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ABSTRACT 

Bone deterioration is a challenge in long-term spaceflight with significant 

connections to terrestrial disuse bone loss. Prolonged unloading and radiation exposure, 

defining characteristics of space travel, have both been associated with changes in 

inflammatory signaling via IL-6 class cytokines in bone. While there is also some 

evidence for perturbed IL-6 class signaling in spaceflight, there has been scant 

examination of the connections between free fall, radiation, and inflammatory stimuli in 

bone. Our lab and others have shown that the IL-6 class cytokine oncostatin M (OSM) is 

an important regulator of bone remodeling. We hypothesize that spaceflight alters 

osteoblast OSM signaling, contributing to the decoupling of osteolysis and osteogenesis. 

To test this hypothesis, we induced OSM signaling in murine MC3T3 E1 pre-osteoblast 

cells cultured in modeled free fall, using a rotating wall vessel bioreactor, and with 

exposure to radiation typical of a solar particle event. We measured effects on 

inflammatory signaling, osteoblast maturation and activity, osteoclast recruitment, and 

mineralization.  There were time dependent interactions among all conditions in the 

regulation of IL-6 production. OSM induced transcription of the OSM receptor β and 

IL-6 receptor α subunits, collagen α1(I), osteocalcin, sclerostin, RANKL, and 

osteoprotegerin. Measurements of osteoid mineralization suggest that the spatial 

organization of the osteoblast environment is an important consideration in understanding 

bone formation. Taken together, these results support a role for altered OSM signaling in 

spaceflight bone loss. 



 
 

vi 
 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ..................................................................................................... iv 

ABSTRACT .............................................................................................................................. v 

LIST OF TABLES ................................................................................................................. viii 

LIST OF FIGURES ................................................................................................................. ix 

LIST OF ABBREVIATIONS ................................................................................................... x 

INTRODUCTION .................................................................................................................... 1 

MATERIALS AND METHODS .............................................................................................. 7 

Cell Culture ................................................................................................................... 7 

Microcarrier Culture ..................................................................................................... 7 

Osteogenic Differentiation and Cytokine Stimulation .................................................. 8 

Modeled Microgravity .................................................................................................. 8 

Radiation ....................................................................................................................... 9 

Semi-Quantitative Reverse Transcription Polymerase Chain Reaction ....................... 9 

Enzyme-Linked Immunosorbent Assay ...................................................................... 11 

Alizarin Red Staining .................................................................................................. 11 

Statistics ...................................................................................................................... 12 

RESULTS ............................................................................................................................... 14 

OSM and MMG Synergistically Induce IL-6 Secretion ............................................. 14 

Radiation Limits the Effect of OSM Induction on IL-6 Secretion but Enhances the 
Effect of MMG ........................................................................................................... 15 



 
 

vii 
 

OSM Counteracts the Effect of MMG on the RANKL:Osteoprotegerin Ratio .......... 17 

OSM and MMG Have Independent and Opposing Effects on Osteoblast Activity ... 17 

RCCS and Cytopore Cell Culture Does Not Model Spaceflight's Effect  
on Osteoid Formation and Mineralization .................................................................. 18 

DISCUSSION ......................................................................................................................... 20 

REFERENCES ....................................................................................................................... 36 

 



 
 

viii 
 

LIST OF TABLES 

Table 1: PCR Primers and Reaction Conditions ..................................................... 25 

Table 2: Summary of Semi-Quantitative RT-PCR ................................................. 26 

 



 
 

ix 
 

LIST OF FIGURES 

Figure 1.  OSM and MMG independently and synergistically induce the transcription 
of IL-6. ...................................................................................................... 27 

Figure 2.  OSM and MMG independently and synergistically induce secretion of 
IL-6. .......................................................................................................... 28 

Figure 3.  Radiation limits the effect of OSM induction on IL-6 secretion but 
enhances the effect of MMG. .................................................................... 30 

Figure 4. OSM counteracts the effect of MMG on the RANKL: Osteoprotegerin 
ratio. .......................................................................................................... 31 

Figure 5. OSM and MMG have independent and opposing effects on osteoblast 
activity....................................................................................................... 32 

Figure 6. RCCS and Cytopore cell culture does not model spaceflight's effect on 
osteoid formation and mineralization. ...................................................... 33 

Figure 7. Spaceflight conditions act on bone through OSM signaling. ................... 35 

 



 
 

x 
 

LIST OF ABBREVIATIONS 

ANOVA   analysis of variance 

BSA    bovine serum albumin 

ECM    extracellular matrix 

ELISA    enzyme-linked immunosorbent assay 

EVM    extra-vehicular mineralization 

FBS    fetal bovine serum 

GAPDH   glyceraldehyde-3-phosphate dehydrogenase 

GP130    glycoprotein 130 

HARV    high aspect ratio vessel 

IL-6    interleukin-6 

IL-6Rα    interleukin-6 receptor α subunit 

ISS    International Space Station 

LEO    Low Earth Orbit 

LET    linear energy transfer 

LIF    leukemia inhibitory factor 

LIFRα    leukemia inhibitory factor receptor α subunit 



 
 

xi 
 

MC3T3   MC3T3 E1 murine pre-osteoblast cell line 

MCSF    macrophage colony stimulating factor 

MSC    mesenchymal stem cell 

OSM    oncostatin M 

OSMRβ   oncostatin M receptor β subunit 

PBS    phosphate buffered saline 

RANKL   receptor activator of nuclear factor κB ligand 

RCCS    Rotary Cell Culture System 

RT-PCR   reverse transcription polymerase chain reaction 

RWV    rotating wall vessel 

SEM    standard error of the mean 

SOCS    suppressor of cytokine signaling 

SPE    solar particle event 

 



1 
 

 

INTRODUCTION 

Deteriorating bone health is a substantial barrier to human exploration deeper into 

the solar system1. Each month in space, astronauts lose approximately 1% of the mineral 

density in their weight-bearing bones2–5. Some of this loss may never be fully recovered 

after return to Earth. The deterioration is likely to worsen during travel to Mars or near-

Earth asteroids, when a fractured vertebra or femur could cripple the mission. These 

missions could last two years or more, greatly extending the astronauts’ exposure to the 

features of spaceflight most relevant to bone health: free fall and ionizing radiation. 

While it is conventional to use the term “microgravity,” and somewhat less frequently  

“weightlessness” and “zero gravity,” astronauts in the International Space Station (ISS) 

experience 90% of the gravitational force at Earth's surface.  Astronauts in free fall, and 

their skeletons, are mostly experiencing unloading, the freedom from being compressed 

against the ground3,6,7. While unloading is as characteristic of Earth orbit as it is for 

interplanetary spaceflight, radiation exposure increases beyond low Earth orbit (LEO)8,9. 

While ISS astronauts are exposed to little more radiation than they are on Earth, as one 

moves beyond the shield of Earth’s magnetosphere, radiation exposure increases. 

Galactic cosmic rays and solar particle events (SPE) become important sources of 

radiation. Unpredictable SPE can rapidly deliver up to 2 Gy of radiation, comparable to 

doses used in cancer radiotherapy to kill tumor cells8,10. There are also recognized clinical 

parallels between spaceflight bone loss and disuse osteoporosis, a common complication 

of inactivity from bed rest, immobilization, or sedentary lifestyle11–13. As the analogies to 
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clinical radiation exposure and disuse osteoporosis suggest, addressing threats to bone 

health from spaceflight may have significant benefits for the earthbound as well. To date, 

efforts to counter deteriorating skeletal health in space have focused on resistive exercise 

and nutrition, with limited success2–4,14. Space and weight constraints would likely further 

limit exercise as an intervention beyond LEO. Taken together, these facts imply that 

pharmacological countermeasures to bone loss will likely be required for exploration 

deeper into the solar system. In turn, pharmacological interventions require understanding 

the molecular pathways that induce bone loss in spaceflight, but these pathways are 

poorly understood.  

Bone is constantly broken down and replaced by a cyclical multicellular process 

called the bone remodeling cycle15–19. Bone is calcified extracellular matrix (ECM) 

produced by osteoblasts, specialized fibroblasts whose differentiation from mesenchymal 

stem cells (MSC) is determined primarily by the transcription factor RUNX220. After 

proliferation and additional maturation, marked by the transcription factor osterix21, the 

osteoblast will produce osteoid, the organic component of the bone ECM. Osteoid is 

primarily type I collagen. Additional components such as osteocalcin regulate the 

mechanical and chemical properties of the bone22, including promoting the crystallization 

of hydroxyapatite, the mineral component of bone. As the ECM is produced and matures, 

some osteoblasts will become encased and terminally differentiate to osteocytes23. An 

important function of the osteocyte is to limit the excessive formation of bone, largely 

through the production of sclerostin24,25, a Wnt-signaling antagonist that potently inhibits 

the maturation and activity of osteoblasts. When age or increased mechanical strain 

damages bone, the osteoblast lineage cells initiate the bone remodeling cycle by 
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recruiting osteoclasts26,27. Osteoclasts are multinucleate phagocytic cells specialized to 

degrade and remove the damaged bone. They differentiate from myeloid precursors, 

primarily under the influence of macrophage colony stimulating factor (MCSF) and 

receptor activator of nuclear factor κB ligand (RANKL) produced by the osteoblast 

lineage28. The osteoclasts are, in turn, closely followed by osteoblast bone replacement. 

This is triggered by coupling factors that are not yet well defined29,30, but may involve 

specialized osteal macrophages. This cycle normally carefully balances the extent and 

location of removal and replacement to adapt to changing mechanical demands on the 

bone. This mechanical sensitivity originates in the osteoblast lineage23,32.  

Spaceflight leads to a decoupling of removal and replacement resulting in bone 

loss. The available data suggest that this is characterized by a transient initial increase in 

osteoclast activity followed by sustained decrease in osteoblast activity, but provide little 

into the molecular mechanism involved3,5. The osteoblast lineage is likely central because 

it is permanently present throughout bone and confers mechanical sensitivity. Somewhat 

more detail is available on the osteoblast response to free fall and space radiation, largely 

from ground-based models of spaceflight, although most mechanistic questions remain 

unanswered3,32-34. The vast majority of these publications examine one factor in isolation; 

very little is known about the combined effects of free fall and radiation. The disruption 

of inflammatory cytokine signaling is an emerging feature of spaceflight with potential 

relevance to these questions35–38. Ground-based experiments are showing changes in 

inflammatory pathways39–41, as may have been expected from the alterations in 

inflammatory signals seen in disuse osteoporosis11–13 and radiation exposure42–44.  
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The bone remodeling cycle parallels wound healing, most obviously in the case of 

a gross fracture, but also on the microscale45. Like in wound healing, inflammatory 

cytokines are important signals in bone remodeling. Inflammatory cytokines are secreted 

factors that coordinate cell behavior during inflammation.  The IL-6-type cytokines are 

an important group with broad effects in human health and disease, including in bone46. 

They take their name from their prototypical member, interleukin-6 (IL-6). They are also 

called the GP130 cytokines, after glycoprotein 130 (GP130), the receptor subunit shared 

by all members of the class. GP130 is expressed by a wide array of cell types. Specificity 

is achieved by the more limited expression of ligand-specific receptor subunits that work 

in conjunction with GP130. All of the major cell types in bone express some combination 

of GP130 cytokines and their receptors46, as do many of the immune cells produced in the 

contiguous marrow space and involved in bone remodeling47,48. The cytokines with the 

most demonstrated importance in bone are IL-6, leukemia inhibitory factor (LIF), and 

oncostatin M (OSM). IL-6 signals through a complex comprising the IL-6 receptor α 

subunit (IL-6Rα) and a homodimer of GP-130. LIF and most GP130 cytokines signal 

through a complex of GP130 and LIF receptor α subunit (LIFRα), often with an 

additional ligand-specific subunit46. OSM signals through either the LIFRα – GP130 

dimer or a dimer of GP130 and the OSM receptor β subunit (OSMRβ). OSM is the focus 

of research in our laboratory. 

Some important discoveries have been made about the function of OSM in bone, 

but the picture of its function in bone is far from complete. For some time, it has been 

clear that OSM induces osteoblasts to secrete IL-649. The primary action of IL-6 in bone 

is to amplify the generation and activation of osteoclasts50,51, and perception of OSM has 
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been colored by the role of its better known relative. Indeed, OSM has been shown in cell 

culture to promote osteoclastogenesis by inducing osteoblast RANKL expression and 

reducing expression of osteoprotegerin52–55. However, it has also been shown that OSM 

promotes differentiation and activation of osteoblasts, mineral formation, and represses 

the expression of sclerostin49,56–59.  In vivo data are complicated and suggest that some 

effects are species specific60. Even in cell culture, OSM appears to have different actions 

at different points in the osteoblast lineage59. Clearly many complications in the action of 

OSM in bone remain to be illuminated. 

The work presented here addresses two areas of uncertainty: the mechanisms of 

bone loss in spaceflight and the function of OSM in bone. We hoped to shed light on both 

questions by looking for interactions between them. Because OSM is known to act on 

both the osteoblast lineage and through it the osteoclast, changes in its action could 

account for many of the effects of spaceflight on bone. Defining a connection to 

osteoblast mechanotransduction and radiation response would also contribute to our 

understanding of OSM in bone. To this end, we hypothesize that spaceflight alters 

osteoblast OSM signaling such that the decoupling of osteolysis and osteogenesis is 

exacerbated.  

To test this hypothesis, we examined the actions of OSM on GP130 signaling, 

osteoclast recruitment, and osteoblast activity in a model of spaceflight. Our model 

system used the MC3T3 E1 mouse pre-osteoblast cell line61 (MC3T3), which has been 

shown to recapitulate important actions of OSM seen in primary cells57,62,63. To induce 

OSM signaling, culture medium was supplemented with recombinant mouse OSM at 25 

ng/ml. In one set of experiments, spaceflight was modeled by culturing cells on 
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Cytopore-2 cellulose microcarriers in the NASA-developed Rotary Cell Culture System 

(RCCS). This rotating wall vessel (RWV) type bioreactor models free fall through 

gravitational vector averaging and low shear stress6,64. In deference to convention, this 

condition is hereafter described as modeled microgravity (MMG).  In an additional set of 

experiments modeling exposure to a SPE, cell cultures were irradiated prior to culture in 

MMG. The effect of these conditions on GP130 cytokines and receptors, osteoclast 

recruitment, and osteoblast activity were then examined. Our results support the 

hypothesis that spaceflight conditions alter the action of OSM signaling in osteoblasts. 
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MATERIALS AND METHODS 

Cell Culture 

The MC3T3 E1 subclone 4 mouse pre-osteoblast cell line61 and the UMR-106 rat 

osteosarcoma cell line were obtained directly from the American Type Culture Collection 

(Rockville, MD). MC3T3 cells were maintained in MEM (Life Technologies, Grand 

Island, NY) supplemented to make α-MEM without ascorbic acid. All supplement 

components were from Sigma-Aldrich (St. Louis, MO). UMR-106 were maintained in 

DMEM (Hyclone, Logan, UT).   All culture media were supplemented with 10% fetal 

bovine serum and 100 U/mL each of penicillin and streptomycin. These supplements 

were obtained from Hyclone (Logan, UT). Cells were maintained at 37 °C, 5% carbon 

dioxide, and 95% humidity. 

Microcarrier Culture 

Cytopore 2 macroporous cellulose microcarriers were purchased from GE 

Healthcare (Pittsburgh, PA). Microcarriers were hydrated in phosphate buffered saline 

(PBS) at 20 mg/ml and autoclaved at 20 minutes at 121 °C. Microcarriers were rinsed 

twice in sterile PBS then transferred to culture medium for at least 16 hours prior to 

seeding cells. 

To seed the microcarriers, MC3T3 E1 cells were grown to confluence, 

trypsinized, and suspended in culture medium with microcarriers in a tissue culture flask. 

Concentration of cells during seeding was 50,000 cells / ml and 5 mg microcarriers / ml. 
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The mixture was agitated by gentle pipetting every 20 minutes for 3 hours and then 

adjusted to 2 mg / ml. After seeding microcarriers were incubated as above, microcarriers 

were agitated each morning and afternoon. Approximately one-half the medium was 

replaced every three to four days. Experiments were initiated on the seventh day after 

seeding. 

Osteogenic Differentiation and Cytokine Stimulation 

To induce osteogenic differentiation, MC3T3 cells were transferred to standard 

α-MEM (Life Technologies) supplemented with an additional 50 μg/ml ascorbic acid and 

5 mM phosphate buffer at pH 7.4. Mineralization medium was also supplemented as 

above. Cells cultured on microcarriers had supernatant medium removed and replaced 

with differentiation medium with mixing 3 times. To induce OSM signaling, culture 

medium was supplemented with 25 ng/ml recombinant mouse OSM (R&D Systems).   

Modeled Microgravity 

The Rotary Cell Culture System (RCCS) and 10-ml high aspect ratio vessels 

(HARVs) were purchased from Synthecon (Houston, TX). The RCCS is designed to 

model free fall6,64. The HARV rotates around a horizontal axis so that medium and 

microcarriers undergo solid body rotation, which averages the gravitational vector 

experienced by cells to near zero. For Cytopore 2 microcarriers, a rotational speed of 18 

rpm was found to be optimal by visual inspection. Oxygenation occurs through a gas-

permeable membrane, preventing the formation of bubbles and ensuring smooth rotation 

for the microcarriers.  



9 
 

 

Modeled microgravity experiments lasted 7 days. At 12 h, 48 h, 96 h, and 7 days, 

samples were collected for analysis. The culture medium was removed from the HARV. 

After ensuring uniform suspension of the microcarriers, a portion of the medium was 

retained so that the microcarriers would be evenly divided among the samples. The 

remaining microcarriers were returned to the HARV along with fresh medium matching 

the experimental condition. As controls at normal gravity, microcarriers were cultured in 

tissue culture flasks at identical concentrations and volumes to the RCCS. Samples were 

collected by the same procedure.  

Radiation 

MC3T3 cells were prepared on Cytopore 2 microcarriers as above. 

Approximately 18 h prior to irradiation, cells were transferred to a sterile 50 ml conical 

tube at a concentration of 2 mg Cytopore per ml. This concentration provides excess 

culture medium. The tubes were then packed in an insulated, pre-warmed box with a 2 L 

bottle of  water at 37° C and shipped overnight to Dr. Jeffrey Willey, Radiation Biology 

Section, Wake Forest University Medical Center. Tubes were exposed to 1 Gy at 364 

rad/s from a 137Cs source. Tubes were repacked and return shipped overnight. Controls 

were subjected to a sham irradiation procedure. Upon return, cells were immediately 

transferred to mineralization medium and modeled microgravity or control conditions. 

Samples were collected as described above at 12 h, 48 h, 96 h, and 7 days. 

Semi-Quantitative Reverse Transcription Polymerase Chain Reaction 

Microcarriers were allowed to settle in a conical tube and the supernatant medium 

was aspirated.  RNA was extracted using 1 ml RNA-STAT 60 (Tel-test Friendswood, 
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TX) for each 1-2 mg microcarriers. After a 20 min. incubation, chloroform (200 μl/1ml of 

RNA-STAT 60) was added followed by vortexing for 10 seconds, and centrifugation at 

12,000rpm.  The upper aqueous layer was transferred to a new tube containing 

isopropanol (0.5ml/1ml of RNA STAT60), followed by vortexing for 10 seconds and 

incubation on ice for 15 minutes.  The mixture was centrifuged at 12,000rpm and the 

supernatant discarded.  The pellet was washed by adding 1ml of 75% ethanol, mixed and 

centrifuged at 12,000rpm and the supernatant discarded.  The RNA was allowed to air-

dry in a sterile environment and resuspended with nuclease free water.  

cDNA was generated from this RNA using a commercially available reverse 

transcriptase kit (Applied Biosystems) per manufacturer instructions.  The cDNA 

generated from the reverse transcription reaction was used in a 25 μl PCR reaction 

containing 2.5 μl of 10x PCR buffer, 2.5mM dNTPs, 10mM primers, 5U GoTaq 

polymerase (Promega, Madison, WI) and 2 μl cDNA.  Amplifications were carried out as 

follows: initial denaturation at 95°C for 2 minutes, followed by the indicated number of 

cycles of 95°C for 1 min, annealing temperature for 1 min, 72°C for 1 min, then a final 

extension of 72°C for 10 minutes. Primer pairs and reaction conditions for each target are 

provided in Table 1. The PCR products were electrophoresed on a 1% Tris-Agarose gel 

containing 0.5 μg/ml of ethidium bromide at 80 volts for 45 minutes.  The gels were 

imaged using a Kodak Image station and exposed for 10 seconds.  Band densities were 

calculated using the ImageJ software (NIH) and normalized to GAPDH.  For RT-PCR 

analyses, the sample size was 4. 
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Enzyme-Linked Immunosorbent Assay 

To measure secreted IL-6, conditioned medium was collected from each sample 

collected above.  IL-6 was quantified with the mouse IL-6 DuoSet kit from R&D 

Systems according to the manufacturer’s instructions.  Plates were washed with PBS at 

pH 7.4 containing 0.05% Tween-20 (PBS-T) and blocked using PBS containing 1% IgG-

free BSA (Jackson Immunological West Grove, PA). The substrate used was Thermo 

Pierce (Rockford, IL) 1-Step Ultra TMB. A seven point standard curve was prepared by 

serial dilution of the included 1000 pg/ml standard. Sample concentrations were 

interpolated from a 4 parameter logistic fit of the standards. All samples and standards 

were assayed in duplicate. All ELISA analyses have a sample size of 3.  

Alizarin Red Staining 

For monolayer experiments, MC3T3 cells were cultured in mineralization 

medium for 6 or 14 days in 12-well plate. For microcarrier experiments, a 2 mg sample 

was retained from each MMG and MMG with radiation experiment and cultured for an 

additional week in experimental conditions. Medium was aspirated and the cells were 

washed once with PBS, then fixed in 10% formalin for 15 minutes. Formalin was 

aspirated and the cells were washed three times with deionized water. Four-hundred μl of 

40 mM alizarin red (Millipore, Billerica, MA) was added to each sample. After a 20 

minute incubation at room temperature, the stain was aspirated and the cells were washed 

four times with deionized water.  

For extraction and spectrophotometric quantification,  400 μl 10% acetic acid was 

added to each well. The matrix was disrupted with a pipette tip in monolayer or 

trituration in microcarrier experiments. The sample was then transferred to (or retained 
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in) a micro-centrifuge tube and incubated for 30 min at 85°C. Tubes were then 

transferred to ice for 5 minutes, then centrifuged 20 minutes at 16,000xg. Ten standards 

were prepared by serial dilution from 4 mM alizarin red. Samples and standards were 

adjusted to pH 4.2 with 10% ammonium hydroxide. One hundred μl of each sample and 

standard was transferred in duplicate to a 96-well plate and the absorbance read at 405 

nm. Sample concentration was calculated by comparison to a linear least-squares best fit 

of the standards.  

For quantification by confocal microscopy and densitometry, a microscope slide 

of the sample was prepared after washing but before the extraction procedure. The 

sample was imaged on a Zeiss LSM 510 Meta system combined with the Zeiss Axiovert 

Observer Z1 inverted microscope and ZEN 2009 imaging software (Carl Zeiss, Inc., 

Thornwood, NY). Excitation was at 540 nm and emission was measured at 580 nm. A 

sample of at least 20 microcarriers was imaged under identical settings with intensity at 

580 nm saved as 8-bit grayscale. Using the ImageJ software (NIH), thresholding was 

applied at 30/255 to eliminate background, then the integrated intensity of each image 

was calculated. Integrated intensity per bead was calculated and used to represent alizarin 

red staining.   

Statistics 

MMG experiments were analyzed using three-way analysis of variance 

(ANOVA) with repeated measures of each combination of MMG and OSM induction 

(corresponding to a culture vessel) at each level of time. MMG with radiation 

experiments were analyzed using four-way ANOVA with repeated measures of each 

combination of radiation, MMG, and OSM induction (corresponding to a culture vessel) 
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at each level of time. Multiple comparisons were conducted with Tukey's HSD test post 

hoc. Each response variable was treated separately. For all comparisons, α = 0.05. In 

figures, bars and asterisks (*) indicate p < 0.05 for the indicated main effect. Any 

interactions identified in the test had a p < 0.05. Calculations were performed in the R 

statistical environment (R Project). 
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RESULTS 

OSM and MMG Synergistically Induce IL-6 Secretion 

To assess the action of osteoblast OSM signaling in MMG, we first examined the 

transcription of the cytokines and receptors most closely associated with OSM by semi-

quantitative reverse transcription polymerase chain reaction (RT-PCR) (Fig. 1A). OSM 

supplementation was observed to induce the transcription of OSMRβ (Fig. 1B) and IL-

6Rα (Fig. 1C). Induction of the receptors reached its peak at 48 h and remained stable 

afterward. These effects of OSM have not been previously described in osteoblasts. 

MMG had no statistically significant effect on these targets.   

IL-6 was the most substantially affected of the examined transcripts (Fig. 1D). 

Both OSM supplementation and MMG independently induced IL-6 transcription, which 

is consistent with prior results49,65 .   Additionally, the combination of OSM 

supplementation and MMG (hereafter OSM+MMG) increased IL-6 transcription by more 

than twice what would be expected from even multiplicative combination of their 

individual effects, reaching 70-fold by 7 d. This synergistic effect has not previously been 

described. OSM's effect was seen as early as 12 h after treatment and increased 

throughout the 7 d. The independent effect of MMG was not observed until 48 h and 

remained stable afterward. The synergistic effect from OSM+MMG was detected from 

48 h, along with the effect from MMG alone. The amplification of IL-6 induction 

demonstrates for the first time that MMG does alter the effect of OSM signaling.  
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To ensure that the effects of OSM signaling induction and MMG extended to the 

secretion of the IL-6 protein, we tested the cell culture conditioned medium using ELISA 

(Fig. 2). Again, both OSM supplementation and MMG were shown to independently and 

synergistically induce osteoblast IL-6 production, with the effect of MMG lagging OSM 

in both time and scale. OSM alone increased secretion by as much as 200-fold over 

control conditions, while the effects of MMG on mRNA and secreted protein were 

proportional at 48 h. The fold increase in secreted protein was much larger than the 

transcriptional change. This may reflect the accumulation of protein in the culture 

medium as IL-6 was produced at increasing rates. It is also possible the at post-

transcriptional regulatory effects account for difference. Regardless, the interaction of 

MMG and OSM is confirmed at the protein level. This supports the hypothesis that 

spaceflight alters OSM signaling in the osteoblast. 

Radiation Limits the Effect of OSM Induction on IL-6 Secretion 

but Enhances the Effect of MMG 

The action of OSM signaling on osteoblast inflammatory factors was next 

examined in the context of a more complete model of spaceflight including both MMG 

and radiation typical of a solar particle event (SPE). Statistically significant interactions 

(p < 0.01) between OSM signaling and these spaceflight conditions were again observed 

in the regulation of IL-6 production. Radiation had no significant additional effect on any 

other targets assessed by RT-PCR (Table 2). The changes in IL-6 mRNA measured by 

RT-PCR were entirely reflected in the measurements of secreted IL-6. A general increase 

in the concentration of IL-6 compared to the experiments without radiation is attributed 

to the increase in Cytopore microcarrier concentration from 4 mg/ml to 4.5 mg/ml, 
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increasing the number of cells, and the fewer time points at which samples were 

collected, decreasing the dilution of the conditioned medium with fresh medium. Both 

changes were made to provide sufficient cell numbers for the additional experimental 

factor. Sham irradiation control recapitulated the effects of the RCCS-only model with its 

substantial synergistic increase in secretion (Fig. 3A, left column), validating the 

radiation procedure. As in the experiments without radiation, OSM increased IL-6 

secretion by at least 10-fold under all conditions. Consequently, to facilitate comparison 

of other conditions, the results of the experiments with radiation are separated into panels 

showing results without-OSM (Fig. 3B) and with-OSM (Fig. 3C).  

Intriguingly, the effects of radiation in combination with either OSM 

supplementation were opposite of the effects of radiation alone or radiation with MMG. 

Radiation alone increased IL-6 secretion relative to the control at 48 h and 7 d by 

approximately 5-fold, confirming a response recently reported for the first time in 

osteoblasts43 (Fig 3B). Radiation in combination with MMG increased the secretion of 

IL-6 relative to either factor alone. The scale of this increase compared to multiplicative 

combination of the factors was approximately two-fold, comparable to the synergistic 

effect seen from OSM+MMG in absence of radiation. Contrary to these increases in IL-6 

secretion, irradiation decreased the effect of OSM supplementation at all time points by a 

substantial margin, approximately 50% (Fig 3C). Finally, radiation did not change the 

induction of IL-6 by OSM+MMG except at 12 h, when all conditions respond as if MMG 

were not present. Considered together, these complicated interactions again support the 

action of spaceflight conditions on OSM signaling. 
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OSM Counteracts the Effect of MMG on the RANKL:Osteoprotegerin Ratio 

It has been observed that IL-6 functions primarily in bone to magnify osteoclast 

recruitment and activity50,51. OSM is also known to enhance RANKL expression and 

osteoclast activation52,54,55. To determine if spaceflight conditions also interact with these 

actions of OSM, we measured the transcription of the osteoblast-produced factors most 

important for osteoclastogenesis: MCSF, RANKL, and osteoprotegerin (Fig. 4A). We 

found that RANKL (Fig. 4B) was upregulated by MMG. MMG alone also decreased the 

transcription of osteoprotegerin, so that the ratio of RANKL to its decoy receptor would 

be increased, which favors increased osteoclastogenesis. In these experiments, OSM did 

not exert a statistically significant effect on RANKL expression, but there was a clear 

interaction between OSM signaling induction and MMG. When the two were present in 

combination, osteoprotegerin mRNA levels increased proportionally to the increase seen 

in RANKL, so that in this case the RANKL:OPG ratio would be preserved. The 

implication is that the osteoblast recruitment of osteoclasts in free fall may depend on the 

absence of OSM signaling.  

OSM and MMG Have Independent and Opposing Effects on Osteoblast Activity 

To determine if the interdependence of osteoblast OSM signaling and MMG 

extended to their effects on osteoblast maturation and activity, we analyzed samples 

collected over the course of a week in these conditions by semi-quantitative RT-PCR for 

several markers of osteoblast differentiation and osteoid production (Fig. 4A). Significant 

effects were found for collagen α1(I) (Fig. 4B), osteocalcin (Fig. 4C), and sclerostin (Fig. 

4D). Independently, OSM and MMG acted on collagen α1(I) and osteocalcin, as would 

be expected for these components of osteoid and markers of middle and late osteoblast 
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maturation. Both had mRNA levels increased by OSM and decreased by MMG. 

Sclerostin was increased by MMG, suggesting an increase in the osteocyte character of 

these cell cultures and consistent with evidence that free fall inhibits osteoblast 

differentiation. No significant interaction between these factors was detected by 

ANOVA, which suggests that spaceflight does not alter the effect of OSM on osteoblast 

activity.  

RCCS and Cytopore Cell Culture Does Not Model Spaceflight's Effect  

on Osteoid Formation and Mineralization 

The effect of OSM on the production of mineralized osteoid was also 

investigated. The organic dye alizarin red specifically stains mineralization in osteoid 

(Fig. 6A), allowing visualization of the differences in osteoid production in cell culture. 

The dye can also be extracted and quantified spectrophotometrically66. This aided in the 

choice of the MC3T3 E1 cell line to study OSM's effect in osteoblasts. The MC3T3 E1 

cell line was chosen for these experiments in part because of the clear effect OSM has on 

culture mineralization, whereas the UMR-106 rat osteosarcoma cell line, for example, 

shows no effect (Fig. 6b). A different approach to mineral quantification was used for 

MC3T3 cells cultured on Cytopore microcarriers when the extraction technique proved 

insufficiently sensitive. Because alizarin red fluoresces when excited by light at 530-560 

nm, staining could be visualized with laser confocal microscopy (Fig. 6C). It proved 

possible to quantify the staining by densitometry, and thus mineralization, on samples of 

microcarriers (Fig. 6D and F). While reproducible, the results from this technique showed 

substantially higher mineralization in MMG (Fig. 6F), not at all consistent with the 

effects of spaceflight2,3. During staining, large quantities of what proved to be 
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mineralizing material were sometimes noted (Fig. 6E). This material—here called extra-

vehicular mineralization (EVM) and presumed to be osteoid—was only found in normal 

gravity control cultures, never in samples from the RCCS. It appears the microcarriers 

must be stationary for the osteoblasts to produce EVM. In the control gravity samples, the 

EVM was generally disrupted and lost during staining and washing, so that most of it 

could not be quantified.  When the remnant EVM was quantified, however, it 

substantially exceeded the mineral found on only the microcarriers from the same 

samples (Fig. 6F). From these observations, we conclude that the RCCS model of free 

fall used with Cytopore microcarriers is unable to reproduce the patterns in mineral 

formation seen in actual spaceflight data. 
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DISCUSSION 

Understanding how spaceflight disrupts the bone remodeling cycle is important 

for human space exploration and likely to improve health on Earth. The many 

uncertainties in skeletal physiology are an obstacle to that understanding. Among these 

uncertainties is the incomplete picture of the action of inflammatory signaling in the 

regulation of bone remodeling. The results presented here connect the questions of 

spaceflight's action in bone and the function of the GP130 cytokines. In particular, they 

support the hypothesis that free fall and ionizing radiation alter the function of OSM 

signaling in bone. The pattern seen in the disruption of the effects of OSM is consistent 

with a contribution to the increase in osteolysis and decrease in osteogenesis seen in 

astronauts.  

The most prominent effect of our model of spaceflight on osteoblast OSM 

signaling was on GP130 signaling itself, particularly the secretion of IL-6. We described 

here an increase in IL-6 secretion by MMG and the synergistic increase by the 

combination of MMG and OSM supplementation. The increase in secretion is closely 

paralleled by an increase in IL-6 mRNA. The degree of increase in IL-6 secretion cannot 

be explained by a simple combination of the individual effects of MMG and OSM. This 

is clear evidence that the one effects the other. One possible explanation for this is that 

MMG interferes with feedback inhibition mechanisms regulating OSM signal 

transduction or IL-6 secretion. Inhibition of OSM and IL-6 signaling by suppressor of 
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cytokine signaling (SOCS) protein is an example of an important regulatory pathway that 

is known to be involved in skeletal health and could be inhibited in spaceflight67,68. As 

IL-6 acts in bone to increase the recruitment of osteoclasts50,51, this increase in IL-6 

secretion can reasonably be expected to contribute to osteolysis in spaceflight. This is 

particularly significant considered alongside the data collected from astronauts 

suggesting that GP130 signaling is generally altered in spaceflight and IL-6 levels 

increased in particular35–38. While not dependent on MMG, the observed increase in 

OSMRβ and IL-6Rα mRNA is consistent with a positive feedback mechanism for OSM 

and IL-6 signaling that may be important in understanding the general action of these 

cytokines in bone. 

OSM's regulation of osteoblast IL-6 secretion is further complicated in a 

spaceflight model that includes radiation. Radiation alone or in combination with MMG 

increased IL-6 secretion, as did OSM treatment. Radiation in combination with OSM, 

however, diminished the OSM induced secretion by as much as half. Possibly relevant to 

this effect is a pattern of dose dependence in the response of osteoblasts to ionizing 

radiation. Exposures at less than 2 Gy, promote osteoblast differentiation and osteoid 

production69–71. Radiation above this level has the opposite effect43,71–74. Yumoto et al. 

have also observed that the combination of irradiation with unloading may also determine 

the effect of ionizing radiation on osteoblast function75, as we observed here. Applying 

these observations to our data, it is reasonable that the combined effect of OSM and 

radiation differs from their individual effects. It is possible, for example, that the 

combination of radiation and OSM supplementation at receptor-saturating concentrations, 

as we used here, crosses a threshold that triggers a protective quiescence in the osteoblast,   
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similar to the response to high dose radiation described by Kansara et al.43  It is also 

noteworthy that factors other than dose affect osteoblast response to radiation. Linear 

energy transfer (LET) may be an important factor42,76,77, which should be considered in 

evaluating our model, which only uses low-LET photons. The radiation from SPE and 

GCR in spaceflight has a large high-LET component8. As we have shown, many factors 

must be considered in any attempt to understand the osteoblast response to radiation. 

In summary, OSM supplementation, modeled free fall, and radiation all 

independently increase the secretion of IL-6. OSM has the largest and most immediate 

effect. Free fall and radiation both a have more modest effect on IL-6 secretion that 

presents more slowly than the effect from high levels of OSM supplementation. The 

difference in timing may only be apparent, due to the inability of our assays to detect the 

comparatively smaller early effects, or it may indicate that OSM acts more directly on IL-

6 transcription than free fall or radiation. These explanations are not mutually exclusive.  

We have also described a dependence on MMG for the action of OSM on 

osteoblast-mediated osteoclast recruitment. In control gravity conditions, active OSM 

signaling had no effect on the RANKL:osteoprotegerin ratio. In MMG, OSM signaling 

increased osteoprotegerin levels. On its own, this is further evidence that free fall alters 

the action of OSM signaling in the osteoblast, which supports our central hypothesis. It 

also demonstrates that MMG depends on the presence or absence of other factors for its 

effects. By implication, the effect of free fall on astronauts may depend on factors that 

vary between individuals, such as baseline inflammatory cytokine levels. It cannot be 

determined from these experiments how this feature of OSM signaling in MMG, which 

would oppose increased osteoclastogenesis, balances with the increase in IL-6 secretion 
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and its support of osteoclast recruitment. Although these experiments did not support 

spaceflight acting through OSM signaling to affect osteoblast activity and maturation, it 

is worth noting that they focused on the already osteoblast-committed MC3T3 cell line. 

OSM is known to act throughout the osteoblast lineage from uncommitted precursors to 

osteocytes59,78,79. One can imagine that spaceflight would alter the effect of OSM 

signaling at these other points in the osteoblast lineage. Another possibility is that 

spaceflight conditions alter the effect of OSM signaling on osteoblast activity, but that 

these experiments could not detect the effect. Comparatively small effects or post-

translational interactions, for example, would not be detected by semi-quantitative RT-

PCR. Our results do imply that inflammatory signaling pathways must be considered in 

understanding the action of spaceflight on osteoclast activity. 

The overall picture present here is this: Free fall and radiation act independently 

of OSM to increase osteoblast-mediated osteoclastogenesis through both the RANKL – 

osteoprotegerin system and IL-6 production. Meanwhile, free fall inhibits the activity of 

osteoblasts, leading to an increase in osteolysis and decrease in replacement with new 

bone. Additionally, free fall synergizes with OSM to increase IL-6 production further 

without any balancing effect on osteoblast activation, so that the overall effect of OSM 

on the osteoblast in space may be to promote bone loss. Thus spaceflight may act through 

OSM signaling to unbalance the bone remodeling cycle. This interpretation of our results 

is summarized graphically in Figure 7.  

It is worthwhile to consider the inability of this system to model changes in 

osteoid production and mineralization in spaceflight. EVM could not form in MMG, most 

likely due to the microcarriers' constant motion. The ability of the osteoblasts to move 
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beyond the microcarrier appears to have been critical for the organization and amount of 

osteoid they produced. That ability to move and interact in a larger space may also have 

been critical in successfully modeling the decrease in osteoblast activity seen in 

spaceflight. Bone is a complex tissue, where many effects depend on the spatial and 

temporal interaction of many different cells. It is difficult to predict which features of that 

complexity will be important for a given question, in bone or anywhere in biology. The 

most valuable contribution of this work may be pointing to GP130 signaling as a feature 

that must be included in a complete picture of bone in space. 
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Table 1: PCR Primers and Reaction Conditions 

Target 
Fwd. Primer Prod. 

Size 
Temp. 
(ºC) Cycles cDNA 

dilution Rev. Primer 

GAPDH 
ATCACTGCCACCCAGAAGAC 

202 57 30 1:10 
GGTCCTCAGTGTAGCCCAAG 

OSM 
AGCAAGCCTCACTTCCTGAG 

200 60 35 1:1 
GTGGGCTCAGGTATCTCCAG 

OSMRβ 
TAGACTGAACATATCCAACACCA 

349 60 30 1:1 
TCCATGGATTGGCTCATCTGGCA 

LIF 
CAGACAGACAGGTAGCATAAAG 

487 60 35 1:1 
GACACAGAGACAGACAGAGA 

LIFRα 
GAAAACTGTAAGGCGCTACA 

483 52 35 1:1 
CCAAGTGTTTACATTGGC 

IL-6 
CCTCTGGTCTTCTGGAGTACCAT 

307 55 30 1:10 
GGCATAACGCACTAGGTTTGCCG 

IL-6Rα 
CCAGGTGCCCTGTCAGTATT 

317 60 35 1:1 
CCGTGAACTCCTTTGACCAT 

MCSF 
CGACTTCCCGTAAAGGCATAAA 

530 60 30 1:1 
CAAGGAACACAGCCCAAAGA 

RANKL 
GAGAGGTATTCCGATGCTTATG 

577 60 35 1:1 
GGTGACCAACATCCTACTTATT 

osteoprotegerin 
AGAGTGAGGCAGGCTATT 

511 60 35 1:1 
AGTAGTTTCTTCTGGTGCTATG 

RUNX2 
CCCTTCCTCTTCCCTTATCTCT 

509 60 35 1:1 
GTGCTTCTGCTACCACTCTAAC 

osterix 
CTGCTTGAGGAAGAAGCTCACTA 

490 60 35 1:1 
GGGGAGCAAAGTCAGATGGG 

collagen I(α1) 
AACAAGGTGACAGAGGCATAAA 

440 60 30 1:10 
GCTGCGGATGTTCTCAATCT 

osteocalcin 
GACCATCTTTCTGCTCACTC 

425 60 35 1:1 
TTGCACTTCCTCATCTGAAC 

sclerostin 
TTCCACCCAAATGTAAAGCCTGCG 

366 60 35 1:1 
ATTTCTGGCCCTTCCACCATCTCT 
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Table 2: Summary of Semi-Quantitative RT-PCR 
Mean relative expression at 48 hours by densitometry (arbitrary units) where significant 

by ANOVA. NC indicates no significant change. 

OSM - + - + - + - + 
MMG - - + + - - + + 
Radiation - - - - + + + + 
OSM NC NC NC NC NC NC NC NC 
OSMRβ 0.913 1.338 0.857 1.330 0.942 1.325 0.822 1.350 
LIF NC NC NC NC NC NC NC NC 
LIFRα NC NC NC NC NC NC NC NC 
IL-6 1.097 13.739 1.834 36.876 1.000 20.271 2.763 88.308 
IL-6Rα 1.438 2.038 1.082 2.107 1.424 2.080 1.124 2.235 
MCSF NC NC NC NC NC NC NC NC 
RANKL 0.835 0.980 1.131 1.288 0.937 0.843 1.219 1.291 
osteoprotegerin 0.962 1.005 0.760 1.347 0.851 1.110 0.675 1.247 
RUNX2 NC NC NC NC NC NC NC NC 
osterix NC NC NC NC NC NC NC NC 
collagen α1 0.960 1.255 0.603 1.119 1.048 1.360 0.725 1.204 
osteocalcin 0.977 1.226 0.602 1.033 0.939 1.192 0.729 1.115 
sclerostin 0.832 0.605 1.399 1.209 0.816 0.550 1.151 1.105 
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Figure 1.  OSM and MMG independently and synergistically induce the 
transcription of IL-6.   

MC3T3 pre-osteoblasts were cultured with OSM supplementation and MMG for 

7 days. RNA was collected at 12 h, 48 h, and 7 d. Semi-quantitative RT-PCR was 

conducted for the cytokines and receptors most closely associated with OSM in 

osteoblasts, listed in (A) with representative images from 48 h, when effects were seen 

for the largest number of targets. (B-D) Scatter plots of the densitometry results showing 

the mean and standard error of the mean (SEM) for the targets with statistically 

significant regulation by OSM or MMG (arbitrary units). OSM alone induced the (B) 

OSMRβ and (C) IL-6Rα subunits, shown at 48 h, when the largest effect was seen.  (D) 
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IL-6 was induced independently by both OSM and MMG. Induction by OSM alone 

progressed from approximately 5-fold at 12 h to 20 fold at 7 d. Induction by MMG was 

first significant after 48 h and remained stable afterward at approximately 2-fold. The 

factors interacted significantly to amplify their independent effect, inducing IL-6 

transcription approximately 35-fold at 48 h and 70-fold at 7 d. 

 
Figure 2.  OSM and MMG independently and synergistically induce secretion of 
IL-6. 

MC3T3 pre-osteoblasts were cultured with OSM supplementation and MMG for 

7 d. IL-6 secretion was measured in conditioned medium by ELISA; scatter plots show 

mean and SEM. OSM treatment induces secretion of IL-6 at all time points with a 7-fold 

induction at 12 h increasing to 200-fold by 7 d. A 2-fold increase in IL-6 secretion by 

MMG is significant at 7 d, but may be present earlier. The synergistic effect of OSM and 
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MMG on IL-6 secretion is first significant at 48 h at approximately 350-fold. It increases 

to approximately 500-fold at day 7. 
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Figure 3.  Radiation limits the effect of OSM induction on IL-6 secretion but 
enhances the effect of MMG. 

MC3T3 cells were cultured in a spaceflight model combining culture in the RCCS 

and radiation representative of a SPE (1 Gy at 364 rad/s from a 137Cs source). Osteoblast 

IL-6 secretion was measured by ELISA and are shown as scatter plots with mean and 

SEM. An overview of these data is shown in (A). The effects of OSM and MMG on IL-6 

secretion were unaffected by sham irradiation (A, left column). Under all conditions, 

OSM treatment induced IL-6 secretion by at least 10-fold. Consequently, radiation and 

MMG effects are broken out into control (B) and OSM treated (C). In the absence of 
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OSM treatment (B), irradiation alone increased IL-6 secretion relative to sham irradiation 

by approximately 5-fold from 48 h on. The combination of MMG and radiation 

treatments (without OSM treatment, B) magnified the induction of IL-6 approximately 

10-fold compared to MMG treatment alone. With OSM treatment (C), irradiation without 

MMG decreased IL-6 secretion at all time points. Irradiation had no effect on the 

synergistic increase in IL-6 secretion seen with combined OSM induction and MMG. For 

clarity, statistical results are shown only in (B) and (C). 

 
Figure 4. OSM counteracts the effect of MMG on the RANKL: Osteoprotegerin 
ratio. 

Semi-quantitative RT-PCR was used to examine the interaction of OSM and 

modeled free fall on the osteoblast transcription of MCSF, RANKL, and osteoprotegerin. 

(A) Representative images from samples collected after 48 h, when the most significant 
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effects were seen for RANKL and osteoprotegerin. No changes were detected for MCSF 

or with radiation for any of these targets. Significant effects when quantified by 

densitometry are shown as scatter plots with mean and SEM for RANKL (B) and 

osteoprotegerin (C). RANKL transcription increased under MMG (B), without an 

associated increase in osteoprotegerin (C). The combination of OSM and MMG, 

however, increased osteoprotegerin proportionally to the increase in RANKL. 

 
Figure 5. OSM and MMG have independent and opposing effects on osteoblast 
activity. 

Markers of osteoblast maturation and activity were assessed by semi-quantitative 

RT-PCR for interactions between OSM signaling and MMG. Representative images at 48 
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h are shown (A), when the largest effects were found. For markers affected by OSM or 

MMG, the results of densitometry are shown as scatter plots with mean and SEM (B-D). 

OSM supplementation induced collagen α1 (B) and osteocalcin (C) transcription, but had 

no significant effect on sclerostin transcription (D). MMG inhibited the transcription of 

collagen α1 and osteocalcin, while increasing transcription of sclerostin. No significant 

interaction between the factors was detected by ANOVA. 

 
Figure 6. RCCS and Cytopore cell culture does not model spaceflight's effect on 
osteoid formation and mineralization. 
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(A) Alizarin red staining of osteoid mineralization after culture of MC3T3 cells 

for 6 or 14 days in mineralizing culture medium. OSM increases production of 

mineralizing osteoid. (B) Quantification of the differential effect of OSM on 

mineralization after 14 d in monolayer culture for the MC3T3 mouse pre-osteoblast and 

UMR-106 rat osteosarcoma cell lines. (C) Confocal micrograph (400x) of fluorescent 

alizarin red bound to mineralization in MC3T3 culture on Cytopore microcarriers. (D) 

Representative confocal micrograph (50x) of MC3T3 cultured 14 d on Cytopore with 

mineralization stained for quantification by densitometry. (E) Confocal micrograph (50x) 

of Cytopore MC3T3 culture in control gravity conditions showing extra-vehicular 

mineralization (EVM). (F) Densitometry showed greater mineralization in MMG 

cultures. (G) EVM accounts for the majority of mineralization under control gravity 

conditions. 
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Figure 7. Spaceflight conditions act on bone through OSM signaling. 

In normal circumstances (left), OSM signaling has a balanced effect on osteoblast 

activity and osteoclastogenesis. In spaceflight (right), it is possible that this balance is 

disrupted. The synergistic increase in IL-6 secretion increases osteoclastogenesis. 

Meanwhile, there is no matched synergism in the action of OSM on osteogenesis. This 

leads to an increase in net bone loss. 
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