,4), bty = "y", horiz = T) 

############################# 

 

## 4.2.4 RW with Seasonal Component ## 

buildvolseas <- function(theta) { 

  dlmModPoly(order = 1, dV = theta[1], dW = theta[2])+ 

    dlmModSeas(12,dV=10)} 

 

fitvolseas <- dlmMLE(vol, parm = c(0, 150), buildvolseas,hessian=T, lower = rep(1e-4, 2))  

## MLE of Unknown parameters 

modvolseas <- buildvolseas(fitvolseas$par)  ## Fitted model 

fitvol$convergence  ## Check Convergence 

drop(W(modvol))[1]  ## System Variance 

drop(V(modvol))  ## Observation Variance 

hs <- hessian(function(x) dlmLL(vol, buildvolseas(x)), fitvolseas$pa) 

all(eigen(hs, only.values = TRUE)$values > 0) ## Positive Definite? 

aVar <- solve(hs) ##  Asymptotic Variance/Covariance Matrix 

sqrt(diag(aVar))  ## Standard Errors 

 

## Kalman Filter ## 

volFiltseas <- dlmFilter(vol, modvolseas) # Kalman Filter 

seas_res <- residuals(volFiltseas, sd=FALSE) 

 

## Plots Random Walk with Seasonal ## 

x11(width=6, height=6.25, pointsize=12) 

par(mar=c(5,4.4,1,2)-.6,mex=0.9) 

par(mfrow=c(4,1)) 

plot.ts(vol,xlab="Five-Minute Intervals",ylab="vehicle volume",type='o', 

        ylim=c(0,120),xaxs="i") 

lines(window(volFiltseas$f, start = start(vol)+ c(1,0)), 

 lty=4,pch=4,lwd=.25,type="o",col="red") 

plot.ts(vol, xlab="Five-Minute Intervals", type='o',ylab="vehicle volume", 

        xlim=c(0,100),ylim=c(0,110),xaxs="i") 

lines(window(volFiltseas$f, start = start(vol)+ c(0,0)),                           

 lty=4, pch=4,lwd=1.5, type="o",col="red") 

plot.ts(vol, xlab="Five-Minute Intervals", type='o',ylab="vehicle volume", 

        xlim=c(100,200),ylim=c(0,110),xaxs="i") 

lines(window(volFiltseas$f, start = start(vol)+ c(0,0)), 

 lty=4,pch=4,lwd=1.5,type="o",col="red") 

plot.ts(vol, type='o',ylab="vehicle volume",xlab="Five-Minute Intervals", 

        xlim=c(900,1000),ylim=c(0,110),xaxs="i") 

lines(window(volFiltseas$f, start = start(vol) + c(0,0)), 

 lty=4,pch=4,lwd=1.5,type="o",col="red") 

legend("bottomright",leg = c("Measured","One-Step Ahead Forecasts"), 

       cex = 0.9,lty = c(1, 2), col = c("black","red"), 
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       pch=c(1,4), bty = "y", horiz = T) 

############################# 

 

## 4.2.5 Random Walk with Trig Seasonal ## 

vol=ts(vol) 

buildvoltrig <- function(theta) { 

  dlmModPoly(order = 1, dV = theta[1], dW = theta[2])+ 

    dlmModTrig(s=12,q=6)} 

 

fitvoltrig <- dlmMLE(vol, parm = c(0,150), buildvoltrig,hessian=T, lower = rep(1e-4, 2))  

## MLE of Unknown parameters 

modvoltrig <- buildvoltrig(fitvoltrig$par)  ## Fitted model 

fitvol$convergence  ## Check Convergence 

drop(W(modvol))[1]  ## System Variance 

drop(V(modvol))  ## Observation Variance 

hs <- hessian(function(x) dlmLL(vol, buildvoltrig(x)), fitvoltrig$pa) 

all(eigen(hs, only.values = TRUE)$values > 0) ## Positive Definite? 

aVar <- solve(hs) ##  Asymptotic Variance/Covariance Matrix 

sqrt(diag(aVar))  ## Standard Errors 

 

### Kalman Filter ### 

volFilttrig <- dlmFilter(vol, modvoltrig) # Kalman Filter 

trig_res <- residuals(volFiltseas, sd=FALSE) 

 

## Plots, Random Walk with Trig Seasonal## 

x11(width=6, height=6.25, pointsize=12) 

par(mar=c(5,4.4,1,2)-.6,mex=0.9) 

par(mfrow=c(4,1)) 

plot.ts(vol,xlab="Five-Minure Intervals",ylab="vehicle volume",type='o', 

        ylim=c(0,120),xaxs="i") 

lines(window(volFilttrig$f, start = start(vol)+ c(1,0)), 

 lty=4,pch=4,lwd=.25,type="o",col="red") 

plot.ts(vol, xlab="Five-Minute Intervals", type='o',ylab="vehicle volume", 

        xlim=c(0,100),ylim=c(0,110),xaxs="i") 

lines(window(volFilttrig$f, start = start(vol)+ c(0,0)), 

 lty=4,pch=4,lwd=1.5,type="o",col="red") 

plot.ts(vol, xlab="Five-Minute Intervals", type='o',ylab="vehicle volume", 

        xlim=c(100,200),ylim=c(0,110),xaxs="i") 

lines(window(volFilttrig$f, start = start(vol)+ c(0,0)), 

 lty=4,pch=4,lwd=1.5,type="o",col="red") 

plot.ts(vol, type='o',ylab="vehicle volume",xlab="Five-Minute Intervals", 

        xlim=c(900,1000),ylim=c(0,120),xaxs="i") 

lines(window(volFilttrig$f, start = start(vol) + c(0,0)), 

 lty=4,pch=4,lwd=1.5,type="o",col="red") 

legend("topright",leg = c("Measured","One-Step Ahead Forecasts"), 

       cex = 0.9,lty = c(1, 2), col = c("black","red"), 

       pch=c(1,4), bty = "y", horiz = T) 

############################# 
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## Test Statistics ## 

 

## RW Model ## 

## Mean Average Deviation (MAD) 

mean(c(abs(volFilt$f-vol)), na.rm=TRUE ) 

## Root Mean Square Error Of Prediction (RMSEP) 

sqrt(1/length(vol)*sum(c(abs((volFilt$f-vol)^2)), na.rm=TRUE)) 

 

## Seasonal Based Model ## 

## Mean Average Deviation (MAD) 

mean(c(abs(volFiltseas$f-vol)), na.rm=TRUE ) 

## Root Mean Square Error Of Prediction (RMSEP) 

sqrt(1/length(vol)*sum(c(abs((volFiltseas$f-vol)^2)), na.rm=TRUE)) 

 

## RW with Fourier-form Model ## 

## Mean Average Deviation (MAD) 

mean(c(abs(volFilttrig$f-vol)), na.rm=TRUE ) 

## Root Mean Square Error Of Prediction (RMSEP) 

sqrt(1/length(vol)*sum(c(abs((volFilttrig$f-vol)^2)), na.rm=TRUE)) 

 

 

 

 

 

 

 



131 

 

APPENDIX D: R CODE: TRAFFIC SPEEDS DLMS & KF 

Section_4.3.R 

## Code for Thesis Chapter 4.3 DLM & KF ## 

## 4.3 R Model Specification and Parameter Estimation: Traffic Speeds ## 

 

library(dlm) 

library(forecast) 

library(numDeriv) 

 

Thesis_4.3 <- read.csv("C:/Users/Brian/SkyDrive/Forecasting Papers/SSwithKFfor 

 forecast/Kalman/Data/Thesis_4.3.csv") 

spd1 <- ts(Thesis_4.3[,c(2)]) 

 

## 4.3.3 Random Walk ## 

buildspd1 <- function(theta) { 

  dlmModPoly(order = 1, dV = theta[1], dW = theta[2])} 

 

fitspd1 <- dlmMLE(spd1, parm = c(.2,50,75), buildspd1,hessian=T, lower = rep(1e-6))     

## MLE of Unknown parameters 

 

modspd1 <- buildspd1(fitspd1$par)  ## Fitted model 

fitspd1$convergence  ## Check Convergence 

drop(W(modspd1))[1]  ## System Variance 

drop(V(modspd1))  ## Observation Variance 

hs <- hessian(function(x) dlmLL(spd1, buildspd1(x)), fitspd1$pa) 

all(eigen(hs, only.values = TRUE)$values > 0) ## Positive Definite? 

aVar <- solve(hs) ##  Asymptotic Variance/Covariance Matrix 

sqrt(diag(aVar))  ## Standard Errors 

 

### Kalman Filter ### 

spd1Filt <- dlmFilter(spd1, modspd1)  # Kalman Filter                                                    

 

## 4.3.3 Plots Random Walk## 

x11(width=6, height=6.25, pointsize=12) 

par(mar=c(5,4.4,1,2)-.6,mex=0.9) 

## 4.3.3 Plots Random Walk## 

x11(width=6, height=6.25, pointsize=12) 

par(mar=c(5,4.4,1,2)-.6,mex=0.9) par(mfrow=c(4,1)) 

plot.ts(spd1,xlab="Five-Minute Intervals",ylab="mph",type='o', ylim=c(10,90),xaxs="i") 

lines(window(spd1Filt$f, start = start(spd1)+ c(1,0)), 

 lty=4,pch=4,lwd=.25,type="o",col="red") 

plot.ts(spd1, xlab="Five-Minute Intervals", type='o',ylab="mph",  xlim=c(0,100), 

 ylim=c(10,90),xaxs="i") 

lines(window(spd1Filt$f, start = start(spd1)+c(0,0)), 
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 lty=4,pch=4,lwd=1.5,type="o",col="red") 

plot.ts(spd1, xlab="Five-Minute Intervals", type='o',ylab="mph", 

 xlim=c(100,200),ylim=c(20,90),xaxs="i") 

lines(window(spd1Filt$f, start = start(spd1)+ c(0,0)), 

 lty=4,pch=4,lwd=1.5,type="o",col="red") 

plot.ts(spd1, type='o',ylab="mph",xlab="Five-Minute Intervals", 

 xlim=c(600,720),ylim=c(20,90),xaxs="i") 

lines(window(spd1Filt$f, start = start(spd1) + c(0,0)), 

 lty=4,pch=4,lwd=1.5,type="o",col="red") 

legend("topright",leg = c("Measured","One-Step Ahead Forecasts"), 

 cex = 0.9,lty = c(1, 2), col = c("black","red"), 

 pch=c(1,4), bty = "y", horiz = T) 

############################# 

 

spd2 <- ts(spd1,frequency=12) ## changed to one-hour observation periods 

## Speed Model w/ Seasonal Component ## 

buildspdseas <- function(theta) { 

  dlmModPoly(order = 1, dV = theta[1], dW = theta[2])+ 

    dlmModSeas(12)} 

 

fitspdseas <- dlmMLE(spd2, parm = c(.1,25), buildspdseas,hessian=T, 

 lower = rep(1e-6))  ## MLE of Unknown parameters 

modspdseas <- buildspdseas(fitspdseas$par)  ## Fitted model 

fitspd2$convergence  ## Check Convergence 

 

drop(W(modspdseas))[1]  ## System Variance 

drop(V(modspdseas))  ## Observation Variance 

hs <- hessian(function(x) dlmLL(spd2, buildspdseas(x)), fitspdseas$pa) 

all(eigen(hs, only.values = TRUE)$values > 0) ## Positive Definite? 

aVar <- solve(hs) ##  Asymptotic Variance/Covariance Matrix 

sqrt(diag(aVar))  ## Standard Errors 

 

### Kalman Filter ### 

spdseasFilt <- dlmFilter(spd2, modspdseas) # Kalman Filter 

 

## 4.3.4 Plots Random Walk with Seasonal ## 

x11(width=6, height=6.25, pointsize=12) 

par(mar=c(5,4.4,1,2)-.6,mex=0.9) 

par(mfrow=c(4,1)) 

plot.ts(spd2,xlab="One-Hour Intervals",ylab="mph",type='o', 

        ylim=c(10,90),xaxs="i") 

lines(window(spdseasFilt$f, start = start(spd2)+ c(1,0)), 

 lty=4,pch=4,lwd=.25,type="o",col="red") 

plot.ts(spd2, xlab="One-Hour Intervals", type='o',ylab="mph", 

        xlim=c(0,20),ylim=c(10,90),xaxs="i") 

lines(window(spdseasFilt$f, start = start(spd2)+ c(0,0)), 

 lty=4,pch=4,lwd=1.5,type="o",col="red") 

plot.ts(spd2, xlab="One-Hour Intervals", type='o',ylab="mph", 

        xlim=c(20,40),ylim=c(20,90),xaxs="i") 

lines(window(spdseasFilt$f, start = start(spd2)+ c(0,0)), 

 lty=4,pch=4,lwd=1.5,type="o",col="red") 

plot.ts(spd2, type='o',ylab="mph",xlab="One-Hour Intervals", 

        xlim=c(40,65),ylim=c(20,90),xaxs="i") 

lines(window(spdseasFilt$f, start = start(spd2) + 
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c(0,0)),lty=4,pch=4,lwd=1.5,type="o",col="red") 

legend("topright",leg = c("Measured","One-Hour Intervals"), 

       cex = 0.9,lty = c(1, 2), col = c("black","red"), 

       pch=c(1,4), bty = "y", horiz = T) 

############################# 

 

## 4.3.5 Random Walk Fourier-form ## 

buildspdtrig <- function(theta) { 

  dlmModPoly(order = 1, dV = theta[1], dW = theta[2])+ 

    dlmModTrig(s=12,q=6)} 

 

fitspdtrig <- dlmMLE(spd1, parm = c(.1,25), buildspdtrig,hessian=T, lower = rep(1e-6))  

## MLE of Unknown parameters 

modspdtrig <- buildspdtrig(fitspdtrig$par)  ## Fitted model 

fitspd1$convergence  ## Check Convergence 

drop(W(modspdtrig))[1]  ## System Variance 

drop(V(modspdtrig))  ## Observation Variance 

hs <- hessian(function(x) dlmLL(spd1, buildspdtrig(x)), fitspdtrig$pa) 

all(eigen(hs, only.values = TRUE)$values > 0) ## Positive Definite? 

aVar <- solve(hs) ##  Asymptotic Variance/Covariance Matrix 

sqrt(diag(aVar))  ## Standard Errors 

 

### Kalman Filter ### 

spdtrigFilt <- dlmFilter(spd2, modspdtrig) # Kalman Filter 

 

## 4.3.5 Plots Random Walk Fourier-form ## 

x11(width=6, height=6.25, pointsize=12) 

par(mar=c(5,4.4,1,2)-.6,mex=0.9) 

par(mfrow=c(4,1)) 

plot.ts(spd2,xlab="One-Hour Intervals",ylab="mph",type='o', 

        ylim=c(10,90),xaxs="i") 

lines(window(spdtrigFilt$f, start = start(spd1)+ c(1,0)), 

 lty=4,pch=4,lwd=.25,type="o",col="red") 

plot.ts(spd2, xlab="One-Hour Intervals", type='o',ylab="mph", 

        xlim=c(0,20),ylim=c(10,90),xaxs="i") 

lines(window(spdtrigFilt$f, start = start(spd1)+ c(0,0)), 

 lty=4,pch=4,lwd=1.5,type="o",col="red") 

plot.ts(spd2, xlab="One-Hour Intervals", type='o',ylab="mph", 

        xlim=c(20,40),ylim=c(20,90),xaxs="i") 

lines(window(spdtrigFilt$f, start = start(spd1)+ c(0,0)), `

 lty=4,pch=4,lwd=1.5,type="o",col="red") 

plot.ts(spd2, type='o',ylab="mph",xlab="One-Hour Intervals", 

        xlim=c(40,65),ylim=c(20,90),xaxs="i") 

lines(window(spdtrigFilt$f, start = start(spd1) + c(0,0)), 

 lty=4,pch=4,lwd=1.5,type="o",col="red") 

legend("topright",leg = c("Measured","One-Step Ahead Forecasts"), 

       cex = 0.9,lty = c(1, 2), col = c("black","red"), 

       pch=c(1,4), bty = "y", horiz = T) 

############################# 
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## Test Statistics ## 

 

## RW Model ## 

## Mean Average Deviation (MAD) 

mean(c(abs(spd1Filt$f-spd1)), na.rm=TRUE ) 

## Root Mean Square Error Of Prediction (RMSEP) 

sqrt(1/length(spd1)*sum(c(abs((spd1Filt$f-spd1)^2)), na.rm=TRUE)) 

 

## Seasonal Based Model ## 

## Mean Average Deviation (MAD) 

mean(c(abs(spdseasFilt$f-spd2)), na.rm=TRUE ) 

## Root Mean Square Error Of Prediction (RMSEP) 

sqrt(1/length(spd2)*sum(c(abs((spdseasFilt$f-spd2)^2)), na.rm=TRUE)) 

 

## RW with Fourier-form Model ## 

## Mean Average Deviation (MAD) 

mean(c(abs(spdtrigFilt$f-spd2)), na.rm=TRUE ) 

## Root Mean Square Error Of Prediction (RMSEP) 

sqrt(1/length(spd2)*sum(c(abs((spdtrigFilt$f-spd2)^2)), na.rm=TRUE)) 
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APPENDIX E: PLOTS 

  

 
Figure 42.  Section 1 Speed-Flow Diagram Displaying Critical Density (rhoc1)  
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Figure 43.  Section 2 Speed-Flow Diagram Displaying Critical Density (rhoc2)  
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