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ABSTRACT 

Quaking aspen (Populus tremuloides) woodlands are expected to be sensitive to 

climate change, and have declined in parts of the West. Great Basin mountain ranges may 

be near the limits of aspen’s climatic threshold, in terms of temperature and aridity, and 

thus are particularly vulnerable to climate change. Birds associating with aspen are likely 

to undergo regional population fluctuations and changes in distribution as a result of 

changes in aspen availability or distribution. Thus, understanding the habitat relationships 

of avian communities in aspen and other montane cover types is important for tracking 

the impacts of future landscape change. The mountainous terrain of the Humboldt-

Toiyabe National Forest in northern Elko County, NV, supports a patchy array of aspen 

and conifer forest and shrubland distributed across 2,755 km2. I quantified avian 

abundance using point count sampling over two breeding seasons (2010 – 2011) at 389 

point locations in or near systematically selected stands of aspen (n = 135). For common 

species, I compared the mean abundance per stand in aspen to that in conifer, mixed 

aspen-conifer, and montane sage, using both paired and partially-paired t-tests. Most 

focal species were significantly more abundant in aspen than conifer (22 of 37 species) or 

montane sage (30 of 39 species) in the partially-paired comparisons. In paired 

comparisons, 4 of 15 species were significantly more common in aspen than conifer, and 

19 of 24 were significantly more common in aspen than montane sage, but most 

comparisons with both conifer and mixed aspen-conifer were non-significant due to small 

sample sizes. I then used mixed-effects multiple regression, with stand and observer crew 



 
 

as random effects, to identify key habitat and physiographic parameters driving species’ 

abundance. For 8 of 11 aspen associates in mixed-effects models, abundance increased 

with an increase in aspen within 75 m; abundance also decreased with an increase in 

conifer for three aspen associates. For three of five conifer associates, abundance 

increased with an increase in 75-m conifer; abundance also increased with an increase in 

mixed aspen-conifer for three conifer associates. The results of my study underscore the 

ecological importance of aspen for montane passerine communities–aspen is preferred by 

most species over other available habitats, and abundance of most aspen-associated 

species increased as the proportion of aspen within 75 m increased. A reduction in aspen 

distribution in the Great Basin is likely to result in a decrease in abundance and 

distribution of a host of aspen-associated species and could have long-term effects on 

montane passerine communities. I suggest that management activities promoting aspen’s 

persistence and resilience to climate change be considered as a means for maintaining 

abundance and species composition of montane bird communities in the island ranges of 

the Great Basin.  
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QUANTIFYING HABITAT RELATIONSHIPS OF SONGBIRDS  

IN QUAKING ASPEN (Populus tremuloides) AND OTHER MONTANE 

COMMUNITIES OF THE JARBIDGE MOUNTAINS, NEVADA 

Introduction 

Quaking Aspen (Populus tremuloides) communities are of ecological and 

conservation interest in the western U.S. because they are biologically diverse, ranked 

only behind riparian ecosystems (Winternitz 1980, Rumble et al. 2001). Because aspen is 

often the primary deciduous woodland occurring in western montane systems, the 

ecological integrity of these areas may be considered dependent on this woodland type 

(Kay 1997). When aspen-dominated landscapes transition to either sagebrush (Artemisia 

spp.) or coniferous forest, there is a noticeable change in plant and animal species 

richness and community composition (Bartos 2001). In fact, because of its ecological 

importance (Flack 1976), aspen is likely a keystone species (Bartos 2001). Keystone 

species carry significant weight in their associated communities, with disproportionate 

(and often, indirect) influence on other species (Paine 1995). Additionally, aspen 

woodlands provide ecosystem services (Kuhn et al. 2011) such as water table recharge, 

soil water retention (DeByle 1985), increased plant, animal, and insect diversity (DeByle 

1985, Jones et al. 1985, Chong et al. 2001), and added aesthetic value to mountain 

viewsheds (Johnson et al. 1985). As a mesic system, these stands often function as 

natural firebreaks (Fechner and Barrows 1976). Disturbance and succession-related 

dynamics that historically affected aspen’s distribution may be in a state of flux, in part 
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due to climate change. For ecologists and land managers to comprehend the dynamics 

affecting aspen, it is useful to consider the historical role of these processes and the 

outcome of predictive models that forecast long-term trends. Because of substantial 

environmental variability across the range of aspen communities in North America, 

research and management of aspen woodlands is best conducted at the local to regional 

scale (Wiens 1989, Romme et al. 2001). 

The sensitivity of quaking aspen to perturbations in the western U.S. has been 

well documented. Drought, disease, insects, disruption of natural fire regimes, and 

browsing by wildlife and livestock have all been shown to reduce vitality of aspen 

communities (Bartos and Campbell 1998, Worrall et al. 2008). In particular, fire 

suppression likely contributes to long-term reduction in coverage of aspen woodlands 

(Rehfeldt et al. 2009). Wildfires often effectively renew the early stages of forest 

community succession in which aspen thrives, but conditions may exist in which aspen 

re-establishment is precluded due to the effectiveness of conifer re-seeding (Strand et al. 

2009). Typically, with long enough intervals between fires, aspen-conifer communities 

can reach late successional stages, which may result in exclusion of aspen (Bartos 2001, 

Frey et al. 2004, Di Orio et al. 2005, Kuhn et al. 2011, St. Clair et al. 2013). Although 

approximately two-thirds of aspen stands in the western U.S. are thought to be seral 

(Mueggler 1989), many stands in the Great Basin may be nonseral (Mueggler 1989, 

Shinneman et al. 2013). Nonseral stands are not necessarily fire-dependent, and they 

often have sufficient regeneration to be self-replacing in the absence of disturbance 

(Mueggler 1989, Shepperd et al. 2006). Shinneman et al. (2013) described at least five 
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possible aspen fire regime types in the western U.S., ranging from highly fire-dependent, 

seral aspen-conifer to fire-independent, stable, pure aspen. 

Hanna and Kulakowski (2012) emphasize the importance of research in those 

forest systems considered to be most at risk because of increasing climatic stressors 

(IPCC 2007), in part because changes in forest systems result in cascading effects to 

fauna, communities, and biomes (Hansen et al. 2001). Aspen ecologists seem to be in 

agreement that changes in the frequency and intensity of landscape disturbances that are 

predicted to occur as a result of climate change will affect aspen’s persistence (Morelli 

and Carr 2011). As a result, research on aspen communities has become increasingly 

important (Rogers et al. 2013). 

Drought is a major cause of the rapid decline in aspen recently observed in much 

of the West–a phenomenon known as sudden aspen decline, where stand mortality occurs 

in as little as 1-2 years (Hogg et al. 2008, Worrall et al. 2008, Rehfeldt et al. 2009). 

Decreases in annual precipitation and snowpack, and warmer summers, are expected in 

the western U.S., despite expected increases in precipitation globally (Cayan et al. 2008). 

Given that the distribution of aspen is in part influenced by temperature and available 

moisture (Worrall et al. 2008), suitable environments for aspen are likely to shift in 

distribution and potentially decline in abundance (Rehfeldt et al. 2009). Indeed, models 

that project change in aspen coverage across the landscape, based on future climate 

scenarios, show a major decline in aspen by the year 2060 (Rehfeldt et al. 2009, Worrall 

et al. 2013). Aspen is considered most susceptible to dieback at the edge of its climatic 

tolerance range, especially at lower elevations where moisture-stress is generally highest 

(Rehfeldt et al. 2009). Despite the seemingly logical outcomes of these modeling efforts, 
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predictions of aspen’s response to current and projected climatic variability are made 

with uncertainty (Morelli and Carr 2011). In fact, in some areas, aspen could expand its 

distribution, especially under fire regimes that decrease competition with conifers 

(Kulakowski et al. 2013). Thus, inferences from model projections should be made with 

care across different spatial and temporal scales (Kulakowski et al. 2013).  

Fauna currently associated with aspen may follow aspen's trajectory of decline or 

movement on the landscape due to succession or climate change, or the species may 

exhibit plasticity in niche breadth and habitat preference. Lack and Venables (1939) 

noted that while some avian species have specific habitat requirements, others are 

generalists or demonstrate flexibility in habitat requirements. On a larger scale, not only 

local patches (Rotenberry and Wiens 1980, Rotenberry 1985), but also the surrounding 

habitat matrix and the extent of landscape connectivity could be playing a significant role 

in the distribution and dynamics of avian populations (Wiens 1989, Knick and 

Rotenberry 1995, Rodewald and Yahner 2001). In riparian cottonwood (Populus 

angustifolia) corridors, Saab (1999) found that occurrence of most avian species was 

better explained by landscape characteristics than by local habitat patches. Lawler and 

Edwards (2006) also provide a strong case for approaching habitat association modeling 

at different scales. Thus, attempts to understand the use of aspen by avian communities 

should simultaneously consider their use of other habitats in the vicinity. 

Avian abundance and species richness is known to be high in aspen in the Great 

Basin, and the distribution of some avian species may be tied to the distribution of aspen 

in this predominately shrubsteppe landscape (Dobkin and Wilcox 1986, Dobkin et al. 

1995, Earnst et al. 2012). However, few studies have directly compared avian 
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communities in aspen and other habitats anywhere in the western U.S., and most of those 

have quantified species richness or diversity rather than abundance. Aspen had higher 

avian species richness (Rumble et al. 2001) and diversity (Griffis-Kyle and Beier 2003) 

than ponderosa pine (Pinus ponderosa), higher species richness than conifer (Turchi et al. 

1995) and higher species diversity than mixed aspen-conifer or conifer (Hollenbeck and 

Ripple 2007). Griffis-Kyle and Beier (2003) quantified abundance, and found higher 

relative abundance of all bird detections in aspen compared to ponderosa pine in northern 

Arizona. Mills et al. (2000) also identified several species that were more abundant in 

mixed aspen-birch forests than ponderosa pine. In the Great Basin, the Nevada Breeding 

Bird Atlas (Floyd et al. 2007) describes general patterns of bird occurrence, but not 

abundance, in 4-km2 blocks, and there are few survey blocks in aspen of the Jarbidge 

region. My study is the first to compare avian abundance in aspen to other cover types in 

the Great Basin, and the first to compare abundance in aspen to fir-dominated conifer 

woodlands and shrubsteppe in the western U.S. 

Given that the distribution of aspen is influenced by available moisture and 

topographic setting (Worrall et al. 2008), and birds may also be directly affected by those 

factors, it is interesting to model avian abundance with respect to topographic parameters 

as well as vegetation. Climate change is also likely to affect birds directly, as well as 

indirectly via its anticipated effects on aspen. Climate change has influenced changes in 

avian species' distribution (Thomas and Lennon 1999, Hitch and Leberg 2006, Paprocki 

et al. 2014), and the timing of migration (Butler 2003, Cotton 2003, Moller et al. 2006) 

and breeding (Winkel and Hudde 1997, Dunn and Winkler 1999, Moller 2008, Heath et 

al. 2012). The pattern of change is expected to differ across regions (Marra et al. 2005), 
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depending, in part, on altitude (Inouye et al. 2000), and latitude and longitude (Tottrup et 

al. 2010). In some cases, an avian species’ preferred elevational niche has become 

uninhabitable due to climatic changes and subsequent changes in plant communities 

(Sekercioglu et al. 2008, Fleishman and Dobkin 2009). Similarly, bird species of montane 

systems in California tracked their climatic niche over the past century, with respect to 

temperature, precipitation, or both (Tingley et al. 2009). The situation is further 

complicated by the likelihood that avian communities, and the plant communities on 

which they depend, will track their respective climatic niches at different rates or in 

different ways, and that birds will be significantly affected by shifts in distribution of 

both biotic and abiotic dimensions of their niche (Martin 2001, Auer and Martin 2009). 

The Jarbidge and Mountain City Ranger Districts of the Humboldt-Toiyabe 

National Forest are comprised of nearly 9% aspen and 9% conifer woodlands, and both 

are primarily surrounded by montane shrublands (Beaty et al. 2004). The interdispersion 

of these co-occurring cover types presents an optimal setting in which to compare avian 

abundance in aspen to that in other cover types. Understanding habitat relationships of 

aspen-associated avian communities is particularly interesting in the montane islands of 

the Great Basin high desert, where aspen may be near its climatic threshold and thus 

particularly susceptible to climate change. To understand the potential effects of climate 

change on aspen-associated avian communities, it is important to quantify their use of 

both aspen and the non-aspen cover types that are likely to replace, or be replaced by, 

aspen in the future landscape. 

The goal of my research is to quantify the relative importance of aspen and other 

mesic montane habitats to commonly breeding birds (hummingbirds, woodpeckers, and 
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passerines) of the Jarbidge region. Specifically, I use avian point counts to compare the 

abundance of species and nesting guilds in aspen to that in adjacent habitats. I also model 

avian abundance relative to the proportionate availability of aspen and other cover types, 

and relative to topographic gradients. In addition to modeling abundance of common 

species, I model abundance of nesting guilds because they identify predictor variables 

important to the guild as a whole, and incorporate the responses of less common species 

that were not modeled as individual focal species (Mac Nally et al. 2008). 

Habitat associations of a given species may differ across the species’ range, 

across latitudinal or elevational gradients, and may depend on the particular cover types 

available in a given study area. For example, Violet-green Swallows (Tachycineta 

thalassina) breed near sea level in the northern part of their range, while usually nesting 

at elevations greater than 2,000 m in the south (Brown et al. 1992). Similarly, the four 

major groups of subspecies of the broadly distributed Fox Sparrow (Passerella iliaca) 

show unique habitat preferences (reviewed in Weckstein et al. 2002). Despite these 

caveats, a review of the literature leads to several predictions about habitat associations of 

species expected to be present on the Jarbidge study area. The literature review is based 

primarily on Floyd et al. 2007, Poole 2005, and references therein. 

I tested the following predictions within each research objective: 

Objective 1. I compared abundance of focal species in aspen to that in each of 

three common cover types that occur in similar topographic settings: mixed aspen-

conifer, conifer, and montane sage. 

• Prediction 1.1. I predicted that the following species are more abundant in aspen than 

conifer: Red-naped Sapsucker (Sphyrapicus nuchalis), Downy Woodpecker (Picoides 
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pubescens), Western Wood-Pewee (Contopus sordidulus), Warbling Vireo (Vireo 

gilvus), Tree Swallow (Tachycineta bicolor), House Wren (Troglodytes aedon), 

Mountain Bluebird (Sialia currucoides), Swainson’s Thrush (Catharus ustulatus), 

European Starling (Sturnus vulgaris), Orange-crowned Warbler (Oreothlypis celata), 

Yellow Warbler (Setophaga petechia), Song Sparrow (Melospiza melodia), and 

Brown-headed Cowbird (Molothrus ater). 

• Prediction 1.2. I predicted that the following species are more abundant in conifer 

than aspen: Hammond’s Flycatcher (Empidonax hammondii), Mountain Chickadee 

(Poecile gambeli), Red-breasted Nuthatch (Sitta canadensis), Ruby-crowned Kinglet 

(Regulus calendula), Yellow-rumped Warbler (Setophaga coronata), Western 

Tanager (Piranga ludoviciana), Chipping Sparrow (Spizella passerina), Cassin’s 

Finch (Haemorhous cassinii), and Pine Siskin (Spinus pinus). 

• Prediction 1.3. I predicted that the following species are similarly abundant in aspen 

and conifer: Hairy Woodpecker (Picoides villosus), Northern Flicker (Colaptes 

auratus), Dusky Flycatcher (Empidonax oberholseri), Violet-green Swallow, Hermit 

Thrush (Catharus guttatus), American Robin (Turdus migratorius), Dark-eyed Junco 

(Junco hyemalis), and Black-headed Grosbeak (Pheucticus melanocephalus). 

• Prediction 1.4. I predicted that the following species is more abundant in mixed 

aspen-conifer than aspen: Cordilleran Flycatcher (Empidonax occidentalis).  

• Prediction 1.5. I predicted that the following species are more abundant in montane 

sage than aspen: Rock Wren (Salpinctes obsoletus), MacGillivray’s Warbler 

(Geothlypis tolmiei), Green-tailed Towhee (Pipilo chlorurus), Brewer’s Sparrow 

(Spizella breweri), Vesper Sparrow (Pooecetes gramineus), Fox Sparrow, White-

crowned Sparrow (Zonotrichia leucophrys), and Lazuli Bunting (Passerina amoena). 

Objective 2. Using a subset of points that contain aspen, I constructed habitat 

association models of focal species' abundance using the following major predictors: a) 

cover type composition within the 75-m count circle; b) cover type composition within 

300 m; and c) topographic parameters.  
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• Prediction 2.1. I predicted that the proportion of aspen within the 75-m count circle is 

a significant predictor of abundance for any species that is significantly more 

abundant in aspen than other cover types (as determined by comparisons described in 

Objective 1). 

• Prediction 2.2. I predicted that the proportion of a given non-aspen cover type within 

the 75-m count circle is a significant predictor of abundance for any species that is 

significantly more abundant in that cover type than in aspen (as determined by 

comparisons described in Objective 1). 

Methods 

Study Area 

Located in Elko County, NV, my study area was entirely within the Mountain 

City and Jarbidge Ranger Districts of Humboldt-Toiyabe National Forest, managed by 

U.S. Department of Agriculture. The study area perimeter spans approximately 98 km 

from west to east and 55 km from south to north, encompassing 2,755 sq. km at its 

minimum extent (longitude: -115.00’00” to -116.07’30” degrees; latitude: 41.30’00” to 

41.56’00” degrees N). Much of the perimeter of the study area is high desert managed by 

U.S. Department of Interior – Bureau of Land Management, but some privately-owned 

ranches and Native American tribal lands also share its boundary. Aside from an 

excluded portion of the Mountain City Ranger District in the Independence Mountains, 

the study area perimeter matches that of the National Forest ranger districts. Some private 

holdings and state-owned parcels lie within the study area perimeter. 

Physiographic features are diverse, from deep canyons to alpine peaks, and most 

of the terrain is remote and mountainous. The study area includes all or parts of the Bull 

Run Mountains, Mahogany Range, Copper Mountains, Jarbidge Range, and Elk 
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Mountain. Watersheds include parts of the Bruneau, North Fork Humboldt, Salmon Falls, 

South Fork Owyhee, Upper Humboldt, and Upper Owyhee. 

Vegetation within the study area has been described in a digital vegetation cover 

type map obtained from USDA Forest Service (Beaty et al. 2004), and this map is used as 

the basis for the following description. The study area is primarily comprised of shrub 

communities (Beaty et al. 2004). Xeric shrub communities comprise 61% of the study 

area and are predominantly mixtures of mountain big sagebrush (Artemisia tridentata 

vaseyana), little sagebrush (Artemisia arbuscula), antelope bitterbrush (Purshia 

tridentata), rubber rabbitbrush (Ericameria nauseosa), yellow rabbitbrush 

(Chrysothamnus viscidiflorus), basin big sagebrush (Artemisia tridentata tridentata), and 

Wyoming big sagebrush (Artemisia tridentata wyomingensis). Mesic shrub communities 

occupy 13% of the study area and include mixtures of mountain big sagebrush, mountain 

snowberry (Symphoricarpos oreophilus), wax currant (Ribes cereum), chokecherry 

(Prunus virginiana), saskatoon serviceberry (Amelanchier alnifolia), and snowbrush 

ceanothus (Ceanothus velutinus). Riparian areas comprise 2.5% of the study area and 

include willows (Salix spp.), gray alder (Alnus incana), cottonwood (Populus spp.), red 

osier dogwood (Cornus sericea), and wet meadows with some quaking aspen. 

Woodlands comprise a minority of the study area (21.9%). Quaking aspen and 

conifer forests each account for about 9% of land cover. Conifer forest primarily consists 

of subalpine fir (Abies lasiocarpa), but also white fir (Abies concolor), limber pine (Pinus 

flexilis), whitebark pine (Pinus albicaulis), and small amounts of pinyon pine (Pinus 

monophylla). The Jarbidge Wilderness contains 62% of the conifer cover type on the 

study area (14,725 ha), approximately 90% of which is subalpine fir. Mixed aspen-
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conifer comprises 0.3% of the study area. Mountain mahogany (Cercocarpus ledifolius) 

and juniper (Juniperus spp.) are dry woodland species that comprise 4% and 0.2% of the 

study area, respectively. 

Large wildfires have burned 58,528 ha (21.2% of study area) since 2000 

(unpublished data, USDOI – BLM – Nevada State Office – Mapping Sciences, 2008). 

Fires in 2000 burned 3,750 ha near the eastern edge of the study area and 11 ha on the 

western edge. The Snow Canyon fire (1,529 ha) occurred on the western flank of the 

Independence Mts. in 2006. The Elk Mountain fire (32,574 ha) of the Murphy Complex 

of 2007, covered much of the eastern portion of Mountain City Ranger District. In 2008, 

the East Slide Rock Ridge fire (20,664 ha) burned across the northern third of Jarbidge 

Wilderness and north to within 3 km of the Idaho border. The amount of aspen area 

affected by these wildfires is 12.4% (2,991/24,087 ha). 

The climate of the study area varies with geographic position and can be 

described using data from SNOTEL (i.e., Snow Telemetry) stations, which record 

meteorological and snowpack data throughout the western U.S. (USDA – Natural 

Resources Conservation Service, Snow Survey and Water Supply Forecasting Program). 

Among the eight SNOTEL sites in my study area and the six years I considered (2006-

2011), mean annual precipitation ranged from 36 to 127 cm. Lower elevations are 

typically warmer and drier than higher elevations. When elevation is held constant, 

annual precipitation appears to decrease from west to east. For example, mean annual 

precipitation was 100 cm at the Bear Creek SNOTEL site (elev. 2,450 m), compared to 

58 cm at the Pole Creek SNOTEL site (elev. 2,538 m), located 19 km to the east (east of 

the Jarbidge crest). Similarly, mean annual precipitation for the same period was 73 cm at 
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the Laurel Draw SNOTEL site, compared to 47 cm at the Big Bend SNOTEL site, 

located 29 km to the east (elevation of both is approximately 2,042 m). Additionally, for 

any given SNOTEL location, annual precipitation varies greatly between years (e.g., at 

Bear Creek, 84 cm in 2007 and 127 cm in 2011, a difference of 34%). 

Mean annual temperatures from SNOTEL sites at similar elevations are quite 

comparable. For example, mean annual temperature in 2010 and 2011 was 5.57°C and 

5.45°C at Laurel Draw and 5.85°C and 5.79°C at Big Bend (both at approximately 2,042 

m). Mean annual temperature in 2010 and 2011 was 3.30°C and 3.02°C at Bear Creek 

(2,450 m) and 3.23°C and 2.95°C at Pole Creek (2,538 m) (USDA – Natural Resources 

Conservation Service, Snow Survey and Water Supply Forecasting Program). 

The study area is fragmented by Nevada state highway 225, gravel roads, 

unimproved roads, and ATV trails. Centers of human activity include the unincorporated 

communities of Jarbidge and Mountain City (year-round populations of 12 and 70, 

respectively). Developed sites include five campgrounds and five USDA-Forest Service 

administrative sites. A few gold mines are still active east of the town of Jarbidge, as well 

as in the central and western portions of the study area. Sheep and cattle grazing occur 

over most of the area. Other types of disturbance include fences, power transmission 

lines, stock ponds, water troughs, and historic, abandoned homesteads and abandoned 

small mines. 
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Sampling Design 

Stand Selection 

To select aspen stands in which I would conduct bird count sampling, I used a 

digital vegetation cover type layer obtained from USDA Forest Service (Beaty et al. 

2004), in which aspen stands are categorized as riparian aspen, non-riparian aspen, or 

mixed aspen-conifer. For the purpose of stand selection, I pooled mixed aspen-conifer 

and non-riparian aspen but later separated these cover types based on field vegetation 

measurements. I only considered stands > 4 ha in size because a 4-ha stand could fully 

contain a 100-m radius point count circle. For riparian stands embedded within non-

riparian stands, the criterion for total stand size was also > 4 ha. 

Because bird survey locations are accessed prior to daylight and surveys are 

conducted during a 4-hour window of the early morning, I incorporated accessibility by 

truck, ATV, or foot travel in the sampling plan. Access routes included improved and 

unimproved roads, ATV trails, and hiking trails. To efficiently survey the area and 

minimize transit time, I limited the population of aspen stands available for selection to 

those containing area within 200 m of an access route, and limited survey stations 

available for sampling to those within 1 km of the access route. Areas near roads were 

not excluded from sampling because most roads were primitive, remote, and rarely used 

during the breeding bird season. 

Of the 2,979 aspen stands on the study area, 397 (13.3%) met the size and access 

selection criteria. For available stands, I used systematic random selection to choose a 

sample of riparian and non-riparian stands with a relatively even geographic distribution. 

I used the stand's feature identification number (FID), derived in ArcGIS 9.3 (ESRI, 
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Redlands, California), that corresponds to the stand's geographic location, and drew a 

systematic sample from the list of numerically sorted feature identification numbers. I 

then randomly assigned half of the 148 selected stands to be sampled in 2010 and half in 

2011. Minor adjustments were made to stand selection to obtain a set of stands that could 

be surveyed by a two-person crew within a survey morning (i.e., <5% of originally 

chosen stands were moved between survey years or dropped from selection). Just over 

half (1,518/2,979, 51%) of all stands on the study area were smaller than the minimum 

size criteria of 4 ha. Despite the lack of roads and relatively small amount of aspen within 

the Jarbidge Wilderness, sampling effort was spread fairly evenly across wilderness and 

non-wilderness areas. Of the 381 stands in the Jarbidge Wilderness, 32 (8.1%) met the 

selection criteria, and crews sampled 10 of those. Sampling effort was also well 

distributed across elevations. Aspen occurred on the study area at elevations between 

1,619 and 2,849 m; elevations of stands available for selection were 1,860 to 2,683 m; 

and elevations of selected stands were 1,910 to 2,604 m. 

Point Selection 

Using ArcGIS, I placed a grid of 100-m radius, contiguous, non-overlapping 

circles over each selected stand, such that the number of interior circles (i.e., 100% 

aspen) was maximized. The remaining edge circles contained portions of aspen and other 

cover types, and I only considered edge circles for sampling if they contained at least 

50% aspen. For most stands, I sampled all available interior circles plus two edge circles. 

For stands with more than four available interior circles, I randomly chose four 

contiguous interior circles and two contiguous edge circles. 
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Locations of point count stations were established within ArcGIS prior to field 

work. I did not adjust locations of point count stations in the field, except for six points 

that were each moved 20 m further from a stream to decrease potential effects of stream 

noise on observers’ ability to detect birds. 

Paired Design 

To compare bird abundance in aspen and non-aspen cover types, I used a paired 

design in which point count locations were placed in aspen stands and adjacent non-aspen 

cover type patches. A non-aspen cover type patch was suitable for inclusion if it occupied 

the majority of an aspen stand's edge on the cover type map in ArcGIS, and if it were 

large enough to encompass at least two 100-m radius circles placed > 150 m from the 

edge of the aspen stand. Crews initially sampled 58 aspen stands and associated non-

aspen patches as part of the paired comparison – 20 paired with conifer patches, 24 with 

montane shrub, and 14 with sage. Paired stands were distributed fairly evenly across the 

spatial extent of the study area. This paired approach is statistically powerful because 

observer, date of survey, location, elevation, aspect, and slope are identical or very 

similar within each pairing–the paired analysis effectively removes shared variance due 

to these confounding factors and thus strengthens the comparison of interest, which is 

bird abundance in aspen vs. non-aspen. 

During the analysis of paired points, I used only those points meeting the point 

count type definitions based on field descriptions and orthoimagery from NAIP (National 

Agricultural Imagery Program). The definitions are given under NAIP Habitat 

Classification and Point Type Classification. Classifying points in this manner also made 

it possible to add some paired points to the analysis, especially because presumed aspen 
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points were sometimes re-classified as mixed aspen-conifer or conifer. New pairings 

were included only if aspen and non-aspen points were in adjacent polygons, and if avian 

surveys were conducted by the same field crew on the same date. To avoid 

pseudoreplication, non-aspen points were paired with only one aspen stand, and vice-

versa. The final paired analysis included 38 aspen stands, 10 stands paired with conifer 

points, 9 paired with mixed aspen-conifer points, and 22 paired with montane shrub or 

sagebrush cover types. 

Avian Survey Technique 

I employed a standard 100-m, fixed radius point count protocol of 10-minute 

duration (Ralph et al. 1993). Observers conducted surveys between 15 minutes prior to 

sunrise and 10:00 a.m., a period corresponding to peak singing activity. Surveys were not 

conducted in rain or high wind (> 19 km/hr), as these conditions may negatively affect 

singing rate and detection probability. Crews flagged count stations during the first bout 

of surveys, and navigated with GPS to facilitate their relocation. Prior to each point 

count, observers waited quietly for one minute to allow birds to acclimate to human 

presence. At each point, observers oriented to the four cardinal directions using a 

declinated compass, and estimated distance to singing birds and landmarks using a laser 

rangefinder. 

Crews estimated wind speed using the Beaufort Wind Scale (National 

Meteorological Library 2010), and obtained ambient temperature in a shaded location. 

Crews estimated stream noise using the following criteria: 0 = Yellow-rumped Warbler 

song can be heard at distances > 75 m from the observer, 1 = Yellow-rumped Warbler 

song cannot be heard 75 m away but can be heard 50 m away, 2 = Yellow-rumped 
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Warbler song cannot be heard 50 m away but can be heard 25 m away, 3 = Yellow-

rumped Warbler song cannot be heard 25 m away. This method, rather than a simple 

ranking of stream noise from 0 to 3, provided more standardization among observers, 

streams, and days. I selected the song of Yellow-rumped Warbler because a) observers 

were likely to encounter it most days and thus have its loudness in the forefront of 

memory, and b) the song is of intermediate loudness and is often discernable near 

streams. 

Observers recorded the following: number of individuals within observation 

(flocks only), sex (male, female, unknown), age class (adult, juvenile, unknown), paired 

status (observed with mate or not), initial detection type (song, call, drum, visual), time 

interval (1 = 0 to 3 minutes, 2 = 3 to 5 minutes, 3 = 5 to 10 minutes), distance category 

from point center (1 = 0 to 25 m, 2 = 25 to 50 m, 3 = 50 to 75 m, 4 = 75 to 100 m, 5 = 

hunting or foraging in the airspace over the count circle). Observers did not record birds 

observed outside the 100-m count radius, or those flying through without foraging. 

Observers used countdown timers to track time intervals. Observers employed 

rangefinders to acquire distances to individuals when practical (i.e., open line of sight). 

Individuals were plotted on a diagram with four cardinal quadrants and concentric circles 

representing the four distance bands. Observers plotted detections to reduce the potential 

for double counting individuals, which would inflate relative abundance. During surveys, 

observers rotated the direction they were facing to facilitate equal sampling of the count 

circle. 

In 2010, crews surveyed 59% of all points (n = 389), and surveyed the remaining 

41% in 2011. Each point count station was sampled twice during the respective breeding 
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season (late May to early July), once by each of two observers that comprised a crew. I 

balanced surveys across observers within a crew to help offset potential sampling bias 

caused by observer differences. I also attempted to balance cover types across crews so 

that different crews surveyed similar proportions of aspen, conifer, and montane sage 

points. Point counts were primarily conducted by two crews in each year, each consisting 

of two observers, except that an additional single-person team sampled 2.6% (10/389) of 

all points in 2010. Between years, crews were different, except that one observer (KG) 

was a member of a crew in both years and the single observer in 2010 was also a member 

of a two-person crew in 2011. 

Prior to analyses, survey data were truncated to 75-m (i.e., distance band 4 was 

excluded) because detectability of birds is higher closer to the observer and it avoids any 

bias that observers might have had to include birds at the edge of the 100-m radius used 

in the field. I excluded survey points from analysis that had excessive stream noise (16 

points with a stream noise level of 3 during one of the two surveys), recent wildfire (35 

points), or mountain mahogany as the majority cover type (4 points). I based evidence of 

recent fire as scorched leaves, or charring on live trees, snags, or coarse woody debris.  

NAIP Habitat Classification 

Observers used 1-m digital NAIP orthoimagery to help locate unique habitat 

patches within a 75-m radius of the point count center (USDA-FSA-APFO 2006). Habitat 

patches for most points (78.9 %, 307/389) were classified during field work, but habitat 

patches of a few points (n=82) were classified in the laboratory based on NAIP imagery 

and a comparison with nearby points (see below). Observers identified and delineated 

unique habitat patches > 625 m2 (25 m x 25 m), and assigned a cover type classification. 
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In addition to shrub and woodland community types, polygons could be defined as 

Grass/Sedge/Forb, Bare/Rock/Scree, or Water. Gaps < 625 m2 in size were not mapped. 

For polygons classified as shrub cover types in the field, observers recorded an 

ocular estimate of the percent of shrub canopy cover occupied by each of the three most 

common species. In polygons classified as woodland cover types in the field, observers 

recorded an ocular estimate of percent of total stems of all tree species for the three most 

common tree species. The definition of tree for this purpose included any woody plant > 

1.5 m in height. 

I classified shrub communities into three types: 

1. Xeric shrub: any mixture of shrubs associated with xeric conditions 

such as mountain big sagebrush, Wyoming big sagebrush, basin big 

sagebrush, little sagebrush, antelope bitterbrush, yellow rabbitbrush, or 

rubber rabbitbrush. The xeric shrub definition also stipulated that shrubs 

associated with mesic conditions could not comprise > 5% of total 

shrub cover. 

2. Montane shrub: any mixture of mesic and xeric shrubs, where mesic 

shrubs comprised > 5% of total shrub cover. 

3. Riparian shrub: any mixture of mesic shrubs associated with a water 

source, often with willow or alder present. 

I classified woodland communities into the following types: 

1. Aspen: > 90% overstory stems are aspen. 

2. Conifer: > 90% overstory stems are conifer species. 

3. Mixed Aspen-Conifer: mixture of conifer species and aspen, where 

aspen comprises > 10% and < 90% of overstory stems, and where 

conifer species comprise > 10% and < 90% of overstory stems. 

4. Willow: > 90% overstory stems are willow. 
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5. Willow-Aspen: mixture of willow and/or other riparian shrubs, and 

aspen, where aspen comprises > 10% and < 90% of overstory stems, 

and where willow and/or other riparian shrubs comprise > 10% and < 

90% of overstory stems. 

Using tools in ArcGIS 9.3, I digitized cover type polygons from field maps and 

calculated the percent area for each cover type within each 75-m radius point count 

circle. For the 82 points where cover types were not mapped in the field, I delineated 

cover type boundaries in ArcGIS using NAIP imagery and the Forest Service cover type 

layer. To help identify cover types, I compared the images of these points to nearby count 

circles for which cover types had been mapped in the field. In addition, for many of these 

points, I had personal knowledge of cover types from prior site visits. 

Prior to analysis, I pooled some infrequently encountered polygon types with 

more common types that were of similar habitat structure: Riparian Shrub was combined 

with Willow, and Willow-Aspen was combined with Aspen. In addition to defining cover 

types, I ground-truthed riparian designations by documenting the presence or absence of 

available water and the type of water source (i.e., stream, spring, pond, other standing 

water) within a plot. 

Point Type Classification 

For the purpose of comparing avian abundance in aspen and non-aspen cover 

types (see Data Analysis -- Paired and Partially-paired Comparisons), I used the NAIP 

Habitat Classification (see previous section) and the following scheme to further classify 

points into four types: 
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1. Aspen is the most common cover type and comprises > 85% of the 

point count circle. 

2. Conifer is the most common cover type and comprises > 75% of the 

point count circle, and the sum of aspen and mixed aspen-conifer cover 

types comprises < 15%. 

3. Mixed Aspen-Conifer is the most common cover type, and the aspen 

cover type comprises < 15%.  

4. Montane Shrub is the most common cover type, and the sum of aspen 

and mixed aspen-conifer cover types comprises < 15%. 

 

b. Sage is the most common cover type, and there are no aspen, mixed 

aspen-conifer, or willow-aspen cover types within the point count 

circle. Sagebrush and montane shrub were then pooled into a new 

category called montane sage because of structural similarities and 

small samples of each.  

Data Analysis 

Paired and Partially-Paired Comparisons 

I used paired t-tests in SAS v9.2 software to compare mean differences in 

abundance of focal species in aspen vs. conifer, aspen vs. mixed aspen-conifer, and aspen 

vs. montane sage cover types. Stand means were derived from points within stands, and 

point type means and standard errors were then calculated from means across stands 

within point types. I tested for normality using the Shapiro-Wilk test (SAS Institute 

2011). 

I also used partially-paired t-tests to compare abundance of focal species among 

cover types (aspen vs. conifer = 125 stands, aspen vs. mixed aspen-conifer = 130, aspen 

vs. montane sage = 134). The partially-paired comparison retains some of the advantages 
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of the paired approach because both paired and unpaired data are used, and it has the 

advantage of using over twice the sample size as the paired analysis (n = 169 vs. 79 

stands). In partially-paired comparisons, the mean abundance per cover type and 

difference between cover types is calculated using all points in each cover type that met 

the point type definition (i.e., pairing is ignored), but the standard error of the difference 

is adjusted to properly account for the covariance between aspen and non-aspen types 

within the paired data (Bart et al. 1998, p. 74, equations 3.6 and 3.7). 

For both paired and partially-paired analyses, I adjusted p-values for multiple 

comparisons, using Benjamini and Hochberg’s false discovery rate (Benjamini and 

Hochberg 1995). This adjustment holds the false discovery rate, i.e., the rate at which 

rejected hypotheses are rejected falsely, at p = 0.05 and provides more statistical power 

than holding the family-wise error rate at p = 0.05 (Westfall et al. 1999). Adjusted p-

values < 0.05 were considered statistically significant. Throughout the text, I use the term 

preference to indicate that a species’ relative density (i.e., abundance per point count) is 

significantly higher in one cover type compared to another. 

I limited analyses to passerines, woodpeckers, and hummingbirds. For paired and 

partially-paired comparisons, I restricted focal species to those occurring on at least seven 

stands within each comparison (e.g., 7/10 paired stands in the paired aspen-conifer 

comparison, and 7/125 stands in the partially-paired aspen-conifer comparison, of which 

111 were aspen and 14 were conifer stands). The number of focal species meeting this 

restriction for paired and partially paired comparisons, respectively, was 15 and 38 for 

aspen vs. conifer, 14 and 38 for aspen vs. mixed aspen-conifer, and 24 and 40 for aspen 

vs. montane sage. Except Brown-headed Cowbird, I assigned each species (whether focal 
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or not) to one of three nesting guilds: overstory, ground/understory, or cavity. I pooled 

species' abundances within each guild and compared abundance of each guild across 

cover types using the same approach as for species. 

Mixed Model Regression 

I used mixed model regression to investigate the effect of vegetative cover type 

and topographic parameters on a species’ abundance. I used the original points 

systematically placed within selected aspen stands and that field observations confirmed 

contained aspen (n = 324). I did not include any conifer or montane sage points that had 

been added to the design for the paired comparison. I conducted species-specific 

regression models for those species with a sum of > 2 individuals on > 10% of points 

(where sum is the sum of counts from the two visits to a point). Because many aspen 

associates met this definition, I modeled only the two most abundant species within the 

overstory-, understory-, and ground-nesting aspen guilds. I modeled all five cavity-

nesting aspen-associates because this group is of particular conservation interest. In total, 

I present models for 11 aspen associates, five conifer associates, one montane sage 

associate, three aspen-associated nesting guilds, and three conifer-associated nesting 

guilds. 

For regression models, I divided each of the three nesting guilds into conifer- or 

aspen-associated nesting guilds based on results of the partially-paired comparison. 

Species more common in aspen at a p-value < 0.10 were assigned to the appropriate 

aspen-associated nesting guild; species more common in either conifer or mixed-aspen 

conifer at p < 0.10 were assigned to the respective conifer-associated nesting guild. 
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I used general linear mixed models to build species-specific bird-habitat 

relationship models and used the sum of counts for each bird species from the two visits 

to a point as the response variable. I used either negative binomial and poisson 

distribution for a given species; both distributions are appropriate for count data such as 

mine (Littell et al. 2006). Negative binomial is a more generalized case of poisson; 

negative binomial does not require the assumption that the mean equals the variance and 

it uses a scale parameter to account for overdispersion, i.e., the extent to which the 

variance is greater than the mean (Littell et al. 2006). I used negative binomial 

distribution for all models of a species when the coefficient of the scale parameter was 

significant in the univariate, fixed-effect model with either aspen, conifer, or montane 

sage (for aspen-, conifer-, or montane sage- associates), and used poisson distribution 

when the coefficient was not significant (Littell et al. 2006). In some cases (i.e., for four 

species) it was necessary to switch to poisson rather than negative binomial distribution 

when models did not converge upon the addition of random effects. I used the GLIMMIX 

procedure in SAS v9.2 because it supports the use of these non-normal distributions in 

mixed-effect models (Littell et al. 2006, SAS Institute 2011). I used mixed-effects models 

so that stand identity and observation crew could be added as random effects to account 

for the covariance between points within the same stand or surveyed by the same crew. 

Degrees of freedom were based on the Kenward-Roger method (SAS Institute 2011). 

I used a hierarchical model-building process consisting of four stages (see Table 

A.1) designed to address the following questions: Does cover type composition within 

75-m, or the presence of water in combination with cover types, explain bird abundance 

(Stage 1)? Does cover type composition at the 300-m scale explain any variation in 
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addition to what is explained by cover type composition at the 75-m scale (Stage 2)? Do 

topographic parameters, and indices derived from those parameters, explain any variation 

in addition to what is explained by cover type composition at 75-m and 300-m scales 

(Stage 3)? Does the addition of timing of the survey within the season explain additional 

variance in addition to that explained by cover types and topography (Stage 4)? At the 

end of each stage, I carried the best model subset forward to the next stage, using 

Akaike’s Information Criterion (AIC) to identify best model subsets (Burnham and 

Anderson 2002). Although other approaches, such as evaluation of all possible 

combinations of all parameters, might have led to models with lower AIC values, my 

specific goal was to evaluate hypotheses, not to obtain the model with the lowest AIC. 

Fixed-effect models were evaluated without the addition of random effects so that models 

could be readily compared using AIC values. In models with poisson or negative 

binomial distributions, likelihoods are based on pseudo-likelihoods, causing AICs and 

other model comparison techniques to be invalid (Littell et al. 2006). After fixed-effect 

model building was complete, the two random effects, stand identification and crew, 

were added to the best subset of fixed-effect models. 

In Stages 1 and 2, fixed effects included percent of 75-m and 300-m radius circles 

occupied by aspen (Asp75 and Asp300), mixed aspen-conifer (MixAC75 and 

MixAC300), conifer (Con75 and Con300), and montane sage (Mtsg75 and Mtsg300). 

Presence or absence of water (Rip) was included as a categorical variable at the 75-m 

scale. At the 300-m scale, I used the derived parameter Nasp300 to describe the relative 

contribution of montane sage and conifer to the non-aspen cover type matrix around 

aspen stands, defined as Mtsg300/(Mtsg300 + Con300). Similarly, Ncon300 was used to 
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describe the relative contribution of montane sage and aspen to the non-conifer matrix; it 

is defined as Mtsg300/(Mtsg300 + Asp300). To describe the relative contribution of 

conifer and aspen to the non-montane sage matrix, I used Nmtsg300, defined as 

Con300/(Con300 + Asp300). I also used the edge-to-area ratio (E2A) of aspen at 300-m, 

where edge (in meters) and area (in hectares) were calculated using tools in ArcGIS. 

Squared terms for cover type parameters at the 75-m and 300-m scales were included as 

potential fixed effects to allow non-linear relationships between the species' abundance 

and percent cover type. I used NAIP imagery to derive 75-m parameter values, and the 

Forest Service cover type layer for 300-m parameters.  

At Stage 3, I considered the following six topographic parameters that I derived 

from digital elevation maps using tools available in ArcGIS (ESRI 2013) and the 

Geomorphometry and Gradient Metrics Toolbox (Evans 2012). 

1. Elevation is mean altitude (m) within 75-m point count radius as 

calculated using tools in ArcGIS (ESRI 2013) and 20-m resolution 

digital elevation models (DEMs). 

2. Southwestness (SW) is a measure of transformed aspect at the point 

count center with the highest values at SW aspects and the lowest at NE 

aspects, ranging from 2.0 (225 degrees) to 0.0 (45 degrees). SW was 

calculated using tools in ArcGIS (ESRI 2013) based on the formula in 

Beers et al. (1966): SW = cos(45-Aspect) + 1. 

3. Slope is mean percent incline within 75-m point count radius, as 

obtained from 9-m resolution continuous floating point raster grid, and 

was calculated using tools in ArcGIS (ESRI 2013). 

4. Heat Load Index (HLI) is an aspect-adjusted and slope-adjusted value 

of solar radiation, with the highest values at SW aspects and the lowest 

at NE aspects. HLI was calculated using tools in Evans (2012) and is 

explained more fully in McCune and Keon (2002). 
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5. Compound Topographic Index (CTI) is an assessment of steady state 

soil moisture, based on slope and surrounding upstream physiography, 

which influences flow accumulation. Values increase as slope decreases 

and area of upstream flow accumulation increases. CTI was calculated 

using tools in Evans (2012) and is explained more fully in Gessler et al. 

(1995). 

6. Precipitation (Prec) is projected mean annual precipitation based on a 

model that spatially interpolates weather station data from 1981-2010 

and accounts for physiographic influences such as rain shadows from 

mountain ranges (PRISM Climate Group 2012). The Prec value for a 

point count station was the value of the 800-m resolution raster cell in 

which it occurs.  

At Stage 4 of model-building, I asked whether date of first survey (Day) improved 

upon the cover type and topographic model, where Day was coded as the number of days 

past April 30 that the first survey was conducted at a point (e.g., May 21 has the value 

“21”). The day of the first survey was investigated because it might have been near the 

arrival date for some species at some elevations. The second survey was well within the 

breeding period of species considered here. 

I used different modeling schemes for aspen-, conifer-, and montane sage 

associates (see Table A.1). To determine which scheme to use for a given species, I used 

univariate linear regression to determine which cover type at the 75-m scale was a 

significant, positive predictor of abundance (Asp75, Con75, MixAC75, or Mtsg75). If 

more than one cover type was a significant positive predictor in univariate models (as 

was true for one species), both modeling schemes were used. The conifer scheme was 

used for species having either Con75 or MixAC75 as a significant, positive univariate 

predictor. If none of the cover types was a significant predictor (i.e., the null model was 
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the best model), the species was assigned to a scheme based on results of the paired t-test. 

I removed some of the more complex models (i.e., those with a squared term for one 

cover type combined with a second cover type at the same scale, and those with 

interaction terms) from the conifer and montane sage modeling schemes due to a smaller 

sample size of points dominated by those cover types. 

To avoid multicollinearity, I did not allow the following highly correlated 

parameters (r > 0.70) to occur in the same model (Kleinbaum and Kupper 1978): Asp75 

and MixAC75 (r = -0.76), Asp300 and Ncon300 (r = -0.85), and Nasp300 and Con300 (r 

= -0.94). As an exception to this rule, I included E2A and Asp300 (r = -0.78) in the same 

model because I preferred the ecological interpretation of E2A as edge-to-area when the 

effect of area is also in the model. In addition, I did not allow base parameters and 

parameters derived from them to be used in the same model. As a result, HLI, CTI, and 

precipitation were tested independently and none were used in combination with slope, 

aspect, or elevation. 

I used an information-theoretic approach (Burnham and Anderson 2002), with 

modifications by Arnold (2010), to select the best subset of models for each species. At 

the end of each stage, either the simplest model with the lowest AIC was selected as the 

most parsimonious, or a more complex model was selected if it was >2 AIC units lower 

for every parameter increase over the simpler model. The best model subset for a given 

stage included the most parsimonious model and any within 4 AIC units of it, except that 

following Arnold (2010), I did not include models < 2 AIC units from the most 

parsimonious model that differed from it by one parameter (or <4 AIC if differing by two 

parameters). This approach helps to limit interpretation to truly competitive models and 
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to parameters that explain important additional variance (Burnham and Anderson 

2002:170, Arnold 2010). At the end of Stage 4, I removed parameters that were not 

statistically significant (p > 0.05) from models in the best model subset and compared 

resulting models to originals to obtain the final best model subset. The final best model 

subset included the most parsimonious model and any models within 4 AIC units of it. 

For species having more than one competitive model in the best model subset, I used 

Akaike weights (wi) as a measure of the relative likelihood that model i was the best 

predictive model (Burnham and Anderson 2002). 

After fixed-effect model-building was complete, I added stand and crew as 

random effects to the best fixed-effects model for each species. Stand was a categorical 

variable serving as a unique identifier for each aspen stand (stands with only one point 

count station were merged with adjacent stands). Crew was a categorical variable 

indicating which observation crew (two each in 2010 and 2011) collected the data at a 

given point. In four cases in which the mixed-effects model with stand and crew as 

random effects did not converge, I used only stand as the random effect. The addition of 

random effects appropriately adjusts the coefficients and standard errors of fixed effects 

to account for shared variance among observations within stands and crews. Throughout 

Results and Discussion, I report and interpret fixed effect coefficients and standard errors 

that resulted from mixed-effect models. Only significant predictors (p < 0.05) in best 

model subsets are interpreted (Arnold 2010). 

I also report the statistical significance of random effects to examine whether the 

addition of stand and crew improved the fixed-effects model. The statistical significance 

of random effects is based on likelihood ratio tests which use pseudo-likelihoods (Littell 
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et al. 2006). I considered using year of survey rather than crew (each crew surveyed in 

only one year, so year is a subset of crew), however, the crew parameter more effectively 

accounts for observer differences, and the ecological interpretation of year and crew 

models were identical in interim results (i.e., the values of fixed-effect coefficients were 

similar and their statistical significance did not differ).  

Results 

Description of Vegetation at Sampled Points 

By design, the aspen cover type was present on all points used in multiple 

regression analyses; it comprised >50% of the count circle at 72% of points, and it was 

the only cover type at 10% of points (Table C.1). The conifer cover type was present on 

16% and montane sage on 76% of count circles used in multiple regression analyses, and 

rarely did either comprise >50% of the count circle. For points at which species 

composition was recorded in the field, aspen was the most common tree recorded (83% 

of points; Table C.2). At conifer points used in the paired and partially-paired 

comparisons, fir was the most common tree at 80.0% and pine at 20% (Table C.3). At 

mixed aspen-conifer points, fir was the most common tree at 67% and aspen at 33%. 

Willow also occurred on 37% of mixed aspen-conifer points. Big sagebrush was one of 

the three most common shrubs on 95% of montane sage points, mountain snowberry on 

62%, and serviceberry and chokecherry on 33% each (Table C.4). 

Paired Comparisons 

Most focal species (77%, 30 of 39 species) were more abundant in aspen than in 

montane shrub (Table 2; Fig. 2 to 5), and results were consistent across nesting guilds – 
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ground-understory-, overstory-, and cavity-nesting guild (all species pooled within each) 

were each significantly more common in aspen than montane shrub. The results were 

similar in the analysis of paired stands, in which 79% (19 of 24) of focal species were 

more common in aspen (Table 3). Three species (Green-tailed Towhee, Brewer's 

Sparrow, and Vesper Sparrow) all of which were ground or understory nesters were 

significantly more common in montane shrub than in aspen in both the paired and 

partially-paired comparisons. 

Most focal species (59%, 22 of 37 species) were more common in aspen than 

conifer stands (Table 4; Fig. 6 to 9). The ground-understory-nesting guild (all species 

pooled) and most (80%, 12 of 15) ground-understory-nesting focal species were 

significantly more common in aspen than in conifer stands. Likewise, the cavity-nesting 

guild (all species pooled) and many cavity-nesting focal species (55%, 6 of 11 species) 

were more common in aspen than in conifer stands. In contrast, slightly more overstory-

nesting focal species were more common in conifer (4 of 10 species) than in aspen (3 of 

10 species), and three overstory-nesting species did not differ. In results from paired 

stands, four species were more common in aspen than in conifer, Ruby-crowned Kinglet 

was more common in conifer, and 10 species did not differ, in part due to the small 

sample size in paired comparisons (Table 5). Among species significantly preferring 

conifer over aspen, three were ground-understory nesters (Hermit Thrush, Chipping 

Sparrow, Dark-eyed Junco) and two were cavity nesters (Mountain Chickadee, Red-

breasted Nuthatch).  

Six of nine species that were more abundant in conifer than aspen were also more 

common in mixed aspen-conifer than aspen (Table 6; Figs. 10 to 12). However, of the 22 
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species that preferred aspen over conifer, only 12 (55%) preferred aspen over mixed 

aspen-conifer. The remaining 10 species showed no preference (Table 6). Species more 

abundant in mixed aspen-conifer were primarily overstory nesters (5 of 7 species). In 

paired comparisons of aspen versus mixed aspen-conifer, none of the 14 focal species 

showed a significant preference (Table 7). 

Predictions were met for 22 of the 31 species that were predicted to prefer one 

cover type over another. Predictions were met for most species (12/13) expected to be 

more common in aspen than conifer, and most species (7/9) expected to be more common 

in conifer than aspen. Abundance of Downy Woodpecker, Hammond’s Flycatcher, and 

Pine Siskin was not different in aspen and conifer. Of the eight species expected to not 

differ in abundance between aspen and conifer, the Dusky Flycatcher, Northern Flicker, 

American Robin, and Black-headed Grosbeak were more common in aspen, and the 

Hermit Thrush and Dark-eyed Junco were more common in conifer. Cordilleran 

Flycatchers were predicted to have higher abundance in mixed aspen-conifer but this 

difference was not statistically significant. Of the eight species expected to be more 

common in montane shrub than aspen, only Green-tailed Towhee, Brewer’s Sparrow, and 

Vesper Sparrow were more common in montane shrub, while MacGillivray's Warbler, 

Fox Sparrow, and Lazuli Bunting were more common in aspen. 

Avian-habitat Relationship Models 

As the amount of aspen within a 75-m radius of the count center increased, 

abundance increased significantly for 8 of 11 aspen associates (Tables 8 to 10). For three 

of these aspen associates (Red-naped Sapsucker, House Wren, MacGillivray’s Warbler), 

aspen-squared was an important predictor indicating the slope of the relationship between 
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abundance and amount of aspen varied as the amount of aspen increased (Fig. 13). Both 

Red-naped Sapsucker and House Wren abundance appeared to increase more steeply at 

higher percentages of aspen, while MacGillivray’s Warbler abundance appeared highest 

at intermediate amounts of aspen. These three species were also the only species with 

percent aspen at 300-m as an important predictor in the best model subset (Fig. 14)–a 

negative predictor of Red-naped Sapsucker and House Wren abundance, and a marginally 

significant positive predictor of MacGillivray’s Warbler abundance (p = 0.081). 

Three aspen associates decreased in abundance as percent of conifer within 75-m 

increased, including two species with 75-m aspen as an important positive predictor 

(House Wren and Yellow Warbler) and one species without aspen (Orange-crowned 

Warbler) (Fig. 15). Yellow Warbler abundance was higher, and Orange-crowned Warbler 

abundance was lower, in riparian areas relative to non-riparian areas (Fig. 16). Northern 

Flicker and American Robin best model subsets did not include any cover type 

parameters (Table 11). 

For most aspen associates (9 of 11 species), best model subsets included 

topographic or climatic parameters (Tables 8 to 11). Dusky Flycatchers increased, and 

House Wrens decreased, with elevation gain (Fig. 17). The squared elevation term was 

important in Yellow Warbler models and visual interpretation of the data suggests that 

abundance increased somewhat with elevation at lower elevations and declined at higher 

elevations (Fig. 17). Mountain Bluebird abundance decreased as slope increased (Fig. 

18). American Robin abundance also decreased as slope increased in the most 

parsimonious model (ωi = 0.62), and abundance decreased as elevation increased in the 

alternate model (ωi = 0.38) (Fig. 17 and 18). Tree Swallow abundance increased as 
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compound topographic index increased, indicating that this species preferred areas at the 

bottom of drainages (Fig. 19). Northern Flicker, Warbling Vireo, and Orange-crowned 

Warbler abundance declined with increasing precipitation, indicating that these species 

preferred drier topographies (Fig. 20). Orange-crowned Warbler abundance also 

increased with later date of first survey. 

For each of the three aspen nesting guilds, abundance increased with increasing 

aspen (Fig. 13) and declined with increasing conifer at the 75-m scale. For overstory 

nesters, visual inspection indicates that abundance increased with percent aspen more 

steeply at higher percentages of aspen. For understory nesters, the relationship between 

abundance and percent aspen appeared to plateau at higher percentages of aspen. For 

cavity-nesters, abundance declined with increasing aspen at the 300-m scale (Fig. 14). 

For understory nesters, abundance increased as the proportion of montane sage relative to 

conifer increased (i.e., Nasp300) (Table 10). Among the three competitive models for 

overstory nesters, riparian was a significant positive predictor in two (p = 0.03 and 0.05, 

∑ωi = 0.76), precipitation was a significant negative predictor in two (p = 0.03 and 0.02, 

∑ ωi = 0.77), elevation was a marginally significant negative predictor in one (p = 0.08, 

ωi = 0.23), and day of first survey was non-significant in one (p = 0.28, ωi = 0.24) (Table 

10). 

For 3 of 5 conifer associates (Mountain Chickadee, Ruby-crowned Kinglet, 

Yellow-rumped Warbler), abundance increased with increasing amount of conifer at 75 

m and increasing amount of mixed aspen-conifer at 75 m (Tables 12 to 14, Fig. 21 and 

22). For Cassin’s Finch, mixed aspen-conifer squared was an important predictor and 

visual inspection indicated that abundance increased more steeply at low and high 



35 

amounts of mixed aspen-conifer than at intermediate amounts (Fig. 22). Dark-eyed Junco 

abundance was lower in riparian relative to non-riparian areas, and decreased as the 

proportion of montane sage relative to aspen increased at the 300-m scale (i.e., Ncon300) 

(Table 14).  

For most conifer associates (4 of 5 species), abundance increased with elevation 

(Fig. 23, Tables 12 to 14). Elevation was a significant or marginally significant positive 

predictor of abundance for Cassin’s Finch (p = 0.004) and Dark-eyed Junco (p = 0.06), 

and for Yellow-rumped Warbler (p = 0.01) and Ruby-crowned Kinglet (p = 0.06) in the 

most parsimonious model of their best model subsets (ωi = 0.37 and 0.77, respectively). 

In alternate models, rather than increasing with elevation, Yellow-rumped Warbler 

abundance marginally decreased with either increasing heat load index (p = 0.08, ωi = 

0.34) or increasing slope (p = 0.08, ωi = 0.29), and Ruby-crowned Kinglet abundance 

decreased with increasing heat load index (ωi = 0.23). Dark-eyed Junco abundance 

increased with day of survey. 

For each of the three conifer-nesting guilds, abundance increased with increasing 

mixed aspen-conifer at the 75-m scale (Tables 13 and 14). Conifer-associated cavity and 

overstory nester abundance also increased with increasing conifer at the 75-m scale. 

Elevation squared was an important predictor for both overstory and understory nesters (p 

= 0.07 and p = 0.0095, respectively). Conifer-associated understory nesters were less 

abundant in riparian relative to non-riparian areas, declined in abundance with an 

increasing proportion of montane sage relative to aspen at the 300-m scale (i.e., 

Ncon300), and increased with later day of first survey. 
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The montane sage modeling scheme was used for Green-tailed Towhees because 

they had montane sage as a significant, positive predictor in univariate regression (Table 

B.1). For Green-tailed Towhees, in each of the three competitive models, abundance 

increased with increasing amount of montane sage at 75 m (Fig. 24), and was lower in 

riparian relative to non-riparian areas (Tables 15 and 16). The three models differed in 

whether Green-tailed Towhee abundance increased from northeasterly to southwesterly 

aspects (ωi = 0.54), increased with slope (ωi = 0.25), or increased with heat load index (ωi 

= 0.21) (Table 16). Because MacGillivray's Warblers had both aspen and montane sage 

within 75 m as significant, positive, univariate predictors (Tables B.1 and B.2), both 

modeling schemes were used (Table A.1). The montane sage model (ωi = 0.17) provided 

some evidence that MacGillivray’s Warblers increased with intermediate amounts of 

montane sage within 75 m and with day of survey (Fig. 24, Tables 15 and 16). 

Consequences of Random Effects 

When stand and crew were added as random effects, stand was significant or 

marginally significant in nearly all cases (29 of 32 models) (Table D.1). Crew was 

significant or marginally significantly in only 15 of the 28 models that converged. Mixed-

effect models did not converge, or the G-matrix was not positive definitive, for Mountain 

Chickadee, Orange-crowned Warbler, Cassin’s Finch, and the conifer-associated cavity-

nesting guild. Adding crew and stand as random effects to a model rarely changed the 

interpretation of its fixed effects. Fixed effects became non-significant in only three of 

the 32 mixed-effect models (Tables 11, 14, and 16). The fixed effect "day" was the 

parameter that most often became non-significant (two models) or marginally significant 

(four models). Other parameters became marginally significant in 11 models. 
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Discussion 

Importance of Aspen 

Most focal species were more abundant in aspen than in montane sage, conifer, or 

mixed aspen-conifer cover types in partially-paired comparisons. The number of species 

significantly associating with aspen was also greater than the number of species for 

which there was no statistically significant association. Conservation of the greatest 

number of songbird species in this landscape may then be closely tied to the conservation 

of aspen stands. 

Similarly, when restricted to only geographically paired comparisons rather than 

partially-paired comparisons, most species tended to be more abundant in aspen than 

other cover types. However, many differences in the aspen vs. mixed aspen-conifer or 

conifer comparisons were not statistically significant due to low sample sizes and 

correspondingly low precision, even though the point estimates differed as expected. 

Most nesting guilds favored aspen over other cover types. However, abundance of 

cavity nesters was not different in aspen than in mixed aspen-conifer, and abundance of 

overstory nesters was not different in aspen than in conifer. Furthermore, abundance of 

overstory nesters was higher in mixed aspen-conifer than in aspen. The preference for 

mixed aspen-conifer by overstory nesters may be related to structural complexity and 

diversity of nesting substrates (MacArthur 1964, DeByle 1985, Martin 1998). The 

importance of aspen to most guilds is demonstrated by the presence of some degree of 

aspen cover in all significant comparisons. This analysis of guilds is further evidence that 

conservation of more songbird species is more dependent on conservation of aspen than 

other cover types, because guild totals included focal species plus less common species. 
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Aspen associates appear to treat mixed aspen-conifer differently than do conifer 

associates. Most species (12/22, 55%) that preferred aspen over conifer also preferred 

aspen over mixed aspen-conifer and none preferred mixed aspen-conifer over aspen. In 

contrast, most species (6/9, 67%) with higher abundance in conifer over aspen also had 

higher abundance in mixed aspen-conifer over aspen. In addition, most species (6/7) that 

were more common in mixed aspen-conifer than in aspen were conifer associates, and 

none were aspen associates. These findings are consistent with several prior studies that 

note a decline in species richness in the transition from aspen to conifer (Turchi et al. 

1995, Mills et al. 2000, Rumble et al. 2001, Griffis-Kyle and Beier 2003).  

Avian-habitat Relationship Models 

Aspen Associates -- Overview 

As predicted, most (8 of 11) aspen-associated species increased as aspen cover 

within 75-m increased in multiple regression models. Northern Flicker, American Robin, 

and Orange-crowned Warbler lacked 75-m aspen in their best models and appeared to 

respond primarily to topographic and climatic parameters, although both the Northern 

Flicker and Orange-crowned Warbler increased with increasing aspen in univariate 

models. House Wrens exhibited a positive change in the slope of the relationship as the 

amount of aspen increased, and MacGillivray’s Warblers preferred intermediate amounts 

of aspen. Best models for House Wren and Yellow Warbler included both 75-m aspen 

(positive) and 75-m conifer (negative). 

Yellow Warbler was the only aspen associate to increase in abundance with the 

presence of a water source within 75-m. Presence of water was also a positive predictor 

for all aspen associates pooled. Orange-crowned Warbler decreased in abundance with 
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the presence of water. These results may have differed if I had defined riparian on a 

larger scale (e.g., presence of water within 150 m or 300 m rather than within 75 m). 

I found only moderate evidence that surrounding cover types (i.e., those outside 

the 75-m count circle) influenced avian abundance within the 75-m circle. For one, the 

ground- and understory-nesting guild of aspen associates (pooled) increased in abundance 

as the proportion of shrub cover relative to conifer within 300 m increased. Also, House 

Wrens and Red-naped Sapsuckers both decreased significantly with 300-m aspen, despite 

their positive response to 75-m aspen. A combined positive response to 75-m aspen and 

negative response to 300-m aspen may indicate a preference for relatively small stands in 

an open landscape, or for stands with substantial openings or edge. However, for all but 

one aspen associate, 300-m aspen did not provide more explanatory power than 75-m 

aspen alone, indicating that aspen within the greater landscape had little additional 

influence. Only MacGillivray’s Warblers increased in abundance with increasing 300-m 

aspen; however, this result was only marginally significant, which suggests that large 

stands are not considerably better than small stands for most of the species studied. While 

my study does not directly address the effects of stand size, stand size is an ecologically 

relevant parameter that warrants further investigation. 

Elevation influenced abundance of four aspen-associated species. Dusky 

Flycatchers increased in abundance as elevation increased, while House Wren and 

American Robin abundance decreased as elevation increased. For House Wrens, this may 

be a function of an increase in conifer cover at higher elevations. Yellow Warblers 

appeared to be most common at intermediate elevations with a strong decrease in 

abundance at higher elevations. The curvilinear nature of the relationship may partially 
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result from low abundance in the relatively small sample of low-elevation aspen stands (< 

2,000 m). 

Three aspen associates responded negatively to increasing mean precipitation: 

Northern Flicker, Warbling Vireo, and Orange-crowned Warbler. Precipitation is likely 

tied to both elevation and cover type to some extent. One interpretation of these models is 

that higher precipitation is correlated with more conifer cover and thus decreased 

abundance of aspen associates. Univariate results confirm that these three species 

decreased in abundance with both increasing conifer and precipitation. Precipitation in 

xeric landscapes is a parameter of interest, since higher avian species richness has been 

found to be driven by annual precipitation and net primary productivity (van Rensburg et 

al. 2002). Similarly, Lawler et al. (2004) found higher avian species richness in areas 

with higher annual precipitation and lower mean July temperatures. 

Three out of four ground-nesters exhibited a positive response to advancing first 

day of survey, and two of them are aspen associates: Orange-crowned Warbler and 

MacGillivray’s Warbler. I interpret this to be a function of receding snowpack and the 

resulting phenology of grasses, forbs, and shrubs, which provide concealment for ground 

nests. 

Conifer Associates -- Overview 

As predicted, most conifer associates increased in abundance as conifer increased 

(3 of 5); the exceptions were Cassin's Finch and Dark-eyed Junco. Most conifer 

associates (4 of 5) also increased in abundance with increasing proportion of mixed 

aspen-conifer. Species increasing in abundance with both parameters were Mountain 

Chickadee, Ruby-crowned Kinglet and Yellow-rumped Warbler. Cavity and overstory 
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nesting guilds of conifer associates also increased in abundance with both of these cover 

types. Dark-eyed Junco was the only conifer species for which neither conifer nor mixed-

aspen conifer remained in the best model subset, and the only conifer associate with 

riparian designation and the proportion of shrub relative to aspen within 300 m to remain 

in the best model subset. 

Elevation was a positive predictor of abundance for four of five conifer 

associates. To some extent, this positive response to elevation may reflect the distribution 

of conifer, which constitutes a greater proportion of vegetative cover at higher elevations. 

Elevation and 300-m conifer cover were moderately correlated (r = 0.50). 

Day of first survey was a significant positive predictor of Dark-eyed Junco 

abundance. This may be a function of more snow-free areas later in the spring, especially 

at high elevations (which this species prefers), and thus more growth of herbaceous cover 

for this ground-nesting species. 

Ruby-crowned Kinglet abundance was highest in areas of lower heat load index 

(HLI), suggesting that combinations of aspect and slope that have high solar radiation 

(McCune and Keon 2002) are not favorable for this species. With this response to heat 

load index, there appears to be microclimatic differences within conifer stands that affect 

Ruby-crowned Kinglets, as well as Yellow-rumped Warblers (result was marginally 

significant). 

Montane Sage Associates -- Overview 

As predicted, montane sage was a significant positive predictor of both Green-

tailed Towhee and MacGillivray's Warbler abundance. Green-tailed Towhee abundance 
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decreased significantly with the presence of a water source in all models, and increased in 

the three competitive models with southwest aspect, increasing slope, or increasing HLI. 

Together, these models indicate that Green-tailed Towhees prefer montane sage in a 

fairly xeric, upslope micro-topographic setting. In contrast, MacGillivray’s Warblers 

were more common at points with intermediate amounts of aspen in one model and more 

common with intermediate amounts of montane sage in the other competitive model. At 

the elevations where MacGillivray’s Warblers were common, most points were 

comprised of aspen and montane sage, thus both models are consistent with an 

interpretation of MacGillivray’s Warblers preferring the shrub-aspen interface. Further 

analysis is necessary to assess whether the two species prefer different shrub species 

compositions within montane shrub. 

Because my study was designed to understand aspen-associated species, sampling 

units for multiple regression were points in aspen stands. As a result, most species that 

nest in montane sage were not abundant enough to meet my criteria for model-building. 

Still, montane sage has been demonstrated to be an important breeding habitat for many 

species (Knick and Rotenberry 1995, 1999, Rotenberry and Knick 1999). 

Habitat Relationships of Understory and Overstory Nesting Aspen Associates 

Warbling Vireos were more common in aspen than in conifer, mixed aspen-

conifer, or montane sage cover types, and their abundance in aspen stands was related to 

75-m aspen (+), precipitation (-), and first day of survey (+). Findings for Warbling Vireo 

are reasonably consistent with the literature. Warbling Vireos are known to be common 

breeders in aspen in the western U.S. (Turchi et al. 1995, Mills et al. 2000, Rumble et al. 

2001, Griffis-Kyle and Beier 2003, Heltzel and Earnst 2006, Earnst et al. 2012). 
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Warbling Vireos may be found even where small patches (as small as a single tree) of 

deciduous trees occur within conifer stands (reviewed in Gardali and Ballard 2000). 

Richardson and Heath (2004) found decreasing abundance with increasing conifer cover 

in the eastern Sierra Nevada. In the southern Sierra Nevada, Warbling Vireos nested in 

deciduous trees more often than expected based on availability, but often nested at sites 

without deciduous trees (Purcell 2007). Because conifer cover is higher in areas of higher 

precipitation in my study area, the negative relationship with precipitation may reflect 

Warbling Vireos’ preference for aspen over conifer cover. I did not find a positive 

association with riparian areas, as described by Salt (1957), Marzluff and Lyon (1983), 

Purcell (2007), and Gardali and Ballard (2000), either in the best model subset or in the 

univariate model for riparian designation. In some regions, this species’ association with 

riparian areas appears due to the deciduous overstory occurring there (Marzluff and Lyon 

1983). Day of first survey was a marginally significant positive predictor and is presumed 

to reflect advancing stages of aspen leaf-out at later dates and related increases in insect 

availability. 

Yellow Warblers were more common in aspen than in conifer, mixed aspen-

conifer, or montane sage, and their abundance in aspen stands was related to 75-m aspen 

(+), 75-m conifer (-), presence of water (+), and elevation2 (-). These habitat relationships 

are comparable to those in the literature. Yellow Warblers are common breeders in aspen 

in the Great Basin (Heltzel and Earnst 2006, Earnst et al. 2012) and western U.S. (Salt 

1957). Raphael et al. (1987) found them to be absent from mature conifer in the Sierra 

Nevada, and similarly, I found a significantly negative relationship with conifer. It is well 

known that Yellow Warblers are associated with riparian areas in the western U.S. 
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(reviewed in Heath 2008). In my study, riparian designation includes any water source 

within the 75-m circle, and its positive effect on Yellow Warblers is likely due, in part, to 

the presence of small patches of willow, alder, or other riparian shrubs near water. I 

found abundance steadily decreased with increasing elevation over most of the range of 

aspen I sampled (above 2,000 m). However, at a small sample of stands (n = 24) at 

elevations <2,000 m, abundance was much lower than at intermediate elevations. 

Yellow Warblers are typically associated with habitats that include a prominent 

shrub component (reviewed in Lowther et al. 1999), including in western landscapes such 

as the northern Sierra Nevada, where they are more common in chapparal than 

surrounding mixed conifer forests (Siegel and DeSante 2003, Heath 2008, Humple and 

Burnett 2010). Total shrub cover was a significant positive predictor of Yellow Warbler 

abundance in chapparal, where the primary shrub species were greenleaf manzanita 

(Arctostaphylos patula), mountain whitethorn (Ceanothus cordulatus), and bush 

chinquapin (Chrysolepis sempervirens) (Humple and Burnett 2010). Similarly, 

abundance of breeding Yellow Warblers was highest in areas dominated by shrubs 

(primarily snowbrush ceanothus) where mixed-conifer forest was re-establishing 21-25 

years post-fire, compared to earlier years following fire (Raphael et al. 1987). I suspect 

that understory mesic shrubs within aspen stands, or willows interspersed with aspen in 

riparian areas, increased Yellow Warbler abundance in my study, and I plan to examine 

the effect of understory composition and stand structure on bird abundance in future 

analyses. However, on my semi-arid study area where the montane shrub cover type is 

more xeric than the shrub cover found in the northern Sierra Nevada, I did not find that 

Yellow Warblers associated with the montane shrub cover type. 
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Dusky Flycatchers were more common in aspen than in conifer, mixed aspen-

conifer, or montane sage cover types, and their abundance in aspen stands was affected 

by 75-m aspen (+), elevation (+), and day of first survey (-). Habitat preferences of 

Dusky Flycatchers vary regionally in the western U.S., and they are common breeders in 

aspen in the Intermountain West (reviewed in Sedgwick 1993, Mills et al. 2000, Heltzel 

and Earnst 2006, Earnst et al. 2012). The Nevada Breeding Bird Atlas suggests they are 

most common in montane shrub and montane woodlands with a shrub understory (Floyd 

et al. 2007). Other studies also suggest that Dusky Flycatchers are associated with shrub-

dominated cover types or shrub understories. For example, in selectively-logged mixed 

conifer sites in central Idaho, Dusky Flycatchers placed territories in areas with more 

mesic shrub cover, particularly mountain maple (Acer glabrum), ninebark (Physocarpus 

spp.), and snowbrush ceanothus (Kroll and Haufler 2010). In western Wyoming, foliar 

cover around nests, particularly between 1-5 m in height, was the best predictor of Dusky 

Flycatcher habitat selection in an open mixed-conifer forest with a big sagebrush 

understory (Kelly 1993). My finding that Dusky Flycatcher abundance increased with 

elevation and decreased with earlier survey dates is consistent with other studies that 

found this species to be common at high elevations (reviewed in Sedgwick 1993, Floyd et 

al. 2007, Pereyra 2011) and to adjust the timing of breeding to match snow melt, plant 

phenology, and insect emergence (Pereyra 2011). 

MacGillivray’s Warblers were more common in aspen than either conifer or 

montane sage, and their abundance in aspen was influenced by 75-m aspen2 (-), 300-m 

aspen (+), and day of first survey (+) in the most supported model, and by 75-m montane 

sage2 (-) and day of first survey (+) in the alternate model. The squared terms, and visual 
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inspection of Figs. 13 and 24, indicate that MacGillivray’s Warblers were more common 

at intermediate amounts of aspen or intermediate amounts of montane sage. Because all 

sampled points used in regression models were at least partially within aspen stands, I 

interpret the two models as indicating a preference for the aspen-shrubsteppe interface. 

Day of first survey was a positive predictor of MacGillivray’s Warbler abundance, and 

may be related to timing of snow-free conditions and the phenology of ground cover that 

conceals early nesting attempts. 

Several studies support the assertion that MacGillivray's Warblers are found in 

areas of high (and typically mesic) shrub density. In early-successional Douglas fir 

(Pseudotsuga menziesii), MacGillivray's Warblers were positively associated with 

deciduous shrub cover, primarily vine maple (Acer circinatum), salal (Gaultheria 

shallon), salmonberry (Rubus spectabilis), and thimbleberry (Rubus parviflorus), and 

negatively associated with deciduous tree cover, primarily red alder (Alnus rubra) 

(Morrison 1981). In the same area, Morrison and Meslow (1983) found this species 

increasing in density as low vegetative cover (< 1.0 m) increased, but also as deciduous 

tree cover increased. Similarly, MacGillivray’s Warbler density increased with increasing 

shrub cover in chaparral in the northern Sierra Nevada (Humple and Burnett 2010). In 

central Nevada mountains where primary cover types were aspen, willow, and big 

sagebrush, the probability of occupancy of MacGillivray’s Warblers increased with 

increasing frequency of riparian shrubs and with increasing proportion of riparian plants 

such as willow, chokecherry, and elderberry (Sambucus cerulean) in the canopy (Dickson 

et al. 2009). Floyd et al. (2007) and Ryser (1985) also describe this species’ preference 
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for riparian areas in the Great Basin, but I did not find them to be more common at sites 

with water present in either multiple or univariate regression models. 

Orange-crowned Warblers were more common in aspen than in conifer or 

montane sage, and their abundance in aspen was influenced by 75-m conifer (-), presence 

of water (-), precipitation (-), and first day of survey (+). In univariate models, Orange-

crowned Warblers were more common at intermediate amounts of aspen within 75 m, 

and also increased with increasing amounts of montane sage. However, the avoidance of 

conifer proved to be a better predictor in multiple regression models and was the only 

cover type predictor in the best model subset. Taken together, I interpret these results as 

indicating that this species is most common at the aspen-montane sage interface. 

Orange-crowned Warblers are known to breed in aspen and riparian areas in the 

Great Basin (Earnst et al. 2012) and elsewhere (Dieni and Anderson 1999, review in 

Gilbert et al. 2010). The difference between my finding that Orange-crowned Warblers 

avoid riparian areas within aspen stands and the literature is likely related to scale. While 

my definition of riparian was presence of water within 75 m, and regression results come 

from points in aspen stands, other studies likely refer to a larger riparian buffer and are 

comparing riparian areas to primarily unsuitable cover types (rather than restricting the 

comparison to one cover type known to be suitable – aspen). Day of first survey was also 

a significant positive predictor of abundance and may be related to timing of snow-free 

conditions and the phenology of ground cover that conceals nests. 

American Robins were more common in aspen than in conifer or montane sage in 

partially-paired comparisons. However, in regression analyses, the null cover type model 

performed better than any single cover type model, and the best model subset contained 
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only slope (-), and day of first survey (-). In the alternate model, robin abundance 

decreased as elevation increased. Robins are typically considered habitat generalists 

(reviewed in Sallabanks and James 1999), but specific habitat associations have been 

identified in some regions. In Wisconsin, robins preferred mixed deciduous-conifer forest 

tracts containing an abrupt edge with alder shrub cover (Hawrot and Niemi 1996). In the 

western U.S. and northern Great Basin, robins are common nesters in aspen (Turchi et al. 

1995, Mills et al. 2000, Rumble et al. 2001, Heltzel and Earnst 2006, Earnst et al. 2012) 

and in a variety of conifer forest types (reviewed in Sallabanks and James 1999, 

Sallabanks et al. 2002). In conifer forests, increasing stem density of trees has a 

significant negative effect on robin density (Hansen et al. 1995), which suggests a 

preference for more open conifer stands. 

Habitat Relationships of Cavity-Nesting Aspen Associates 

The keystone role of Northern Flickers and Red-naped Sapsuckers as primary 

cavity excavators makes understanding their habitat relationships a conservation priority, 

in part because of implications for a suite of secondary cavity nesters (Martin et al. 2004). 

Indeed, populations of secondary cavity nesters may be limited by availability of cavities 

(Newton 1994, Dobkin et al. 1995, Aitken and Martin 2008). Red-naped Sapsuckers are 

integral in shaping avian communities in aspen woodlands (Dobkin and Wilcox 1986, 

Ehrlich and Daily 1988, Fleury 2000) and create significantly more cavities than other 

primary excavators in some locations (Daily et al. 1993). However, in British Columbia, 

secondary cavity-nesters used Red-naped Sapsucker cavities proportionately less, and 

Northern Flicker cavities proportionately more, than predicted by availability (Aitken and 

Martin 2004). Northern Flickers accounted for nearly half of cavity excavations, and just 
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over half of those were occupied by primary or secondary cavity nesters (Aitken and 

Martin 2004). Northern Flickers, which are described as weak excavators (Harestad and 

Keisker 1989), nested in snags proportionately more than live trees in aspen stands of 

Hart Mountain, Oregon, while Red-naped Sapsuckers nested in live trees and snags in 

proportion to their availability (Dobkin et al. 1995). Because aspen stands contain more 

live than dead trees, and cavities created in live aspen trees remain available over twice as 

long as those in dead trees (Edworthy et al. 2012), it is possible that Red-naped 

Sapsuckers are providing a longer term benefit for secondary cavity nesters. Both Red-

naped Sapsuckers and Northern Flickers preferentially excavate in trees with heartwood 

decay which is commonly created by shelf fungi (Fomes spp.) (Crockett and Hadow 

1975, Harestad and Keisker 1989, Daily 1993). 

Because of the keystone role these primary excavators have in structuring 

communities, as well as population declines in Northern Flickers (Sauer et al. 2000) and 

the restricted range of Red-naped Sapsuckers (Rich et al. 2004), further research is 

warranted on these species. In particular, Sauer et al. (2000) emphasize the importance of 

understanding causes of population declines and identifying management solutions, and 

Warren et al. (2005) emphasize the need for research on landscape-scale habitat 

relationships of all cavity nesters. Li and Martin (1991) point out that loss of aspen could 

decrease availability of suitable cavity substrate and increase competition for cavities. 

Northern Flickers were more common in aspen than conifer or montane sage, and 

marginally more common in aspen than mixed aspen-conifer. However, the best 

regression model contained mean precipitation as the only predictor, and indicated that 

Northern Flicker abundance in aspen was higher in areas of lower mean precipitation. 
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This finding is consistent with evidence that drier areas may have higher availability of 

ants, a major food source for Northern Flickers (Elchuk and Wiebe 2002). The finding of 

lower abundance in areas with higher mean precipitation may also result, in part, from 

one or more of the following relationships: 1) decreasing abundance with an increase in 

elevation (which the univariate model supports), 2) decreasing abundance with an 

increase in conifer cover (which the univariate model supports), 3) decreasing abundance 

with an increase in conifer cover relative to aspen cover and a concomitant decrease in 

forest-edge habitat. Indeed, when precipitation, vegetative cover, and elevation layers are 

overlaid in GIS, the positive correlation between them is evident. At sampled points, 

there is considerable correlation between precipitation and elevation (r = 0.62), 

precipitation and conifer cover within 300 m (r = 0.58), and elevation and conifer cover 

within 300 m (r = 0.50). 

My finding that Northern Flickers were more abundant in aspen is consistent with 

much of the literature. Northern Flickers are typically more common in aspen than 

montane conifer forests (Turchi et al. 1995, Mills et al. 2000, Rumble et al. 2001, Griffis-

Kyle and Beier 2003). Additionally, in boreal areas, Northern Flickers associated with 

early seral aspen (Kirk et al. 1996), and in western North America, aspen trees were 

commonly selected as nest sites in forests where conifer species occur in far greater 

proportion (Li and Martin 1991, Martin and Eadie 1999, Wiebe 2001, Martin et al. 2004). 

In general, Northern Flicker nest site characteristics vary greatly, but must be located 

near suitable foraging habitat (Conner and Adkisson 1977). For example, in British 

Columbia, Northern Flickers preferred home ranges with a greater proportion of non-

wooded habitat for foraging, and the spatial configuration of their foraging sites 
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influenced home range size and shape (Elchuk and Wiebe 2003). At this site, home 

ranges were comprised largely of grassland, edges of forest patches (aspen, lodgepole 

pine (Pinus contorta), Douglas-fir), and edges of ponds and lakes. In managed mixed 

deciduous, deciduous-conifer, and mixed conifer forest of New Brunswick, Warren et al. 

(2005) found that Northern Flicker occupancy was influenced by stem density, forest 

type, and stand age at various spatial scales (i.e., 100-m, 300-m, and 1,000-m). Based on 

their model, they suggest maintenance of open areas at local and 300-m scale would 

benefit Northern Flickers. 

Red-naped Sapsuckers were more abundant in aspen than in conifer, mixed-aspen 

conifer, or montane sage, and their abundance in aspen stands was influenced by 75-m 

aspen2 (+) and 300-m aspen (-). Sapsucker preference for aspen relative to conifer in the 

western U.S. has been documented by several prior studies (Turchi et al. 1995, Mills et 

al. 2000, Rumble et al. 2001, Griffis-Kyle and Beier 2003). My finding that sapsucker 

abundance was highest at intermediate amounts of 75-m aspen and decreased with 300-m 

aspen could suggest a preference for stand edges or smaller stands. In the Uinta 

Mountains of Utah, Red-naped Sapsucker nesting habitat was typically near stand edges 

adjacent to open areas, and usually not in stands encompassed by conifer forest (Lawler 

and Edwards 2002). Crockett and Hadow (1975) found that aspen were required for Red-

naped Sapsucker nesting in three study areas, where 100% of nests were in aspen stands 

and adjacent conifer stands were used for foraging. Other studies have also documented 

this species commonly breeding in aspen (Smith 1982, Daily et al. 1993, Dobkin et al. 

1995, Earnst et al. 2012). 
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Tree Swallows were more common in aspen than either conifer or montane sage, 

and their abundance within aspen was related to 75-m aspen (+), compound topographic 

index (+), and day of first survey (-). The preference for aspen is consistent with several 

studies in western North America (Salt 1957, Winternitz 1980, Dobkin et al. 1995, Turchi 

et al. 1995, Lawler and Edwards 2002, Aitken and Martin 2008) and may be driven by 

co-occurrence with Red-naped Sapsuckers. Elsewhere in the Great Basin, a majority 

(over two-thirds) of Tree Swallow nest cavities were excavated by sapsuckers (Dobkin et 

al. 1995), and this preference for sapsucker cavities is thought to be related to entrance 

dimension and avoidance of competition with European Starlings (Rendell and Robertson 

1989). Furthermore, in Colorado, Daily et al. (1993) found that Tree Swallows only bred 

in aspen stands occupied by Red-naped Sapsuckers, which favored stands near (<50 m) 

or including willow. In contrast, in mixed aspen-conifer stands in British Columbia, 

Aitken and Martin (2004) found that Tree Swallows used flicker-excavated cavities more, 

and sapsucker-excavated cavities less, than expected based on availability. 

Tree Swallows appear to avoid nest cavities near the edge of aspen stands, 

possibly as a means of avoiding competition with House Wrens (Rendell and Robertson 

1990). Alternatively, Tree Swallows may also be reducing costs of brood-rearing by 

nesting close to forest edges that are adjacent to open habitats used for foraging (Aitken 

et al. 2002). My finding that Tree Swallow abundance in aspen stands increased with 

increasing values of compound topographic index (CTI) indicates a preference for valley 

bottoms or low-lying areas. It is likely that the abundance of aerial insects is higher in 

these low-lying areas, especially if they contain water (reviewed by Winkler et al. 2011). 

Lastly, day of first survey was a marginally significant, negative predictor in the best 
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model and may be related to fewer visual observations with advanced aspen leaf-out, as 

many Tree Swallow detections are visual. 

House Wrens were more common in aspen than in conifer or montane sage, and 

their abundance within aspen stands was influenced by 75-m aspen2 (+), 75-m conifer (-), 

300-m aspen (-), and elevation (-). The higher abundance at intermediate amounts of 

aspen within 75 m and in landscapes with less aspen within 300 m suggests a preference 

for medium-sized stands or possibly stand edges. Similarly, in forests in mid-Atlantic 

states, Robbins et al. (1989) found lower probability of House Wren occurrence as forest 

area increased, especially in tracts exceeding 100 ha. Likewise, smaller stands of aspen 

were found to be commonly used in Saskatchewan (Johns 1993). My finding that House 

Wren abundance in aspen stands decreases with elevation may be related to higher 

elevations having more conifer, a cover type that I found them to avoid. House Wrens are 

known to be common breeders in aspen in the Great Basin (Earnst et al. 2012) and 

western U.S. (Salt 1957, Turchi et al. 1995, Griffis-Kyle and Beier 2003) but an 

avoidance of conifer has not been previously reported (reviewed in Johnson 1998). The 

availability of nest cavities is likely a factor in House Wrens' preference for aspen in my 

study area and elsewhere, where primary excavators are more common in aspen. Dobkin 

et al. (1995) suggest that House Wren life history traits, especially their ability to re-nest 

readily and raise two broods, may facilitate their disproportionate use of available 

cavities and cause a subsequent negative effect on other cavity nesters. 

Mountain Bluebirds were more common in aspen than in conifer, mixed aspen-

conifer, or montane sage cover types, and their abundance in aspen stands was influenced 

by 75-m aspen (+) and slope (-). An association with aspen by Mountain Bluebirds has 
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been shown in the Black Hills of South Dakota (Rumble et al. 2001) and the Teton 

Mountains of Wyoming (Salt 1957). However, most documentation of this species’ 

habitat preferences are for edge, openings, and recently burned areas (reviewed in Power 

and Lombardo 1996, Aitken et al. 2002), in diverse montane habitats (Floyd et al. 2007). 

Limited availability of nest cavities may be driving the Mountain Bluebird's habitat 

selection at local scales (Dobkin et al. 1995). In aspen woodlands at Hart Mountain, 

Oregon, Dobkin et al. (1995) found this species using Northern Flicker cavities more 

often than Red-naped Sapsucker cavities. In British Columbia, the Mountain Bluebird’s 

preference for nest cavities in aspen over conifer may be a result of aspen’s frequent 

occurrence near edges of mixed aspen-conifer forests (Aitken et al. 2002). Mountain 

Bluebirds are not restricted to montane forest types but instead also occur in high desert 

habitat with suitable nest sites. For example, along a gradient of shrub-steppe to late-

successional juniper, Mountain Bluebirds were significantly more common in old-growth 

juniper (Reinkensmeyer et al. 2007). 

Habitat Relationships of Conifer Associates 

Yellow-rumped Warblers were more common in conifer and mixed aspen-conifer 

than in aspen, and their abundance in aspen stands was affected by 75-m conifer (+) in all 

models, by elevation (+) in one model, by 75-m mixed aspen-conifer (+) and heat load 

index (-) in a second competing model, and by 75-m mixed aspen-conifer (+) and slope (-

) in a third competing model. The literature also describes Yellow-rumped Warblers as 

being associated with conifer (Snyder 1950, Douglas et al. 1992, Mills et al. 2000) and 

mixed-aspen conifer cover types (Schieck et al. 1995, Kirk et al. 1996). Likewise, 

Yellow-rumped Warblers increased with an increase in mature conifer cover in boreal 
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forests of western Canada (Kirk et al. 1996). Yellow-rumped Warblers have also been 

found to be more common in older stands of aspen (> 120 years old) that are transitioning 

to late seral communities with conifer (Schieck et al. 1995, Schieck and Nietfield 1995, 

Kirk et al. 1996). My finding that Yellow-rumped Warblers increased with increasing 

elevation could be related to the greater extent of conifer cover and/or cooler 

microclimate at higher elevations. Similarly, the finding that Yellow-rumped Warbler 

abundance decreased with increasing heat load index suggests that Yellow-rumped 

Warblers may be seeking cooler microclimates in conifer forest.  

Cassin’s Finches were more common in conifer and mixed aspen-conifer than in 

aspen, and their abundance in aspen stands was affected by mixed aspen-conifer2 (+) and 

elevation (+). The squared mixed aspen-conifer term reflects a steeper increase in 

abundance at lower amounts of mixed aspen-conifer (0 – 40%) than at higher amounts. 

Unlike the other conifer associates, Cassin's Finches increased with increasing amount of 

mixed aspen-conifer rather than conifer. The literature confirms this species' use of 

various conifer forest types, including mixed aspen-conifer (Behle et al. 1985, Ryser 

1985, review by Hahn 1996). The increase in abundance with elevation that I found is 

consistent with prior studies of Cassin’s Finches (reviewed in Hahn 1996). 

Dark-eyed Juncos were more common in conifer and mixed aspen-conifer than 

aspen, and their abundance in aspen stands was influenced by presence of water (-), ratio 

of shrub-to-aspen at 300-m (-), elevation2 (+), and day of first survey (+). In univariate 

regression models, conifer and mixed aspen-conifer were significant positive predictors, 

and aspen was a significant negative predictor, of Dark-eyed Junco abundance. However 

in multiple regression models, neither conifer nor mixed aspen-conifer was a better 
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predictor than absence of a water source. Because Dark-eyed Juncos use a wide array of 

cover types during the breeding season (reviewed in Nolan et al. 2002), including riparian 

and snow-pocket aspen stands (Earnst et al. 2012) and forest edges (pers. obs., and Ryser 

1985), it is not surprising that the regression model did not include a specific cover type. 

Although the negative response to a water source within 75 m at first seems inconsistent 

with Ryser's (1985) observation that they occur along forest edges associated with 

riparian corridors, the issue may be one of scale (i.e., the edge of the riparian vegetation 

may often be more than 75 m from water) or a result of forest edges not associated with 

riparian corridors being common on the Jarbidge study area. In addition, this ground-

nesting species may be avoiding dense riparian shrub cover or avoiding encounters with 

nest predators that might use riparian corridors as travel routes. 

The higher Dark-eyed Junco abundance in areas where the non-conifer matrix at 

300-m contained proportionately more aspen than montane sage is consistent with their 

preference for aspen over montane sage in partially-paired comparisons. The increase in 

abundance with elevation is consistent with other studies that show them breeding across 

a wide elevational gradient (e.g., reviewed in Nolan et al. 2002, Bears et al. 2009). The 

increased abundance at later dates of first survey may be related to more snow-free areas 

or increased time since snowmelt, and thus more grass and forb cover for this ground-

nesting species.  

Mountain Chickadees were more common in conifer and mixed aspen-conifer 

than in aspen, and their abundance in aspen stands was influenced by 75-m conifer (+) 

and 75-m mixed aspen-conifer (+). This is consistent with qualitative descriptions of their 
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association with conifer and aspen (Ryser 1985) or mixed conifer (Turchi et al. 1995), 

and their use of conifers for foraging (Douglas et al. 1992, McCallum et al. 1999). 

Ruby-crowned Kinglets were more common in conifer and mixed aspen-conifer 

than aspen, and their abundance in aspen stands was affected by 75-m conifer (+) and 75-

m mixed aspen-conifer (+). In addition, elevation-squared was a positive predictor of 

abundance in the most supported model and heat load was a negative predictor in the 

alternate model. A preference for cooler areas (those with a lower heat load) is consistent 

with a preference for higher elevations, where this species is known to commonly breed 

(Marshall et al. 2003). My finding that Ruby-crowned Kinglets are more common in 

conifer and mixed aspen-conifer than in aspen is consistent with descriptions of this 

species being in older stands of conifer (Turchi et al. 1995) and mixed aspen-conifer 

(Snyder 1950, Kirk et al. 1996). Similarly, in Saskatchewan, Ruby-crowned Kinglets 

were more common in older aspen with more conifers and shrubs than in other aspen 

stands (Hobson and Bayne 2000), and more common in older stands (100+ years) than 

younger stands of mixed conifer-deciduous forest (Cumming and Diamond 2002). In 

northeast Oregon, Ruby-crowned Kinglet density was higher in managed than old-growth 

mixed-conifer forests (Mannan and Meslow 1984). This finding was unexpected, 

according to the authors, and probably related to the closed canopy in the old-growth 

stands, where tree species composition was otherwise favorable. 

Habitat Relationship of Montane Sage Associates 

Green-tailed Towhees were more common in montane sage than aspen, and their 

abundance in aspen stands was related to 75-m montane sage (+) and presence of water  

(-). Alternate models also included either southwest aspect (+), slope (+), or heat load 
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index (+). Several studies describe Green-tailed Towhee as a shrubsteppe associate 

(Braun et al. 1976, Wiens and Rotenberry 1981, Sedgwick 1987, Knopf et al. 1990), but 

Reinkensmeyer et al. (2007) found it to be a grassland associate in central Oregon. 

Green-tailed Towhees breed in diverse sagebrush communities ranging from those that 

include mountain mahogany and chokecherry (Knopf et al. 1990), to those that include 

antelope bitterbrush and green rabbitbrush (Wiens and Rotenberry 1981). Green-tailed 

Towhees also breed in post-disturbance, early seral montane conifer and mixed shrub 

habitats (reviewed in Dobbs et al. 2012) and chapparal (Humple and Burnett 2010). 

Although Berry and Bock (1998) found that Green-tailed Towhee presence in northern 

Colorado was negatively associated with shrub cover at 50-m, they attribute this to 

avoidance of vegetative cover with low diversity. The presence of water as a negative 

predictor in my models, and either increasing slope, southwesterly aspect, or increasing 

heat load index as positive predictors in alternate models is consistent with descriptions 

of Green-tailed Towhees occurring on dry slopes (Ryser 1985, Hutto 1995). 

Other Considerations Affecting Interpretation 

Observer Differences and Detectability 

Studies using point count surveys to estimate avian abundance often employ 

multiple observers and thus should take observer differences into account (Kendall et al. 

1996). Observers may differ in their ability to detect birds (Robbins et al. 1986, Sauer et 

al. 1994, Nichols et al. 2000), to distinguish between species (Scott and Ramsey 1981) 

and to distinguish between individuals within a species (Bart and Schoultz 1984). An 

observer's ability to detect an individual bird may be influenced by the distance and 

density of singing individuals, as well as habitat structure (Emlen 1971, Bart and 
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Schoultz 1984). In my study, I took the following steps to minimize observer effect: 1) 

selection of experienced observers that had at least three months of experience 

conducting singing bird surveys, 2) one week of intensive field training that included 

observers conducting simultaneous point counts and comparing results, 3) use of 

rangefinders to obtain distance of bird locations (Alldredge et al. 2007), 4) truncation of 

data to 75-m radius (Buckland et al. 2001), 5) two visits to each point count circle, each 

by a different observer, 6) an overall design that balanced cover types among crews, and 

for some questions, a paired design in which the same observers surveyed both cover 

types of the pair, and 7) pooling observations within a two-person crew and using crew as 

a random effect in mixed models. Adding both crew and stand as random effects to a 

model rarely changed the interpretation of fixed effects (i.e., fixed effects became non-

significant in only three species-specific mixed-effect models). 

Importantly, my research compares relative abundance among cover types and 

across topographic gradients, and does not attempt to estimate population size. Thus, the 

only observer or detection issues of importance would be those that resulted in a higher 

detection rate in one cover type than another. Although most detections are auditory 

rather than visual, differences between habitats in visibility of birds could produce 

different detection rates between habitats. For example, visual detection rates might be 

lower in structurally complex aspen, conifer, and mixed aspen-conifer forests than in 

montane sage, and thus removing this potential bias would result in the difference in bird 

abundance in aspen vs. montane sage being greater than reported here. 
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Inferences about Conifer and Montane Sage Associates 

As the emphasis of my study was to quantify the relative importance of aspen to 

songbirds and to identify habitat relationships within aspen stands, a large number of 

point count stations were placed in systematically chosen aspen stands. As a result, the 

estimates of avian abundance in aspen are statistically robust. For comparison to aspen 

stands, points were also placed in conifer or montane sage patches 150 m to 650 m from 

aspen stands. For some aspen associates, this design might somewhat overestimate their 

abundance in non-aspen if they frequent the edges but not the interiors of non-aspen 

patches. Removing this potential bias would only strengthen my conclusion that the 

abundance of these species is greater in aspen than non-aspen. On the other hand, for 

some non-aspen associates, this design might somewhat underestimate their abundance in 

non-aspen if they avoid edges and favor the interiors of non-aspen patches. If this 

potential bias was removed, some species that showed no preference between aspen and 

non-aspen might be shown to be more common in non-aspen (e.g., Hairy Woodpecker 

and Hammond’s Flycatcher in conifer, and White-crowned Sparrow in montane sage). 

Likewise, a larger sample of conifer and montane sage points would have provided more 

statistical power to detect a difference between abundance in aspen and these non-aspen 

cover types, and I might have been able to conduct analyses on some additional fairly 

common non-aspen species, such as Black-billed Magpie (Pica hudsonia), Clark’s 

Nutcracker (Nucifraga columbiana), Brown Creeper (Certhia americana), and Western 

Meadowlark (Sturnella neglecta). 

The multiple regression study was designed to identify important predictors of 

avian abundance within aspen stands, and thus, the sample of points was restricted to 
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those with aspen present. As post-hoc analyses, I also modeled abundance of some 

conifer and montane sage associates. For these non-aspen associates, models should be 

interpreted as identifying predictors of abundance within (or partially within) an aspen 

stand. These predictors might be different than those within non-aspen or across the 

landscape as a whole. 

Parameters not Measured 

Although use of coarse-scale vegetative cover types, such as those available from 

GIS layers, are a standard tool in building avian-habitat relationship models (Lawler and 

Edwards 2002), I recognize that habitat parameters that I have not measured (i.e., stand 

structure, extent of understory shrub cover) could be important in defining avian habitat 

relationships. 

Abundance as an Indicator of Habitat Quality 

It is valid to ask whether mean abundance (the response variable in my study), as 

opposed to productivity, is a useful indicator of habitat quality (Van Horne 1983). For 

example, nonbreeders that cannot obtain a territory in prime habitat may congregate in 

suboptimal habitat (Van Horne 1983) or a species' abundance may reflect former, rather 

than current, habitat conditions (Knick and Rotenberry 2000). The latter may be of 

particular concern in heavily human-altered landscapes (Bock and Jones 2004). However, 

often the same factors that produce high quality breeding habitat, such as high food 

availability (Lyons 2005), also support a high density of breeders (Brown 1969). Indeed, 

Bock and Jones (2004) find in their meta-analysis that density of breeding individuals is 
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often a reliable indicator of habitat quality, and thus, estimates of avian abundance are an 

adequate tool for assessing habitat preferences.  

Implications of Climate and Landscape Change 

Cover types on the Jarbidge study area may shift from current proportions due to 

climate-related stressors such as drought, or other disturbances such as wildfire, insects, 

or forest pathogens (Littell et al. 2010, Worrall et al. 2013). Although some forecasted 

climate changes, such as warmer temperatures and more frequent fires, may favor aspen 

over conifer at some points in time, the negative effects of more severe and prolonged 

drought are expected to over-ride the former (reviewed in Morelli and Carr 2011, 

Kulakowski et al. 2013). Because most aspen stands are surrounded by shrubsteppe 

communities in the Jarbidge and much of the Great Basin, and because xeric shrub 

communities are more likely to do well in future hot and arid climates, shrubsteppe 

communities are the most likely to replace aspen in future climates. Models that project 

change in aspen cover across the landscape, based on future climate scenarios, show a 

major decline in aspen over the next 50 to 100 years (Rehfeldt et al. 2009, Worrall et al. 

2013, Yang et al., in review). Models by Yang et al. (in review) also show a reduction in 

conifer and an increase in shrubsteppe communities. Avian species are certain to vary in 

their resilience to these potential changes due to inherent differences in life history, 

physiology, genetic diversity, and phenotypic plasticity (Weathers 1979, Pulido and 

Berthold 2004, Tottrup et al. 2010). Knowledge of a species' current habitat relationships, 

and the specificity of those relationships, will aid in predicting its response to changes in 

vegetation induced by climate change. 
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The 22 species that I identified as being substantially more common in aspen than 

conifer are expected to be the most vulnerable to any replacement of aspen by conifer in 

the Jarbidge study area. Seven of these species were completely absent from conifer: 

Western Wood-Pewee, Swainson's Thrush, European Starling, Orange-crowned Warbler, 

White-crowned Sparrow, Lazuli Bunting, and Brown-headed Cowbird. An additional 12 

species were at least twice as common in aspen than conifer (ratio of abundance in aspen 

to conifer given in parentheses, Table E.1): Yellow Warbler (68.5), Black-headed 

Grosbeak (15.5), Warbling Vireo (10.0), Tree Swallow (9.1), MacGillivray’s Warbler 

(8.8), Northern Flicker (8.7), Dusky Flycatcher (7.4), and Red-naped Sapsucker (5.3), 

Fox Sparrow (4.6), House Wren (4.5), Mountain Bluebird (3.1), and American Robin 

(2.0). For aspen associates that decreased with increasing conifer cover in regression 

models, such as House Wren, Yellow Warbler, and Orange-crowned Warbler, any shift 

toward a conifer-dominated landscape could prove detrimental even if aspen cover did 

not change. Similarly, I identified 30 species that were more common in aspen than 

montane sage and thus expected to be vulnerable to any replacement of aspen by montane 

sage. 

My study was designed to identify aspen-associated avian species and describe 

their habitat relationships within aspen. Thus, I do not have as large a sample in conifer 

and montane sage as in aspen. Nonetheless, I identified nine avian species that are 

substantially more common in conifer than aspen and are thus expected to be vulnerable 

to any replacement of conifer by aspen (listed from highest to lowest ratio of abundance 

in conifer to aspen): Red-breasted Nuthatch, Chipping Sparrow, Ruby-crowned Kinglet, 

Mountain Chickadee, Hermit Thrush, Dark-eyed Junco, Western Tanager, Cassin’s 
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Finch, and Yellow-rumped Warbler. Similarly, the three species substantially more 

common in montane shrub communities than in aspen include Brewer's Sparrow, Vesper 

Sparrow, and Green-tailed Towhee. 

Patch size, connectivity, and landscape composition affect avian abundance in 

deciduous woodlands (Saab 1999, Lawler and Edwards 2002) and may be affected by 

climate change, especially if different sized patches of vegetation have different 

vulnerabilities and abilities to persist (e.g., reviewed in Kefi et al. 2011). My literature 

review did not reveal any studies that examined whether smaller aspen stands have lower 

tolerance thresholds, and thus higher vulnerability, to climate change, but I suggest that 

this is an important topic for future research. In the Jarbidge study area, approximately 

half of aspen stands are smaller than 4 ha, and most are surrounded by shrub 

communities. Because the amount of 300-m aspen only improved the model over 75-m 

aspen for one aspen associate, the importance of small stands should not be understated. 

Similarly, aspen patch size did not affect nest success of common breeders elsewhere in 

the Great Basin (Heltzel and Earnst 2006). Therefore, I suggest that small stands may be 

as important, or more important, in maintaining avian abundance and diversity as large 

stands, and that the loss of smaller stands should be a management concern. 

Climate change is predicted to reduce the seasonal availability of water sources 

and associated vegetation due to changes in the hydrologic cycle (Breshears et al. 2005, 

Stewart et al. 2005). For example, in the northern Great Basin, the timing of snowmelt 

and related peak streamflow occurred over one week earlier in 2002 than in 1948 

(Stewart et al. 2005). This trend is in part due to an increase in winter and spring 

temperatures, a trend predicted to continue (Dettinger and Cayan 1995, Mote et al. 2005). 
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Although total precipitation has only slightly increased since 1916 (Hamlet et al. 2007), 

mostly at higher elevations (Stewart 2009), the proportion of precipitation falling as snow 

has declined (Knowles et al. 2006). A decrease in snowpack is likely to negatively affect 

aspen (LaMalfa and Ryle 2008, Anderegg et al. 2013) and thus negatively affect the 22 

avian species shown to be associated with aspen in my study. Changes to stream flow 

may also directly affect species described to be riparian associates such as Yellow 

Warblers, Warbling Vireos, and MacGillivray's Warblers (Marzluff and Lyon 1983, 

Floyd et al. 2007, Earnst et al. 2012). Early snowmelt may also initiate an unexpected 

cascade of effects. For example, in central Arizona, Martin (2007) found that earlier 

snowmelt led to increased elk browsing, reduced cover of deciduous vegetation, 

increased nest predation and substantial declines in Orange-crowned Warblers, 

MacGillivray's Warblers, and Green-tailed Towhees. 

Avian species whose abundance is increasing with elevation could be responding 

to a number of factors such as cover type, stand structure, understory vegetation, seasonal 

phenology, or micro-climate. Climate change may affect each of these factors and the 

interactions among them. For example, aspen distribution is expected to move upslope as 

suitable temperature and precipitation conditions also move upslope (Kelly and Goulden 

2008). Similarly, avian species may also track their preferred cover type across elevations 

or latitudes (reviewed in Sekercioglu et al. 2008). For instance, the 22 aspen-associated 

avian species identified in this study might be expected to track any elevational shifts in 

aspen distribution, and to track shifts in relevant aspects of stand structure or understory 

vegetation. 
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Avian species may also track changes in the abiotic dimensions of their niche, 

such as temperature and precipitation, across elevation (Tingley et al. 2012, Tingley and 

Beissinger 2013). The literature suggests that high elevation species may respond more 

strongly to changes in temperature while lower elevation species may respond more 

strongly to changes in precipitation (Tingley et al. 2009). Rising temperature is expected 

to push species upslope while increased precipitation pulls them downslope, but climatic 

factors also combine to create varied responses (Tingley et al. 2012). These fairly simple 

predictions, combined with the results of my regression analyses, allows for species-

specific predictions for my study area. Species that I found to be more common at high 

elevations in my study area, and thus most likely to be affected by the predicted rise in 

temperature, are Dusky Flycatcher, Ruby-crowned Kinglet, Yellow-rumped Warbler, 

Dark-eyed Junco, and Cassin's Finch. Species that I found to be more common at low 

elevations, and thus most likely to be affected by the predicted increase in precipitation, 

are House Wren, American Robin, and Yellow Warbler. Other species that might be 

expected to respond to changes in precipitation under climate change are those found to 

be less common in areas of high precipitation in my study area–Northern Flicker, 

Warbling Vireo, and Orange-crowned Warbler. Although this is a useful framework, 

reality is likely to be more complicated. For example, species are expected to differ in 

their sensitivity to temperature and precipitation, and local differences in climate patterns 

are likely to cause a species to move upslope in one region and downslope in another 

(Tingley et al. 2012). Also, Tingley et al. (2012) found that the combination of 

predictions based on temperature and precipitation were much better than those based on 

either temperature or precipitation alone. In addition, some species, like Dark-eyed 
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Juncos (Bears et al. 2009), that exhibit plasticity in reproductive and life-history 

strategies across elevational gradients, may be more able than others to track the abiotic 

dimensions of their niche across elevation. 
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Table 1. Results of hypotheses tested for focal species in partially-paired 
comparisons and multiple regression. The expected habitat association in the 
Mountain West is based on literature. The observed association is based on 
partially-paired t-tests; parentheses indicate marginal significance (0.05< p <0.10). 
The "Predictor?" column indicates whether the relevant cover type parameter (e.g. 
Asp75 for aspen associates; Con75 for conifer associates, etc.) is a significant 
predictor in the best model subset (Y = yes, N = no, --- = no model built for this 
species). 

Species Expected Observed Predictor? 
Aspen vs. Conifer    
   Swainson’s Thrush aspen aspen --- 
   Orange-crowned Warbler aspen aspen N 
   Yellow Warbler aspen aspen Y 
   Song Sparrow aspen aspen --- 
   Western Wood-Pewee aspen aspen --- 
   Warbling Vireo aspen aspen Y 
   Red-naped Sapsucker aspen aspen  Y 
   Downy Woodpecker aspen no difference --- 
   Tree Swallow aspen aspen Y 
   House Wren aspen aspen Y 
   Mountain Bluebird aspen aspen Y 
   European Starling aspen aspen --- 
   Brown-headed Cowbird aspen aspen --- 
   Chipping Sparrow conifer conifer --- 
   Hammond’s Flycatcher conifer no difference --- 
   Ruby-crowned Kinglet conifer conifer Y 
   Yellow-rumped Warbler conifer conifer Y 
   Western Tanager conifer conifer --- 
   Cassin’s Finch conifer conifer N 
   Pine Siskin conifer (conifer) --- 
   Mountain Chickadee conifer conifer Y 
   Red-breasted Nuthatch conifer conifer --- 
   Dusky Flycatcher no difference aspen Y 
   Hermit Thrush no difference conifer --- 
   Dark-eyed Junco no difference conifer N 
   Black-headed Grosbeak no difference aspen --- 
   American Robin no difference aspen N 
   Hairy Woodpecker no difference no difference --- 
   Northern Flicker no difference aspen N 
   Violet-green Swallow no difference no difference --- 
Aspen vs. Mixed Aspen-Conifer    
   Cordilleran Flycatcher aspen-conifer (aspen-conifer) --- 
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Aspen vs. Montane Sage    
   MacGillivray’s Warbler montane sage aspen Y 
   Green-tailed Towhee montane sage montane sage Y 
   Brewer’s Sparrow montane sage montane sage --- 
   Vesper Sparrow montane sage montane sage --- 
   Fox Sparrow montane sage aspen --- 
   White-crowned Sparrow montane sage no difference --- 
   Lazuli Bunting montane sage aspen --- 

   Rock Wren 
montane sage (montane 

sage) 
--- 

 
 
  



87 

Table 2. Mean difference in abundance in aspen minus montane sage. 
Statistics based on t-tests for partially-paired data. P-values are prior to adjustment 
for multiple comparisons. Asterisks and habitat association are based on 
significance post-adjustment (* p <0.05; ** p <0.01; *** p <0.001; (*) p <0.10). N = 
111 aspen and 23 montane sage stands.  

Species or Nesting Guild Mean Diff.a 
(ind. per point) 

Standard 
Errorb 

t-value p-value Associationc 

Ground/Understoryd 3.33 0.80 4.19  <0.001*** aspen 
Hummingbirds 0.20 0.04 5.59  <0.001*** aspen 
Empidonax spp. 0.23 0.04 5.57  <0.001*** aspen 
Dusky Flycatcher 1.91 0.14 13.35 <0.001*** aspen 
Rock Wren -0.18 0.10 -1.75    0.08(*) (shrub) 
Swainson’s Thrush 0.14 0.04 3.92 <0.001*** aspen 
Hermit Thrush 0.21 0.04 4.88 <0.001*** aspen 
Orange-crowned Warbler 0.95 0.10 9.36 <0.001*** aspen 
Yellow Warbler 1.30 0.14 9.15 <0.001*** aspen 
MacGillivray’s Warbler 0.92 0.10 9.07 <0.001*** aspen 
Green-tailed Towhee -1.67 0.48 -3.48  <0.001** shrub 
Chipping Sparrow <0.01 0.07 -0.04    0.97 n.s. 
Brewer’s Sparrow -1.96 0.43 -4.60 <0.001*** shrub 
Vesper Sparrow -0.45 0.15 -3.02 0.003** shrub 
Fox Sparrow 0.64 0.09 7.48 <0.001*** aspen 
Song Sparrow 0.14 0.04 3.35 0.001** aspen 
White-crowned Sparrow 0.08 0.17 0.49    0.63 n.s. 
Dark-eyed Junco 0.58 0.09 6.83 <0.001*** aspen 
Black-headed Grosbeak 0.31 0.04 7.51 <0.001*** aspen 
Lazuli Bunting 0.18 0.07 2.70    0.008* aspen 
Overstoryd 7.65 0.43 17.94  <0.001*** aspen 
Western Wood-Pewee 0.71 0.10 6.84 <0.001*** aspen 
Hammond’s Flycatcher 0.06 0.02 2.39    0.02* aspen 
Cordilleran Flycatcher 0.17 0.04 3.96 <0.001*** aspen 
Warbling Vireo 2.48 0.13 19.50 <0.001*** aspen 
Ruby-crowned Kinglet 0.31 0.08 3.80 <0.001*** aspen 
American Robin 1.63 0.19 8.50 <0.001*** aspen 
Yellow-rumped Warbler 0.95 0.09 10.93 <0.001*** aspen 
Western Tanager 0.34 0.07 4.93 <0.001*** aspen 
Cassin’s Finch 0.69 0.10 6.83 <0.001*** aspen 
Pine Siskin 0.21 0.06 3.42  <0.001** aspen 
Cavityd 6.49 0.34 19.09  <0.001*** aspen 
Red-naped Sapsucker 0.37 0.06 6.68 <0.001*** aspen 
Downy Woodpecker 0.07 0.02 3.38  <0.001** aspen 
Hairy Woodpecker 0.25 0.04 5.82 <0.001*** aspen 
Northern Flicker 0.48 0.12 4.03 <0.001*** aspen 
Tree Swallow 0.51 0.12 4.31 <0.001*** aspen 
Violet-green Swallow -0.02 0.09 -0.26    0.79 n.s. 
Mountain Chickadee 0.34 0.05 6.81  <0.001*** aspen 
Red-breasted Nuthatch 0.05 0.02 2.38    0.02* aspen 
House Wren 4.02 0.19 20.94 <0.001*** aspen 
Mountain Bluebird 0.21 0.11 2.00    0.05(*) (aspen) 
European Starling 0.12 0.05 2.45    0.02* aspen 
Brood Parasite         
Brown-headed Cowbird 0.12 0.06 1.90 0.06(*) (aspen) 
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aMean abundance in aspen minus mean abundance in montane shrub. For each cover 
type, points within stands were averaged prior to analysis. A significant positive mean 
difference for a species indicates higher abundance in aspen. 
 
bStandard Error of the difference calculated using formula for partially-paired samples. 
 
cAssociations in parentheses indicate differences that were marginally significant (i.e., 
0.05 < p <0.10) after adjustment for multiple comparisons; n.s. denotes non-significance. 
 
dGuild means calculated by summing individuals across all species within the guild, 
including some that did not meet the focal species criteria. 
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Table 3. Mean difference in abundance in aspen minus montane sage. 
Statistics based on t-tests for paired data. P-values are prior to adjustment for 
multiple comparisons. Asterisks and habitat association are based on significance 
post-adjustment (* p <0.05; ** p <0.01; *** p <0.001; (*) p <0.10). N = 22 paired 
aspen and montane sage stands. 

Species or Nesting Guild Mean Diff.a 
(ind. per point) 

Standard 
Errorb 

t-value p-value  Associationc 

Ground/Understoryd                   3.40 0.68 4.99  <0.001*** aspen 
Hummingbirds 0.28 0.07 3.80  0.001** aspen 
Dusky Flycatcher 1.89 0.29 6.42  <0.001*** aspen 
Hermit Thrush 0.35 0.14 2.55     0.02* aspen 
Orange-crowned Warbler 0.86 0.18 4.87   <0.001*** aspen 
Yellow Warbler 1.04 0.20 5.14  <0.001*** aspen 
MacGillivray’s Warbler 0.98 0.22 4.42  <0.001*** aspen 
Green-tailed Towhee -1.32 0.47 -2.80     0.01* shrub 
Brewer’s Sparrow -2.06 0.44 -4.68  <0.001*** shrub 
Vesper Sparrow -0.49 0.16 -3.16     0.005** shrub 
Fox Sparrow 0.54 0.12 4.49  <0.001*** aspen 
White-crowned Sparrow 0.16 0.13 1.23     0.23 n.s. 
Dark-eyed Junco 0.52 0.12 4.30  <0.001*** aspen 
Black-headed Grosbeak 0.48 0.09 5.46  <0.001*** aspen 
Overstoryd 6.38 0.49 12.95 <0.001*** aspen 
Western Wood-Pewee 0.44 0.17 2.60 0.02* aspen 
Warbling Vireo 2.74 0.32 8.48 <0.001*** aspen 
American Robin 1.09 0.24 4.63 <0.001*** aspen 
Yellow-rumped Warbler 0.90 0.13 6.73 <0.001*** aspen 
Cassin’s Finch 0.43 0.11 4.02  0.001** aspen 
Cavityd 5.70 0.48 11.88  <0.001*** aspen 
Red-naped Sapsucker 0.28 0.08 3.46  0.002** aspen 
Hairy Woodpecker 0.13 0.04 3.47  0.002** aspen 
Northern Flicker 0.31 0.13 2.31     0.03* aspen 
Tree Swallow 0.48 0.12 3.88  0.001** aspen 
Mountain Chickadee 0.36 0.11 3.37  0.003** aspen 
House Wren 3.62 0.34 10.78  <0.001*** aspen 
Mountain Bluebird 0.07 0.12 0.61     0.55 n.s. 

aMean abundance in aspen minus mean abundance in montane shrub. For each cover 
type, points within stands were averaged prior to analysis. A significant positive mean 
difference for a species indicates higher abundance in aspen. 
 
bStandard Error of the difference calculated using formula for paired samples. 
 
cAssociations in parentheses indicate differences that were marginally significant (i.e., 
0.05 < p <0.10) after adjustment for multiple comparisons; n.s. denotes non-significance. 
 
dGuild means calculated by summing individuals across all species within the guild, 
including some that did not meet the focal species criteria. 
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Table 4. Mean difference in abundance in aspen minus conifer. Statistics based 
on t-tests for partially-paired data. P-values are prior to adjustment for multiple 
comparisons. Asterisks and habitat association are based on significance post-
adjustment (* p <0.05; ** p <0.01; *** p <0.001; (*) p <0.10). N = 111 aspen and 14 
conifer stands. 

Species or Nesting Guild Mean Diff.a 
(ind. per point) 

Standard 
Errorb 

t-value p-value Associationc 

Ground/Understoryd 4.69 0.68 6.85  <0.001*** aspen 
Hummingbirds 0.20 0.04 5.59  <0.001*** aspen 
Empidonax spp. 0.20 0.05 3.58  <0.001 aspen 
Dusky Flycatcher 1.73 0.15 11.55  <0.001*** aspen 
Swainson’s Thrush 0.14 0.04 3.92  <0.001*** aspen 
Hermit Thrush -0.71 0.18 -3.92  <0.001*** conifer 
Orange-crowned Warbler 0.97 0.10 9.99  <0.001*** aspen 
Yellow Warbler 1.35 0.14 9.77  <0.001*** aspen 
MacGillivray’s Warbler 0.86 0.12 7.00  <0.001*** aspen 
Green-tailed Towhee 0.32 0.12 2.59    0.011* aspen 
Chipping Sparrow -0.61 0.17 -3.49  <0.001** conifer 
Brewer’s Sparrow 0.04 0.02 2.46    0.02* aspen 
Fox Sparrow 0.50 0.15 3.33 0.001** aspen 
Song Sparrow 0.14 0.04 3.35 0.001** aspen 
White-crowned Sparrow 0.30 0.06 5.27 <0.001*** aspen 
Dark-eyed Junco -1.26 0.46 -2.77 0.007** conifer 
Black-headed Grosbeak 0.29 0.05 5.83 <0.001*** aspen 
Lazuli Bunting 0.22 0.06 3.90 <0.001*** aspen 
Overstoryd -1.41 1.16 -1.22    0.23 n.s. 
Western Wood-Pewee 0.71 0.10 6.84 <0.001*** aspen 
Hammond’s Flycatcher -0.19 0.16 -1.23    0.22 n.s. 
Cordilleran Flycatcher -0.34 0.27 -1.24    0.22 n.s. 
Warbling Vireo 2.25 0.21 10.87 <0.001*** aspen 
Ruby-crowned Kinglet -1.58 0.23 -6.80 <0.001*** conifer 
American Robin 0.99 0.37 2.66    0.009* aspen 
Yellow-rumped Warbler -0.80 0.27 -2.98 0.004** conifer 
Western Tanager -0.73 0.29 -2.52    0.01* conifer 
Cassin’s Finch -0.87 0.32 -2.71    0.008* conifer 
Pine Siskin -0.52 0.28 -1.85    0.07(*) (conifer) 
Cavityd 2.77 0.61 4.54  <0.001*** aspen 
Red-naped Sapsucker 0.30 0.07 4.18  <0.001*** aspen 
Downy Woodpecker 0.00 0.07 0.01     0.99 n.s. 
Hairy Woodpecker -0.14 0.23 -0.63     0.53 n.s. 
Northern Flicker 0.54 0.10 5.41  <0.001*** aspen 
Tree Swallow 0.57 0.10 5.49  <0.001*** aspen 
Violet-green Swallow 0.03 0.04 0.62     0.54 n.s. 
Mountain Chickadee -1.28 0.36 -3.56  <0.001*** conifer 
Red-breasted Nuthatch -0.81 0.19 -4.24  <0.001*** conifer 
House Wren 3.14 0.37 8.39  <0.001*** aspen 
Mountain Bluebird 0.24 0.08 2.83  0.005** aspen 
European Starling 0.12 0.05 2.45     0.02* aspen 
Brood Parasite         
Brown-headed Cowbird 0.18 0.03 5.25  <0.001*** aspen 
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aMean abundance in aspen minus mean abundance in conifer. For each cover type, points 
within stands were averaged prior to analysis. A significant positive mean difference for a 
species indicates higher abundance in aspen. 
 
bStandard Error of the difference calculated using formula for partially-paired samples. 
 
cAssociations in parentheses indicate differences that were marginally significant (i.e., 
0.05 < p <0.10) after adjustment for multiple comparisons; n.s. denotes non-significance. 
 
dGuild means calculated by summing individuals across all species within the guild, 
including some that did not meet the focal species criteria. 
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Table 5. Mean difference in abundance in aspen minus conifer. Statistics based 
on t-tests for paired data. P-values are prior to adjustment for multiple 
comparisons. Asterisks and habitat association are based on significance post-
adjustment (* p <0.05; ** p <0.01; *** p <0.001; (*) p <0.10). N = 10 paired aspen 
and conifer stands. 

Species or Nesting Guild Mean Diff.a 
(ind. per point) 

Standard 
Errorb 

t-value p-value Associationc 

Ground/Understoryd 3.52 0.78 4.53  0.001* aspen 
Dusky Flycatcher 1.85 0.25 7.43 <0.001*** aspen 
Hermit Thrush -0.33 0.25 -1.31     0.22 n.s. 
Orange-crowned Warbler 0.92 0.24 3.84 0.004* aspen 
MacGillivray’s Warbler 0.77 0.40 1.91     0.09 n.s. 
Dark-eyed Junco -0.68 0.48 -1.43     0.19 n.s. 
Overstoryd -0.08 0.67 -0.12     0.90 n.s. 
Warbling Vireo 1.43 0.48 2.96     0.02* aspen 
Ruby-crowned Kinglet -1.07 0.36 -2.98     0.02* conifer 
American Robin 0.53 0.57 0.93     0.37 n.s. 
Yellow-rumped Warbler -0.03 0.35 -0.10     0.93 n.s. 
Western Tanager -0.03 0.36 -0.09     0.93 n.s. 
Cassin’s Finch -0.43 0.21 -2.08     0.07 n.s. 
Pine Siskin 0.20 0.39 0.51     0.62 n.s. 
Cavityd 2.40 1.22 1.97     0.08 n.s. 
Hairy Woodpecker 0.40 0.45 0.88     0.40 n.s. 
Mountain Chickadee -1.13 0.53 -2.12     0.06 n.s. 
House Wren 2.42 0.73 3.30 0.009* aspen 

aMean abundance in aspen minus mean abundance in conifer. For each cover type, points 
within stands were averaged prior to analysis. A significant positive mean difference for a 
species indicates higher abundance in aspen. 
 
bStandard Error of the difference calculated using formula for paired samples. 
 
cAssociations in parentheses indicate differences that were marginally significant (i.e., 
0.05 < p <0.10) after adjustment for multiple comparisons; n.s. denotes non-significance. 
 
dGuild means calculated by summing individuals across all species within the guild, 
including some that did not meet the focal species criteria. 
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Table 6. Mean difference in abundance in aspen minus mixed aspen-conifer. 
Statistics based on t-tests for partially-paired data. P-values are prior to adjustment 
for multiple comparisons. Asterisks and habitat association are based on 
significance post-adjustment (* p <0.05; ** p <0.01; *** p <0.001; (*) p <0.10). N = 
111 aspen and 19 mixed aspen-conifer stands. 

Species or Nesting Guild Mean Diff.a 
(ind. Per point) 

Standard 
Errorb 

t-value p-value Associationc 

Ground/Understoryd 2.39 0.64 3.74  <0.001** aspen 
Hummingbirds -0.01 0.10 -0.13    0.90 n.s. 
Empidonax spp. <0.01 0.11 0.04    0.97 n.s. 
Dusky Flycatcher 1.11 0.25 4.39 <0.001*** aspen 
Swainson’s Thrush -0.09 0.15 -0.58    0.56 n.s. 
Hermit Thrush -0.30 0.16 -1.90    0.06(*) (aspen-conifer) 
Orange-crowned Warbler 0.78 0.14 5.58 <0.001*** aspen 
Yellow Warbler 1.08 0.18 5.83 <0.001*** aspen 
MacGillivray’s Warbler 0.38 0.21 1.76    0.08 n.s. 
Green-tailed Towhee 0.35 0.10 3.61  <0.001** aspen 
Chipping Sparrow -0.21 0.12 -1.65    0.10 n.s. 
Brewer’s Sparrow 0.04 0.02 2.46    0.02* aspen 
Fox Sparrow -0.32 0.23 -1.37    0.17 n.s. 
Song Sparrow 0.03 0.11 0.30    0.76 n.s. 
White-crowned Sparrow 0.12 0.11 1.09    0.28 n.s. 
Dark-eyed Junco -0.81 0.25 -3.17 0.002** aspen-conifer 
Black-headed Grosbeak 0.20 0.08 2.44    0.02* aspen 
Lazuli Bunting 0.17 0.08 2.18    0.03(*) (aspen) 
Overstoryd -5.23 0.78 -6.70  <0.001*** aspen-conifer 
Western Wood-Pewee 0.45 0.19 2.36    0.02* aspen 
Hammond’s Flycatcher -0.16 0.12 -1.33    0.18 n.s. 
Cordilleran Flycatcher -0.55 0.25 -2.20    0.03(*) (aspen-conifer) 
Warbling Vireo 1.04 0.21 4.96 <0.001*** aspen 
Ruby-crowned Kinglet -1.79 0.22 -8.07 <0.001*** aspen-conifer 
American Robin -0.24 0.37 -0.63    0.53 n.s. 
Yellow-rumped Warbler -0.41 0.17 -2.36    0.02* aspen-conifer 
Western Tanager -0.64 0.24 -2.63    0.01* aspen-conifer 
Cassin’s Finch -2.11 0.33 -6.36 <0.001*** aspen-conifer 
Pine Siskin -0.66 0.22 -3.02    0.003* aspen-conifer 
Cavityd 1.06 0.77 1.37    0.17 n.s. 
Red-naped Sapsucker 0.30 0.08 3.57  <0.001** aspen 
Downy Woodpecker 0.07 0.02 3.38  <0.001** aspen 
Hairy Woodpecker -0.01 0.11 -0.13    0.90 n.s. 
Northern Flicker 0.26 0.14 1.89    0.06(*) (aspen) 
Tree Swallow 0.41 0.15 2.71    0.008* aspen 
Violet-green Swallow 0.04 0.04 1.04    0.30 n.s. 
Mountain Chickadee -1.12 0.24 -4.70  <0.001*** aspen-conifer 
Red-breasted Nuthatch -0.14 0.07 -1.93    0.06(*) (aspen-conifer) 
House Wren 0.91 0.60 1.53    0.13 n.s. 
Mountain Bluebird 0.24 0.09 2.70    0.008* aspen 
European Starling 0.12 0.05 2.45    0.02* aspen 
Brood Parasite          
Brown-headed Cowbird 0.13 0.06 2.04    0.04(*) (aspen) 
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aMean abundance in aspen minus mean abundance in mixed aspen-conifer. For each 
cover type, points within stands were averaged prior to analysis. A significant positive 
mean difference for a species indicates higher abundance in aspen. 
 
bStandard Error of the difference calculated using formula for partially-paired samples. 
 
cAssociations in parentheses indicate differences that were marginally significant (i.e., 
0.05 < p <0.10) after adjustment for multiple comparisons; n.s. denotes non-significance. 
 
dGuild means calculated by summing individuals across all species within the guild, 
including some that did not meet the focal species criteria. 
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Table 7. Mean difference in abundance in aspen minus mixed aspen-conifer. 
Statistics based on t-tests for paired data. P-values are prior to adjustment for 
multiple comparisons. Asterisks and habitat association are based on significance 
post-adjustment (* p <0.05; ** p <0.01; *** p <0.001; (*) p <0.10). N = 9 paired 
aspen and mixed aspen-conifer stands. 

Species or Nesting Guild Mean Diff.a 
(ind. per point) 

Standard 
Errorb 

t-value p-value Associationc 

Ground/Understoryd 2.19 1.15 1.91   0.09 n.s. 
Dusky Flycatcher 0.33 0.34 0.98   0.36 n.s. 
Fox Sparrow 0.22 0.37 0.59   0.57 n.s. 
Dark-eyed Junco 0.31 0.48 0.64   0.54 n.s. 
Overstoryd -0.67 1.97 -0.34   0.74 n.s. 
Cordilleran Flycatcher -0.25 0.46 -0.54   0.60 n.s. 
Warbling Vireo 0.99 0.51 1.96   0.09 n.s. 
Ruby-crowned Kinglet -0.90 0.62 -1.46        0.18 n.s. 
American Robin 0.39 0.58 0.68   0.52 n.s. 
Yellow-rumped Warbler -0.30 0.36 -0.83   0.43 n.s. 
Western Tanager 0.04 0.48 0.08   0.94 n.s. 
Cassin’s Finch -0.58 0.47 -1.22   0.26 n.s. 
Cavityd 0.10 1.09 0.09   0.93 n.s. 
Red-naped Sapsucker 0.69 0.24 2.83   0.02 n.s. 
Mountain Chickadee -1.03 0.32 -3.27   0.01 n.s. 
House Wren 0.24 0.82 0.29   0.78 n.s. 
Mountain Bluebird 0.40 0.23 1.71   0.12 n.s. 

aMean abundance in aspen minus mean abundance in mixed aspen-conifer. For each 
cover type, points within stands were averaged prior to analysis. A significant positive 
mean difference for a species indicates higher abundance in aspen. 
 
bStandard Error of the difference calculated using formula for paired samples. 
 
cAssociations in parentheses indicate differences that were marginally significant (i.e., 
0.05 < p <0.10) after adjustment for multiple comparisons; n.s. denotes non-significance. 
 
dGuild means calculated by summing individuals across all species within the guild, 
including some that did not meet the focal species criteria. 
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Table 8. Coefficients and standard errors (in parentheses) of parameters in best model subsets for aspen-associated 
species in the overstory- and ground/understory-nesting guilds. For species having more than one model in the best model 
subset, model weights are given as footnotes. Model selection was based on fixed-effects models; coefficients, standard errors, 
and significance are from mixed-effects models (* p <0.05; ** p <0.01; *** p <0.001; (*) p <0.10, and ns for p > 0.10). N = 324 
points.  

Parameter Warbling 
Vireo 

American 
Robina 

American 
Robinb 

Dusky 
Flycatcher 

Yellow 
Warbler 

MacGillivray's 
Warblerc 

Orange-crowned 
Warbler 

Asp75 0.007 
(0.002)***   

0.009 
(0.002)*** 

0.008 
(0.003)* 

0.03 
(0.01)**  

Asp752       
-0.0003 

(0.00008)**  

Con75     
-0.03 

(0.02)*  
-0.03 

(0.01)* 

Rip     
0.69 

(0.15)***  
-0.36 

(0.15)* 

Asp300      
0.008 

(0.004)(*)  

Elev   
-0.01 

(0.004)* 
0.009 

(0.003)** 
0.64 

(0.21)**   

Elev2     
-0.002 

(0.0005)**   

Slope  
-0.01 

(0.005)*      

Prec -0.01 
(0.005)**      

-0.03 
(0.008)*** 

Day 0.01 
(0.008)(*) 

-0.02 
(0.01)(*)  

-0.007 
(0.008)ns  

0.02 
(0.01)(*) 

0.03 
(0.01)* 

a wi = 0.62;   b wi = 0.38;   c wi = 0.83; 
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Table 9. Coefficients and standard errors (in parentheses) of parameters in best model subsets for aspen-associated 
species in the cavity-nesting guild. Model selection was based on fixed-effects models; coefficients, standard errors, and 
significance are from mixed-effects models (* p <0.05; ** p <0.01; *** p <0.001; (*) p <0.10, and ns for p > 0.10). N = 324 
points.  

Parameter Red-naped 
Sapsucker 

Northern 
Flicker 

Tree 
Swallow House Wren Mountain 

Bluebird 

Asp75 0.09 
(0.04)*  

0.01 
(0.004)** 

-0.008 
(0.005)ns 

0.008 
(0.003)* 

Asp752  -0.0005 
(0.0003)(*)   

0.0001 
(0.00004)**  

Con75    
-0.009 

(0.004)*  

Asp300 -0.02 
(0.007)*   

-0.005 
(0.002)*  

Elev    
-0.008 

(0.003)**  

Slope     
-0.04 

(0.01)** 

CTI   
0.52 

(0.13)***   

Prec  
-0.04 

(0.009)***    

Day   
-0.04 

(0.02)(*)   
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Table 10. Coefficients and standard errors (in parentheses) of parameters in best model subsets for aspen-associated 
species in each of the pooled nesting guilds. For guilds having more than one model in the best model subset, model weights 
are given as footnotes. Model selection was based on fixed-effects models; coefficients, standard errors, and significance are 
from mixed-effects models (* p <0.05; ** p <0.01; *** p <0.001; (*) p <0.10, and ns for p > 0.10). N = 324 points. 

Parameter Ground and 
Understory Overstorya Overstoryb Overstoryc Cavity 

Asp75 0.01 
(0.004)** 

-0.005 
(0.004)ns 

-0.005 
(0.004)ns 

-0.005 
(0.004)ns 

0.008 
(0.001)*** 

Asp752  -0.00008 
(0.00003)** 

0.00008 
(0.00004)* 

0.00008 
(0.00004)* 

0.00007 
(0.00004)*  

Con75 -0.01 
(0.003)*** 

-0.007 
(0.003)* 

-0.007 
(0.003)* 

-0.008 
(0.003)* 

-0.01 
(0.004)** 

Rip  
0.13 

(0.06)* 
0.12 

(0.06)(*)   

Asp300     
-0.006 

(0.002)** 

Nasp300 0.007 
(0.002)**     

Elev   
-0.004 

(0.002)(*)   

Prec  
-0.007 

(0.003)*  
-0.009 

(0.004)* 
-0.007 

(0.004)(*) 

Day 0.01 
(0.006)*   

0.007 
(0.006)ns  

a wi = 0.53;   b wi = 0.23;   c wi = 0.24 
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Table 11. Model selection statistics for best model subsets (i.e., those < 4 AIC of best) for aspen-associated species. 

Species or Guilda Modelb AIC ∆AIC wi 
Overstory nesters 

    Overstory-nesting Guild_1 -Asp75(ns) + Asp752 - Con75 + Rip - Prec 1485.1 0 0.53 
Overstory-nesting Guild_2 -Asp75(ns) + Asp752 - Con75 - Prec + Day(ns)  1486.6 1.54 0.24 
Overstory-nesting Guild_3 -Asp75(ns) + Asp752 - Con75 + Rip(m) - Elev(m) 1486.8 1.70 0.23 

Warbling Vireo +Asp75 - Prec + Day(m) 1153.5 0 1.00 
American Robin_1 -Slope - Day(m) 1149.0 0 0.62 
American Robin_2 -Elev                                          1150.0 0.98 0.38 

Understory/ground nesters 
    Ground/understory-nestingGuild +Asp75 -Asp752 - Con75 + Nasp300 + Day 1671.6 0 1.00 

Dusky Flycatcher +Asp75 + Elev - Day(ns) 1078.4 0 1.00 
Orange-crowned Warbler -Con75 - Rip - Prec + Day   785.9 0 1.00 

Yellow Warbler +Asp75 - Con75 + Rip + Elev - Elev2   844.4 0 1.00 
MacGillivray's Warbler_1 +Asp75 - Asp752 + Asp300(m) + Day(m)   829.3 0 0.83 

Cavity nesters 
    Cavity-nesting Guild +Asp75 - Con75 - Asp300 - Precns 1640.4 0 1.00 

Red-naped Sapsucker +Asp75 - Asp752(m) - Asp300   391.3 0 1.00 
Northern Flicker -Prec   586.9 0 1.00 

Tree Swallow +Asp75 + CTI - Day(m)   612.9 0 1.00 
House Wren -Asp75(ns) + Asp752 - Con75 - Asp300 - Elev 1418.8 0 1.00 

Mountain Bluebird +Asp75 - Slope   463.4 0 1.00 
a "_1", "_2", etc. indicate alternate models for the same species or guild; b Model selection based on fixed-effect models; parameter 
significance based on mixed-effect models. Parameters are significant except those which became non-significant (ns) or marginally 
significant (m) upon addition of random effects. 
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Table 12. Coefficients and standard errors (in parentheses) of parameters in best model subsets for conifer-associated 
species in the overstory-nesting guild. For species having more than one model in the best model subset, model weights are 
given as footnotes. Model selection was based on fixed-effects models; coefficients, standard errors, and significance are from 
mixed-effects models (* p <0.05; ** p <0.01; *** p <0.001; (*) p <0.10, and ns for p > 0.10). N = 324 points.    

Parameter Ruby-crowned 
Kingleta 

Ruby-crowned 
Kingletb 

Yellow-rumped 
Warblerc 

Yellow-rumped 
Warblerd 

Yellow-rumped 
Warblere Cassin’s Finch 

MixAC75 0.02 
(0.003)*** 

0.03 
(0.003)***  

0.006 
(0.002)* 

0.005 
(0.002)* 

0.04 
(0.009)*** 

MixAC752       
-0.0002 

(0.0001)* 

Con75 0.03 
(0.006)*** 

0.03 
(0.006)*** 

0.01 
(0.004)* 

0.01 
(0.004)** 

0.01 
(0.004)**  

Elev 0.46 
(0.24)(*)  

0.01 
(0.005)**   

0.02 
(0.007)** 

Elev2 -0.001 
(0.0005)(*)      

Slope     
-0.01 

(0.006)(*)  

HLI  
-0.001 

(0.0004)*  
-0.0005 

(0.0003)(*)   
a wi = 0.77;   b wi = 0.23;   c wi = 0.37;   d wi = 0.34;   e wi = 0.29 
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Table 13. Coefficients and standard errors (in parentheses) of parameters in best model subsets for conifer-associated 
species in the ground/understory- and cavity-nesting guilds, and for each of the pooled nesting guilds. Model selection was 
based on fixed-effects models; coefficients, standard errors, and significance are from mixed-effects models (* p <0.05; ** p 
<0.01; *** p <0.001; (*) p <0.10, and ns for p > 0.10). N = 324 points.  

Parameter Mountain 
Chickadee 

Dark-eyed 
Junco 

Ground and 
Understory Overstory Cavity 

MixAC75 0.02 
(0.003)***  

0.004 
(0.003)ns 

0.01 
(0.002)*** 

0.02  
(0.003)*** 

Con75 0.03  
(0.006)***   

0.02  
(0.004)*** 

0.03  
(0.005)*** 

Rip  
-0.53  

(0.17)** 
-0.46  

(0.14)**   

NCon300  
-0.01 

(0.005)** 
-0.01  

(0.004)**   

Elev  
0.37  

(0.18)* 
0.44  

(0.16)** 
0.18  

(0.09)*  

Elev2  
-0.0008 

(0.0004)(*) 
-0.0009 

(0.0003)** 
-0.0004 

(0.0002)(*)  

Day  
0.04  

(0.02)* 
0.04  

(0.01)**   
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Table 14. Model selection statistics for best model subsets (i.e., those < 4 AIC of best) for conifer-associated species. 

Species or Guilda Modelb AIC ∆AIC wi 
Overstory nesters 

    Overstory-nesting Guild +Con75 + MixAC75 + Elev - Elev2(m)  1343.5 0 1.00 
Ruby-crowned Kinglet_1 +Con75 + MixAC75 + Elev(m) - Elev2(m)    522.6 0 0.77 
Ruby-crowned Kinglet_2 +Con75 + MixAC75 - HLI   525.1 2.43 0.23 

Yellow-rumped Warbler_1 +Con75 + Elev   886.8 0 0.37 
Yellow-rumped Warbler_2 +Con75 + MixAC75 - HLI(m)           887.0 0.15 0.34 
Yellow-rumped Warbler_3 +Con75 + MixAC75 - Slope(m)   887.3 0.46 0.29 

Cassin’s Finch +MixAC75 - MixAC752 + Elev   777.1 0 1.00 
Understory/ground nesters 

    Ground/understory-nesting Guild +MixAC75(ns) - Rip - Ncon300 + Elev - Elev2 + Day   855.0 0 1.00 
Dark-eyed Junco -Rip - Ncon300 + Elev - Elev2(m) + Day   680.9 0 1.00 

Cavity nesters 
    Cavity-nesting Guild +Con75 + MixAC75   634.7 0 1.00 

Mountain Chickadee +Con75 + MixAC75   578.8 0 1.00 
a "_1", "_2", etc. indicate alternate models for the same species or guild. 
 
b Model selection based on fixed-effect models; parameter significance based on mixed-effect models. Parameters are significant 
except those which became non-significant (ns) or marginally significant (m) upon addition of random effects. 
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Table 15. Coefficients and standard errors of parameters in best model subsets for montane sage-associated species. For 
species having more than one model in the best model subset, model weights are given as footnotes. Model selection was based 
on fixed-effects models; coefficients, standard errors, and significance are from mixed-effects models (* p <0.05; ** p <0.01; 
*** p <0.001; (*) p <0.10, and ns for p > 0.10). N = 324 points. 

Parameter MacGillivray’s 
Warblera 

Green-tailed 
Towheeb 

Green-tailed 
Towheec 

Green-tailed 
Towheed 

Mtsg75 0.03  
(0.01)* 

0.04  
(0.005)*** 

0.03  
(0.005)*** 

0.03 
(0.005)*** 

Mtsg752 -0.0003  
(0.0002)ns    

Rip  
-0.69  

(0.20)*** 
-0.56  

(0.19)** 
-0.61  

(0.19)** 

SW  
0.39  

(0.16)*   

Slope   
0.02 

(0.009)*  

HLI    
0.0006 

(0.0003)(*) 

Day 0.03  
(0.01)*    

a wi = 0.17;   b wi = 0.54;   c wi = 0.25;   d wi = 0.21 
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Table 16. Model selection statistics for best model subsets (i.e., those < 4 AIC of best) for montane sage-associated species.   

Speciesa Modelb AIC ∆AIC wi 
MacGillivray’s Warbler_2 +Mtsg75 - Mtsg2(ns) + Day   832.5 3.22 0.17 

Green-tailed Towhee_1 +Mtsg75 - Rip + SW   565.0 0 0.54 
Green-tailed Towhee_2 +Mtsg75 - Rip + Slope   566.6 1.59 0.25 
Green-tailed Towhee_3 +Mtsg75 - Rip + HLI(m)   566.9 1.89 0.21 

a "_1", "_2", etc. indicate alternate models for the same species. 
 
b Model selection based on fixed-effect models; parameter significance based on mixed-effect models. Parameters are significant 
except those which became non-significant (ns) or marginally significant (m) upon addition of random effects. 
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Figure 1. Jarbidge Study Area, Humboldt-Toiyabe National Forest, Elko County, NV. 
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Figure 2. Mean differences for ground-nesting species in aspen minus montane 
sage (N = 111 aspen and 23 montane sage stands). Differences for species shown are 
significant after adjustment for multiple comparisons, except for Rock Wren which 
is marginally significant. Results based on partially-paired t-tests. See Table 2 for 
complete results. 
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Figure 3. Mean differences for understory-nesting species in aspen minus 
montane sage (N = 111 aspen and 23 montane sage stands). Differences for species 
shown are significant after adjustment for multiple comparisons. Results based on 
partially-paired t-tests. See Table 2 for complete results. 
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Figure 4. Mean differences for overstory-nesting species in aspen minus 
montane sage (N = 111 aspen and 23 montane sage stands). Differences for species 
shown are significant after adjustment for multiple comparisons. Results based on 
partially-paired t-tests. See Table 2 for complete results. 
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Figure 5. Mean differences for cavity-nesting species in aspen minus montane 
sage (N = 111 aspen and 23 montane sage stands). Differences for species shown are 
significant after adjustment for multiple comparisons, except for Mountain 
Bluebird which is marginally significant. Results based on partially-paired t-tests. 
Mean difference for House Wren (not shown) is + 4.02 (+ 0.19)***. See Table 2 for 
complete results.  
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Figure 6. Mean differences for ground-nesting species in aspen minus conifer 
(N = 111 aspen and 14 conifer stands). Differences for species shown are significant 
after adjustment for multiple comparisons. Results based on partially-paired t-tests. 
See Table 4 for complete results.  
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Figure 7. Mean differences for understory-nesting species in aspen minus 
conifer (N = 111 aspen and 14 conifer stands). Differences for species shown are 
significant after adjustment for multiple comparisons. Results based on partially-
paired t-tests. See Table 4 for complete results. 
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Figure 8. Mean differences for overstory-nesting species in aspen minus conifer 
(N = 111 aspen and 14 conifer stands). Differences for species shown are significant 
after adjustment for multiple comparisons, except for Pine Siskin which is 
marginally significant. Results based on partially-paired t-tests. See Table 4 for 
complete results. 
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Figure 9. Mean differences for cavity-nesting species in aspen minus conifer (N 
= 111 aspen and 14 conifer stands). Differences for species shown are significant 
after adjustment for multiple comparisons. Results based on partially-paired t-tests. 
See Table 4 for complete results. 
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Figure 10. Mean differences for ground- and understory-nesting species in aspen 
minus mixed aspen-conifer (N = 111 aspen and 19 mixed aspen-conifer stands). 
Differences for species shown are significant after adjustment for multiple 
comparisons, except for Hermit Thrush and Lazuli Bunting, which are marginally 
significant. Results based on partially-paired t-tests. See Table 6 for complete 
results.  

 

  

Dusky  
Flycatcher 

Hermit  
Thrush 

Orange-crowned 
Warbler 

Yellow  
Warbler 

Green-tailed 
Towhee 

Brewer's  
Sparrow 

Dark-eyed  
Junco 

Black-headed 
Grosbeak 

Lazuli  
Bunting 

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

M
ea

n 
Di

ffe
re

nc
e 

 (I
nd

iv
id

ua
ls

 p
er

 p
oi

nt
) 

Aspen vs. Mixed Aspen-Conifer:  Ground and Understory 



115 

 

 

 
Figure 11. Mean differences for overstory-nesting species in aspen minus mixed 
aspen-conifer (N = 111 aspen and 19 mixed aspen-conifer stands). Differences for 
species shown are significant after adjustment for multiple comparisons, except for 
Cordilleran Flycatcher which is marginally significant. Results based on partially-
paired t-tests. See Table 6 for complete results. 
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Figure 12. Mean differences for cavity-nesting species in aspen minus mixed 
aspen-conifer (N = 111 aspen and 19 mixed aspen-conifer stands). Differences for 
species shown are significant after adjustment for multiple comparisons, except for 
Northern Flicker and Red-breasted Nuthatch, which are marginally significant. 
Results based on partially-paired t-tests. See Table 6 for complete results. 
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Figure 13. Mean abundance per point for aspen associates with a significant 
response to proportion of aspen within 75 m (N = 324). Regression coefficient (b), its 
SE (in parentheses), and significance are for the main effect rather than squared 
term unless noted otherwise, and are from mixed-effect models with random effects 
of stand and observer crew (* p <0.05; ** p <0.01; *** p <0.001; (*) p <0.10). Mean 
abundance is based on the sum of two visits. Standard error bars do not incorporate 
random effects. Sample sizes for each category of percent 75-m aspen are 38, 28, 52, 
68, 138, respectively. 
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Figure 13 (continued). 
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Figure 14. Mean abundance per point for aspen associates with a significant 
response to proportion of aspen within 300 m (N = 324). Regression coefficient (b), 
its SE (in parentheses), and significance are for the main effect rather than squared 
term unless noted otherwise, and are from mixed-effect models with random effects 
of stand and observer crew (* p <0.05; ** p <0.01; *** p <0.001; (*) p <0.10). Mean 
abundance is based on the sum of two visits. Standard error bars do not incorporate 
random effects. Sample sizes for each category of percent 300-m aspen are 21, 122, 
129, 45, 7, respectively. 
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Figure 15. Mean abundance per point for aspen associates with a significant 
response to proportion of conifer within 75 m (N = 324). Regression coefficient (b), 
its SE (in parentheses), and significance are for the main effect rather than squared 
term unless noted otherwise, and are from mixed-effect models with random effects 
of stand and observer crew (* p <0.05; ** p <0.01; *** p <0.001; (*) p <0.10). Mean 
abundance is based on the sum of two visits. Standard error bars do not incorporate 
random effects. Sample sizes for each category of percent 75-m conifer are 295, 17, 
10, 1, 1, respectively. 
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Figure 16. Mean abundance per point for aspen associates with a significant 
response to riparian designation within 75 m (N = 324). Regression coefficient (b), 
its SE (in parentheses), and significance are for the main effect, and are from mixed-
effect models with random effects of stand and observer crew (* p <0.05; ** p <0.01; 
*** p <0.001; (*) p <0.10). Mean abundance is based on the sum of two visits. 
Standard error bars do not incorporate random effects. Riparian categories indicate 
presence/absence of a water source (i.e. Y/N). Sample sizes for each category of 
riparian designation are (N) 154, (Y) 170. 
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Figure 17. Mean abundance per point for aspen associates with a significant 
response to mean elevation within 75 m (N = 324). Regression coefficient (b), its SE 
(in parentheses), and significance are for the main effect rather than squared term 
unless noted otherwise, and are from mixed-effect models with random effects of 
stand and observer crew (* p <0.05; ** p <0.01; *** p <0.001; (*) p <0.10). Mean 
abundance is based on the sum of two visits. Standard error bars do not incorporate 
random effects. Sample sizes for each category of mean elevation are 24, 81, 118, 
101, respectively. 
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Figure 18. Mean abundance per point for aspen associates with a significant 
response to mean slope within 75 m (N = 324). Regression coefficient (b), its SE (in 
parentheses), and significance are for the main effect, and are from mixed-effect 
models with random effects of stand and observer crew (* p <0.05; ** p <0.01; *** p 
<0.001; (*) p <0.10). Mean abundance is based on the sum of two visits. Standard 
error bars do not incorporate random effects. Sample sizes for each category of 
mean slope are 89, 113, 79, 43, respectively. 

 

Figure 19. Mean abundance per point for Tree Swallows vs. Compound 
Topographic Index (CTI) within 75 m (N = 324). Regression coefficient (b), its SE 
(in parentheses), and significance are for the main effect, and are from mixed-effect 
models with random effects of stand and observer crew (* p <0.05; ** p <0.01; *** p 
<0.001; (*) p <0.10). Mean abundance is based on the sum of two visits. Standard 
error bars do not incorporate random effects. Sample sizes for each category of CTI 
are 29, 94, 114, 59, 28, respectively. 
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Figure 20. Mean abundance per point for aspen associates with a significant 
response to estimated mean annual precipitation at the survey point (N = 324). 
Regression coefficient (b), its SE (in parentheses), and significance are for the main 
effect, and are from mixed-effect models with random effects of stand and observer 
crew (* p <0.05; ** p <0.01; *** p <0.001; (*) p <0.10). Mean abundance is based on 
the sum of two visits. Standard error bars do not incorporate random effects. 
Sample sizes for each category of mean precipitation are 110, 88, 67, 34, 25, 
respectively. 
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Figure 21. Mean abundance per point for conifer associates with a significant 
response to proportion of conifer within 75 m (N = 324). Regression coefficient (b), 
its SE (in parentheses), and significance are for the main effect rather than squared 
term unless noted otherwise, and are from mixed-effect models with random effects 
of stand and observer crew (* p <0.05; ** p <0.01; *** p <0.001; (*) p <0.10). Mean 
abundance is based on the sum of two visits. Standard error bars do not incorporate 
random effects. Sample sizes for each category of percent 75-m conifer are 295, 17, 
10, respectively. 
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Figure 22. Mean abundance per point for conifer associates with a significant 
response to proportion of mixed aspen-conifer within 75 m (N = 324). Regression 
coefficient (b), its SE (in parentheses), and significance are for the main effect rather 
than squared term unless noted otherwise, and are from mixed-effect models with 
random effects of stand and observer crew (* p <0.05; ** p <0.01; *** p <0.001; (*) 
p <0.10). Mean abundance is based on the sum of two visits. Standard error bars do 
not incorporate random effects. Sample sizes for each category of percent 75-m 
mixed aspen-conifer are 256, 19, 20, 12, 17, respectively. 
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Figure 23. Mean abundance per point for conifer associates with a significant 
response to mean elevation within 75 m (N = 324). Regression coefficient (b), its SE 
(in parentheses), and significance are for the main effect rather than squared term 
unless noted otherwise, and are from mixed-effect models with random effects of 
stand and observer crew (* p <0.05; ** p <0.01; *** p <0.001; (*) p <0.10). Mean 
abundance is based on the sum of two visits. Standard error bars do not incorporate 
random effects. Sample sizes for each category of mean elevation are 24, 81, 118, 
101, respectively. 
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Figure 24. Mean abundance per point for montane sage associates with a 
significant response to proportion of montane sage within 75 m (N = 324). 
Regression coefficient (b), its SE (in parentheses), and significance are for the main 
effect rather than squared term unless noted otherwise, and are from mixed-effect 
models with random effects of stand and observer crew (* p <0.05; ** p <0.01; *** p 
<0.001; (*) p <0.10). Mean abundance is based on the sum of two visits. Standard 
error bars do not incorporate random effects. Sample sizes for each category of 
percent 75-m montane sage are 231, 61, 27, 5, respectively. 
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APPENDIX A 

Hierarchical Modeling Scheme of Fixed-effect Parameters used for Aspen-,  

Conifer-, and Montane Sage-associated Avian Species 
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Table A.1. Hierarchical modeling scheme of fixed-effect parameters used for aspen-, conifer-, and montane sage-associated 
avian species. Stages 1 and 2 add 75-m and 300-m cover type parameters, respectively; Stage 3 adds topographic parameters, 
and Stage 4 adds day. Only models in the best model subset were carried to the next stage. Models with squared terms or 
interactions also included the corresponding main effects.a 

Stage Aspen associates Conifer associates Montane sage associates 
1 Asp75 Con75 Mtsg75 
 

Asp752 Con752 Mtsg752 
 

Asp75 + Con75 Con75 + MixAC75 Mtsg75 + Con75 
 

Asp75 + Rip Con75 + Rip Mtsg75 + Rip 
 

Asp75 + Con75 + Rip Con75 + MixAC75 + Rip Mtsg75 + Con75 + Rip 
 

Asp752 + Con75 Con752 + Rip Mtsg75 + MixAC75 + Rip 
 

Asp752 + Rip MixAC75 Mtsg752 + Rip 
 

Asp752 + Con75+ Rip MixAC752 Mtsg75 + MixAC75 
  MixAC75 + Rip  
  MixAC752 + Rip  
2 Stage 1  Stage 1  Stage 1 
 Stage 1 + Asp300 Stage 1 + Con300 Stage 1 + Mtsg300 
 Stage 1 + Nasp300 Stage 1 + Ncon300 Stage 1 + Nmtsg300 
 Stage 1 + Asp3002 Stage 1 + Con3002 Stage 1 + Mtsg3002 
 Stage 1 + Asp300 + Nasp300 Stage 1 + Con300 + Ncon300 Stage 1 + Mtsg300 + Nmtsg300 
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Table A.1. Continued. 
 
2 Stage 1 + Asp300*Nasp300   
 Stage 1 + Asp300 + E2A   
 Stage 1 + Asp300 + Nasp300 + E2A   
 Stage 1 + Asp3002 + E2A   
3 Stage 2 Stage 2  Stage 2  
 Stage 2 + Elev Stage 2 + Elev Stage 2 + Elev 
 Stage 2 + SW Stage 2 + SW Stage 2 + SW 
 

Stage 2 + Slope Stage 2 + Slope Stage 2 + Slope 
 

Stage 2 + Elev2 Stage 2 + Elev2 Stage 2 + Elev2 
 

Stage 2 + Prec Stage 2 + Prec Stage 2 + Prec 
 

Stage 2 + HLI Stage 2 + HLI Stage 2 + HLI 
 

Stage 2 + CTI Stage 2 + CTI Stage 2 + CTI 
4 Stage 3  Stage 3  Stage 3  
 

Stage 3 + Day Stage 3 + Day Stage 3 + Day 
a Parameter abbreviations are as follows: Asp (aspen), Con (conifer), MixAc (mixed aspen-conifer), Mtsg (montane sage), Rip 
(riparian), Nasp (non-aspen matrix), Ncon (non-conifer matrix), Nmtsg (non-montane sage matrix), E2A (edge:area ratio), Elev 
(elevation), SW (southwestness), Slope, HLI (heat load index), CTI (compound topographic index), Prec (precipitation), Day (day of 
first survey). The 75 and 300 suffixes to cover types indicate measurements within 75- or 300-m radius of the point count circle. 
Parameters are further defined in Methods.
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APPENDIX B 

Significant Univariate Predictors for Aspen-,  

Conifer-, and Montane Sage-associated Avian Species 
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Table B.1. Statistically significant (p < 0.05) positive (+) and negative (-) univariate predictors for conifer- and montane 
sage-associated species. Parentheses indicate marginal significance; 0.10 < p < 0.05. N = 324 points. 

Parameter Ruby-crowned 
Kinglet 

Yellow-rumped 
Warbler 

Cassin’s 
Finch 

Mountain 
Chickadee 

Dark-eyed 
Junco 

MacGillivray’s 
Warbler 

Green-tailed 
Towhee 

Asp75 -  - - -   
MixAC75 + + + + +  - 
Con75 + +  + +   
Mtsg75 - - - - - + + 

Rip     -  - 
Asp300     +  (-) 
Con300 + + + + +   
Nasp300 - - - - -   
Ncon300 -  - (-) -  + 
Elev + + + + +  - 
Slope   -   + + 
HLI (-) -     + 
CTI   +    - 
Prec + + + + +  - 
Day + + + + + + (-) 
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Table B.2. Statistically significant (p < 0.05) positive (+) and negative (-) univariate predictors for aspen-associated species. 
Parentheses indicate marginal significance; 0.10 < p < 0.05. N = 324 points.   

Parameter Warbling 
Vireo 

American 
Robin 

Dusky 
Flycatcher 

Yellow 
Warbler 

Mac-
Gillivray's 
Warbler 

Orange-
crowned 
Warbler 

Red-naped 
Sapsucker 

Northern 
Flicker 

Tree 
Swallow 

House      
 Wren 

 
Mountain 
Bluebird 

Asp75 +  + + 
 + + + + + + 

MixAC75 -  - -  - - - - -  
Con75 - (-) - -  - - - - - - 
Mtsg75 -  (-)  + +    -  
Rip   (-) +  -      
Asp300       -     
E2A300  +     (+)     
Con300 -  - -  - (-) - - -  
Nasp300 +  + +  + + + + +  
Ncon300  +  +   + +  + (+) 
Elev (-) - (+) -    -  -  
Slope  -   (+)    -  - 
HLI   (-)         
CTI      -   +   
Prec -   -  - - - - -  
Day  - + - +   - -   
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APPENDIX C 

Vegetative Cover Type and Tree and Shrub Species Composition at Sampled Points  
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Table C.1. Cover type composition of all points used in multiple regression (N = 
324). By design, all had the aspen cover type present. Cell contents are number of 
points (percent of all 324 points). 

Composition (%) Aspen Mixed Aspen-
Conifer 

Conifer Montane Sage 

>0%    324 (100) 92 (28) 53 (16) 246 (76) 
>50%   234   (72) 39 (12) 4   (1) 16   (5) 
100%     31   (10) 7   (2)          0          0 
 
 
 
Table C.2. Tree species composition of a subset of points used in multiple 
regression for which species composition was recorded in the field (N = 254). By 
design, all had the aspen cover type present. Cell contents are number of points with 
percent of column total in parentheses.  

 Most Common Tree Speciesa 

Second Most Common Tree Speciesb Aspen Fir 
Aspen           68    (32)c           25    (89) 
Fir          45     (21)    0 
Willow         42     (20)    0 
Serviceberry        29     (14)    0 
Chokecherry           20     (10)    0 
Gray alder          6       (3)    0 
Mountain mahogany 1       (1)    0 
Pine               0                 3    (11) 
Total b           211      28   
a Additional points not included in this table are those with the following species as most 
common: 3 with willow, 2 with pine, and 14 with serviceberry, chokecherry, alder, or 
mountain mahogany as the most common. 
b For the purpose of tree species composition, a tree was defined as an individual > 1.5 m 
in height. Scientific names are as follows: Aspen (Populus tremuloides), Fir (Abies spp.), 
Willow (Salix spp.), Serviceberry (Amelanchier alnifolia), Chokecherry (Prunus 
virginiana), Gray alder (Alnus incana), Mountain mahogany (Cercocarpus ledifolius). 
c Aspen was the only tree species recorded on 68 points. 
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Table C.3. Most common tree species recorded at conifer (N = 20) and mixed 
aspen-conifer (N = 27) points used in the paired and partially-paired comparisons 
and for which species composition was recorded in the field. 

 Number of Points (% within cover type) 
 Conifer (N = 20) Mixed Aspen-Conifer (N = 27) 
 Most Common Present Most Common Present 
Fir 16  (80) 20  (100) 18  (67) 27 (100) 
Pine 4  (20) 12    (60)                0 5   (19) 
Aspen               0       0 9  (33) 27 (100) 
Willow               0       0                0 10   (37) 
Alder               0       0                0 2     (7) 
 
 
 
 
 
Table C.4. The three most common shrub species recorded at a subset of 
montane sage points (N = 21) used in the paired and partially-paired comparisons 
and for which species composition was recorded in the field. 

Species  Number of 
Points 

Percent of 
Points (N = 20) 

Big sagebrush 20 95 
Mountain snowberry 13 62 
Serviceberry  7 33 
Chokecherry  7 33 
Yellow rabbitbrush  6 29 
Snowbrush ceanothus  2 10 
Rubber rabbitbrush  2 10 
Antelope bitterbrush  2 10 
Wax currant  2 10 
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APPENDIX D 

Coefficients and Standard Errors of Random Effects for Aspen-, Conifer-,  

and Montane Sage-associated Avian Species 
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Table D.1. Coefficients and standard errors (in parentheses) of random effects 
for focal species and nesting guilds. Asterisks indicate p-values of random effectsa (* 
p <0.05; ** p <0.01; *** p <0.001; (*) p <0.10; ns p >0.10). N = 324 points. 

  Cover Type Species or Nesting Guild Crew Stand 

Aspen Ground/Understoryb    0.05 (0.02)*** 
 Dusky Flycatcher  0.23 (0.19)***      0.005 (0.02)ns 

 Orange-crowned Warblerb       0.17 (0.10)* 

 Yellow Warbler  0.22 (0.21)***  0.27 (0.12)** 

 MacGillivray’s Warbler_1 0.02 (0.04)ns      0.19 (0.10)* 

 Overstory_1    0.01 (0.02)*  0.04 (0.02)** 

 Overstory_2    0.02 (0.02)*  0.04 (0.02)** 

 Overstory_3    0.01 (0.01)*      0.04 (0.02)** 

 Warbling Vireo    0.02 (0.02)*      0.04 (0.03)* 

 American Robin_1 0.02 (0.03)ns   0.20 (0.06)*** 

 American Robin_2 0.03 (0.04)ns   0.20 (0.06)*** 
 Cavity  0.01 (0.02)ns  0.06 (0.03)** 

 Red-naped Sapsucker  0.006 (0.04)ns  0.08 (0.18) ns 

 Northern Flicker 0.04 (0.06)ns 0.18 (0.11)* 

 Tree Swallow    0.20 (0.22)*  0.31 (0.15)** 

 House Wren    0.01 (0.02)* 0.04 (0.03)* 

 Mountain Bluebird  0.008 (0.06)ns  0.32 (0.17)** 

Conifer Ground/Understory 0.03 (0.05)ns  0.21 (0.10)** 

 Dark-eyed Junco 0.02 (0.06)ns  0.26 (0.12)** 

 Overstory 0.02 (0.03)(*)  0.11 (0.05)** 

 Ruby-crowned Kinglet_1 0.07 (0.12)ns  0.38 (0.19)** 

 Ruby-crowned Kinglet_2 0.08 (0.13)ns  0.42 (0.18)** 

 Yellow-rumped Warbler_1    0.04 (0.05)*  0.08 (0.07)ns 

 Yellow-rumped Warbler_2    0.04 (0.05)*   0.09 (0.07)(*) 

 Yellow-rumped Warbler_3    0.04 (0.05)   0.11 (0.07)(*) 

 Cassin’s Finchb    0.26 (0.11)** 

 Cavityb     0.29 (0.12)*** 

 Mountain Chickadeeb    0.26 (0.13)** 

Montane Sage Ground/Understoryc -- -- 
 MacGillivray’s Warbler_2  0.02 (0.04)ns    0.23 (0.09)*** 

 Green-tailed Towhee_1  0.10 (0.13)(*)   0.33 (0.14)** 

 Green-tailed Towhee_2 0.14 (0.16)*   0.33 (0.14)** 

 Green-tailed Towhee_3   0.10 (0.13)(*)   0.34 (0.14)** 

a P-values are from likelihood ratios based on pseudo-likelihoods. Models also contain 
the fixed effects identified in Tables 11, 14, and 16. 
b Blank cells for a random effect indicate that the model did not converge or the G-matrix 
was not positive definitive. 
c Nesting guilds were not modeled for montane-sage associates 
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APPENDIX E 

Mean Number of Individuals per Point for Aspen-, Conifer-, 

and Montane Sage-Associated Avian Species 
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Table E.1. Mean number of individuals per point for aspen, mixed aspen-conifer, 
conifer, and montane sage; based on sum of two visits per point. Means and 
standard errors are based on stand as the primary sampling unit (i.e., data averaged 
within stands and then across stands). N = 111 aspen stands, 19 mixed aspen-
conifer, 14 conifer, and 23 montane sage stands. 

Species or Nesting Guild Aspen  
 

Mixed Aspen-
Conifer 

Conifer Montane 
Sage 

Ground/Understorya 9.01 (0.30) 6.62 (0.57) 4.32 (0.66) 5.67 (0.81) 
Hummingbirds 0.20 (0.04) 0.21 (0.10)  0.00  0.00 
Empidonax spp. 0.23 (0.04) 0.23 (0.10) 0.04 (0.04)  0.00 
Dusky Flycatcher 2.00 (0.13) 0.89 (0.24) 0.27 (0.08) 0.09 (0.06) 
Rock Wren 0.02 (0.01)    0.00  0.00 0.20 (0.10) 
Swainson’s Thrush 0.14 (0.04) 0.23 (0.14)  0.00   0.00 
Hermit Thrush 0.21 (0.04) 0.51 (0.15) 0.92 (0.18)  0.00 
Orange-crowned Warbler 0.97 (0.10) 0.20 (0.12)  0.00 0.02 (0.02) 
Yellow Warbler 1.37 (0.14) 0.29 (0.13) 0.02 (0.02) 0.07 (0.05) 
MacGillivray’s Warbler 0.97 (0.09) 0.59 (0.19) 0.11 (0.08) 0.04 (0.04) 
Green-tailed Towhee 0.46 (0.08) 0.11 (0.06) 0.14 (0.10) 2.13 (0.50) 
Chipping Sparrow 0.08 (0.03) 0.29 (0.12) 0.69 (0.18) 0.09 (0.06) 
Brewer’s Sparrow 0.04 (0.02)    0.00  0.00 2.00 (0.43) 
Vesper Sparrow 0.03 (0.01)    0.00  0.00 0.48 (0.15) 
Fox Sparrow 0.64 (0.09) 0.96 (0.23) 0.14 (0.14)  0.00 
Song Sparrow 0.14 (0.04) 0.11 (0.11)  0.00  0.00 
White-crowned Sparrow 0.30 (0.06) 0.18 (0.09)  0.00 0.22 (0.18) 
Dark-eyed Junco 0.58 (0.09) 1.39 (0.26) 1.85 (0.47)  0.00 
Black-headed Grosbeak 0.31 (0.04) 0.11 (0.07) 0.02 (0.02)  0.00 
Lazuli Bunting 0.22 (0.06) 0.05 (0.05)  0.00 0.04 (0.04) 
Overstoraa 8.01 (0.40) 13.25 (0.87) 9.43 (1.16) 0.37 (0.15) 
Western Wood-Pewee 0.71 (0.10) 0.25 (0.16)  0.00  0.00 
Hammond’s Flycatcher 0.06 (0.02) 0.21 (0.12) 0.25 (0.16)  0.00 
Cordilleran Flycatcher 0.17 (0.04) 0.72 (0.25) 0.51 (0.28)  0.00 
Warbling Vireo 2.50 (0.12) 1.46 (0.17) 0.25 (0.16) 0.02 (0.02) 
Ruby-crowned Kinglet 0.31 (0.08) 2.10 (0.23) 1.89 (0.22)  0.00 
American Robin 1.98 (0.14) 2.21 (0.38) 0.99 (0.34) 0.35 (0.15) 
Yellow-rumped Warbler 0.95 (0.09) 1.36 (0.16) 1.75 (0.27)  0.00 
Western Tanager 0.34 (0.07) 0.98 (0.24) 1.07 (0.29)  0.00 
Cassin’s Finch 0.69 (0.10) 2.81 (0.36) 1.56 (0.33)  0.00 
Pine Siskin 0.21 (0.06) 0.87 (0.21) 0.73 (0.27)  0.00 
Cavitya 6.99 (0.30) 5.93 (0.75) 4.23 (0.56) 0.50 (0.19) 
Red-naped Sapsucker 0.37 (0.06) 0.08 (0.06) 0.07 (0.05)  0.00 
Downy Woodpecker 0.07 (0.02)    0.00 0.07 (0.07)  0.00 
Hairy Woodpecker 0.25 (0.04) 0.26 (0.10) 0.39 (0.22)  0.00 
Northern Flicker 0.61 (0.07) 0.34 (0.13) 0.07 (0.07) 0.13 (0.10) 
Tree Swallow 0.64 (0.08) 0.23 (0.13) 0.07 (0.07) 0.13 (0.10) 
Violet-green Swallow 0.06 (0.02) 0.03 (0.03) 0.04 (0.04) 0.09 (0.09) 
Mountain Chickadee 0.34 (0.05) 1.46 (0.24) 1.62 (0.35)  0.00 
Red-breasted Nuthatch 0.05 (0.02) 0.19 (0.07) 0.86 (0.19)  0.00 
House Wren 4.04 (0.19) 3.12 (0.57) 0.89 (0.32) 0.02 (0.02) 
Mountain Bluebird 0.34 (0.05) 0.11 (0.07) 0.11 (0.08) 0.13 (0.10) 
European Starling 0.12 (0.05)    0.00  0.00  0.00 
Brood Parasite         
Brown-headed Cowbird 0.18 (0.03) 0.05 (0.05)  0.00 0.07 (0.05) 
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aGuild means calculated by summing individuals across all species within the guild, 
including some that did not meet the focal species criteria. 


	QUANTIFYING HABITAT RELATIONSHIPS OF SONGBIRDS IN QUAKING ASPEN (Populus tremuloides) AND OTHER MONTANE COMMUNITIES  OF THE JARBIDGE MOUNTAINS, NEVADA
	DEDICATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	QUANTIFYING HABITAT RELATIONSHIPS OF SONGBIRDS  IN QUAKING ASPEN (Populus tremuloides) AND OTHER MONTANE COMMUNITIES OF THE JARBIDGE MOUNTAINS, NEVADA
	Introduction
	Methods
	Study Area
	Sampling Design
	Stand Selection
	Point Selection
	Paired Design

	Avian Survey Technique
	NAIP Habitat Classification
	Point Type Classification
	Data Analysis
	Paired and Partially-Paired Comparisons
	Mixed Model Regression


	Results
	Description of Vegetation at Sampled Points
	Paired Comparisons
	Avian-habitat Relationship Models
	Consequences of Random Effects

	Discussion
	Importance of Aspen
	Avian-habitat Relationship Models
	Aspen Associates -- Overview
	Conifer Associates -- Overview
	Montane Sage Associates -- Overview
	Habitat Relationships of Understory and Overstory Nesting Aspen Associates
	Habitat Relationships of Cavity-Nesting Aspen Associates
	Habitat Relationships of Conifer Associates
	Habitat Relationship of Montane Sage Associates

	Other Considerations Affecting Interpretation
	Observer Differences and Detectability
	Inferences about Conifer and Montane Sage Associates
	Parameters not Measured
	Abundance as an Indicator of Habitat Quality

	Implications of Climate and Landscape Change


	LITERATURE CITED
	APPENDIX A
	Hierarchical Modeling Scheme of Fixed-effect Parameters used for Aspen-,  Conifer-, and Montane Sage-associated Avian Species

	APPENDIX B
	Significant Univariate Predictors for Aspen-,  Conifer-, and Montane Sage-associated Avian Species

	APPENDIX C
	Vegetative Cover Type and Tree and Shrub Species Composition at Sampled Points

	APPENDIX D
	Coefficients and Standard Errors of Random Effects for Aspen-, Conifer-,  and Montane Sage-associated Avian Species

	APPENDIX E
	Mean Number of Individuals per Point for Aspen-, Conifer-, and Montane Sage-Associated Avian Species


