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ABSTRACT

Ground penetrating radar (GPR) and seismic reflaatiethods are useful
geophysical tools for near-surface characterizatidnalysis of radar or seismic
reflection data can combine velocity analysis vetimmon physical transformations to
provide subsurface physical properties such asustawe porosity, density, and
contaminant locations. However, reliable quantmatharacterization of thin subsurface
layers may be impossible using standard refledata processing techniques, e.g.
velocity analysis, if the layer thickness is belihw& conventional resolution limits of the
data. The limiting layer thickness for layer regimn may be up to %2 or even % of the
dominant wavelengthi) of the signal in the medium of interest. Thisitation often
depends on data noise levels and source charaicterign many environmental
problems, target layers may be below this layakiess and accurate determination of
layer properties becomes problematic. In ordeeliably quantify thin-layer parameters
in these cases, geophysical practitioners reqdidéianal tools such as attribute analyses
and inversion methodologies. Full-waveform invensi may be able to quantify layer
parameters even in the case of thin (g &nd ultra-thin (<44) layers by inverting
directly for thin-layer properties. Therefore,rbgide a targeted full-waveform inversion
algorithm to quantify thin- and ultra-thin layerrpaneters for multiple relevant
environmental problems including oil in and undea &ce and basal conditions of
glaciers. | demonstrate the efficacy of this apploon model and field data collected

using radar and seismic reflection methods. Thesthods depend on surface records of



reflection information from subsurface interfacesl anay falil if reflections are obscured
or attenuated in the subsurface. Therefore, | dstnate that a new dual-polarization
system can mitigate the effects of the overburaeso&ropy and conductivity attenuation
on radar data collected in Arctic conditions. Coniog my full-waveform inversion
algorithm with improved sea ice radar data colttiinay enhance reliable quantification

of spilled oil in the event of an accidental releasArctic environments.
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CHAPTER ONE: INTRODUCTION

Overview

Seismic and radar reflection methods are a commdruseful tool for near-
surface geophysical investigation (e.g. Bradfordl£2009; Dow et al., 2013; Kim et al.,
2010; Zeng et al. , 2000). Surface-based usdlwranethod requires introducing wave
energy into the subsurface and recording the resigmal at the surface. One major
difference between the two methods is signal fraqueFor example, seismic
frequencies may range from 1 to 100 Hz while tltaraange is generally between 10
MHz and 10 GHz. In addition, seismic waves an@radaves are sensitive to different
subsurface properties: density kg nT), velocity @, m s%), and seismic attenuation (Q)
in the case of seismic methods but permittivityR m*) and conductivity, S m) in
the case of radar waves (Aki and Richards, 206@)wever, the basic underlying
equations for analyzing wave travel and reflegfivésponse are similar for both
techniques. The similarities between the two metradlbw for effective application of
multiple seismic data processing techniques torrdadia (Bradford, 2007; Bradford and

Wu, 2007).

My research focuses on using radar and seismiectefh data to quantify thin
layers that may be present in the near-subsurflam especially interested in
environmental problems such as contaminated sé@eacterization and snow and ice

research. Thus, | begin by discussing radar-bsskslurface investigations and the



underlying wave equations for electromagnetic wanapagation. | subsequently
summarize the appropriate analogs with respeatisosc reflection methods. Since
“thin” subsurface layers often arise in environnaproblems, | discuss the problems
that arise with either method due to the presehdtaimlayers in the subsurface. Two
relevant methods for overcoming those difficulilkdude amplitude variation with

offset (AVO) analysis and full-waveform inversiofl8VIs). My research has produced a
targeted FWI algorithm that can use radar or seisaflection data to quantify thin

layers of near-surface material, including envirental contaminants. The subsequent
chapters delineate my modeling and inversion methiodluding testing on model and

field or laboratory data collected both with radad seismic reflection methods.

Radar Methods for Environmental Problems

Ground penetrating radar (GPR) is a near-surfaophgesical tool well-suited for
detecting subsurface contamination (Brewster antbAn1994; Bradford and Deeds,
2006; Bradford et al., 2010; Luciano et al., 2008ando, 2002). Reflection GPR
methods traditionally incorporate velocity analysisnbined with common petrophysical
transformations to indirectly estimate subsurfdeeteacal and physical properties at a
contaminated site (Annan, 2005). Zones of anonsadbectrical properties may indicate
the presence of contamination (Bradford and De2@l36). Contaminants of interest
relevant to my research are non-aqueous phasedigNiAPLS). These contaminants are

often harmful to human health (Brusseau et al. 1201

GPR methods can provide a non-invasive, cost-@featapid methodology for
site characterization. 2D or 3D radar reflectiarveys can delineate zones of

contamination with greater site coverage than bmeemonitoring (Bradford and Deeds,



2006). Accurately delineating zones of subsurfagamination allows prioritization of
remediation efforts. Of course, rigorous use bfi@bphysical data including radar and
seismic data requires confirmation with boreholestber lower resolution point-
sampling methods (Hinz, 2012). These methods cavige detailed vertical
characterization but only at specific point locao Said another way, point
measurements lack horizontal resolution. Thus wdoerectly verified with point
measurements, GPR data may provide improved spgatiahcterization. When
integrated with control data and careful interpieta GPR reflection surveys may offer
site managers a robust tool for contaminant detectnonitoring, and remediation

(Bradford and Babcock, 2013; Babcock and Bradfad,3).

However, the robustness of GPR-aided contamindattien and quantification
may be compromised when contaminants migrate fhain initial source location and
disperse across a contaminated site. This digpensay result in a thin contaminant
layer. “Thin” is relative to the dominant waveléndl) of the signal in the material of
interest. Although researchers have addressedapan-problems since the mid-1900s
(Widess, 1973), accurately quantifying thin-layargmeters continues to be problematic
for both seismic and radar exploration. Basic usideding of radar methods and
subsequent detection and quantification of thirsadflace layers begins with the relevant
electromagnetic (EM) theory as applicable to reftecGPR methods and the thin-bed

problem.

Maxwell’s Equations

Due to the breadth of his contributions to the gtofdelectricity and magnetism,

James Clerk Maxwell is known as the father of etenagnetics. Two of his outstanding



contributions to the field came via his extraordynabservation that light is
electromagnetic (EM) radiation and through the taldiof an important term to
Ampere’s law (Goldman, 1983). Maxwell’'s equatiomevide the basis for deriving the
equation for electromagnetic (EM) wave propagatiosubsurface materials (Griffiths,
1999). As a historical byline, it was Oliver Heastis rather than James Clerk Maxwell,
who developed modern vector notation and composaxndIl’'s equations in the

modern formulation with which the reader is fammili@oldman, 1983).

In any case, “Maxwell’s” equations consist of Fagd law, Ampere’s law,
Gauss’s law, and the monopole law. Either difféegior integral forms of the equations
are equally valid. Maxwell's equations provide émnaal descriptions of the behavior of
electric and magnetic fields and their coupled reatHere | present the differential form
of Maxwell’'s equations in earth materials and inleseveral relevant simplifying
assumptions (Fleisch, 2008). Combining these @msin the presence of certain
simplifying assumptions leads to the EM wave equmtiThe wave equation is the basis
for understanding the physics of radar propagadiwh subsequent attempts to extracting
meaningful physical information using data proaegsechniques and petrophysical

relationships (Griffiths, 1999).

The curl of a vector field describes the circulataf that field around a point,
while the divergence of a vector field is the amafrflux passing through an
infinitesimally small surface enclosing some chapgr unit volume (Fleisch, 2008).
One can conceptually think of that charge as a@isgurce (positive divergence) or sink
(negative divergence) of the field. Faraday’s laspresses the curl of the electric field,

E, as the time derivative of the magnetic fiddd,



Vx E(xt)= -2 (1.1)

The electric field is a vector force field descnigpithe electrical force per unit
charge acting on a charged particle. Therefohas units V if. ConverselyB is also a
vector field but describes the magnetic force per charge per unit velocity acting on a

particle moving perpendicularly to the magnetiddidirection. Units oB are Tesla (T).

Next I introduce two definitions that | will use Ampere’s law and Gauss’s law.
The first relates the electric field to electrisglacement) and the electric polarization,

P:
D(x,t) = gyE(x,t) + P. (1.2)

Electric polarization is the electric dipole momest unit volume. The electric

displacement and the electric polarization havésusfiC n¥.

The second equation defines the magnetic fieleshgtheH in terms ofB and the

magnetic polarizatioriyi:
H(x,t) = %B(x, t)— M. (2.3)

The magnetic field strength has unit of A rit, as of course doéd. In free space, the
magnetic permeability and the permittivity are dans o = 4r x 107 H/m andgo =
8.58 x 1012 F/m. Permittivity is a measure of a material’digpto store charge in the

presence of an applied electric field.

| use equations 1.2 and 1.3 in my statements ofekaip law (equation 1.4) and

Gauss’s law (equation 1.5):

aD(x,t)

V X H(x,t) = J(x,t) + = (1.4)



Ve D(x,t) = p. (1.5)

wherel is electric current density. Thus, Gauss’s lavestthat the divergence Dfis

equal to the enclosed free charge density
Finally, the monopole law defines the divergenc8 ¢b be zero everywhere:
VeB(xt)=0 (1.6)

Since the divergence is zero in all space, sowcesks ofB can never exist.
Therefore, free magnetic charges cannot existnaaghetic charges always exist in

positive/negative pairs. To date, no one has elvserved a free magnetic charge.

In order to combine and transform Maxwell’s equagito the wave equation for
radar travel in earth materials, | first assume khas zero. In that case, the magnetic
permeability in the material of interest is alwaygial top,. This approximation is valid
in most near-surface material of interest to maRGractitioners, such as sandy soils
and aquifers. However, some rocks and ores,remgaind steel, may have magnetic
permeability one or two orders of magnitude highanyy. In those cases, | could not

make the approximation that= plo.
In a linear, homogeneous, and isotropic matdrialproportional tde:
J(x,t) = oE(x,t). (1.7)

Equation 1.7 is Ohm’s law. Ohm’s law expressestetecurrent density), as a function
of the electric field and the conductivigy of the material carrying that current. In
contrast withe, conductivity is a measure of a material’s abil@gytransmit charge. It has

units of S n.



To simplify the expression for electric displacemiara linear dielectric, | start

with equation 1.2 and recognize tiais proportional tde in such a material:

P(x,t) = gox.E(x,t) (1.8)
D(x,t) = goE(x,t) + gox.E(x,t) (2.9)
and

D(x,t) = £,(1 + xo)E(x, b). (1.10)

Then defininge = €4(1 + yx.), | can writeD in terms ofE:
D(x,t) = €E(x,t) (1.11)

wheree is the material’s permittivity. Taking. = 1 + y,, it follows from examining

equation 1.10 thatis proportional to the permittivity of free spadable 1.1):
€ = €€ (1.12)
whereg, is the relative permittivity.

Then, Ampere’s and Faraday’s law easily simplifyadows:

0E(x,t)

V X B(x,t) = ugloE(x,t) +€T] : (1.13)
and
V x E(x,t) = —28&0 (1.14)

at

Sinceo is multiplied with the vector fiel& to produce the vector fielt] ¢ is a
tensor in anisotropic materials. Similardyis also a tensor in anisotropic materials.
However, if one assumes a homogeneous, isotrofic eterial ¢ ands reduce to

scalar quantities. Most earth materials are neltbenogenous nor isotropic in nature.



Nevertheless, these simplifying assumptions prorooteprehension of the derivation of
the EM wave equation and its physical meaning. 83smptions often provide a good
approximation of the bulk properties and behavianany subsurface materials.
Nonetheless, one must remain alert for situationeresthese assumptions fail and be
prepared to apply a more rigorous treatment oMbgwell’s equations. One example |

address in Chapter 5 is the anisotropic natureetonductivity structure of sea ice.

The Wave Equation

That being said, with those simplifying assumptiand the previous assumption
thatu = uo for our materials of interest, | take the curboth sides of Faraday’s law

(equation 1.11) and substitute Ampere’s law forate of B with the following result:

VXV x E(xt) =V x (-2 (1.15)

A vector identity provides the mathematical keypteak apart the left-hand side of the

preceding equation (Fleisch, 2008):
V x(Vx E(xt))=V(Ve E(x,t)) — V2 E(x,1). (1.16)

| can combine Gauss’s law given in equation 1.5 wguation 1.11 to analyze the
termV e E(x,t). If there is zero enclosed charge in a regioenthe E(x,t) = 0 in that
region. By making this statement, | am assumiiag tthere are no free charges present in
the subsurface materials. Subsurface conditionssometimes violate this assumption.
Nonetheless, | proceed assumihg E(x, t) = 0 in the case of zero enclosed charge and

equation 1.15 reduces to the following form:

0B(x,t)
ot )-

—V2E(x,t) = V X (- (1.17)



| assume that the spatial and temporal derivativdsare independent and can

thus manipulate equation 1.17 to the following form

~V2E(x,t) = —2TEED), (1.18)
Substituting equation 1.13 into equation 1.18 patesithe following result:

3 £ BE(xt)
V2E(x, t) = Spol?EEOreT5 1) (1.19)

ot

Breaking apart the right hand side of equation Ad® grouping all terms on the

left provides the familiar form of the wave equati@riffiths, 1999):

6E(x £ 9%E(xt)
05

VZE(x,t) — noo = 0. (1.20)

Remember that with the previous assumptions | &ty o, ande as constant and
move them outside the time derivative. On the otlaad, if a 2D medium is anisotropic,

¢ ando become second-order tensors:

~ _ [E11 €21

g _[Elz S22] (1.21)
and

~ _[011 021

5 =lor o) (1.22)

If coupling between tensor components is negligidje, o1,, €1, ande,, are

zero. | substitute the modified tensors into tlavevequation:

VZE(x,t) — 1o

011 0 ]6E(xt) 811 0 ]2k _ (1.23)

822 ot?
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By choosing an appropriate coordinate system, gmgiprevious assumptions | can treat
the problem as two separate cases with respelee torientation of the anisotropy and the

relative direction of propagation &%, here denoted & andE,:

0E;(x,t) 02E;(xt)

VZE (x,t) — HoOu1 —5— —Ho1u1 —Hz = 0 (1.24)
and

OE; (xt 92E, (x,t
VZE,(x,t) — 1902, OBaxt) _ Ho€22 TRk _ o, (1.25)

ot at?

In Chapter 5, | start with a variation of these ®guations and proceed to describe the

anisotropic nature of EM wave propagation in sea ic

Now | revisit equation 1.20 in the case of a honmagels, isotropic, linear
dielectric. Note that it has 3 terms. The firssdées the second-order spatial derivative
of E. The second term is a diffusion term. The fhat this term is proportional o
demonstrates that conductivity acts to attenuaertivel of a radar wave in the
subsurface (Hohmann, 1988). The final term is as@©rder time derivative. Itis the
wave propagation term. Since the propagation tefnoportional ta, velocity is

inversely proportional to the square root of a mals «:

- \E (1.26)

Thus, if one can estimate the velocity of the radave, one can subsequently
estimate a materials Knowinge, common petrophysical transformations provide
means to transform its estimated value to physicdkrial properties such as density (
and porosityd) (Annan, 2005; Knight and Endres, 2005). | reveaveral of these

transformations in Chapter 2.
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One can easily solve the wave equation. One commethod is separation of

variables. The result is the total plane-wave smut
E(x,t) = Ejel(kx-wt) (1.27)

where the subscrifitindicates the constant initial field defining tigpropriate
coordinate system | can define a wave travelingpénarbitrary x-direction using

equation 1.27:
E(x,t) = Eyel(Fx—ot3 (1.28)
wherej is a unit vector in the y-direction.

One can also use Maxwell's equations to find theensguations foB by starting
with the curl of Ampere’s law. | can also take thel of equation 1.28 and apply

Faraday’s law as follows:

V X E(x,t) =V x Egelx-0) 5 (1.29)
_9Bxt) _ _ 9Bo i(kx-wb);
T = -2 k (1.30)

As Griffiths (1999) shows, the result is a wavean forB traveling withE but

oriented perpendicularly with respectio
B(x,t) = 5 Ege'®x-00k (1.31)

wherek is a unit vector in the z-direction. Thus, the $tage of B is proportional to that

of E divided by the EM wave velocity:
BO = %Eo. (1.32)

| will revisit equation 1.28 and 1.31 in the retigity section.
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Going back to equation 1.27, | take the appropudatiévatives off and substitute

them back into the wave equation:

62:}({:@ _ _ B k2eitix-w0) (1.33)
aEf(jJtc,t) _ _ Eoiwei(fcx—wt) (1.34)
Bzzg.t) _ Eowzei(Tcx—wt) (1.35)
— Egk2elx-00) = _ F i ael®x-0t _ g 2 gelfr-0t), (1.36)

Regrouping yields the following form:
- Eokzei(kx_wt) = — Eo(i(ou00'+w2u0£)ei(’~(x_wt) =0 (137)

which reveals that the complex-valued wavenunibeescribes the propagation of the

wave and is a function@aande:
k? = iopyo + w?pee. (1.38)

The wavenumber demonstrates that the propagatitreafave, including
attenuation and velocity, depends on the mater@eqrties. Table 1.1 gives some
relevant subsurface electric properties and theesponding EM wave velocities in the

material following equation 1.26.

Next, | solve fork and substitute the result into equation 1.27stFitake the

square root of equation 1.38:

k= iwpyo + w?pge. (2.39)
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Sincewp,o must be positive, the principal square root ofdbmplex-valued

wavenumber takes the following form (Bradford, 20Griffiths, 1999):
k= B+ ai. (1.40)

where

w2pge+ ,w‘*u(z,gz—a)zuﬁaz
B = : (1.41)

2

2

—w2pge+ |wrude?—w2uio?
a, = \ . (1.42)

| usea; instead of just to distinguish from the symbol | will later use feismic wave
velocity. In a more useful form, it is evident tifeanda, depend on frequency

(Bradford, 2007):

B = w\/”f( 1+ (i)z + 1). (1.43)

2
a = w\/”f( 1+(2) - 1) (1.44)
Finally, | substituték = g + a,i into equation 1.27 and simplify:
E(x,t) = Ejel((Brathx-wt) (1.45)
E(x,t) = Ejei(Px-wO+i*acx (1.46)

E(x,t) = Ejel(Bx-wb-awx (1.47)
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The propagation term is(F*~«9 while the diffusion term ig~%*. Thus diffusion
depends on propagation distance and the magnifugle d'he skin depth is inversely

proportional tox,:

d== (1.48)

at

whered is the skin depth in m sineg has units of M. Equation 1.48 and 1.47 show that
the skin depth is the propagation distance sudhthiesoriginal amplitude of the traveling
wave is reduced by &/Thus, increasing the value @f results in more rapid attenuation
of the traveling wave if all other factors are dgqueor example, skin depths in metals at
GPR frequencies may be on the order of micromet@rsthe other hand, reasonable
values fora; in earth materials give corresponding skin depththe order of meters
(Annan, 2005). Finally, the propagation term depen)s and | rewrite equation 1.26 as

follows:

v =

%. (1.49)

and one can easily see that velocity depends gonérey as well as the real-valued part

of k.
Disregarding transient behavior following Griffitf999), the divergence & is
zero in earth materials. The divergenc®a$ zero everywhere via the monopole law

(equation 1.6). For the plane-wave monochromaiiati®n, it is obvious tha&% =0

0E(x,t)

and .

= 0, and thus foW e E to be zero

6E(:Zc.t) = 0 and(E,)x must be zero.

Similarly, (By)x=0. Thus EM waves are transverse, meaning tieettbn of
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polarization is perpendicular to the direction afpagation (Griffiths, 1999). Next, |

investigate reflection of such EM waves from subme interfaces.

Table 1.1: Relevant subsurface material propertiesf interest. For simplicity, |
list effective conductivity (@.f)* and relative permittivity where @ = g,
0

Velocity is approximate. See Chapter 2 for additioal discussion.

Material & Ocr (S/M) v (m ns?
Air 1 0 0.30
Quartz 4.7 10° 0.14
Kaolinite 5-10 10 0.11
Montmorillonite 5-10 1d 0.11
Fresh water 80 10- 10° 0.03

Salt water 88 1-3 0.03
Dry Sand 3-5 18 0.15
Saturated Sand 20-30 40 0.06

Saturated Clay 5-40 1 0.06
Granite 4-6 18 0.13
Ice 3-4 10 0.169
Sea Ice 3-8 16 0.15

*| take effective conductivity to be the DC conduavity (Annan, 2005).

Reflectivity

As E propagates into the subsurface, if it encountensrasts in material
electrical propertiess(ande) at a subsurface boundary part of the wave enisrgy

reflected back from that boundary. Reflection rodthinvolve measuring and
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interpreting that reflected energy. After definihg appropriate coordinate system, |
write the incident wave traveling towards the ifdee in the arbitrary x-direction using

equation 1.28:

E;(x,t) = E;el(kix-wb)j, (1.50)
Of course, the reflected wave travels in the ogpatirection:

E, (x,t) = E e!(kix-ob)y, (1.51)

Subscripts andr denotes the incident and reflected waves resggtivhile
subscriptsl and2 refer to layers. Thug; is the wavenumber in the first layer whide

would denote the wavenumber in the subsequent.layer

The magnetic field behaves in the same fashion. Equation 1.31 shmavshe
magnitude of the magnetic field is proportionathie magnitude o and thaB is

oriented at right angles  (Griffiths, 1999):

B;(x,t) = %Eiei(klx“"t)lz (1.52)
It follows that the reflected magnetic field hasimilar form to equation 1.51:
B,(x,t) = —vilErei(—kmx—wﬂl}. (1.53)

At an interface between two linear materials, theave traveling across the
interface must satisfy four boundary conditionsiffians, 1999).
Boundary Conditions:

1) The components & parallel to the interface must be continuous:

Eqy = By (1.54)
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2) The ratio of perpendicular component&as inversely proportional to the ratio of

change in permittivity for the case of zero frearfe on the boundary:

Biy 52 (1.55)

Ezy &
3) SinceB is aligned at right angles & the perpendicular componentsBomust be

continuous across the interface. The ratio of tralfel components d@ across the

interface is proportional to the ratio of change:in

BlJ. = BZJ_' (156)
and

Bl||(x,t) — ﬂ

B0 s (2.57)

Combining the boundary conditions with equatiorE*o 1.53 provides a mean
to calculate the amount of the introduced energyigreflected back. The reflection

coefficientR is that ratio of reflected to incident energy:

R=Z (1.58)

IR
In order to deriveR in a more useful form for an incident EM wave pized

parallel to the plane of interface, | start by gitb8ng equations 1.51 and 1.52 into

equation 1.56. Note th#®; is equal to the sum of the incident and refleetedrgy while

B, represents transmitted energy:

Buyxt)+Bry(xt)) _ Ha
By (x,t) w2 (1.59)

1 i — 1 i(— —
v—Eiel(klx wt)_v_Erel( k1x—wt)
1 1

=& (1.60)

1 .
= i(k2x—wt)
qute 1253
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For the purposes of the following discussion, thier assume that conductivity is

negligible in the materiab( <« gw). This condition is the “low-loss” criteria fordar

wave travel (Annan, 2005). SinBeis oriented orthogonally B, | evaluate equation

1.60 at x = 0 and simplify:

1
H(Ei_ET) _ ﬂ

T
EEt Uz

(1.61)

For this simplification to be valid at all time aspace, | could also evaluate equation

1.60 by only considering the amplitudes of the éteng waves.

equation 1.61 as follows:

V2Ei—V2Er _

1y W
MoV By — povo By = v Ey

U2V2Ei — v Er = vy (E; + Ey)
MaVo By — Vo By = iy v  Ey + v B,

MoV B — v Ey = pyv1 Ertpp vy Er

| proceed by simplifying

(1.62)

(1.63)

(1.64)

(1.65)

(1.66)

Dividing through byE; produces a reformulation of the reflection coeéfidt

Ey
UaVp — V1 = (Vg + .Uzvz)E—i

H1V1+U2 V2 E;

H2Va—pivy _ Er _ R

(1.67)

(1.68)

Equation 1.68 is the formula for calculating thiteetion coefficient of the EM

wave as it encounters a subsurface layer at nontidence. Since | assume that the
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magnetic susceptibilities of the materials are ig#dge for my relevant materials of

interestu; = u, = Uo:

27— R, (1.69)

vy +vq

Substituting equation 1.26 into equation 1.69 \aeltk reflection coefficient in

terms ofe:

1 1
Ho€2 Ho€1

Nkosz Vot _ p (1.70)
\ u01£2+\ ll01€1
vave _ p (1.71)

Ve +ver
To be more rigorous, | could neglect the assumgtiato < ew and instead use the full-

form of the complex-valued wavenumber (equatio®)Lt8 computeR with the

following result assuming; = u, = uo:

Lok _ R, (1.72)

Examining equations 1.72 and 1.39 thereby revéalsradar reflectivity response does

in fact depend om as well ag.

In the case of an incidence wave at oblique in@den the layer boundary, the
incidence angle and the orientation of the EM wamarization with respect to the
boundary affect the reflectivity response (Grif§iti999). When using broadside
acquisition, GPR practitioners refer to the EM wavientation as transverse electric, or
TE, mode. For a 2D medium symmetric about the ptdraequisition, the TE reflection

coefficientR, is given as follows:
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kqcosB,—k,cos B,

= RTE (1.73)

kqcosB,+k,cos B,

whereg; is the incidence angle as shown in Figure 1.1lI'Shaw allows me to compute

the ray parameter in terms of velocities &dndé,:

p =00 sinb (1.74)

41 V2

Griffiths (1999) provides a derivation of the reflien coefficient for the case
where the incident wave is polarized parallel ® pkane of reflection. The plane of
reflection is the plane perpendicular to the reifferinterface. Such polarization is the
transverse magnetic, or TM mode, and has the fatligweflection coefficient denoted

Rrm (Annan, 2005):

kq cosB,—k, cos B,

k, cosB,+k, cosB,

Note that in the case of zero incidence an@je<{ 9, = 0), the two reflection
coefficient are equal. The angle dependence gbtbeeding reflection coefficients

forms the basis for analyzing the angle-dependstgativity response of the subsurface.
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Figure 1.1: Diagram showing incident, transmitted,and reflected plane waves
(denoted by arrows) at a subsurface interface marlage by contrast in material
electric properties.

Seismic Considerations
Seismic energy also propagates as a wave in tleaigabe. As a result, there are
many similarities between radar reflection andre@geflection. To derive the wave
equations for seismic motion in the subsurface,stags with the general equation of

motion in spatial and time coordinateandt (Pelton, 2005):
Dv;(x,t) _ 0
p(x, t)T_ p(x, t)bl(xi t) +a_x]TL](xﬁ t) (176)

wherep is density. The left-most term describes the shtghange of the momentum of

the body of interest while the right side of thei@tipn is describes the body forde)(

per unit mass and the surface forgg [;j(x,t)) acting on the system.
]

Next, assuming a linearly elastic, homogeneousjsottbpic material allows me

to neglect the spatial dependence of material ptiegseas follows (Pelton, 2005):



22

Tij(x, t) = T]lp(x, t)dlj + Zuseij(x, t) (177)

Herey(x, t)is dilatation;d;;is the Kronecker delta functios;;(x, t)is the strain
componenty is the Lamé modulus; ang is the shear modulus (Aki and Richards,
1980; Pelton, 2005). A materialgdescribes its stiffness or resistance to sheae Th

Lamé modulus is proportional to the sum of the butdulusx andg:
2
N =K= s (1.78)

The bulk modulus describes a material’s resisttamcempression. Dilatation is the

divergence of the displacement fieid
Y(x,t) =V-ulxt) (1.79)
and | can write the strain component in terms spldicement gradients:

1

oui(x,t) du;(x,t)
eij(x, ) =2 [—

ax,- ax]'

1. (1.80)

The next step in deriving the seismic wave equatisro substitute equation 1.77

into equation 1.76. | consider the simplest cagst,F neglect the convective term in the

material derivativel% as follows:
Doied) _ 200D 4 g (x 6 - Vv (x, £) (1.81)

Dt ot

Dv;(x,t) _ dv;i(xt)

- = (1.82)
and
v, (x, t) = 2uxD (1.83)

at
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Substituting equation 1.83 into 1.81 provides thiing result for the material

derivative:

Dv;(xt) _ 8%u;(xt) (1.84)

Dt at2

Neglecting the convective termr Vv; is safe if displacement gradients are small, and
this condition generally holds for seismic motiohese the wave is propagating
relatively far away from its source. In near-sug@eophysics, practitioners must be

carefully consider when this “far-field” assumptioray be invalid.

Next, | substitute equations 1.77 through 1.84 @goation 1.76, assume theits
constant, and exclude body forcés £ 0). In that case, | am only considering theltota

surface force (Pelton, 2005):

%u;(xt)

0 ou;j(xt) = dui(xt)
P _Tw["(v'“(x»t))‘siﬂf#s( T

6xi 6xJ

|- (1.85)

Assuming our material properties are constant egiqusly stated, | can gather the

components of the displacementsThe result is as follows:

%u(xt)

= 1+ )V (V- ulx, 1) + pV2ulx, ). (1.86)

Equation 1.86 is the Navier equation. Furtherntbeecompleteness theorem
states that any solution to the Navier equatighessum of a gradient of a scalar field
and the curl of a solenoidal field (Pelton, 2005)x6lenoidal field is one whose

divergence is zero everywhere, thaMisf = 0.):
u(x,t) = VP(x,t) + VX S(x,t). (1.87)

Both P andS also satisfy wave equations of the following forms
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1 92P(xt)

2 —_
V2P(x, 1) — 5 T = 0 (1.88)
and
V2S(x,t) — iazf?# -0 (1.89)

wherevs andy, are the velocity of the S-wave and P-wave, respagt and are given

byv, = f%z”s andvg = \/% (Pelton, 2005). Acknowledging the assumption thahd

Us are constant, | can take the the divergence oNtheer equation to arrive at the

following equations:

Vep az;ﬁf't) =V-[(n+ #s)V(V -u(x, t)) + uV?u(x, t)] (1.90)
P%V u(x,t) = (0 +p)V - V(7 - ulx, ) + pV - Vulx, b)) (1.91)

Using equation 1.79, | can simplify the precediggation and write it in terms of the

dilatation:

PP, 0) = (0 + u) V2P, D+u V> (x, ) (192)
P, t) = (0 + 21)72P(x, ) (1.93)
(0 + 2)72P(x, ) — p 2 p(x,8) = 0 (1.99)
P2y (x, t) — n+’;#sj—;¢(x, £) = 0. (1.95)

Comparison of equation 1.95 with the P-wave equgtlo88) confirms that the P-wave

velocity is related to the physical and mechammcaterial properties as stated previously:
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v, = /% (1.96)

Thus, the velocities of seismic waves depend ohyBipal properties (density,
stiffness, and compressional strength). In cohteasording to equation 1.26, the
velocity of EM wave propagation depends on 2 phatgicoperties: the magnetic
permeability and the permittivity of the materidlable 1.2 gives relevant representative
material properties. Similarly, the seismic reflestcoefficients depend on the angles of
incidence and reflection as well @svs, andv,. For example, the acoustic reflection
coefficient R,) is given by the following equation for a planewearormally incident on

a horizontal interface between two layers, 1 angspectively (Aki and Richards, 2002):

R, = P2¥p2"Pitp1 (1.97)

p P2Vp2+P1Vp1

The product of density and seismic velocity is ingn@ece and of course Snell’s
law still applies ta#,andé, (Booth et al., 2013). Note the similarities ariffiedences
between equation 1.97 and the reflection coefftdenEM waves (equations 1.69 and
1.75). Under our extensive simplifying assumptiand not considering either
conductivity or seismic quality factor, one obseartleat the EM wave reflections exhibit
a first-order dependency on just one material ptyde), while seismic wave reflections
depend both op and onv. The coupled nature of those two seismic propgrmay
complicate estimation of material properties suglp@rosity or the application of ill-

constrained geophysical techniques such as inveadgorithms.

Of course when seismic energy encounters a sulogudsger, there is P- and S-
wave splitting across the boundary, such that eidémt P-wave results in transmitted

and reflected P- and S-waves and both P- and S-refteetion coefficients (Castagna,
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1993) (Figure 1.2). | discuss the more generat fasall seismic reflection coefficients

and the elastic case for the P-wave reflectionfmeht in the next section.

Table 1.2: Representative seismic material properis (Burger et al., 2006; Press,
1966). All properties depend on pressure and tempagure.

Material vp (M sY) Vs (m s p (kg m3)
Air 330 0 1.275
Water 1400-1600 0 1000
Ice 3600-3800 917 917
Saturated Sand 800 - 2200 400 - 600 1500 - 2400
Unsaturated Sand 200 - 1200 100 -500 500 - 1700
Clay 1100 — 2500 200 - 800 2000 - 2400
Shale 1400-1600 1400 - 2000 2670
Sandstone 2000 - 3500 500 - 1700 2100 - 2400
Granite 4500 - 6000 2500 - 3300 2500 — 2700
Basalt 5000 - 6000 2800 — 3400 2700 - 3100

Examples and Thin-Layer Problems
In the preceding sections, | demonstrated how tbpggation of wave energy in

the subsurface depends on material propertiesritha¢nce the velocity of the wave in
either the seismic or the radar case. Changes teri@gproperties across an interface
cause some energy to be reflected back to the sabsuA plethora of data collection
techniques, data processing methods, and petra@hysainsformations enable us to
examine those reflections and derive informatiooudithe subsurface. For example,
assuming a plane-wave contacting an infinite plamearface between two homogeneous,

isotropic, linearly elastic half spaces, the Zodpprquations provide the full solution for
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16 reflection and transmission coefficients fortbBt and S-waves as a function of angle

of incidence (Aki and Richards, 2002) (Figure 1.2):

p'p" Ss'p" p"P" S"P"
p's" s's" p's" S"S"
p'p'" S'P" P"'P' S"P'
p's' §'s" p's’ S'S

Q=P'R= (1.98)
where' denotes down-going waves ahdenotes up-going waves. For exampl®,"
represents a down-going P-wave reflected to anaipggone; thu®’'P" is the elastic P-
wave reflection coefficient as compared to equati®Y for the acoustic reflection
coefficient. SimilarlyP’S" represents a down-going P-wave reflected to agaipg S-
wave andP’'S" is the standard S-wave reflection coefficieht further hammer the
point home, consider th& P’ represents a down-going P-wave transmitted to down
going P-wave is therefore the P-wave transmissiafficient. The matriceB andR are

functions of incidence angles and seismic propgrtie

P=
—sinf; — COS 1 sin 6, COS @, 1
cos 6, —sin ¢, cos 6, —sin @,
[ 2pyvg,sing  cos;  pivg (1 — 2sin? @,) 2p,vg,sin@, cos B,  pyvs, (1 — 2sin? goz)J
_p1VP1(1 — 2sin® ¢,) P1Vs, Sin 2 ¢4 pzvpz(l — 2sin’ @,) —P2Vs,Sin 2 @,
(1.99)
and
R=
[ sin 6, COS ¢ —sin @, —CO0S @, 1
cos 6, —sin @, cos 6, —sin @,
2p1Vs,Sin@y cos 0 pyvg (1 — 2sin? ¢,) 2pvg,sin@, cos0,  pyvs, (1 — 2sin? @,)
P1Vp, (1 — 2sin® ¢,) —p1Vs,Sin 2 ¢4 —P2Vp, (1 — 2sin? @) P2Vs,sin 2 ¢,
(1.100)

wherevs andvp, are the S- and P-wave velocities respectivelyayel 1;vs, andvp, are

the S- and P-wave velocities respectively in |&#gr; andp, are the densities of each
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layer fill; 8, and@, are the incident and transmitted P-wave angl¢ande, are the
incident and transmitted S-wave angles respectiaglgt Snell’'s law relates the P- and S-

wave angles (Castagna, 1993) (Figure 1.2):

p= sinfy _ sinf, _ sing; _ sing (1.101)

vpq vp, Vs, Vs,

Unique combinations of the physical propertieshef tnaterials influencing and
R (i.e.p andv) give rise to unique changes in reflection coéffits as the angle of
incidence changes as demonstrated by Figure hi. tdchnique is amplitude variation
with offset (AVO) analysis or amplitude variationtivangle (AVA) analysis. Either
name is valid since angle of incidence is a fumctiboffset. Modeling and inversions
based on AVA/AVO curves may enable skilled practiéirs to estimate subsurface
parameters. However, the Zoeppritz equations argalial if a thin layer is present
between the two half-spaces and one must turrflextieity modeling or numerical
solutions.

Another common tool for interpreting reflection @at velocity analysis (Yilmaz,
2002). As previously stated, the velocity of tkesmic wave depends on the physical
properties of the material (equation 1.96) andviilecity of the radar wave is a function
of the electrical properties (equation 1.26). rieaneasures the velocity of the wave in
the material, one can use those equations to duamé material properties. Subsequent
judicious use of petrophysical transformations paovide information about a range of
parameters including porosity, pore geometry, gsée distribution, and pore fluids.
Recovering information about pore geometry and flarés is particularly relevant to
hydrocarbon exploration and extraction (Aki andHials, 1980). Using GPR to estimate

pore fluid properties may help contaminated siteagers delineate source zones and
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contaminant plumes and subsequently prioritize ceatien efforts (Bradford and Deeds,
2006).

In either case, the foundation of conventional egjoanalysis is the normal
moveout (NMO) traveltime equation (Yilmaz, 2002):
t? =t§ +— (1.102)
wheret is traveltimef, is zero-incidence traveltime,is separation between source and
receiver, and is velocity. This equation assumes planar hotaldayers and is limited
to small angles of incidence. More advanced teclesgnclude dip moveout analysis
and pre-stack depth migration (PSDM). These pmwbre accurate velocity analysis in
the face of subsurface irregularities or large esglf incidence. The hydrocarbon
exploration industry has been using such methodgdars, and more recently GPR
practitioners have expanded those techniques tomitk radar data (Yilmaz, 2002;

Bradford, 2002; Bradford, 2006).
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b) i

Figure 1.2: a) Schematic demonstrating P- and S-wav reflections and
transmissions if v; < vp; compare to Figure 1.1. b) P-wave reflection coeéfients
(Q(1,1), equation 1.64) versus angle of incidencd;) for three different models:
glacier ice (= 3690 m &, p = 917 kg n¥) overlying bedrock (,= 5400 m &, p =
2700 kg m®) (solid line); glacier ice overlying till (,= 2000 m &, p = 1900 kg n?)
(dash-dot line); and glacier ice overlying water \(;,= 1500 m g, p = 1000 kg )
(dashed line) withR,, calculated using the full form of the Zoeppritz egiations and
material properties given in Table 1.2 (following Both et al., 2013). Note that these
reflection coefficients are only accurate for a rdéction from 2 homogeneous,
isotropic, welded half spaces, which does not acately account for the presence of
a thin layer.

Nevertheless, | proceed using equation 1.102. Seftection methods record
traveltime at the surface, for one layer | cal@ikgibsurface layer velocity as a function

of x andt:

x2
2
t2—t§

(1.103)

Unmo =

One can also sometimes apply this equation toatesles recorded from subsequent
planar interfaces and transform the NMO velocity ia layer interval velocity using the

Dix equation (Yilmaz, 2002)
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Where thin-layers are present in the subsurfaceQNMdocity analysis fails. If a
layer is below some limiting layer thickness, teiactions from the top and bottom of
that layer are inseparable (Figure 1.3) (Wides$3)L9The theoretical limit for such
resolution of reflection events 1. However, additional considerations such as noise
and signal characteristics make the practical lforitvavelet separation Aor even %
(Bradford and Deeds, 2006). Without adequate s&paraf these reflection events,
velocity analysis of the layer fill using travelrte methods is impossible. Practical limits
for velocity analysis even using PSDM are wavedgiagations of 1 -2 In addition,
conventional travel-time analysis of such a layermt reliably quantify layer thickness,

and practitioners must turn to other analysis tools

0
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Figure 1.3: Wavelets for reflection event from a rpresentative 3-layer system
where the second layer (L2) has thickness rangingam 4/10 to 4. Note that where
L2= 2 (right-most trace), two reflection events are cledy present, from the top and

bottom of L2 (arrows). However, below L2=3/4, the upper and lower reflections
become convolved with one another, making clear idéfication impossible.

(Annan, 2005; Widess, 1973).
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Having demonstrated that conventional tools fathie presence of thin layers,
finally I briefly summarize 2 techniques that maydble to quantify thin-layer

parameters: attribute and inversion methods.

Introduction to Attribute Analysis for Thin Layers

The attributes of the thin-bed reflectivity resperkepend of course on the
material properties of all layers involved (Ann@005). Previous work with seismic and
radar methods has demonstrated that analyzinghtastaous phase, instantaneous
frequency, reflection strength, and AVO responsyg allow detection of thin subsurface
layers (Booth et al., 2013; Bradford and Deedsg2@dadford et al., 2010; Deparis and
Garambois, 2009; Orlando, 2002; Smith, 2007; Tabeat., 1979). In the presence of a
thin layer sandwiched between two half spacesbtitiereflection response becomes a
summation of successive reflection and transmisso@&fficients from the top and bottom

of the layered stack (Annan, 2005).

In Chapter 2, | describe a method for depicting thection response using a 1D
model. Here | use that model to demonstrate thanges in layer thickness can increase
or decrease the reflection amplitude as well &s #ie reflection phase (Figure 1.4)
(Bradford et al., 2010). The model simulates arsé¢d sands{ =22) overlying
saturated claysf =35). For the thin layer case, | introduce a $atad thin layer of a
common environmental contaminamt €7) at the sand/clay interface. | calculate the
reflectivity response at normal incidence at 15082Mor 2 layer thicknesses: @.and
0.1%.. Qualitatively, visual inspection of the resuffiwaveforms shows changes in both

wavelet shape and amplitude as the thin-layer ti@s& decreases (Figure 1.4).
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Figure 1.5 demonstrates similar response in a é&bor data set. Here | collected
data over saturated sand/clay system in a plasticit the laboratory. Details of the
experiment and data collection are in Chapter Be ghysical layer properties match
those used in the previous 1D model, but | showptbeessed data for the control case
(no thin layer present) and a thin layer with latygcknessd) = 3%.. Again,

qualitatively it is easy to identify an amplitudecenaly where the thin-layer is present.
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Figure 1.4: Modeled changes in reflection charactestics for a) L2=0.2. and
b)L2=0.1A where L2 is the thin-layer thickness in a 3 layemodel. Reflectivity
response is from a 1D radar reflectivity model thatl will describe in Chapter 2.
Layer properties simulate a saturated sande =22) / saturated clay{; =35) system
with a thin layer of a common environmental contammamt (¢, =7) present at the
sand/clay interface. Relative changes in reflectiophase and amplitude (note scale)
are obvious in the thin-layer response of this mode For example, compare the
leading edges of the two reflection events (arrows)

However, the real goal is to quantitatively asseg$ changes. In subsequent
chapters, | use a targeted full-waveform inversmguantitatively assess layer
properties. Here, | also compare the data agai@gt model in an attempt to extract

guantitative information. | use a 2D Finite-Difface Time-Domain (FDTD) algorithm
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to model the laboratory experiment shown in Figuge(Figure 1.6). (For an explanation
of FDTD models, see Irving and Knight (2006) anekY1966). Numerical analysis
reveals that the reflection strength change imtbeel between the control and the thin
layer is within 5% of the changes noted in the datdhe two cases. Five percent is well
within level of noise in of the data. The simitgrbetween the model and data result is
especially remarkable especially considering tiengss of the modeled and measured
layers (<10%). Comparing relative changes in attributes betwibe laboratory and
model data may provide some information about lgyeperties. Thus, one can see that
using attributes in conjunction with modeling effomay overcome some of the

difficulties inherent with interpreting thin subsace layers.

Furthermore, AVA analysis may still prove a usab@dl even in the presence of
thin beds. For example, Bradford and Deeds (20686 )auformulation of the reflectivity
response for a 3-layered system to derive AVA csiiaghe presence of a thin-layer.
Figure 1.7 demonstrates extraction of AVA curvesrfrmodel data using the 1D
reflectivity model for the same saturated sand/sistem. These data provide
guantitative differences in reflection amplitudelaange in reflection strength with

increasing incidence angle and increasing layekitass (Figure 1.7).
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a) Control

20 30 40 50 60 70 80
CDP

b) 3%

20 30 40 50 60
CDP

Figure 1.5: Laboratory data demonstrating changesn reflection characteristics
using 1 GHz pulsed GPR data collected over a tanklled with saturated sand
overlying saturated clay (for more details on datacollection and processing see
Chapter 3). The sand/clay boundary is approximatgi at 40 cm, and the sand/clay
reflection event is clearly visible in both casesafrows); Wavelets are color coded
with respect to amplitude; i.e. a red/blue/red even corresponds to a wave
trough/peak/trough. The depression located at CDP0460 contained no thin layer in
a) but a 0.005 m layer (3%) of a simulated contaminated in b). Note the retave
change in reflection strength (28% increase) and @racteristics in the presence of
the thin layer.
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a) Control

20 40 60 80 100
CDP

b) 6%

20 40 60 80 100
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Figure 1.6:  Synthetic data from a 2D model with aaurce frequency of 450 MHz
and a model space simulating the laboratory conditins in Figure 1.5. Black arrow
annotates the sand/clay reflection event; red arrowpoints to region of increased
reflection strength where the simulated thin layeris present. Although the layer
thickness in part b) is twice that in Figure 1.5bnhumerical analysis reveals that the
reflection strength increase for the same layer tlekness (not shown) from Figure
1.5a) to Figure 1.5b) is 51% while for the model @ shown is 54%. The similarity
between the model and data result is remarkable espially considering the thinness
of the layer (only 6%4).
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Figure 1.7: The modeled reflectivity response of # 3-layer system given in
Figure 1.4 using the same 1D reflectivity model (tbe described in Chapter 2). | give
Layer 2 (L2) thickness as %; L1 = L2 is the case where no thin layer is presén
Note that both the zero-offset reflection coefficiet and the slope of the AVA curve
may change with increasing layer thickness. Quarfiiing this change and
comparing to the AVA response in a field data set ay allow interpreters to detect
thin layers and estimate thin-layer properties (fdlowing Bradford and Deeds, 2006).

Inversion Methods

The previous examples provided some insight intoutbe of models to
understand subsurface response particularly iprtdsence of thin layers. Skilled
practitioners can sometimes detect thin layersestichate their parameters based on
comparison of model data to the field or laboraaia. Such a process is often time-
intensive and inexact. A more rigorous approaathetdving thin layer properties from
reflection data could provide robust and accuratemates of those properties. For that
geophysicists often turn to inverse methods. Heresent a short discussion and

example of inversion methodology.
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When using radar or seismic reflection methods,renerds information at the
surface that arises due to subsurface propertiesrde methods apply various algorithms
to the recorded data in an attempt to recover gadperties (Figure 1.8) (Aster et al.,

2005).

Reflection Methods .
Earth Data
Properties

N

Inverse Methods

A

Figure 1.8:  Schematic illustrating the difference btween forward methods (e.qg.,
reflection methods) and inversion.

Inverse methods often use a synthetic model tacagplthe data response and
then iteratively minimize the misfit between thesetved data and that synthetic model.
Inverse theory implies that modeled parametersa¢tameasured data in a coherent,
meaningful fashion (Menke, 1984). A simplified suamnof example ordinary least

squares inversion (OLS) for reflection data proseasifollows:
Gm=d (1.104)

whereG is ann x m matrix havingn receivers to record the subsurface reflection even
andm subsurface layersn is anmx 1 vector of parameters; adds ann x 1 vector of
observed travel times (s). Having recordeat the surface, | want to fird, the
subsurface parameters. | can calculate a relevadelnusing perhaps a 1D reflectivity
model or a 2D FDTD model. Then, | can implemeniraersion algorithm to minimize

the misfitr between the calculated model and the real data:
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r=d—- Gm (1.105)

Inverse methods often iteratively update the mpdehmeters in an effort to
minimize the misfit. Where such minimization is pie, the solution then corresponds
to the parameter values that produce the minimusfitwthen applied to the model.
Unfortunately, one daunting and ubiquitous probfemnversion methods is that such a
minimum may be only a local value and not a glaye. Ongoing research continues to
investigate and mitigate the problems inherennima@cing algorithm convergence to the

global minimum even in the presence of many lodaimum.

In any case, in this OLS example, assuming thetisalexists | can estimata as

follows:
m = [GTG]1G"d (1.106)

where the superscriptindicates the matrix transpose and superscriptditates the
matrix inverse. If | find a solution, next | needdstimate the robustness of my solution.
Assuming constant, uncorrelated data errors, thenpeter covariance matr, is a

function of the data covariance?):
C. = [GTG] 1GT62([GTG]"1GT)T (1.107)

Finally, | can use the parameter covariance in ¢oatimn with statistical methods such
as the student’s distribution to bound the confidence intervalghe solution (Aster et

al., 2005; Menke, 1984).

The preceding discussion was a simplified discussicsome of the methodology
for a linear inverse problem. A plethora of inversproblems and algorithms exist, many

of them exceedingly more complicated and often lmear. Unfortunately, all these
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inverse methods are plagued by monstrous probhehish include the following: 1) the
solution may not exist; 2) if it does exist, théusion may be non-unique; 3) inverse
problems may be ill-constrained or ill-posed; ahdejuired computing time may be

prohibitive (Aster et al., 2005).

Nevertheless, geophysical inverse methods provjut@aeerful weapon in the face
of thin-layer problems in reflection data. For exade, an inversion algorithm could
potentially provide a quantitative, bounded solutior a subsurface thin-layer parameter,
such as permittivity or thickness or both, by miizimg the misfit between observed
AVO curves and a subsurface layered model (DepadsGarambois, 2009). Even such
a relatively simple inversion would provide a masbust and reliable technique than

trial and error curve fitting.

A real advance in subsurface parameter estimatisrobcurred in the past thirty
years with the advent of full-waveform inversioR3\(Is) (Plessix et al., 2012). These
inversion problems are non-linear and require adedicomputational power far beyond
what might be necessary for the linear OLS squexample | presented in this section.
However, full-waveform inversions are able to dikgtvert for subsurface parameters.
As such, they are uniquely able to incorporatéhalinformation within recorded data,
including the attributes, which often are relevianthin-layer detection. Thus, these
methods lend themselves to quantification of thayel properties. | discuss FWI more

thoroughly in Chapters 2 through 4.

Overview of Research
The following chapters detail my efforts to creatal test a novel targeted full-

waveform inversion algorithm that can reliably qgtifgrthin-layer parameters and a new
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method to provide high-quality, reliable data fgewvithin the inversion algorithm even
in the presence of subsurface anisotropy (ChapteE&ch chapter is a separate paper for
publication. | have submitted Chapters 2 and GeophysicsChapter 4 tdournal of

Glaciology, and Chapter 5 t6old Regions Science and Technology

Chapter 2 begins by providing an in-depth discussiathe thin-layer problem as
related to radar reflection data. Previous resebhas noted that attribute analysis such as
AVO technigues may allow some detection and qualifon of thin-layer properties, but
in an effort to rigorously and reliably quantifyose properties, | introduce a novel
targeted full-waveform inversion algorithm. Chapfeprovides a detailed description
both of the inversion methodology and 1D verticadidence forward model. | use the
reflectivity model to produce synthetic data fastbeg. The second chapter concludes by
demonstrating the reliability of the targeted FWItasted on synthetic data simulating
thin subsurface layers of contamination: in allesashe FWI recovered thin-layer
permittivity and thickness within 10% of true vadué also test the sensitivity of the

inversion to thin-layer thickness and conductiviging the synthetic data.

Chapters 3 and 4 describe inversion testing od tlata. Chapter 3 gives my
methodology and results for testing the targeted &W\4 field GPR reflection data sets.
In each data set one of three different contam@goit and two different NAPLS) was
present in a thin layer in the subsurface. Thgetad inversion approach reliably
recovers thin-layer parameters within 15% of restineated values even for noisy field
data. Chapter 4 demonstrates the use of the ioweatgorithm as adapted to seismic

reflection data. | test the algorithm both on &gtic data and also on field data collected
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at Bench Glacier, Alaska. Careful analysis of tihersion results provides a greater

understanding of basal conditions in the surveg.are

Finally, Chapter 5 introduces a new dual-polar@atiadar system that uses
reflection methodology to reliably image subsurfaterfaces even in the presence of
strong conductivity anisotropy. In particular, emlling radar data with this new system
over sea ice provides a reliable image of the iagewinterface when traditional radar
systems have failed to do so. Since my targetesrsion algorithm requires high-quality
reflection data, this system contributes a vitahponent in this specific situation.
Furthermore, in the event of an oil spill in or endea ice combined use of the dual-
polarization system for data collection in conjumctwith my inversion algorithm for

data analysis could help direct and prioritize rdiagon efforts.

As part of my PhD work, | have undertaken a miromaf area concentrating on
the role of science within public policy and degisimaking for public lands and resource
management. Public policy for these decisions dfteludes a scientific component,
although both scientists and policy makers fregyeartd vigorously debate the relative
weight and merit of that inclusion. | began mydyrate work as the Department of
Geosciences relocated into a new university bugidine Environmental Research
Building (ERB). Boise State University simultanelyusioved the Departments of Civil
Engineering (CE), Political Science, Public Admirason, and Community and
Regional Planning to the ERB with the stated gb&bstering “interdisciplinary
collaboration” and promoting “research aimed atghessing issues of the West,
including the environment, energy, transportatigater, land use, and community

planning.” Thus | had the fortunate opportunitystady the role of this new building as a
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boundary construct that might bridge a perceivadlzgtween scientists and policy
makers. Appendix A presents a literature summatyoohdary theory relevant to this
problem and provides results from my research exiagithe role of the ERB as a

boundary object.



44

CHAPTER TWO: TARGETED FULL-WAVEFORM INVERSION OF GBRUND-
PENETRATING RADAR REFLECTION DATA FOR THIN AND ULTR-THIN
LAYERS OF NON-AQUEOUS PHASE LIQUID CONTAMINANTS PARI:

ALGORITHM AND SYNTHETIC MODELING

Abstract

Quantification of thin-layer parameters is a ubiqus problem in near-surface
investigations using ground-penetrating radar (GPRg implement a full-waveform
inversion algorithm to quantify thin-layer permiity (¢), thicknessd), and conductivity
(o) for non-aqueous phase liquid (NAPL) thi#4 dominant wavelengtl) and ultra-thin
(<%&4) layers using GPR reflection data. The inversisesua non-linear grid search with
a Monte-Carlo scheme to initialize starting valteefind the global minimum. We tested
the inversion on 3 different thirfz1) and ultra-thin €'41) layer models with 5% added
Gaussian noise. The models simulate oil overlyem\sater, a dense NAPL (DNAPL)
trapped at a sand/clay interface, and saturateti®aarlying bedrock, respectively. In all
cases, the inversion retrieved thin-layer permistiand thickness within 10% of true
values. The inversion demonstrates a robust cliyabiquantify ultra-thin-layer
properties across a range of source functions ansusface conditions relevant to NAPL
detection and remediation. By taking a targetedaaagh, our algorithm reduces the
complexity in the inverse problem. It appears esdly useful for monitoring thin-layers

at contaminated sites.
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Introduction

The anthropogenic release of non-aqueous phasd ([§APL) contaminants
causes environmental degradation and has deletdariqpacts on human health (Hwang
et al., 2008). Although environmental regulatiomshe past 40 years have reduced
intentional and accidental discharge, long-terraasés of NAPLs have historically
occurred through improper disposal in unlined peaking underground storage
facilities, and other mechanisms. Such long-tedeases can introduce correspondingly
large quantities of NAPLs into the subsurface. Bedther hand, short-term accidental
pollution events, e.qg. oil spills, can also relelasge quantities of NAPLs with similar
long-term implications for ecosystem functionindh@@man and Riddle, 2005; Sydnes et

al., 1985).

NAPL contaminants fall into one of two categorigsLight-NAPLs (LNAPLS),
which are less dense than water; and 2) Dense NAPINAPLS), which are denser than
water. Examples of LNAPLs are crude oil, jet fuaisd gasoline. DNAPL contaminants
include chlorinated solvents such as trichloroethgl(TCE) and tetrachloroethylene
(PCE). Ubiquitous sources of NAPL contaminationdmecleaning operations and
aircraft maintenance facilities, where pit dispadabrganic solvents and jet fuels was

commonplace for decades (Brusseau et al., 2011lisi¢hl., 2009).

LNAPL and DNAPL release, subsequent migration, @mmapment have polluted
aquifers throughout the world. Aquifer degradat®especially problematic given the
implications of climate change for arid and senétaegions. For example, in Arizona,
previously viable drinking water sources are n@trpotable due to large-scale

contaminant plumes containing NAPLs (Brusseau.eP807). Successful remediation
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and recovery of contaminated aquifers depends@detection and removal of the
primary source zone and all discretely trappedaroirtation, which acts as secondary

source zones.

Complete removal of secondary source zones deenidgating and quantifying
the NAPL accurately. However, as they migrate spomse to hydraulic gradients,
fracture zones, capillary forces, and density psfiNAPLs frequently become trapped
in thin layers. Such traps complicate accurateatdtarization (lllangasekare et al., 1995;
Pankow and Cherry, 1996). For instance, DNAPLshmtome trapped in thin layers at
permeability barriers. Examples of DNAPL trapsluinie an aquifer/aquitard boundary
or clay inhomogeneities distributed within the dgui LNAPLs may smear in thin zones
across the top of the saturated zone in responsatty table fluctuations (Bradford and
Deeds, 2006). While both LNAPLs and DNAPIs aredeigradable, DNAPL rates of
biodegradation are so slow as to effectively npllihy temporally relevant mitigation of
large-scale releases (Nellis et al., 2009). Thoserhating thin layers that act as

secondary source zones is particularly imperatii@NAPL-contaminated sites.

Remediation of spilled oil in and under sea icesprags a similar case whereby
thin layers of LNAPL can be dispersed in the enuinent for long distances in response
to density contrasts and ocean currents (Stanavaly, 2012; Yapa and Weerasuriya,
1997). In this scenario within the Arctic envirormhethe presence of ice and snow,
severe weather conditions, and the growth of ieetshthroughout the winter all hamper
the characterization and removal of the source amedispersed contamination. In
addition, biodegradation rates are generally priopuatl to temperature and thus may be

even slower in these cold environments (Sydnek,et385). The combination of slower
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biodegradation and rapid transport mechanisms wvifiredictable weather intensifies the

need for timely and accurate quantification oflspilNAPL in the Arctic.

In both of these examples, the resulting thin, réigclayers of contamination
cause significant uncertainty when using traditionathods to estimate NAPL quantity
and location (Luciano et al., 2010). For examptewventional contaminated site work
plans often implement boreholes for characterinatiod subsequent monitoring
(USEPA, 2007). However, boreholes are expensire-ttonsuming, invasive, and
localized. In the Arctic, drilling boreholes thrdugea ice to locate spilled oil engenders

significant exposure and risk to spill responsespenel.

On the other hand, ground penetrating radar (GRR)Yemonstrated its
suitability for rapid, cost-effective, and non-irsinge detection of dielectric permittivity
anomalies in the subsurface in certain cases (Beewad Annan, 1994; Bradford and
Deeds, 2006; Bradford and Wu, 2007; Bradford e28l10; Orlando, 2002; Luciano et
al., 2010). Skilled interpreters can correlate ¢hgsrmittivity anomalies with
contaminant location by considering site charasties and contaminant electrical
properties (Bradford and Deeds, 2006; BrewsterAmthn, 1994; Hwang et al., 2008).
With such careful implementation, GPR can charasea contaminated site more
thoroughly and rapidly than conventional tools. Heer, conventional methodologies

provide essential control data for such GPR sitgatterization.

Besides NAPL delineation, analysis of GPR datapramide additional site
information relevant to remediation efforts. Exadesgpnclude site stratigraphy, porosity,
and current direction in the case of Arctic oilllspiinder sea ice (Babcock and Bradford,

2014c). At contaminated aquifers, incorporatinfgimation derived from GPR data can
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reduce time for aquifer remediation using pump-aedt, air sparging, or other

technologies (Brusseau et al., 2007).

Reflection GPR methodology involves measuring #fkection of an introduced
radar signal from a boundary in the subsurfacet@mslating the measured data into
information about the subsurface physical propgrtiehe propagation of the radar signal
in the subsurface and its reflection from a sulam&fooundary depends on the effective
subsurface permittivityet-) and conductivity4ef) and the contrast in those properties
across the boundary. Well-documented petrophysi@asformations, such as Archie’s
law and the complex refractive index method (CRIptvide the link between electrical

and physical properties (Knight and Endres, 2005).

Since the electrical properties of NAPLs and NARItusated earth materials can
be markedly different from those of common earthemals at contaminated sites (Table
2.1), reflection GPR surveys are particularly usEfuNAPL detection. However, the
possible non-uniqueness in the system’s materogdgaties complicates data
interpretation and subsequent identification oftaonnant location (Bradford et al.,
2010). Solution non-uniqueness may be particulantplematic for detecting oil in

Arctic environments due to overlap between the téumes of oil, snow, and sea ice.

If reflections from the top and bottom of a layes aell separated in time,
conventional velocity analysis can yield an esteradtthe speed of the radar wave
propagation in that layer (Annan, 2005). Sincesigy is inversely proportional to the
square root of the effective permittivits, -, careful velocity analysis can yield an

estimate of the permittivity of the layer fill andh a simple time-to-depth conversion
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Table 2.1 Representative electrical properties fothe NAPL contaminated sites
(Bradford et al., 2010; Annan, 2005; Hinz, 2012); alues for water- and DNAPL-
saturated sand calculated using the complex refraste index method (CRIM) for
relative permittivity ( &) and Archie’s law for ¢ usingm=1.3 andn=1.4 (Knight and
Endres, 2005).

Material &r (S7m) R(::rlrc]ii_rlzei%%i)ty
Air 1 0 0.3
Water 79 — 88* 0.01-0.5 -0.033
Sea Water -~88 3-5 No propagation
Sea Ice 3-8 16— 10" 0.11-0.15
Snow 1.4-3.1 -~10° 0.16-0.25
DNAPLS 2-8 16 — 10’ 0.1-0.2
Crude Oil 2-8 18- 10° 0.15-0.21
Water-Saturated Sand 20 -30 2.010* 0.05 — 0.07
Water-Saturated Clay 5-40 01-1 No propagation
0,
N ART i;‘trl‘]‘:ﬁfn/)" 5-8 1.9-9.6 x Tb 0.11-0.13

*Temperature-dependent

produces the layer thickness. Subsequent judicdoogparison of the velocity-
derivede, to properties of known or suspected site contantgja.g. Table 2.1, may

predict NAPL location.

However, in the case of thin layers, the reflecgoents from the top and bottom
of the layer interfere with each other, and conweatl velocity analysis is not possible
(Bradford et al., 2009). We define an ultra-thipdaas one layer whose thickness'is
the dominant wavelengtli)(of the signal (Booth et al., 2012). Below thrsili, the total
reflection event from the thin layer is proportibt@the time derivative of the source

function (Widess, 1973). However, the capabilitydsolve thin-layer reflection events is
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influenced also by source wavelet characteristicsthe presence of noise (Guha et al.,
2005). Modeling results suggest that quantitata@dnalysis may require a thin-layer
solution even at layer thicknesses up to(Bradford and Deeds, 2006). As previously
mentioned, in several relevant environmental proklspilled NAPLs tend to

redistribute into thin layers. These layers mayreh thinner than #zand we define
thin-layers as those with thicknes$4.. In these cases, predicting contaminant location

using conventional velocity analysis is not possibl

Attribute analysis of GPR data has proven a ugefillto estimate the electrical
properties for such thin layers of NAPL contamioat{Baker, 1998; Bradford and
Deeds, 2006; Bradford et al., 2010; Deparis anc&@hpis, 2009; Orlando, 2002). These
attributes include instantaneous phase, instantefeequency, and reflection strength
(Figure 2.1). Where detection is possible, quasatfon of layer properties remains
problematic. For example, Hwang et al. (2008) usdldction strength to quantify
relative, but not absolute, DNAPL volume duringoairolled spill. Bradford et al.

(2010) demonstrated that reflection strength mlialvle indicator of oil trapped between
snow and ice for oil thicknesses as low as 0.0INevertheless, the expected changes in
reflection amplitude differed from the model predatin by 16%, making layer
guantification problematic. In fact, Orlando (20@®ncludes that extracting DNAPL

layer thickness from reflection strength alone ddag impossible.
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Figure 2.1: 1D reflectivity model and attribute resilts computed for 50 different
cases of DNAPL layer thickness. a) Model with satated sand (L1,& = 29.1, brown)
overlying clay (L3, & = 35, white) and increasing DNAPL-saturated sandL@, & =
10.5, yellow) layer thickness from left to right; B results from 1D reflectivity model,
and extracted c) reflection strength, d) instantaneus frequency, and e)
instantaneous phase.  Full-waveform inversion canncorporate all of this
information and best constrain the solution for thn-layer properties.
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Instantaneous phase and frequency are also usdhihilayer problems but have
limitations (Taner et al., 1979). For example, @da (2002) found that changes in
instantaneous phase and frequency delineatedafeacf DNAPL contamination, but
was unable to quantify layer thickness. Bradfordle2010) extracted instantaneous
phase within 6% of the model predication for thaydrs of LNAPL trapped between
snow and ice. However, both the instantaneousepéiad frequency in their research
varied widely due to noise, and their results fatantaneous phase had a coefficient of
variation ¢€v) greater than 150%. The higkireflects the uncertainty of correlating
instantaneous phase with thin-layer parametersghdights the difficulty of attribute

analysis for thin-layer quantification using GPRala

On the other hand, full-waveform inversion allowagtitioners to directly invert
for subsurface properties (Plessix et al., 201@lj-\Wwaveform inversions incorporate all
the information contained in the reflected wavelahe effort to directly quantify
subsurface parameters. Thus, this methodology e€andoe robust than attribute
analysis, which singles out specific pieces ofimfation such as the attributes mentioned

above (Figure 2.1).

Previous work has used full-waveform inversion dPRxeflection data to
estimate subsurface electrical parameters (Kalpgeros et al., 2013; Lambot et al.,
2004; Tran et al., 2012). Busch et al. (2012) imp@ated a full-waveform inversion to
recovere,; andoes Within 15% and 62% respectively of measured datdogferopoulos
et al. (2013) inverted GPR reflection datadgy and conductivity gradients within
concrete due to chlorine infiltration. They retieeMthe uppermost concredg -within 1%

of the true value using the air/concrete reflectidman et al. (2012) use full-waveform
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inversion combined with a mixing model to estimatger content and sand thickness for
a sandy soil. Their solutions for water conten¢@ty less than 1.3%. Sand thickness
results were within 5% of true values. In many saserrect parameterization of the
source wavelet has proven crucial for reliable s\ results (Klotzsche et al., 2010;

Busch et al., 2012).

Previous research has also implied that full-wanefmversion on GPR data may
also be a promising tool for thin-layer quantifioat For example, Deparis and
Garambois (2009) inverted for the AVO charactarsstf reflection GPR data with
respect to frequency. They concluded that a gloivarsion scheme may allow for
improved thin-layer characterization. Zeng et 2000) qualitatively correlated model
AVO curves with field GPR data, and predicted fiadltwaveform inversion of GPR
data may allow for quantitative analysis of thipdes. With these advantages in mind,
here we present a targeted full-waveform inversilgorithm for quantifying thing{*41)

and ultra-thin- £'44) layer properties using GPR reflection data.

Methodology

Forward Model

We use a 1D, vertical-incidence reflectivity methodyenerate our forward
model. The reflectivity method provides an exattison to the wave equation for an
electromagnetic (EM) plane wave propagating thraauglomogeneous, isotropic, 1D

layered material.
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Petrophysics

Thus we begin by calculating or estimatimg ande.r. These properties are

frequency-dependent and given as follows, assuthiaigghe imaginary part of the

complex-valued is insignificant (Knight and Endres, 2005):

Ocr(w) = 04c + wE" (W) (2.1)
and
Eef(w) = €' (w) (2.2)

wheready.is the low frequency conductivity limig)’ is the imaginary part of the
complex-valued permittivitys; € is the real part of; andw is frequency (Knight and

Endres, 2005).

Values forg,;. of common earth materials are well-known, and ame use
reasonable representative values from the litezadumeasured values in equation 2.1
(Annan, 2005; Knight and Endres, 2005; and othefg)ditionally, for a saturated
porous material the modified Archie’s law provigesempirical approximation faer,,
as function of the cementation factan)( the conductivity of the pore fluid(), and the

water saturationS,):

Oqc = 0r ™Sy, (2.3)

Literature values fomrange from 1.5 to 2.5, and forange from 1 to 2 (Knight and

Endres, 2005; Archie, 1942).
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Next, we must calculate the complex-valued periiytiand substitute’ (w)
into equation 2.1. In this paper, we use the CRéjMation to estimate” of a mixture as

follows (Knight and Endres, 2005):

e = [(1— ¢)\Jes + dSwi/en + P(1 — Su) /&3] (2.4)

whereg,, is the complex, frequency-dependent permittivityater;o is the porosity of
the mixture;S,, is the percent saturatiogy is the permittivity of the soil grains; aagl is

the permittivity of a third phase, if present.

The complex-valued frequency-dependent permittifatywater,e,, is given by
the Debye equation (Debye, 1929). It describesliblectric molecular relaxation of

water at a specifio:

* €dc—€o0
Ew = €oo T - (2.5)
where g,is the permittivity limit at frequencies much highkan the characteristic
relaxation frequency of water, about 17 Gklg; is the low frequency permittivity limit;

andz is the characteristic relaxation time.

Thus, we can calculate the relevant material ptegeein each layer of our
reflectivity model. Combining equations 2.3, 2.4d&.5 produces, . Substituting
equation 2.4 into equation 2.2 providgs. Combiningo, s ande,r gives the wave
number K) in a given material as follows:

k*? = UoEerw? — il Tpr (2.6)

whereyp,is the magnetic susceptibility of free space.
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Algorithm

We use the model to simulate the reflectivity resmto a series of stacked
layers. The 1D reflectivity calculation begins Iz fowermost layer and then calculates
the total reflectivity respons#|B;, recursively at each successively higher boundary

using the Fresnel reflectioR)and transmissionr] coefficients andMT; as follows:

MT; = MB;e~2ikidi (2.7)

d d u
— Ripg# T4, Tip i MTisq
1-R%  MT,,

MB; (2.8)

The recursive algorithm uses those relationshigetopute reflectivity from the

total stack, which we observe at the uppermost dannR, (Muller, 1985):

R, = MB, (2.9)
whered is the layer thickness. The superscripgndd refer to the up-going and down-

going reflection and transmission coefficientspeedively, at a boundary.

The model then convolvd® with a source wavelet spectrum in the frequency
domain. We use a Gabor wavel@&) @s it provides a source spectrum which closely
models the source wavelet of our commercial ragstem while allowing for flexibility
in reproducing a range of source wavelets (Motlel.e 1982). These wavelets are the

product of a Gaussian window with a sine functi@ns defined in the frequency domain

as follows:
1 _mU=fe?
G = \/T_p e 4p e~ (210)

wherefy is central source frequency (Hz)is phase rotation, andis a function of the

width of the Gabor functior (S):
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p= - (2.11)

After convolution, we transform the result to tire¢ domain using the inverse
Fourier transform to generate a complex-valued VeaVé This result simulates a radar
reflection event from the layer stack. It providles full analytical 1D solution including

all multiples.

Inversion

The inversion evaluates the cost functipnas follows:

Q= Z(dobs - dcalc)z (212)

whered.,c is a reflected wavelet calculated using the 1Reo#ifvity model, andi,, is
the data. In taking this approach, we assume ee&ponse is an adequate representation
of the radar data. Furthermore, based on the denivaf the 1D reflectivity model, we

are assuming the electrical properties of the lagee homogenous and isotropic.

The inversion uses a Nelder-Mead gradient-baseplsinsearch method to find
the values of those user-chosen inversion parametach minimizep (Lagarias et al.,
1998). The total set of inversion parameters withereflectivity model are the source
wavelet parameter$y( do, andy) and all layer propertie@e;, oef, andd). Thus for the 3-
layer case there are a total of 12 available paemeéNe can choose to invert for the
values of any subset of those parameters, and fveedbat subset as the inversion
parameters. In general, we may choose to incladeladtrary number of layers, but all

models in this paper have 3 layers.

Typically, we seek a solution for the thin-layergraeters while assuming that

the upper and lower layer properties are well-knowith that assumption, we first
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invert for the source parameters. Then we canheseesulting source wavelet parameters
within the inversion to solve for the thin-layeopertiesee;, d, andoer. IN most cases, the

thickness of the overburdemjs an additional inversion parameter. Invertiogthe

effective source function allows us to include @oggtion effects due to the overburden
in our source wavelet characterization. The mauggy not directly include such effects.

Thus, this method provides the most complete estimieffective source properties.

While inverting for either thin-layer or source pareters, we take a Monte-Carlo
approach to initialize the starting values for eswtersion parameter. We randomly
select the initial value for each parameter frooméorm distribution that bounds the
range that is physically realistic for each cabe inversion continues the gradient-
based search to minimizgeusing the specified inversion parameters untithes a user-
specified minimum value fay or a user-specified maximum number of function

evaluations. The algorithm then returns the thyetgparameters ardvhich correspond

to that local minimum valuep(y). For all inversion testing, the complete invensio
routine replicates 1000 times and finds the globiaimum @gn) from those 1000
iterations. We report the mean of the inversiorapeeters from the subset of solutions

which correspond togw.

To estimate uncertainty, we evaluate equation tad 10,000 parameter pairs
around the solution mean. We then calculate themsan square (RMS) error and
estimate the range of parameter pairs that fidita within an estimated noise level. For
the source parameters, we test the coupled unutgrtar fy, 0 pairs and fofo, 7 pairs.

For the thin-layer problems, we report uncertaindyn ¢, d pairs and frona,, o pairs.

Although additional exploration of the solution spas necessary to fully constrain the
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coupled, multi-dimensional uncertainties, this @agh gives a good idea of solution

uncertainty while remaining easy to visualize.

In summary, steps for implementation of this altjon are as follows:

Estimate/define layer properties for contaminated ancontaminated case

» Estimate/define source properties

» Invert for effective source wavelet parameters gisincontaminated
reflection event

» Define inversion parameters (subset of all layeapeeters, usually

contaminated layer properties) and invert for thos@meters using effective

source function in 1D reflectivity model

» Estimate uncertainties from parameter pairs

Testing

In order to test the inversion, we first calculat®rward models. We use 3
different source frequencies to test inversion stbess and add 5% random Gaussian
noise to each of the models before the inversiach model has up to 3 layers each
(Table 2.2). Relative change in permittivity froayér 1 to layer 3 is low/medium/high,
high/low/high, and low/high/low for Models 1, 2,&8, respectively. These models
simulate oil overlying salt water, a DNAPL trappedand/clay interface, and dry sand
overlying saturated sand trapped above bedrockalééegenerate 3 corresponding
secondary 2-layer models representing a refleétmm an uncontaminated Layer
1/Layer 3 boundary with Layer 1 and Layer 3 prapsras listed for the primary model

in Table 2.2. We use these models to invert fersthurce wavelet parameters. Thus, for
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the source parameters inversidigsgo, andy were the inversion parameters. For the thin
layer inversionss;, d, o, and the thickness of the overburdepdre the inversion

parameters. We estimate uncertainties from thgerah coupled parameter pairs that fit

the data within 5% ofgm.

Models

Model 1 simulates an oil layer overlying sea watgh 1 m of air between the
antennas and the oil layer (Table 2.2). The mogjdicates a radar trace collected with
the antennas suspended in air over oil spilleccean water. We use representative
values forer andoet of air, oil, and salt water, whete equalse,cdivided by the
permittivity of free spaceg,. For this model, we generate 2 separate exarhphgag oil
layer thicknesses equal to 10%nd 25% respectively. The central source frequerigy (
is 1500 MHz, an@=0. The secondary model for the source inversisting on Model 1

simulates air over salt water.

The second model simulates a DNAPL contaminanpedmt a sand/clay
impermeability barrier. DNAPLs can become trappethis way at the bottom of an
aquifer or at isolated clay lenses within the aguifVe use equations 2.4 and 2.5 to
calculate thes for the saturated sand (layer 1) assungin7% andeg=4¢, for quartz.
For the properties of water (equation 2.5), weeset 1.&,, €4, = 81g,, andz = 9.3 X
10?5 (Cole and Cole, 1941). To calculaggfor the DNAPL-saturated sand (layer 2),
we assume that the DNAPL displaces 85% of the yater §,=15%), and tha¢;= 2¢,
for the DNAPL (Hinz, 2012). Finally, substituting (w) from equation 2.4 and

representative values foy, into equation 2.1 yields,fin layers 1 and 2. We use
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equation 2.3 to calculatg,. usingm=2,n=1, andsy= 1 X 107 S/m and representative
values from the literature for clay ando,; (Knight and Endres, 2005). The DNAPL
layer thickness in this model is 9% is 500 MHz; andy=0 (Table 2.2). The secondary
model for the source inversion testing on Modein2utates a reflection from the

sand/clay barrier.

The final model simulates a thin layer of saturatadd underlying the vadose
zone and overlying bedrock. We calculaiefor the saturated sand following the
methodology for Model 2. However, we ggf= 0.01 S/m for the thin layer in order to
test the inversion at higher values of conductivigiectrical properties for layers 1 and 3
are based on representative values from the litexdbr dry sand and granite (Knight
and Endres, 2005). The thin-layer thickness for 8&dis 8%. Central source
frequency is 1000 MHz, ang=0. The secondary model for the source inversisting

on this model simulates a reflection from the sgratiite interface.
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Model parameters: Model 1 simulates aail layer overlying sea

water; Model 2 represents a DNAPL trapped at a sattated sand/clay interface; and
Model 3 describes an overland flow model with a satated sand layer underneath a
dry sand overlying bedrock. We estimated or calcuked parameters as described in
the text; d is also given as %. Note that we generated Model 1 for 2 layer

thicknesses.

Model Layer # Er Ger (S/M) d (m)
1 1, air 1 0 1
'6=1500 MHz 2, oil 3.5 5.3 x 10 b"’;)oo_bozls((lzogf;)))
60=0.3ns 3, salt water 81 1 1
2 1, saturated sand 22 0.004 0.039
fo=500 MHz 2, DNAPL- sand 7 9.6 x 10 0.02 (9%)
0o=0.9ns 3, clay 35 0.1 1
3 1, dry sand 4 10 1
fo=1000 MHz 2, saturated sand 22 0.01 0.0054)8%
50=0.9ns 3, granite 5 g1 1

Inversion Results

Source Inversion

For all models, the inversion recovers the soussaipeters within <1% of the

true values fof, andd, (Figure 2.2 and Table 2.3). The valuesifare small (<4 x 1)

positive numbers in all three tests, but the tralee ofy is 0. Uncertainties for the

inversion results fofy anddp are <10% of solution values (Table 2.3). Howetlezcv

associated with the solutignis up to 25%.
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Figure 2.2:  a) Pairedfo, dp uncertainties and b) pairedfy, # uncertainties for the
solutions from the source parameter inversion for Mdel 2; darker indicates lower
values. The + is the true model value and the linencloses all paired values where
the objective function is within 5% of ¢em, Which is the level of added Gaussian
noise in the models. Although we only include thplots for the inversion solution
for Model 2, the results from Models 1 and 3 are siilar and are enumerated in
Table 2.3.

Table 2.3: Inversion solution and standard deviatia for source wavelet
parameters using reflection from Layer 1/Layer 3 inan uncontaminated area for
models; truen = 0 for all model source functions.

Convergence fo fo % dox 10°
Model Ratge (true value) | (solution) | (true value) | (solution) (X 1703)
(MH2z) (MH2z) (ns) (ns)
1 24% 1500 1499 + 3 0.3 0.30 £ 0.03 3.4+0.2
2 43% 500 499 +3 0.9 0.90 £ 0.03 1.1+0.2
3 57% 1000 1000+ 4 0.9 0.89 £0.04 1.2+0.3
Model 1

For Model 1, the rate of convergence is 2%. (Wéneehe rate of convergence
as the percentage at which the inversion algorithnverges t@gy out of the 1000
iterations. Convergence $@y is constrained to starting values for layer dépim the

surface 4) being within 50% of the true value (Table 2.Zhe mean inversion solution is
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within 8% and 14% of the true values for the oyides; andd, respectively (Table 2.4).

The solution foe is within 1% of the true value. However, theolution deviates up 66%

from the true model value. The inversion algorittho@s not appear to be sensitive to the

thin-layer conductivity for this example.

The solutiorg, andd are 6% and 13% more accurate for the thin oilréydel
1b,d = 25%.) than for the ultra-thin one (Model 1+ 10%), and the associated
uncertainties are 90% smaller (Figure 2.3). In taldj the difference betweedlsy and
the next lowesh v is 3 times larger for the thin-layer cagen = 27%bdLmneares) than for
the ultra-thin layer exampl@&déu = 96%b mneares) (Figure 2.4). Thus overall results for
Model 1 suggest that the inversion accuracy mangase as layer thickness increases, if

all other parameters were to remain constant.

Model 2

The rate of convergence déawm is 20%, andcwm is 75% greater than the next
lowestd m. The inversion on Model 2 data retrieved theadilin-layer parameters
within 2% of the true values fef, d, and¢ (Table 2.4). The paireq, d uncertainties are
+15% of the true values (Figure 2.3). The accudhese results is promising given the
thinness of the DNAPL layer (9%pas compared with Model 1 oil layer thinness (25%

and 10%). The conductivity solution deviates up 80% frdra true layes.

Model 3
The rate of convergence ¢y is 11% for this model, angky is 18% of the next
lowestd,m. Examining the starting range for thin-layer pagtens (Table 2.4) reveals

that convergence tiv again is limited to the randomly chosen startiatye fore being
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within 50% of the true value. (In field data, theedburden thickness will likely be
constrained within +5% of the true values, but heeeallowed deviations up to 100%

from true overburden thickness in order to test @hoobustness.)

The inversion solution for the thin-layer parameterwithin 4% of the true; and
d, and within 1% of the true(Table 2.4). The paired, d uncertainties are within +25%
of the true values (Figure 2.3). Here we purposedyed a thin-layer 2 orders of
magnitude higher than either Model 1 or Model 2 this case, the resulting solution for

o is 5 orders of magnitude lower than the true layer

a)

0007 0.008 0.009 0.01 0011 0.012 0022 0.024 0.026 0.028
d (m) d (m)
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25
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&
f
‘ |

0.018 0.02 0.022 0.024 153 4 5 6

d(m) d (mm)

~

Figure 2.3:  Uncertainties calculated fore;, d pairs centered around the inversion
solution for a) Model 1a, b) Model 1b, c) Model 2and d) Model 3; blue colors are
low. The + is the exact model value, the trianglesithe inversion solution, and the
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line encloses all paired values where the objectivieinction is within 5% of ¢gu.
Uncertainties in solutions fore and | are the range of values enclosed by the line for
these parameters for coupled,, ¢ pairs and &, | pairs respectively (not pictured
here, values in Table 2.4).

a) b)
2 S g e et s Mt e e ene s seser, waegact  wlece mm., Cecasten W 0068
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Figure 2.4: Comparison of the difference betweewsy (+) and ¢ v (.) from the
1000 inversion iterations for a) Model la and b) Mdel 2. For Model 2,
Pem=25%P Mneares, While for Model 1a, ¢peu=96%d mneares- A larger difference
between the two may indicate a more reliable solun.



Table 2.4:

3 and the inversion mean calculated from all resust for ¢pewm.
pairs are in Figure 2.3.
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Ultra-thin-layer parameters for a) Model 1, b) Model 2, and c) Model

Uncertainties foreg, , d

a) dom@=96%dLm(aneares AN Pomp)=27 X PL M(b)nearest
True Starting Range
Parameter Solution Bounds
Value Range Leading to ¢ewm
a) 3.24 2-15
e 35 b) 3.45 1-507) 2-15 2.39 - 14.94
a) 0.01 a) 0.01 14 0.001-0.15
diMm | py0025| b)0.025 0-110001-0.13 49011 - 0.107
0.99 +0.01 0.51-1.49
(m) ! 1.001+0001 | 0719 02-2 0.56 - 1.49
3.8+3.1x10d ]
o(S/m) |5.3x10 18+13x1d | 0-01| 1-25x 16| 1.13-8.96 x 1¢
b) Pcm=25% Mnearest
True . Starting Range
Parameter Values Solution Bounds Range Leading t0 doy
Eef 7 6.9 1-40 2-15 2.02-15
d(m) 0.02 0.02 0-1 0.001-0.1p 0.01-0.145
I (m) 0.40 0.399 + 0.002 0-10 0.2-1.0 0.2-0.69
o(S/m) | 96x10*| 1.8+16x1d | 0-0.1| 1-25x106| 1x10*-2.4x1C
C) dom=18%¢ mnearest
True . Starting Range
Parameter values Solution Bounds Range Leading to dew
Eef 22 22.51 1-40 15-30 15-29.9
d(m) 0.005 0.0048 0-1 0.001 -0.05 0.001-0.0048
I (m) 1 1.007 £ 0.005 0-10 01-2 0.57-1.42
o (S/m) 0.01 82+35x10 | 0-1 | 0.005-0.05 5x10-5x10°
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Parameter Sensitivity Testing

First we test the robustness of the source paranmetersion to errors in
overburden permittivity for Models 2 and 3. Focleanodel, we inverted for the source
wavelet parameters 20 separate times. For eaehnatepnversion, the model overburden
permittivity (e1) deviated from the true permittivity while the tre$ the inversion routine
remained constant. We tested the source parame&sions for deviations sy +20%
in increments of 2%. For both Model 2 and Modeh®, solution §was within 5% of the
true value even when varied £20% from the true value. The same is tfue solution
do for Model 2. However, in Model 3, the solution # deviated up to 135% from the
true value ag; increased above +10% of the true value. In aaftitihe solutiory for
both models deviated from the true value. Over#imge of deviations from true
tested, the change in phase Model 3 was 1 ordaaghitude greater than that for Model
2. The discrepancy in the solution deviations leetwthe two models may be due to the
fact that the Model 3 overburden was 2.2 timedizk fas in Model 2. The greater the
propagation distance through the overburden witkeal conductivity, the greater the
apparent change in phase of the wavelet. Thubgasverburden thickness increases,
any errors in overburden characterization havesatgr effect on the inversion solution

for the source parameters.

After testing the inversion robustness for overleargermittivity estimation
errors, next we systematically test the inversmrcbnductivity only using Model 3. We
generate 9 different models based on Model 3 vaghother parameters listed in Table
2.2 held constant. Each model has a diffesestarting from Model 3_1 having= 10°°

S/m to Model 3_7 having= 10" S/m. In this inversion, we hold all other model
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parameters constant and allewo be the sole inversion parameter. The inversion
solutions were within 10% of the true value for thedels with the 4 highestvalues
(102, 10%°, 10%, and 1@ S/m), but for the other 5 tests the solutionssfeary more
than 5 orders of magnitude from the true value. 8¢sociated uncertainties encompass
roughly the same set of values forakxcept the two highest values tested (Figure 2.5).
Furthermore, the inversion solutions #gte= 10* S/m and fowye= 10° S/m were

within 12% of the solution given whenue= 10? S/m. We conclude that there are no
discernible trends in the inversion solution accyraver the range ef values from 10

to 10" S/m. For the 2 highest conductivities tested sthiation is reasonable and the
error is confined to 1 order of magnitude. Reladdtimatings and its uncertainty may
only be possible when layer > 10" S/m. However, the limit fos estimation most
likely also depends ofg as well as the layer thickness (Tsoflias and Be@@08). Here
we have tested sensitivity using an ultra-thin layer model, ahchay be possible that

sensitivity will increase with increasing layerdkiess.

Finally, we test the inversion sensitivity to laykickness using variations on
Model 2. With the other parameters in Model 2 tanis(Table 2.2), we test the
following values of DNAPL-layer thicknessas= 0.02 m (9%); d = 0.015 m (7%); d =
0.01 m (4%); d = 0.005 m (2%); d = 0.002 m (0.9%); andd = 0.001 m (0.4%). In this
case, we hold all other parameters constant aod dlto be the sole inversion
parameter. The inversion algorithm demonstratesharkable accuracy (within 5%) in
retrieving ultra-thin-layer thicknesses that wenecinless than 10%including two tests
whered <1%! (Figure 2.5). This result demonstrates that céift@ radar data is

sensitive to extremely thin-layers (<1%
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Figure 2.5:  Sensitivity testing for a)e using Model 3 and b)d using Model 2,

where - is the inversion solution, and the dasheihe marks 1:1 correlation. Note

scales. Error bars are those solutions within 5% ofpgv. The inversion does not
appear to be sensitivity tos, which corroborates our observations throughout mdel

testing. On the other hand, the inversion retrieve layer thicknesses accurately
(within 5% of the true model value) down to a layerthickness of 0.4%.

Conclusions
The full-waveform inversion performs robustly fodéferent models. The

inversion recovers thin-layer within 8%,d within 14%, and within 2% of the true
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values for all models, but is insensitive to lewalues. The inversion performed well for
layer thickness well less that. Accurate overburden characterization will aié th

inversion’s rates of convergence by tighteningrdrege for initial values af Our results

demonstrate the importance of accurate overburdaracterization as conversion to the
true solution depends on the starting estimatevyerburden thickness being within 50%
of true value. GPR site characterization can glevhese parameters using velocity
analysis or other methods such as Time Domain &efieetry (TDR) before
implementing the full-waveform inversion for quditation of thin-layer parameters.
Careful analysis of the overburden should allowsise determine overburden

permittivity, and thus thin-layer depth, within 58bkits true value (Bradford et al., 2009).

We demonstrated a positive correlation betweertisolaccuracy and increasing
differences betweedsyv anddv. Thus comparing the two may provide an indicabbn
solution reliability, in that a larger difference70%) between them may signify a more
accurate result (Figure 2.4). Finally, convergerates are as low as 2% (Model 1) and
less than 20% in all model examples, confirmingréegiirement to perform multiple
iterations in order to generate reliable resulis: @otocol calls for 1000 iterations per

inversion. This protocol gives good results forstnenodels.

Although it performs well for all other layer paratars, the inversion is not
sensitive to conductivity values. During speciBesting for solutiors, solutions deviated
up to 5 orders of magnitude from true or estimatades at lows values. Examination
of the wave number reveals that wave attenuatiperntds o, whilst the wave
propagation depends ap;. Therefore, changes i, dominate the reflectivity response

at lowo values (Zeng et al., 2000). Thus, although theef@ctivity model computes
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dcaic based on the full, frequency-dependent wave numddeulation, the impact
of g, is much less than that ef on the objective function. Therefore, the inskvisy
of the inversion to the thin-layer conductivityltaks from the nature of the reflectivity

model used to calculate the objective function.

Overall, the accuracy of our inversion algorithmfecovering thin- and ultra-
thin-layer parameters other thamising GPR reflectivity data demonstrates its pidén
usefulness for quantitatively characterizing tragdr parameters. Our inversion may
provide reliable estimates of layer thickness Wwelbw the conventional thin-layer
resolution limits, and even at layer thicknessdewd %. as demonstrated during model
testing. Since we use an effective source fungtigarsion, the inversion is well-suited
for application to targeted time-lapse monitorifigentaminated sites. Future work
includes testing the inversion on field data froontaminated sites. If successful, site
managers could implement this inversion to estirtattd contamination at a site and to
prioritize remediation efforts based on NAPL cortcations and thicknesses. Due to the
ubiquitous nature of these classes of contaminaateful implementation of this
algorithm could greatly reduce remediation coststame. Finally, the accuracy of the
inversion performance for the third model sugg#ss this full-waveform algorithm
may be applied to other thin-layer problems suctr@svmelt monitoring or fracture

characterization.
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CHAPTER THREE: TARGETED FULL-WAVEFORM INVERSION OEROUND-
PENETRATING RADAR REFLECTION DATA FOR THIN AND ULTR-THIN
LAYERS OF NON-AQUEOUS PHASE LIQUID CONTAMINANTS PAR2: DATA

TESTING

Abstract

Accurately quantifying thin-layer parameters by lgpm full-waveform
inversion methodology to GPR reflection data mayvjate a useful tool for near-surface
investigation. Such quantification would be parkely useful for contaminated site
investigation where non-aqueous phase liquid (NA¢tdrjtaminants are present. We test
a full-waveform inversion algorithm on 4 GPR reflena data sets in an attempt to
guantify thin-layer permittivity ), thicknessd), and conductivityd) for thin %
dominant wavelength) and ultra-thin£'24) layers using GPR reflection data. The data
examples include 3 different contaminants: 1) wérbying cold salt water, 2) dense
NAPL (DNAPL) trapped at a sand/clay interface,i@ht NAPL (LNAPL) accumulated
at the top of the saturated zone, and 4) oil ougglgea ice covered by a thin layer of
snow. We collected the first two data sets in adatory, while the latter two are from
field sites. The inversion initializes startinduas with a Monte-Carlo scheme and finds
the global minimum of the objective function usmgon-linear grid search. In all 4
examples, the inversion solved for NAPL-layer prtips within 15% of the measured
values. The inversion successfully quantifiedaier properties for 2 different source

frequencies and 4 different subsurface conditiete/ant to the investigation and



74

remediation of contaminated sites. This algoriffmovides a tool for site managers to
prioritize remediation efforts based on quantimi@ssessments of contaminant quantity

and location using GPR.

Introduction

Subsurface accumulation of non-aqueous phase lmprithminants (NAPLS) can
degrade soil and groundwater resources and pageificeint risk to human health
(Hwang et al., 2008). These classes of contansrfafis into two categories based on
density: light NAPLs (LNAPLS) are less dense thater and thus rise to the top of a
water column while dense NAPLs (DNAPLSs) sink (Can& et al., 2003; Luciano et al.,
2010). Many NAPL-contaminated sites are the redulinproper disposal of used
solvents or fuels (Brusseau et al., 2011; Nelliglt2009). Over time, these NAPLs can
migrate vertically and horizontally for long distas in the subsurface. LNAPLs can
smear across the vadose zone/saturated zone aeteidia to fluctuations in the water
table (Bradford and Deeds, 2006). DNAPLs can becmapped at impermeability
barriers as they simultaneously migrate downwardllaterally in response to dominant

groundwater gradients.

In both scenarios, the result is the same: NAPtenadisperse into thin layers.
These thin, discrete layers of contamination pogehlem for traditional methods of
detection such as borehole sampling (lllangasedaaé, 1995; Pankow and Cherry,
1996). However, ground penetrating radar (GPR)pnagen a useful tool for
characterizing contaminated sites in a rapid arst-effective manner (Brewster and
Annan, 1994; Bradford and Deeds, 2006; Bradford\iug 2007; Orlando, 2002;

Luciano et al., 2010). Careful assessment of GHBct®n data can allow practitioners
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to identify zones of anomalous subsurface perntytand correlate these anomalies with

the presence of subsurface contamination (Car@bak, 2003).

However, when NAPLs disperse into thin layers,gheblem of reliably detecting
and quantifying the contamination becomes morecdiff Here we define thin layers as
those layers where recorded reflection events ftwop and bottom of the layer are not
well-separated in time (Widess, 1973). Dependmgaurce characteristics, noise, and
other factors, this limiting layer thickness mayasehigh as % the dominant wavelength
of the signal/ (Bradford and Deeds, 2006; Guha et al., 2005)okRaig Babcock and
Bradford (2014a), we take thin layers to be thokese thickness is¥21 and ultra-thin
layers those whose thicknesscisi. In such cases, measuring layer thickndgsi(
effective permittivity €7 using conventional velocity analysis is impossjizand we
must turn to other techniques if we seek to qugihiin-layer parameters (Bradford et al.,

2009).

Full-waveform inversion may provide such a toogt@antify contaminated sites
by directly inverting for the properties of subsoé layers (Babcock and Bradford,
2014a). Full-waveform inversion methods incorpoedt¢he information present in the
reflected waveform and thus may provide a tookt@bly and accurately quantify thin-
layer parameters even in the presence of signicatoise. Previous research has
demonstrated the efficacy of this approach using G®lection data for a variety of
subsurface problems, including detecting contantimdiftration (Kalogeropoulos et al.,
2013), measuring soil water content (Lambot et28l04; Tran et al., 2012), and
guantifying subsurface,s and conductivity4) (Busch et al., 2012; Klotzsche et al.,

2010). Babcock and Bradford (2014a) use a tardetedaveform algorithm to estimate
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thin- and ultra-thin layer properties on model GieRection data. Targeting a single
reflection event of interest, e.g. a reflectiomfra contaminated zone, simplifies the
inverse problem. They recovered thin-laygmwithin 8% andd within 10% of the true
value for layer thicknesses as low asid% 4 different models. Here, we test that

inversion algorithm on GPR reflection data collécite the field and in the laboratory.

Methodology

Inversion
The inversion uses Nelder-Mead gradient-based sxmg#arch method to
minimize the cost function, with respect to user-defined parameters as fallow

(Lagarias et al., 1998):

Q= Z(dobs - dcalc)z (3-1)

whered,, ;s is the data and.,c is a model wavelet. Babcock and Bradford (2014a)
provide a full description of the forward model dde generaté.,c. Given a layered
earth model, the 1D reflectivity model starts & kbwermost layer and recursively
computes reflection and transmission coefficiepiwards through a stacked multi-layer
system to comput®,, the reflectivity from the total stack, which weserve at the
uppermost boundary (Muller, 1985). The model tbemvolvesR; with a user-defined
source wavelet. The resulting waveform simulatesnieasured GPR signal assuming
that a 1D model is a good approximation and tharlaroperties are homogeneous and

isotropic.

The 1D model can include any number of layersis#sees, o, andd for each

layer in calculatindr;. Then, we can define any subset of these parasneseihe
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inversion parameters. In most cases, we fix therlayoperties above and below the thin-

layer and solve for thin-layer parameters as wetheerburden thicknes§.(We assume

that some other methods (velocity analysis, disaotpling) have provided estimates of
the upper and lower layer properties. As demoredriatt the model testing, we first must
invert for the effective source parameters usingflaction from an uncontaminated layer
1/layer 3 boundary. Inverting for the effective smufunction allows the algorithm to
compensate for propagation effects due to overluctiaracteristics. Assuming a Gabor
wavelet source function, the user-defined invergiarameters are central frequenigy (
(Hz), phase rotatiom, and function widthdp) (s). We then can use these source
parameters as the effective source wavelet parasnatéhe reflectivity model to invert

for thin-layer parameters.

In either case, we randomly select starting valisasg a Monte-Carlo approach
from a pre-determined uniform distribution. Thgalthm searches for those inversion
parameters that minimize equation 3.1 and retuansmeters that correspond to that
local minimum valued v). It replicates this gradient-based search 1d@@diand finds
the global minimumdgm) from all ¢ m. We estimate uncertainty from the root mean
square (RMS) error of 10,000 parameter pairs ar@ayparameter pair corresponding to
dem and choose those paired parameters which fit Eguatl within the estimated level
of noise. We perform this analysis for several ke combinations of parameter pairs,
but caution that the total uncertainty is couplethie 4+ dimensions of the solution. For

additional details, see Babcock and Bradford (2D14a
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Testing

Examples

We tested the inversion on 2 laboratory and 2 figlth sets for 4 different NAPL
scenarios. All data were collected in transversetat (TE) mode using Sensors and
Software PulseEkko Pro antennas. Example 1 io#iwater. Example 2 is saturated-
sand/DNAPL-sand/clay. Example 3 is moist sand/LNAfaihd/saturated sand. Finally,
Example 4 is air/snow/oil/ice, where the snow layaes a thin-layer and the oil layer was
an ultra-thin layer. This example presents a ehaihg test case for the inversion

algorithm as we inverted for the electrical prosrof both the snow and oil layers.

For each data example, the reflection event fromremontaminated area provides
a background wavelet which we use to invert fordtierce parameters. For that
inversion, the electrical properties of the uncanteted layers can remain fixed, while
fo, o, andy act as the inversion parameters. For Example Zlanddditional thin layers
in our data forced us to simultaneously inverttfer source parameters as well as

additional thin-layer properties.

Except for the change in parameters to be optimitedsource inversion routine
follows the same methodology as the thin-layerisia®m. Subsequently, for each
example, we use the corresponding inversion saldtofy, do, andy as the source
parameters in the inversion for thin-layer progestiin taking this approach, we assume

that the background electrical properties are emsiver the survey area.
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Example 1

The first data example simulates an oil spill ofdaxean water. We set up a
plastic tank in a freezer room and maintained tagemtemperature at 2° C. The addition
of commercial rock salt (NaCl) raised the watemsigd to 32 parts per thousand (ppt) in
order simulate cold sea water. We collected déta antennasf§1000 MHz)
suspended on a wooden plank 1.16 m over the wiitguré 3.1). After collecting
control data without oil present, 189 liters (L)af released into the tank formed a 0.027
m (1694) layer of oil over the salt water. The oil foetexperiment was a commercially
available motor oil. Addition of 0.1% by volumepidhenic acid and 0.5% by volume
brine solution (35 ppt) altered motor oil conduitiand total acid number (TAN) to be
more similar to that of crude oil. Direct measureatseof salinity and TDR measurements
for &) provided a comparative reference for inversiorigrarance (Table 3.1). Pre-
inversion data processing steps included a time-zemection, bandpass filter (250-500-

2000-4000 MHz), spherical spreading correctid)) and reflection event windowing.

Example 2

The second laboratory example consisted of a pleestk filled with a well-sorted
saturated sand overlying a saturated sodium beatolaiy
(NaxCa[Al;SisO10(0OH)2(H20)10]10) (Figure 3.2 and Table 3.1). The tank was 1.25 m x
0.48 m x .45 m. A depression with dimensions 0.34 @47 m x 0.04 m in the center of
the saturated clay simulated a stratigraphic tiRjastic tubing provided an injection port
to introduce a non-toxic DNAPL (Novec HFE-7200)arhe trap. We collected data

before and after introduction of the simulated aamnation. Calculated DNAPL-layer
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thickness was approximately 0.022 m @%Babcock and Bradford (2013) further

describe characterization of relevant material progs for the experiment.
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Figure 3.1: Example 1 showing a) Diagram of setupof data collection; b) Data
(solid line) from the air/salt water reflection andthe inversion results (dashed line)
from the source wavelet inversion; c) Data (solidjrom the air/oil/water reflection
and inversion results (dashed). Vertical dotted lias indicate the data window used
for the targeted inversion algorithm. d) plot showng coupled uncertainties between
il and dy; + is solution corresponding todgwm, triangle is measured values, and the
line encloses all paired values where the objectivfeinction is within 10% of ¢gum.
Darker shading indicates lower values of the objeste function.
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Table 3.1: Physical and electrical properties fordboratory and field data
examples.
Data Layer €, oer (SIm) d (m) (%4)
1, air 1 0 1.01
1 2, oil 30+05| 5+1x1b 0.027 (16%)
fo=1000 MHz 3, salt water 88 3.5%0.1 0.25
1, saturated sand 25+1 0.007 +0.003 0.39
2 2, DNAPL-saturated sand 7.3+04 9.6 X10 0.022 (9%)
fo=1000 MHz 3, clay 35 1 0.07
1, dry sand 4.9 2 i 182 4
3 2, LNAPL-saturated sand 8.5 0.016 £ 0.007 0.3419
fo=100 MHz 3, saturated sand 21.3|  3.320.2%10 15
1, air 1 0 1
4a 2, snow 1.4-2 10 0.05 — 0.14 (<50%
fo=1000 MHz 4, sea ice 4.5 0.03 NA
1, air 1 0 1
4b 2, snow 1.4-2.4 1o+ 0.05-0.20
f;=1000 MHz 3, ail 3.5 10° ** 2+1( 9%)
4, sea ice 4.5 0.03 NA

* Reported ¢ values for vadose zone are higher in contaminatedgion; lower value

used in source inversion; see Sauck et al. (1998y fletails.

** Estimates only; not measured on-site (Bradford gal., 2010)

We collected multi-offset data in 0.02 m sourceereer separation increments

across the top of the tank with 1000 MHz antenBasa processing steps included a

time-zero correction, bandpass filter (100-200-28000 MHz), pre-stack phase-shift

time migration (Gazdag and Sguazzero, 1964), stgclkipplying a top mute, and target

windowing.
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We picked individual traces to use for the soure@elet inversion from the
uncontaminated layer 1/layer 3 reflection (Figur®) 3 However, close examination of
the data indicated the presence of another thier lalgove the primary sand/clay horizon.
This thin-layer was likely caused by sand compactioring the experimental setup and
therefore probably reflects a porosity differeneéneen the bulk overburden sand and
the sand just above the clay layer. Due to theagkin layer, during the source inversion
we inverted for the permittivitye€angd and thicknessdang) of the extra layer as well as
for fo, do, 77, ande. Unfortunately, we have no direct measurementheproperties of this
layer to use in evaluating solution accuracy. Sqbsetly, we used the inversion solution
for esang2in the inversion for the DNAPL-layer parameterstfte 4-layer case: saturated
sand/dense-saturated sand/DNAPL-saturated sand¥glaynvertettnapi, onap, aNddnapi

as We” agsandzandasandz
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Figure 3.2:  Laboratory setup for saturated-sand/DNAPL-saturated sand/clay

system, where a) shows Layer 3, the sodium bentoaitlay, with the depression to
contain the injected DNAPL, and b) shows an examplef antenna positioning for

multi-offset data collection after filling the remaining tank space in the tank with

saturated sand. c) The processed, time-migrated sfeed data with top mute

applied; topographic depression is located approxiately between CDP 40 and 60
(box). Solid arrow points to first arrival of the sand/dense sand/clay reflection event;
the reflection arrives earlier in time at the cente of the tank (CDP 50),

corroborating our result for a thicker dense sand &yer over the topographic

depression. Dashed arrow points to the first arrivaof the sand/dense sand/DNAPL
sand/clay reflection event over the center of thegpression.
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Example 3

The first field example was collected at former ¥8mith Air Force Base,
Michigan. A plume of spilled LNAPL hydrocarbonsfigating on the water table and
has subsequently smeared approximately 0.3 m thviekthe vadose zone/saturated zone
interface (Figure 3.3). Extensive use of geophysiegthods including GPR has
thoroughly characterized this contaminated sitdl@8.1) (Bradford and Deeds, 2006;
Bermejo et al., 1997; Sauck et al., 1998). Markedtjuced reflection strength and a
“shadow” zone of preferential attenuation clearlgrks the contaminated region

(Bradford and Deeds, 2006; Sauck et al., 1998).

We collected data using 100 MHz unshielded antewithsa fixed offset of 0.3
m and suspended slightly above ground level. Wiopeed the source inversion on 2
different traces from the uncontaminated regioosgied at approximately 152 m and
240 m) and the thin-layer inversion using 3 traces the contaminated region (at
approximately 187, 198, and 210 m) (Figure 3.3)cBssing steps include a time-zero
correction, bandpass filter (12-25-200-400 MHzjesjical spreading correctiott), and
reflection event windowing. We also tested thedhayer inversion routine on 3 traces

from the uncontaminated region in order to asdessabustness of the inversion.
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Figure 3.3: a) Data from Wurthsmith field site; cortaminated region is marked
by increased attenuation below the water table. Lé&fhost arrow is approximate

position of traces for source parameters inversiongightmost arrow is approximate

position of traces for thin-layer inversion. b) Daa (solid line) from the

uncontaminated water table reflection and the invesion results (dashed line) from
the source wavelet inversion; c) Data (solid) fronthe LNAPL region and inversion

results (dashed). Vertical dotted l;ines indicatedtarget window. d) Coupled
uncertainties betweengnay and dnagi; + is solution corresponding todew, triangle is

measured values, and the line encloses all pairedlues where the objective function
is within 10% of ¢em. Darker shading indicates lower values of the obgive

function.

Example 4

The second field example is a controlled oil spilbve sea ice. Testing occurred
at Svalbard, Norway. We collected radar data olearcand contaminated areas using

1000 MHz central-frequency antennas slung beneb#ieopter (Figure 3.4) (Bradford
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et al., 2010). In the contaminated zone, the intced ultra-thin oil layer overlying the

ice was covered by a thin layer of snow. The inearsises data from helicopter traverses
at 5 m elevation above the surface; elevationsppeoximate due to helicopter flight
characteristics. Bradford et al. (2010) provideHar details on the experiment design
and describe measurement of the relevant elecproglerties using travel-time analysis.
Data processing steps included a time-zero coomchiandpass filter (250-500-2000-

4000 MHz), background subtraction, and target wividg.

For Example 4, we performed the inversion routinédaifferent data traces: 2
from the uncontaminated region and 3 from the cuoirtated locations across the survey
area. We hand-picked data traces having diffem@mivsand oil thicknesses in order to
demonstrate the inversion robustness. In exampledased the snow/ice reflection
event for the source wavelet inversion in the utexmmated three-layer case of
air/snow/ice, meaning th&f, do, 7, snow Jsnow @ndé¢ were the inversion parameters. The
snow layer was less tham¥or all traces. For Example 4b, two thin layersrgvpresent:
snow and oil (Table 3.1). Thusesnow andeq as well aslsnowanddy were all inversion
parameters in the contaminated area. Snow perityitiit’the site varied due to wind
redistribution (Bradford et al., 2010). We used thAnge foeg,onfrom the source
inversion to bound solution values f@f.win Example 4b. Oil layer thickness ranged
from 0 to 0.036 m (<17%. Mean oil thickness was 0.0192 m (<B%Ne do not report
values for eithessnow Or gsnowsSince previous work demonstrated that the algoriginot

sensitive to lows values (Babcock and Bradford, 2014a).
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Trace #

340 2 4 ] 8 10

Trace #

Figure 3.4: a) Helicopter flight path over the uncataminated (control) cell and
the oily cell for Example 3; b) example data colléged along flight path over clean
test cell demonstrating variable snow thickness, nal c) oily cell (Bradford et al.,

2010).
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Inversion Results

Source Wavelet Inversion

All data were collected with 1000 MHz antennasEkample 1 and 4, with the
antennas suspended in air, the inversion solutiofy fs up to 40% greater than the
manufacturer-specifiefd (Table 3.2). In Example 2, the antennas were @l the
saturated sand, and the effective source frequemtgsponding to the inversion solution
is 525 MHz. Estimatet}for Example 3 is within 6% of the values reportgtBradford
and Deeds (2006). Uncertainties in the source patesiare estimated from coupfed
do andfy,  pairs (Figure 3.5 and Table 3.2). We proceed thighinversion for the thin-
and ultra-thin-layer parameters using the resoltshfe Gabor source wavelet parameters

for the effective source function.

Example 1

The inversion retrieves ultra-thin laygrandd within 10% of the estimated value
(Figure 3.1 and Table 3.3). The inversion solufmmr deviates over an order of
magnitude from the estimated il The rate of conversion t@v is 5%, and the global

dem is 99% of the next closesim.
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Figure 3.5:  Pairedfy, do (@) andfy, # (b) and uncertainties for the solutions from
the source parameter inversion for Example 1. The +arks the inversion solution
and the line encloses all paired values where thdjective function is within 10% of
¢dom. Darker shades are smaller values of the objectivieinction. Results for other
tests are in Table 3.2.

Table 3.2: Inversion solution and standard deviatia for source wavelet
parameters using reflection from Layer 1/Layer 3 inan uncontaminated area; in
Examples 2 we simultaneously inverted for additionadense-sand thin layer
parameters, and in Example 4 for thin snow layer peameters; those results are in
Table 3.3. Figure 3.5 shows an example of solutiemcertainties for fo, 9 and fo, #
pairs.

Source | Convergence o
Example (MHz) Rate fo (MHz) (ns) n
1 1000 22% 1400 = 10 46 +£0.04 15+0.2
2 1000 <1% 525+ 30 1.175 + 0.001 -0.785+0.01
3 100 47% 755 6.3+0.7 0.54 £ 0.06
4 1000 <1% 1360 * 20( .63 £0.08 0.745 = 0.005
Example 2

Results obtained during the source parameter ilorenscluded the parameters of
the thin dense sand layekanq>= 0.037 m andsang=20.7 (Figure 3.6). The inversion for
DNAPL-layer parameters retrieveghy anddnap Within 6% of measured values (Figure
3.6 and Table 3.3). The solution fakng2iS reasonable, but the solutiempis an order
of magnitude different from the calculated valuéhBugh the solution for Example 2 is
quite good overall, as discussed by Babcock andfBra (2014a) low rates of
convergence (<1%) and small differences (<1%) beten andd, mnearest May indicate
the increased difficulty of finding a unique anata@te solution given the complicated

nature of this 4-layer problem.
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Example 3

Bradford and Deeds (2006) estimated the contralesalising a calculation of the
offset-dependent reflectivity and comparison of sugad values to a range of
background models. There are also several litexatalues for NAPL thickness at this
site (Bradford and Deeds, 2006; Sauck et al., 1988 inversion retrieves ultra-thin
layere, within 8% of their estimated value addvithin 13% (Figure 3.3 and Table 3.3).
The rate of conversion v is 24%, and the globaky is 96% of the next closesty.

The uncertainty associated with these resultsgihivariable depending on the coupling
between parameters pairs, and may not be well4@netl by the 2D representation of
the RMS error (Figure 3.3). When tested in theomteminated area, the inversion
retrieved “layer” permittivity within 2%, = 4.8 + 0.2) of the value measured by

Bradford and Deeds (2006} (= 4.9).
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Figure 3.6: a) Trace (solid line) located at CDP 2Q@vith inversion solution for

source parameters (dashed line); vertical dottedries indicate target window used in
inversion algorithm; arrow points to the same locabn as the leftmost arrow in

Figure 3.2c. Note the high amount of noise presein the data. b) Plot showing
coupled uncertainties for esngz , dangz from the source inversion; + is solution
corresponding to ¢euv and the line encloses all paired values where trabjective

function is within 10% of ¢gu; darker shading indicates lower values of the
objective function. The true values fOregngz , dsandgz @are unknown. c¢) Solution (solid)
vs data (dashed) for DNAPL parameters using trace taCDP 50; the arrow

corresponds to the rightmost arrow in Figure 3.2c.The presence of multiple
reflection events causes uncertainty in defining # target window. d) Plot showing
coupled uncertainties betweensnay and dhap; triangle indicates measured values
(other notation the same as part b).

Example 4

Solutions forespow from the source wavelet inversion ranged from 1046.81

(Table 3.3). Assuming @now< 20, these results suggest a maximum %error for snow
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permittivity in the uncontaminated area of 10% (F&3.7). Results faknowfrom the
source inversion were well within the measured eslacross the cell. In addition, the
inversion solution matches the data well over geaof snow layer thicknesses (Figure

3.7). The inversion demonstrates an overall lackeofitivity tos again in this example.

We proceed with the inversion for oil and snow fgyarameters in Example 4b
and constraimsnowto the solution range from Example 4a during thesision for snow
and oil thin- and ultra-thin layer properties. Loates of convergence (<1%) and small
differences betweepsy anddm (dom >90% L mneares) May indicate that the non-
uniqueness of the solution is problematic for ample. Nevertheless, the inversion
retrievedes, within 10% of the estimated value, and the sohgitord,; are within the
range of measured oil thicknesses (Figure 3.7 aindeT3.3). The inversion results for

dsnoweXxceed the measured snow cover by a maximum of(T24le 3.3).
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Figure 3.7: Data (solid) and inversion results (ddsed) for Example 3. Labels
indicate reflection events and vertical dotted line show the data window used for
the targeted inversion algorithm. a) uncontaminatd snow over ice withdg,ow = 0.11
m (46%4); b) uncontaminated snow over ice withdg,ow = 0.07 m (25%) ; c) Plot
showing coupled uncertainties betweenes,ow and dsow for b); + is solution
corresponding to ¢gum, triangle marks the estimated values, and the linencloses all
paired values where the objective function is witi 10% of ¢gv. d) data (solid) and
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inversion results (dashed) for an ultra-thin oil layer (0.02 m, 9%!) underneath an
thin snow layer (0.04 m, 169%). e) Plot showing coupled uncertainties betweesy;
and d;j; notation same as part c).

Table 3.3: Ultra-thin-layer parameters for a) Examgde 1, b) Example 2, c)
Example 3, d) Example 4a, and e) Example 4b witthé inversion results
corresponding todgu. Uncertainties for &, d pairs are shown graphically in Figures

3.1-3.7.

a) dem = 99%Lm (eares)

Parameter Control Value Solution Bounds
Eoil 3 2.686 +1.3 2-8
doit (M) 0.027 0.030 £ 0.05 0-1
| (m) 1.03 0.965 + 0.001 0-5
o (S/m) ~5 x 10* 8+3x 10 0-0.1
b) dom = 99%Lm (nearest)
Parameter Control Value Solution Bounds
Enapl 7.3+0.3 7.7+0.8 2-10
sandz2(mM) * 0.050 + 0.001 0-0.1
Ohapi (M) 0.022 0.024+ 0.002 0-0.1
Osand2(S/m) * 0.012 £ 0.002 0-01
Onapl (S/M) 9.6 x 10* 4+5x10° 0-0.1
*Properties not measured; refer to text for dismrss
C) dom= 96% v (nearest)
Parameter Control Value Solution Bounds
Enapl 8.5 8.2+15 2-12
Oapl (M) 0.3 0.34 +0.06 0-1
| (m) 4 4.1+0.2 2-10
o (S/m) 0.016 £ 0.007 0.001 +0.001 0-0.1
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d) dom= 76% - 940/0¢Ll\/| (nearest)

Parameter Control Value Solution Bounds
Esnow 14-2 1.46-1.81 1-5
snow(M) 0.05 - 0.14 0.04 — 0.15** 0-1
| (m) 5-10 5.4-8.3 5-15

**Dependent on snow depth at trace location; seetéi 3.7

e) dom = 74 - 94% DM (nearest)

Parameter Control Value Solution Bounds
Eoil 3.5 3.2+0.2 1-8
dsnow(m) 0.04 - 0.07 0.005 - 0.078) 0.001 -1
oit (M) 0-0.036 0.004 - 0.0321 0.001-1
| (m) 5-10 8.67+0.5 0-20

*Estimated range based on snow density at sitecanstrained by solution from
*Snow ¢ and oile not measured at field location

Discussion

In 2 different scenarios, the inversion algorittenovered effective source
wavelet parameters and an additional set of thyarlparameters simultaneously
(Examples 2 and 4). For Example 2, since we hawdirect measurement of these
properties, we assess the resulting estimate fwh garmittivity in relation to known
physical properties using petrophysical transforomst Babcock and Bradford (2013)
calculated to the bulk overburden sand porositgppfroximately 37.8% from Time
Domain Reflectometry (TDR) measurements. The siverretrieved thin-layer
permittivity for this addition layer of 20.7. Assumy complete saturation, @agsng,Of
20.7 yields a porosity of 34.8% using the CRIM damuma(Knight and Endres, 2005).

Thus, the inversion result fegahg,Seems to corroborate the presence of a compacted,
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lower-porosity sand layer above the clay. We werable to measure the depth of this
layer directly, but 0.037 e ¥4l at 525 MHz. In addition, the inversion solutiom &3,n42
from thin-layer inversion for contaminant propestie approximately 0.013 m thicker
than the solution fotsang2 from the effective source parameter inversion.usis
examination of the stacked section corroboratesrésult as the reflection event arrives
slightly earlier in time above the center of th@mssion than over the flat-lying part of

the clay/sand horizon (Figure 3.2).

In Example 4a, the inversion results fgi,wfrom the source parameter inversion
agreed well with the findings of Bradford et alO{®). They observed that snow
densities, and therefore permittivities, were reé&y low for the loosely packed snow in
the uncontaminated area, and our resultsdy, ranging from 1.46 — 1.81, are within
10% of the values measured in the field. Whenriimg for snow and oil layer
properties simultaneously in Example 4b, the oVeedihbility of the results are
remarkable considering the thinness of both thamil snow layers and the added

difficulty having one thin layer (snow) and oneraithin layer (oil) present above the ice.

However, the inversion results feideviate significantly from real values.
Previous work (Babcock and Bradford, 2014a) ndiasst solutions may be unreliable
until reaching a certain threshold value. Thisavtbation makes intuitive sense given
thate functions both to attenuate EM wave propagatiahaiso to change the
reflectivity response (notably in the case of ighThat threshold may be >0.0316 S/m,
and none of these data had a thin-laygreater than that value. Thus, we caution that
this inversion algorithm, while performing robustbyr £, andd, is not likely to retrieve

accurately for thin-layers of these types of conteamts. Continued work to retrieve
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thin-layero should include testing on data at lower freques)cid00 MHz, as per

Tsoflias and Becker (2008).

Finally, our full-waveform inversion relies on aauglefined window to target the
reflection event. Correctly identifying and windawithe desired reflection event is
paramount for robust inversion performance. Theacghof the reflection window has a
large impact on inversion results and subsequeotsetOur testing indicates that
choosing a shorter window length centered on tlaé péthe reflection event promotes
more reliable inversion performance (Figure 3.8)fact, this result is promising because
it demonstrates that the inversion algorithm maydbetively insensitive to noise, since it
depends on more of the information within the wav#état is contained near the peak of

the reflection event and that peak is less semsitiwnoise than the edges of the wavelet.

a) b)

Relative Amplitude

Relative Amplitude

26 28 30 32 34 26 28 30 32 34
Time (ns) Time (ns)

Figure 3.8: Inversion results (dashed) plotted vs ata (solid) to demonstrate the
effect of changes in user-defined reflection windown solution accuracy; dashed
lines show the data window used for the targeted wersion algorithm. a) Solution

corresponding to data windowed between 29.0 and Jlns; b) Solution when using a
longer reflection window (28.5 - 31.5 ns). The sdion shown in b) returns

anomalously high values fokg (>6).
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Conclusions

Reliable estimation of thin-layer parameters using inversion algorithm hinges
on estimating the effective source wavelet parareet®ur source wavelet inversion was
able to recover effective wavelet parameters abagehdditional thin-layer parameters in
the case of Example 2 and Example 4a. Given anteféesource parameter function,
this full-waveform inversion algorithm for GPR reétion data may accurately recover
thin- and ultra-thin layes, andd at contaminated sites. The full-waveform invemsio
recovered thin- and ultra-thin laygrandd within 15% of the measured or estimated
values down to layer thicknesses as low a$.9%% Examples 2 and 4b, the algorithm
also successfully simultaneously inverted for thepprties of 2 thin layers: an
overburden layer and the contaminant layer. Qatirig and observations indicate that
practitioners could implement this algorithm to idwderize contaminated sites where
contamination has dispersed throughout the sulb=inféio thin- and ultra-thin layers.
Careful use of this inversion could reduce reméatiatosts and time. Our algorithm is

especially applicable to time-lapse monitoring @&ML-contaminated sites.
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CHAPTER FOUR: QUANTIFYING THE BASAL CONDITIONS OF MOUNTAIN
GLACIER USING A TARGETED FULL-WAVEFORM INVERSION: BENCH

GLACIER, ALASKA

Abstract

Understanding glacier dynamics is a vital compoméhbng-range climatological
modeling, and glacier dynamics are inextricabliéia to the basal conditions of glaciers.
Seismic reflection methods can image the glacidrdssler certain conditions. However,
where a seismically thin layer of material is pres# the bed, traditional analyses may
fail to fully characterize bed properties. We agargeted full-waveform inversion
algorithm to quantify the basal layer parameterB@ich Glacier, Alaska: thicknesd),(
P-wave velocity ¢), and densityd). We simultaneously invert for the seismic quyalit
factor Q) of the bulk glacier ice. The inversion seeksiaimize the difference
between the data and a 1D reflectivity model usimgadient-based algorithm with
starting values initialized from a Monte-Carlo setee We test the inversion algorithm on
4 basal layer models with 5% added Gaussian nbigeinversion retrieved thin-layer
parameters within 10% of model parameters withetkeeption of seismiQ. For the
seismic data set from Bench Glacier, inversionltesadicate a thin basal layer of
debris-rich ice within the study area having meaiaity 4000 + 700 m'S, density =

1900 + 200 kg i, and thickness = 6 + 1.5 m.
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Introduction
Glacier dynamic processes contribute to climatenghaFurthermore, changes in
the dynamic parameters even of relatively smattigla may have a disproportionately
large impact on climate cycles (Meier, 2007). Thogoing research efforts recognize
that understanding and modeling the glacier dynamiignountain glaciers contributes a
significant component to the validity of long-rangematological modeling (Nolan and

Echelmeyer, 1999).

Glacier dynamics are strongly tied to the basabti@mns of glaciers (Dow et al.,
2013; MacGregor et al., 2005; Nolan and Echelme}@99). For example, movement of
hard-bedded glaciers depends largely on frictiahsdrear forces at the ice/bedrock
interface (Cohen et al., 2005). In other casebstinct basal layer of debris-rich ice may
exist (Hart, 1995). Increased rates of shear defttam or compression due to stratified
facies and debris lenses within such a layer magecaver 50% of overall overall glacier
motion (Chandler et al., 2005; Hart and Waller, 9;3@night, 1997; Waller et al, 2000).
Water inputs at the bed of the glacier can causeeyl surging (Anderson et al., 2004;
Clarke, 2005; Howat et al., 2008; Magnusson e28l10; Smith, 2007), and the
thickness of an existing water layer may be criticaestimating debris-bed friction
(Cohen et al., 2005). The presence of subglacthiremnts may impact glacier movement
through deformation, decoupling, sliding, and uptiechanisms (Alley et al., 1987;
Anandakrishnan, 2003; Evans et al., 2006; Hart e2@11; MacGregor et al., 2005;
Porter and Murray, 2001). In fact, interactionshAbasal sediments may be responsible
for up to 80% of glacier movement in some casest(étal., 2011). Given the gamut of

possible basal parameters, it is obvious thatbigliestimating subglacial conditions
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predicates the understanding and modelling of gtatiynamics and of larger global

climate models.

However, reliably quantifying the exact naturelod glacier bed is difficult
(Smith et al., 2013). Such quantification is esplecproblematic over the substantial
spatial extent of even small mountain glaciers.ifstance, borehole video and
penetrometer tests are time-consuming and onlyigealiscrete observations. Previous
research has used a plethora of geophysical tasdsigcluding both radar and seismic
reflection methods in attempts to define basal ¢mrb such as estimations of basal
water conditions, constraining thickness and plagcoperties of glacial sediments,
characterizing debris-rich basal ice layers, arfthohg bedrock topography (Baker et al.,
2003; Blankenship et al., 1986; Bradford et al12®Brown et al., 2009; Booth et al.,
2013; Dow et al., 2013; Hart, 1998; Harper et2010; Kim et al., 2010; King et al.,
2004; Smith, 2007; Smith et al., 2013; Waller et2000). Proper interpretation of
seismic reflection data in particular can sometipreside information about the
physical properties of glacial ice and subglaciatenals (Anandakrishnan, 2003;
MacGregor et al., 2005; Smith, 2007). Velocity gs& is one common seismic tool

often applied in the glacier environment.

Nevertheless, when a thin layer of material is gnébetween the glacier bed and
underlying bedrock, conventional seismic analysidst may fail to reliably define basal
conditions. If a thin-layer is present between tvadf-spaces, reflections of an incident
wave from the top and bottom of that layer becooresolved with one another. Widess
(1973) demonstrated that resolving distinct reftewt from the top and bottom of such a

layer becomes impossible as a layer’s thicknesedses below ¥4 the dominant
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wavelength/, of the signal in the material of interest. Depagdn the source wavelet
characteristics and the presence of noise, thérigiiayer thickness for resolving those
reflections may be as high as Y2 or even(Booth et al., 2013; Bradford and Deeds,
2006; Guha et al., 2005; Smith, 2007). In theBeatbns, using traditional velocity
analysis to quantifying the layer thicknedy @ensity f), and P-wave velocityy is

therefore also impossible (Anandakrishnan, 2003).

In the glacial environment, the limitations dughm-bed problems may preclude
detection of basal layers (Booth et al., 2013; 8n#007). Given the typical range of
seismic P-wave velocities) for subglacial materials (Table 4.1), at a cdritemjuency
of 250 Hz, the resulting wavelength of 8 m meas ghlayer of sediment may be
seismically thin even at thicknesses up to 6 nrtheumore, at that frequency, an 11 m
thick basal ice layer (BIL) may still be “thin.” &lough subglacial sediments or basal ice
layers can sometimes accumulate in layers as #8d@ -15 m, realistically these layers
or layers of basal water may be much thinner stillthe order of 1 or 2 m or even less
(Hart, 1995; Hart et al., 2011; Knight, 1997; Mae@or et al., 2005; Smith, 2007).
Nonetheless, these “thin” layers may dramaticatipact glacier dynamics (Chandler et
al., 2005; Smith, 2007). In such a scenario, q@ang the basal characteristics is
essential. Performing such quantification usingreé reflection methods can require the
use of advanced techniques such as attribute amalyd inversion methodologies

(Booth et al., 2013).

Accordingly, previous research has detected anahpeterized subglacial
characteristics based on reflection attributes siscphase, reflection strength, and

reflection amplitude variation with offset (AVO)tabutes (Anandakrishnan, 2003;
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Booth et al., 2013; Dow et al., 2013; Smith et2013). King et al. (2004) detected high
amplitude reflection anomalies in a seismic reftecsurvey on an Antarctic ice stream
and correlated the amplitude variances with thegmee of basal water layer as thick as
0.6 m. Smith and others (2013) identified a basdiment layer by extracting reflection
coefficients from seismic data using the ratiohaf multiples to primary reflections and
comparing the reflection strength to common vafoeshe acoustic impedances of
sedimentary layers. Smith (2007) isolated changesfiection polarity at the glacier bed
within a seismic data set and defined spatiallg@ie changes in ice sheet basal
conditions based on reflection attributes. He aadhet! that saturated basal sediment

thickness wag 1.5 m.

Amplitude variation with offset analysis is partiatly applicable to analysis of
basal conditions in the presence of thin layeisasial material. This technique
comprises quantification of change in reflectioesgth as a function of source-receiver
offset (Castagna, 1993). Since the direction anglitude of the AVO response depends
on the properties of any thin layers present aflacting boundary, judicious analysis of
AVO attributes thus can sometimes produce estinadtdsn-layer parameters (Dow et
al., 2013). For example, Anandakrishnan (2003)tifled two different sediment
lithologies beneath an ice sheet using normal erwe reflection strength and estimated
o = 1700 m ¢ for a dilatant sedimentary layer by examining A0 reflection
attributes. Dow et al. (2013) used a modified Aip@ach to model the reflection
characteristics of an ice sheet basal reflecti@mesand infer the presence of thin
underlying sediments having= 2100 m & andp = 1700 kg ri¥, but were unable to

qguantify layer thickness.
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However, AVO analyses often rely on comparison otleled AVO curves with
extracted amplitude information or inversions basedhe AVO curves (Dow et al.,
2013; Booth et al., 2013). On the other hand, tay&ull-waveform inversions (FWISs)
incorporate all the information contained withineflection event rather than
parameterizing individual attributes such as pluas&VO characteristics (Babcock and
Bradford, 2014b; Plessix et al., 2012). In gendes¥|s invert for subsurface parameters
by iteratively minimizing the difference betweer thbserved data and a synthetic model
with respect to subsurface parameters (Operta,e2Gl2). Full-waveform inversions
thus have the potential to directly recover lay@perties (Babcock and Bradford,
2014a). However, full-waveform inversion is consplied by problems of non-linearity
and solution non-uniqueness, the coupled natuneatérial properties, and computing
speed (Operto et al., 2012). Nevertheless, prewiauk has successfully applied a
targeted full-waveform inversion algorithm to quinthin-layer properties using radar
reflection data (Babcock and Bradford, 2014b). Trgeted approach simultaneously
reduces the complexity of the inverse problem amidmizes computing time. Here we
demonstrate the efficacy of that approach on sywtkeismic data. We then apply the
inversion algorithm to a seismic data set from Be@tacier, Alaska, in an attempt to

guantify its basal conditions.
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Representative material properties in th glacier system (Booth et al.,

2013; Bradford et al., 2009; Fowler, 1990; Gusmerbpét al., 2010; Johansen et al.,
2003; McGinnis et al., 1973; Mikesell et al., 2013Jolan and Echelmeyer, 1999;
Press, 1966; Smith, 2007). We distinguish basal irem bulk glacier ice as ice
carrying stratified or dispersed debris from the ghcier bed with distinct physical,
chemical, and mechanical properties (Knight, 1997).

Material o (msh p (kg m3) Q
Glacial Ice 3600 - 3800 917 22 - 220*
Water 1400 - 1600 1000 800 - 1000
Saturated Sediment 1400 - 2500 1700 - 2400 200 - 400
Basal Ice 2300 - 5700** 1500 - 2100 22 - 400
Bedrock 5000 - 5500 2700 100 -1500

* for temperate ice

** strongly temperature- and saturation- dependent

Materials and Methods

Forward Model

We use a 1D, vertical incidence reflectivity methodjenerate a reflection series
from any given layered subsurface model (BabcockBnadford, 2014c; Muller, 1985).
This model accounts for multiples and attenuati@artive full wavenumber calculation.
However, it assumes a vertical incidence reflecitioa system composed of linearly
elastic, homogeneous layers and does not accoudt & 3-D effects. Obviously these
assumptions are violated to some extent in theeglaovironment since glacier ice is not
homogeneous and the bed of the glacier may beraddgilar. Nevertheless, we feel this
1D approach provides a reasonable first-order aqumiadion for modeling seismic
reflection events where a thin layer is present\aaldtions of the assumptions are not

too severe. Babcock and Bradford (2014b) detailidesof a similar forward model for
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modeling radar data. Here we present additionasiderations and theory relevant to

seismic methods.

Seismic Considerations

Seismic velocities are well-known to be frequenepehdent (Aki and Richards,

1981). We calculate the frequency-dependent viglacias follows:

a'=a(l+ %lnw%) (4.1)
wherew is frequencyQ is the seismic quality factor, andlenotes the material’s
reference velocity P-wave velocity at the centratjfiencyw, (Aki and Richards, 2002).
The real part of complex-valued seismic wavenunities a function oix’ while the

imaginary part is the attenuation component aneédép orx’ andQ as follows:

k*= 2 ———i (4.2)

a'  2Qd

When seismic energy traveling through the subsaréaounters a contrast in
material properties, the energy is partitionedat interface and some of the energy is
reflected back to the surface. We é&Seandp to compute the acoustic reflection and
transmission coefficients for upgoing and downgangrgy at an interface assuming
waves impinging at normal incidence on planar;lfatg layers composed of

homogeneous linearly elastic materials separatedviogided interface.

The reflectivity method uses those coefficientsdtrulate the reflectivity
response from the uppermost bound&ty (n a series of stacked layers by calculating
the reflectivity response starting at the lowermager first and recursively thereafter at

each successively higher boundary following Mu{le985):
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MT; = MB;e~2ikidi (4.3)

d u
Tit1Tit1MTigq

MB; = R{,, +
1 i+1 1—R}]+1MT1+1

i=n-1, n-2,... (4.4)

whered; is layer thickness and superscrigtasndu denote upgoing and downgoing
coefficients. We use the appropriate equationsikcutate the downgoing reflection
coefficient and upgoing and downgoing transmissioefficients (e.g.T;) at any
boundary. For exampl&: denotes the reflection coefficient for a downgoivaye at a

boundary as follows:

d _ Pi+1kf—Pik?+1
R = ol 9
Pit1ki+piki

wherei denotes layer number. The resulting reflectivioni the total stack models that
which we observe at the surface. It is the exaalyginal response including multiples,

scattering, and transmission effects:

We then convolv&,; with a source spectrum. After transforming theulet® the
time domain with an inverse Fourier transform, fihal model result is a simulated

seismic reflection series from the layer stack theludes all multiples.

Inversion

The inversion algorithm uses a Nelder-Mead simpkarch to minimize the
objective functionp with respect to user-defined parameters (BabcodkBaadford,
2014a; Lagarias et al., 1998). The objective fumcthinimizes the misfit between the

data and the computed model as follows:

Q= Z(dobs - dcalc)z (47)
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whered,,;, is the data and,,. is the reflectivity response calculated usingibe

forward model discussed in the previous section.

We use a Monte-Carlo scheme to initialize startialgies from a random
distribution bounded by physically realistic limfte each parameter. The inversion
parameters may consist of any subset of the inpaletrparameters. In the 3-layer case,
each layer has 4 parameters@, p, andd) for a total of 12 parameters. We can invert
for any subset of these parameters. The algotiiem uses the gradient-based search
around the user-defined parameters to find a lo@aimum @) for each iteration. We
repeat the minimization routine 1000 times for eexample and calculate the meah (

for each parameter from the subset of global mir(ipag).

We estimate uncertainty by evaluating equatiorf@r.40,000 parameter pairs
around the global minimum and then computing tleé noean square error (RMS) for
those pairs. The subset of paired solutions thttd data within a 5% noise level define
the solution. We report errors for the followirggion pairs:a,p; a,Q; anda,d. While
this method does provide an easily-visualized eggmof uncertainty, note that the
solution space is multi-dimensional and thus tliér2ensional uncertainty calculations

do not entirely constrain the solution space.

Field Site

Bench Glacier is a temperate glacier located neddéz, Alaska, in the coastal
Chugach mountain range (Figure 4.1). The glacmstsesenient location and moderate
slope (<10°) have made it a conducive field sitenfioiltiple campaigns (e.g., Bradford et
al., 2013; Brown et al., 2009; Harper et al., 20Age et al., 2008; MacGregor et al.,

2005; Mikesell et al., 2012; Nolan and Echelme$889; Riihimaki et al., 2005). Bench
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Glacier is approximately 7-8 km long and 1 km withnderson et al., 2004; Bradford et
al., 2009; MacGregor et al., 2005). Ice thicknesges from 150 — 185 m (Brown et al.,

2009; Riihimaki et al., 2005).

Mafic and ultramafic rocks are the major componefthie geology of the
Chugach Mountains (Burns et al., 1991). The bddad@ench Glacier is part of the
Valdez Group (MacGregor et al., 2005). This littgptas characterized by meta-
greywacke, which is dominated by quartz and feldsp&/inkler et al., 1980).
Representative seismic attributes for this bedinckidea = 5400 — 6300 msp = 2.68
—2.71 kg i, andQ = 200 - 1500 (Fowler, 1990; Press, 1966). P-wavecitées
reported for Bench Glacier range from 3630 to 388" (Bradford et al., 2013;
Mikesell et al., 2012). The ice velocity show weakimuthal anisotropy due to an
extensive crevasse system (Bradford et al., 20Mesell et al. (2013) report mean ice
Q =42 £ 28 from Rayleigh waves at a central freqydfy) of 45 Hz. We assume bulk

glacier density to be 917 kg hiPetrenko and Whitwortd999).

Climate records at Thompson Pass, approximatekni@orth of the glacier,
indicate a mean annual air temperature (MAAT) 02°Z and a mean air
temperature(MAT) of +6.2° C from May through Sepbem(Brown et al., 2009). (Refer
to Brown et al. (2009) for a more detailed sumnrglimatic data.) Extensive borehole
data show that the entire glacier is near the presselting point (PMP). Water may
remain unfrozen throughout the glacier except pestmear the surface during cold
weather (Brown et al., 2009). Bradford et al. (20Eport bulk volumetric water content

< 1%.
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Previous seismic surveys have uncovered the pegsibsence of a discontinuous
basal layer beneath Bench Glacier. A 2D seismitilproollected in 2007 highlights the
presence of a layer that thins in the cross-glatirection (Figure 4.2c). The reflection
profile demonstrates an additional reflection sapiag from the bed arrival starting at
common depth point (CDP) 80. This layer pinchesavatind CDP 150 indicating the
presence of a discontinuous or thinning basal |&eavious researchers have
conjectured that the glacier may be hard-beddddhee possible discontinuous sediment
present at the bed ranging from 1 -2 m thick (Fuelga., 2009; MacGregor et al., 2005).
It is also possible that there is a layer of deligk basal ice similar to other glaciers in
this region (Hart, 1995). With that in mind, we §pine FWI to a discrete set of data co-

located with the 2D survey to determine what tlaisab layer could be.

Data Collection

We conducted a seismic survey in summer 2007 wsirgjkg manual
jackhammer source in a 10 x 10 m shot grid oved@®3300 m surface area (Figure 4.1).
The resulting 3D P-wave seismic reflection profitel a checkerboard receiver pattern
(40 Hz vertical geophones) in 4, 5x5m grids. Thenmal CMP bin size is 2.5m, and
CMP fold in our area of interest ranges from al&futo 70 (Figure 4.1). Maximum
offset was 384 m. The lack of snow or firn covethat glacier surface during the data
collection period allowed for effective source ctag but also caused some receiver
coupling problems as receiver locations meltedobtiie ice over the course of a day of

data collection and had to be reset.
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Figure 4.1:  a) Bench Glacier, Alaska showing locain of 3D seismic survey (white
box) and surface seismic monitoring station locatizss (+) where Mikesell et al.

(2012) report surface ice velocities and) values; 20 m contour lines show bed
elevation. Black line intersecting 3D survey ared location of 2D seismic profile
shown in Figure 4.2c. b) 3D survey map with grey-ste fold density (lighter shade

indicates higher fold) showing trace locations fomversion within the box in area of

highest fold; x and y directions marked on plot corespond to those in Figures 4.5
and 4.6 with »,yo at lower left corner of inversion box. * indicatessource locations

and arrows point to white boxes enclosing receivdocations.
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Figure 4.2: Data from Bench Glacier, Alaska: a) andb) show 2 representative
supergathers with binned offsets as discussed inxte For viewing purposes these
data have automatic gain applied with a 50 ms slidg window. ¢) Time-migrated 2D

seismic profile across the survey area (solid line Figure 4.2a and b). Note change
in reflection characteristics across the length othe bed: arrows on left point to the

peaks of two reflection events that converge acroske glacier to the point marked

by third arrow. At ice velocity, the maximum peak-to-peak distance closest to our
survey is 8 m, or about 55%. Black line underscores region of seismic profile
corresponding to inversion traces.

Data Processing

Basic processing steps include killing unusableesacaused by receiver melt-out

or other problems, muting the Rayleigh wave, emplpglevation statics, as well as
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applying a bandpass filter (50-100-400-600 Hz) amgtometric spreading correctiof) (t
Following Bradford et al. (2013), in the area oéagest fold we created 3D supergathers
by combining 3 x 3 groups of binned CMPs. Nomisial size was 7.5 frand thus
reflections in any given supergather representsaipte subsurface area of
approximately 56 f To further reduce noise, after NMO velocity asa& we combined
and stacked offsets in 5 m increments for offsegs than 80 m. Constraining offsets to
this range limits stretch effects in NMO processang reduces problems associated with
the azimuthal anisotropy known to exist in thiscgga ice. Figure 4.2 shows

representative supergathers.

Testing

A key step to implementing any full-waveform inviersalgorithm is accurately
characterizing the effective source wavelet. gt in mind, we begin by delineating
steps to recover the effective source parametens fine direct arrivals in the seismic
data collected at Bench Glacier. Next we usegbatce function within the reflectivity
model to generate synthetic models simulating thifierent basal conditions that could
generate the reflection event seen in Figure ©2e model is a control simulating
glacier ice overlying bedrock. The other three nhaedihin layer of basal sediment, a thin
layer of basal water, and a basal layer of deletsice. We subsequently test the
inversion algorithm on recovering the model parargetFinally, we implement the
inversion algorithm on the field data collectedanhch Glacier to quantify its basal

properties.
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Source Recovery

Before we can test the inversion algorithm on eigyathetic or field seismic
data, we must accurately recover the source paeasetVWe use the direct arrivals from
the seismic data set to derive the effective sopatameters as follows. Visual
examination of the data and comparison with regtdts Mikesell et al. (2013) reveals
that the direct P-wave arrivals are well separfiau the Rayleigh wave after about 50
m of offset. Therefore, we select offsets randmg 50 to 75 m from which to extract
the source wavelet characteristics. After basicgssing steps as listed above, we apply
a linear moveout (LMO) correction at an averageaeigy of 3640 m 3. Although lower
than the bulk ice velocity, this velocity provedeetive at flattening the direct arrivals.
Surface velocity could be lower than bulk velodtye to a higher fracture concentration
of crevasses and other heterogeneities near tfecsurFinally, we stacked all traces
within each offset bin to produce a single représ@re trace containing the direct P-

wave arrival for a given offset (Figure 4.3).

After correcting for spherical divergence, we inver seismidQ using a version
of the primary gradient-based search algorithmthis case, the objective function
minimizes the differences between the five trades Aack-propagation and attenuation

(Q) correction as follows:

¢ = Xi.1(4P; — [R c P|P; & Rlj)* (4.8)
whereP is a matrix of 5 column vectors each composecdeflmack-propagated and
attenuation-corrected wavefor® i denotes a column &f, andj denotes the row-wise

sum of the matriR formed fromP. We calculate the back-propagated and attenuation-
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corrected waveforr®; for each of the 5 source wavele®) (sing the Fourier transform

of the direct arrivals shown in Figure 4.3:

iwx  wx

P, = FFT(S,)e @ "zaq (4.9)
Thus, this technique inverts for the seismic atétion factor by using equation 4.9 to
minimize equation 4.8 with respect@ We calculate the solution uncertainty for the

single inversion parameter as th@ggalues having RMS errat 5%.

Source Results

The source parameter inversion retu@ys 26 + 6. The result is within the range
for Bench Glacier surfad® values calculated by Mikesell et al. (2013) bu¥eliower
than their average value. However, their survdgdated slightly up-glacier from our
data collection region (Figure 4.1). In additibfikesell et al. (2013) used low-
frequency Rayleigh waves rather than the higherdeacy P-wave direct arrivals and
thus the representative volume of th@imeasurement include deeper ice than the
surface waves. Surface i@(Qice) should be lower than bulR. since attenuation is
likely to be greater near the surface due to statieaused by surface topography and
air filled crevasses. Furthermore, {Qes known to vary widely in response to ice
conditions and temperature: i.e. Gusmeroli ef28110) report a range f@ic. from 6 —
175 for temperate ice. With these consideratiofsndi#ng the reasonableness of our
inversionQ result, we apply thi® to all 5 traces after spherical divergence comwact
take the mean, and input the resulting spectrutheasource spectrum for the 1D

reflectivity model (Figure 4.3).
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Figure 4.3: a) Seismic record for stacked traces bhed between 55 and 75 m
offset; straight solid line underscores direct arrvals and arrow points to Rayleigh
waves; b) extracted source wavelet spectrum.

Synthetic Testing

Models

We use the 1D reflectivity model to produce fountgyetic seismic traces which
serve as a basis for inversion testing. We adad¥dom Gaussian noise to each model
before inversion. The models simulate 4 differeagd) conditions that could contribute
to the reflection event observed in Figure 4.2ylagier ice overlying bedrock; 2) a thin
layer of sediment between the ice and bedrock;tBindayer of water at the bed of the
glacier; and 4) an underlying layer of frozen ursmditlated glacier debris. Model 1 acts
as a control where layer 2 thickness was set twdQlsus the model reflection comes
from the layer 1/layer 3 boundary. Table 4.2 gipasameters used in model testing
based on representative literature values fromraéseurces including Booth et al.
(2013), Johansen et al. (2003), Mikesell et alL@OSmith (2007), and Press (1966).
Layer 2a, Q, p, andd are the user-defined inversion parameters. Weiafgsit the

overburden thicknedsas an inversion parameter. We derive uncertaifrid@s parameter
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pairs as described in the inversion methods. Kinak test Model 2 for 6 different layer

thicknesses in order to demonstrate inversion itoless.

Table 4.2: Model parameters: Model 1 simulates adrd bed; Model 2 simulates
a thin layer of basal till; Model 3 simulates waterat the bed of the glacier; Model 4
simulates a basal ice layer. Layers 1 and 3 are tlsame for all models. Note thatl is
also given as %.

Model | Layer # and Fill a (ms?h) p (kg m®) Q d (m)
1, ice 3690 917 50 165
1 2, NA NA NA NA 0 (NA)
2 2, saturated till 2000 2100 256 2.0 (5%
3 2, water 1500 1000 1000 1.0 (V%
4 2, basal ice 4000 2000 200 4.0 (259
3, bedrock 5400 2700 500 100

Parameter Sensitivity Testing: Sediment Layer Tindsls

In order to test the sensitivity of the inversidgaaithm to sedimentary layer
thickness, we generate 6 additional models witlnsexak thicknessdseg from 0.2 m
(1/400) to 4 m (*2) thick. Following Bradford and Babcock (2014 this test we
hold other parameters constant having values asrshioTable 4.3 and defirdqas the
sole inversion parameter. We estimate 1D solutiwsertainty as described for soufge

inversion uncertainty estimates previously.

Synthetic Results

Model 1
Although we generated the model with= 0 m, as with the other models we

inverted for layer 2 properties as if a thin layeare present. The inversion algorithm
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returnedd = 0.05 + 0.05 m, layetr = 2400 + 800 m§ Q=1 + 1, angh = 2200 + 700 kg
m (Table 4.3). While solution andp fall near acceptable values for glacial sediment
(Table 4.1), the solutiod is negligible when compared to the wavelengtk (/200 at

a = 2500 m 8). This solution d is likely the result of the ims®n algorithm fitting some
of the noise in the trace. Thus, this inversiom pesvides confirmation that the algorithm

performs well in the model case simulating no taier present at the bed.

For this model, examination of parameter pairsrdiiproduce any meaningful
assessment of solution uncertainty. This probleuidcarise when parameter coupling is
too complicated to be resolved with 2D solutionraggal. Therefore, here we estimated
solution uncertainty from the subset of the 100@&ision iterations wher@ v was
within 5% of dcu. This method for estimating solution uncertainityeg reasonable

constraints on the inversion solution for this mddable 4.3).

Models 2, 3 and 4

Inversion results for thin-layer parameters ardini6% of the true values for the
remaining models with the exception of soluttfor Model 3 and of solutio® (Table
4.3). Error in solutior for Model 3 is 10%, while all solutio@ values appear
unreasonable. Estimated solution uncertainty &h b andp is large in some cases,
with estimated coefficient of variationeyf ranging from 5% to a high of 25% for Model
4 (Table 4.3). On the other hand, uncertainty estidfor modeQ are unreasonably low
(cv< 3%). Thiscvis likely not a reliable representation@funcertainty especially given

the fact thaQ results are well outside model parameters.
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Parameter Sensitivity Testing

Figure 4.4 shows model traces and bounded solutbwr&different test cases of
sediment thickness. Table 4.4 reports associatedrtainties andv for each result. The
inversion performs remarkably well even whegy= 1/4Q%, and all inversion solutions
are within 5% of the true value. In all cases,ithversion solution underestimates layer
thickness. Estimated uncertainty increaseg4> 50%) aslseqdecreases from the

Model A through Model F.

Summary of Model Results

The inversion solution for layer parameters exé€gguring synthetic testing was
within 5% of true values for the four models wiltetexception of the erroneously low
value for Model 3. In the control model example, solutidims extremely small € .05
m), and it is obvious that in reality layer 2 ighgible (Table 4.3). For Models 2, 3, and
4, other than solutio® the estimated parameter uncertainties encompeagsugn model
values. Associated uncertainties for several layeperties were high, notably in the
case o anda for Model 1 €v = 30%) and Model 4dy = 25%). This result highlights
the problem of non-uniqueness inherent in effeaiv@lementation of FWI. However,
since the solution space is 4-dimensional, abs@alstienation of uncertainty requires 4-

dimensional analysis of the solution space, whiethave not attempted.

The relative uncertainties associated with thelte$or o andp are twice that of
corresponding uncertainties reported with previasss of this inversion algorithm
(Babcock and Bradford, 2014b). However, thoseltesiere taken from radar data. In
radar data, with certain assumptions, contragpeimittivity provide reflectivity

response. In our model, there are two primareotiflity parameters( «) instead of



120

one. The coupled nature of this problem exacesltht difficulty of solution non-

uniqueness and thereby likely causes the largertaties that we report here.

On the other hand, soluti@is inaccurate for all model testing. For Models 2
and 3, solutiorQ is over 200% of the tru® and associated uncertainties @are
unreasonably low. For Model 4, soluti@nis 15% of the true value. Thus the model
testing demonstrates that the inversion algorithmoit sensitive to layé) for these
layers and thicknesses and that reasonable cortstiQ values for the bounded
inversion may be necessary in order to produceipéijss meaningful inversion results.
Holding Q fixed during the inversion may prove a better @ptsince using fewer
inversion parameters will increase inversion spéeldlitional modelQ testing could
possibly provide more comprehension concerningrifpdications of paired solution
non-uniqueness. Overall, the preceding model resohtribute to user comprehension
both of the functionality and also of the limitat®inherent in this FWI algorithm. Thus
we can reasonably expect that this inversion algorican recover the basal properties of

a glacier in the presence of a thin layer.

Table 4.3: Thin layer parameters for model testingand the inversion mean for
Layer 2 parameters calculated from all results forgem. Uncertainties reported for
Q andd are estimated fromea, Q and a, d pairs respectively, with the exception of
Model 1 as noted in the text.

a) Model 1 (control)

Parameter J;ﬁ?e Solution Bounds
a (msh NA 2400 + 800 1000 - 540
p (kg m®) NA 2200 + 700 900 - 2700

Q NA 1+1 1-500

d (m) 0 0.05 £ 0.05 0-5




b) Model 2 (sediment)

Parameter J;?fe Solution Bounds
a (msh 2000 2100 = 300 1000 - 5400
p (kgm®) | 2100 2000 + 100 900 - 2700
Q 256 500 £ 10 1-500
d (m) 2.0 2.1+0.3 0-5
c) Model 3 (water)
Parameter V-I;ILCI(;S Solution Bounds
a (msh 1500 1400 + 100 1000 - 5400
p (kg m®) | 1000 1000 + 100 900 - 2700
Q 1000 2500 + 200 1-2500
d (m) 1.0 0.9+0.1 0-5
d) Model 4 (basal ice layer)
Parameter V-I;lljjees Solution Bounds
a (msh 4000 4000 = 1000 1000 - 5400
p (kg m®) | 2000 2100 + 500 900 - 2700
Q 200 30+1 1-500
d (m) 4.0 4+1 0-20
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Results for parameter sensitivity testig with Model 2: a) shows the 6

models with increasing layer thickness from left taight. Dashed line is model with
5% added Gaussian noise, and thin solid line inditas inversion solution. All traces
are normalized by the maximum source amplitude. b)nversion solution for dsg
versus true modeld and estimated solution uncertainties. Uncertainés for lower
layer thicknesses are 25 times greater than the uedainty associated with thickest
layer which is not evident in plot (see Table 4.4).
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Results for parameter sensitivity testig for 6 models with increasing
d«g; the coefficient of variation (cv), which is the standard deviation divided by the
mean, describes the relative uncertainties. Unceritaty associated with smallest
value for dsg is over 25 times greater than for the thickest lagr tested. These
results demonstrate the robustness of the inversidout also the caution needed in
interpreting very thin layer results.

Model A B C D E F
e (M) 0.2 0.5 1.0 2.0 3.0 4.0
97 + . . +
deea(m) | 0.19+0.1| 0.49+0.1 00?12 1.99+.07| 3.0+0.0 30?838
cv 52.6% | 20.4% 12% 3.5% 2.3% 20
Data Testing

After basic processing steps, we select 25 sugeegé&drmations in the area of
greatest fold (Figure 4.2). Based on bin size, gaggmand estimating the size of the
Fresnel zone, these traces cover about 62 x 62 appwoximately 4000 frwhich is
about 0.05% of the total glacial area. In thisbar@a, the basal geometry is relatively
flat and we can reliably perform NMO velocity argl We limit incidence angles to
those below 15° so that the normal incidence assamis valid and to minimize effects
associated with azimuthal anisoptropy. After NM@reotion usingz = 3690 m &, we
stack the traces within each supergather. Thetrissalsingle trace per supergather
formation simulating a zero-offset seismic reflentevent (Figure 4.5). We implement
the inversion on each of the 25 traces after tasygowing around the basal reflection

event following Babcock and Bradford (2014b).

User-defined inversion parameters arg, d, and overburde® (Qice). We invert
for Qice instead of laye@ for three reasons: 1) the impact@d. on wavelet attenuation

is greater than that of lay€rsince the wave’s travel path in the ice is oved 80as
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compared to an estimated maximum thin-layer trpa¢h of 4 m (Fudge et al., 2009);
and 2) effectiveice is not well-known as robust estimates @. on Bench Glacier are
surface-derived measurements and do not reflekt@l over the ice volume which our
inversion traces sample; and 3) model testing detnated inversion insensitivity to thin
layerQ. Overburden thickness also functions as an imwezarameter. We use the
source spectrum derived from the direct arrivaidiie source in the 1D reflectivity

model as described previously (Figure 4.3).

Data Results

Mean results for the inversion parameters ovemthele inversion area (box,
Figure 4.1) are: = 4000 + 700 m§ p = 1900 + 200 kg M, d = 6 + 1.5 m, an@jcc = 68
+ 21 (Table 4.5). We refer to these values asdta solution. For visualization
purposes, Figure 4.5 shows 5 traces and the comdspy inversion solutions. Total
ranges for the 25 inversion solutions are 3200004 §" for ¢, 1700 — 2400 kg for
p, 2—9m ford, and 50 — 100 foQice (Table 4.5, Figure 4.6). Out of the 25 solutions,
three havel <5 m and two have > 7 m, and the remaining solutidrfall within 5 — 7
m. Similarly, if we exclude 2 solutions havings 2400 kg i, the total range of
solutions forp becomes 1700 — 2100 kg°’mExcepting 2 high and low values noted in
Table 4.5, solutiom ranges from 3500 — 4200 i.sThe range of solutions f@ice
exhibit more variability than the other 3 paramet®ith up to 100% variations Qi
depending on trace location (Figure 4.6). We cakeuthe paired parameter uncertainties
as described previously for the 4 parameters fafrtGe 23 solutions. The total
uncertainty for the mean solutions reported in €ahb results from the averagefor

each variable from those 5 paired solution uncatitzs applied to the mean of the
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solutions. Figure 4.7 shows the complicated nadfitbe paired uncertainties, especially

for solutionQ.

85} ]
90} ]

5

E o5 .

(D)

£

" 100} .

105}

110 '
11 19 26 34

Approximate X Position (m)

Figure 4.5: 5 representative supergather traces (Bd line) and the inversion

solution (dashed line) taken from approximately y =4 m and x positions across the
lower portion of the inversion box shown in Figure4.1b. Horizontal solid lines

define the target window for each trace and all traes are normalized by the
maximum source amplitude. Target window choice dep®ls on user discretion and
is an essential consideration in the inversion prass.
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Table 4.5:  Solution range and total mean solution ith estimated uncertainty
and inversion bounds for 25 supergather traces. Sation range is given without
high and low outliers as discussed in text; valudsr those outliers are in

parentheses.

Parameter Total Solution Solution Range Inversion Bunds
1 3500 — 4200
a(ms?) 4000 * 700 (3200, 4700) 1200 - 5400
1700 - 2100
p (kg/nt) 1900 + 200 (2400)* 1000 - 2700
Qice 68 £ 21 50 - 100 26 — 100
5-7
d (m) 6+15 (2*8.5, 9) 0-20
* 2 solutions hag = 2400 kg/n1

** 3 solutions hadd =2 m

a)
. Bl
E E
S 20 820
: B
> 10 > 10
10 20 30 10 20 30
X Position (m) X Position (m)
o) d)
30 ﬁ30
E E
§ 20 § 20
> 10 >~ 10
10 20 30 10 20 30
) X Position (m)

X Position (m
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Figure 4.6:  Solutions for 25 supergathers for a) kger d (m); b) & (m s%); ¢) p (kg

m°); and d) overburden Q (Qice); Note scales for each plot, where x,y positionge
relative to inversion box shown in Figure 4.2 starhg at lower left corner. Mean
estimated uncertainties are not shown but reportedin Table 4.5. Each box
represents the inversion solution for the appropriée variable from one stacked
supergather as described in text.

a)

100
2200
2100 95
%™ 2000 90
£
X
< 1800 80
1700 75
1600 -0
3500 4000 4500 3500 4000 4500
o (m 3'1) o (m 3'1)

d(m)

3500 4000 4500
a(m 3'1)

Figure 4.7: Demonstration of paired parameter solubn uncertainty plots for 1
reference inversion solution for a)e (m s%) vsp (kg m%); b) a vs Qice; and ¢) & vsd
(m). Darker colors correspond to lower uncertaintis and scale is relative to each
parameter pair. White line encloses solutions fronthe parameter pair with RMS <
5%, and triangle marks the inversion solution. Ingeneral other uncertainty plots
show similar characteristics. Herea, Qi pairs (c) demonstrates the possibilities of
multiple local minima with the concurrent difficult ies such a situation poses for ill-
constrained FWI problems.
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Discussion

The total inversion solution far (4000 + 700 m%) is within published ranges
for debris-rich basal ice layers (BIL) or frozemlgeents layers (e.g. 2300 - 5700 ) s
(Table 4.1 and Figure 4.6) (Johansen et al., 20R&innis et al., 1973). The total
slowness or velocity inverse(s ni’) of the composite material is approximately thesu

of the fractionf of each component times the slowness (Hauck e2Gil1):

SpiL, = Sifi + Sefr + Safa + Swhv (4.10)
where the subscripBIL, i, r, a, andw denote basal ice layer, bulk ice, rock, air, and
water respectively. We assume that the water ooofehe BIL is negligible since
Bradford et al. (2013) determined the volumetri¢ew@ontent of Bench Glacier in our
survey area to be <1%. We further assume thag ikero void space in the BIL, i.6. =
0. With these two simplifications, equation 4.&@uces to a two-component mixing

equation for slowness:

SBIL = Siﬁ: + Srf;. (411)

wheref; = 1 — f,. We can simplify and solve equation 4.11 for thekrfraction as

follows:
_ SBIL—Si
fr=55 (4.12)

The corresponding slowness;;, = 2.5 x 10 s mi* to the mean inversion velocity
yields a rock fraction of 30%. Excluding outlietise highest seismic velocity from the
inversion is 4200 m(Table 4.5). This velocity corresponds a to roeicfion of 43%.
Equation 4.12 fails where reported layer seismloaiges are less than ice velociy)
(i.e., layer slownessg;; > s;). Solutiona for two of the twenty-five inversion traces

were belowrce.
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However, equation 4.12 does not take into accdwengeometry or distribution of
the rock inclusions. Another source of error is assumption that there is no free water
in the BIL. Harper et al. (2010) show that wat#ed basal crevasses are present on
Bench Glacier. These observations combined wattithing of the data collection
(August) suggest that water in liquid form is prasaroughout the glacier crevasse
system. It is possible that BIL volumetric watentant is as high as 2.5% (Bradford et
al., 2009). Using the 3-phase approximation tee¢ign 4.10 withf,,= 2.5% and; =
70%, the BIL bulk seismic velocity may be as lowd@90 m & (Figure 4.6). This value

is well within the uncertainty of the mean solutidm@able 4.5).

The total inversion solution faris 1900 + 200 kg Mwith the solution ranging
from 1700 — 2000 kg fhexcluding 1 outlier (Table 4.5). We use a commoRrimgj
equation to interpret these results with respeob¢& fraction for the two phase system

(Nolan and Echelmeyer, 1999):

peiL = frpr + (1 — f)pi (4.13)
Solving forf,., the resulting rock fractions for the inversiosuks range from 40
— 65%. These values are within published rangeddbris-concentrations of debris-rich
BIL layers (30 — 59%) (Hart, 1995; Hart and WallE999). In addition, the robustness
of the inversion solution is corroborated by thasistency of the rock fraction results
from analysis of botlx andp. Combined interpretation of the analysis for irsien
solutions fora andp suggests that there is indeed a thin layer of defwih basal ice
present below the glacier at this location. Givemariange of solutiop, this BIL likely
has relatively high concentrations of debris (4824%. An alternative interpretation

could be the presence of basal layers of saturitteén sediments with high-porosity.
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However, such layers are not likely to form beneatemperate glacier such as this one.
The 2D seismic profile previously collected at survey location corroborates our
findings (Figure 4.2). Based on peak to peak tiifference between arrivals of the
thinning basal layer observed in the stacked dagathickness of this layer nearest our
survey area is approximately 8 m. The inversicultdord (6 + 1.5 m) corresponds
roughly to the center of the section where vispaheination shows the basal layer is

thinning out.

Next we interpret our results for overburderfQ = 68 + 21). Overall the
inversion solution foQicefalls well within reported literature values (e.@usmeroli et
al., 2010). Furthermore, our surface wave inverdioa model inversion results, and the
bulk Qice inversion results all demonstrated that the ineeralgorithm is not sensitive to
Q for these higlQ values. To test that observation, we reran thergion for the entire
set of 25 traces witli.c fixed and equal to the inversion mean solutiQpe(= 68). The
resulting mean inversion solutions deviated leas B2 from the solutions in Table 4.5
and the average run time was half the run time wwhendingQice as an inversion
parameter. Thus we conclude that fix{@g: to a reasonable value based on some
knowledge of overburden conditions has minimal iotfman inversion accuracy and may
prove a reasonable approach especially given tplomated nature o solution, which

may trap the inversion in discrete local minimag(Fe 4.7).

Finally, it is important to note that target windéemgth is an inversion input
based on user discretion. Babcock and Bradford420doted that a shorter window
length may provide a more accurate inversion rekah a longer one. Thus we attempt

to define window length so as to include the entftection event but exclude noise
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(Figure 4.5). Target window remains based on graicer judgment; future work should

include a more robust assessment of ideal targetow.

Conclusions

We applied a full-waveform inversion algorithm gmthetic seismic data and to
field data taken from Bench Glacier, Alaska, inefiort to quantify thin layer parameters
for basal layers. The inversion implements a gnatdbased search algorithm in
conjunction with a 1D vertical incidence reflectivmodel. The direct arrivals in the
field data set provide an estimate of the effecsimarce spectrum for the reflectivity
model. During synthetic testing on 4 models with &3tled random Gaussian noise, the
inversion recovered thin-layer parameters withifoldf true model values.
Additionally, we tested the inversion on 6 differeases oblseafrom 1/4Q to Y4l.
Inversion results fodseqwere within 5% of true model values. Finally, /I
algorithm recovers mean= 4000 + 700 m§ p = 1900 + 200 kg i, andd = 6 + 1.5 m
using a subset of field data collected during &iglaseismic survey. We interpret these
results to be indications of the presence of aigelmh basal ice layer at the sample

locations.

Future work includes quantification of inversiomsgivity to seismidQ,
investigation of the effects of window length ousion robustness, and implementation
on additional data sets. Judicious implementaticthis algorithm could quantify
properties of thin layers under glaciers and i@esh Such accurate quantification of
basal parameters will aid interpretation and maodgetif glacier and ice sheet dynamics in

response to climate change.
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CHAPTER FIVE: ELECTRICAL ANISOTROPY IN SEA ICE ANB DUAL-
POLARIZATION RADAR SYSTEM TO MITIGATE THE EFFECTS B

PREFERENTIAL ATTENUATION IN IMAGING SEA ICE

Abstract

Preferential alignment in the physical structuréhef sea ice crystal matrix results
in anisotropy in the electrical properties of thitkisea ice. Analysis of a 1D reflectivity
model and field data demonstrates that sea icérieicanisotropy can impede ice
profiling using ground penetrating radar (GPR)eefilon methodology via preferential
attenuation due to polarization effects. Dependingolarization, preferential
attenuation due to anisotropy effects can redueiminate ice bottom reflections. To
facilitate reliable ice profiling, we describe aathpolarization configuration of a
commercial GPR system for ice monitoring. The duahrization system reliably
images the sea ice/water interface even in theepoesof well-developed conductivity
anisotropy. Additionally, by combining data froratb polarizations, our system
provides information about the horizontal directadrthe ice matrix alignment, which

may indicate the direction of dominant current flow

Introduction
Sea ice is well-known to be anisotropic both wihpect to its mechanical,
physical, and electrical properties (Campbell andn@e, 1974; Kovacs and Morey,

1979; Timco and Weeks, 2010). Even first-year sead an “anisotropic, stratified,
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strongly absorbing, inhomogeneous dielectric” valiactrical and physical properties
dependent on temperature, salinity, age, and ¢rgtstecture (Kovacs and Morey, 1978).
Both the permittivity and conductivity structurefssea ice are anisotropic. In particular,
the anisotropy in the conductivity structure of ggahas ramifications for effective

implementation of ground penetrating radar (GPRijnage the sea ice bottom.

The driving mechanism for sea ice conductivityhis salinity (Nakawo, 1981).
As ice forms from sea water, growing ice crystaisuele salt. This salt may be expelled
from the bottom of the growing ice sheet. Someusldd salt becomes trapped within
the ice sheet and subsequently concentrated ie pookets and channels. In general,
these brine pockets are probably ellipsoidal oindyical (Figure 5.1) (Jones et al., 2010;
Kovacs and Morey, 1986; Morey et al., 1984). Nehadess, the volume fraction, size,
shape, and connectivity of the brine inclusiong\@arer several orders of magnitude
depending on environmental factors (Buchanan g2@1.1; Jones et al., 2010). The
concentration of the brine within the inclusionpéieds largely on the rate of ice growth
for early- or mid-season ice. Ice growth ratesuimm, depend on temperature and on the

age of the ice (Jones et al., 2010).

The bulk effective conductivity of the ice sheeg&ifactor of the brine
concentration and of the orientation of the brimgusions. This orientation depends on
the microstructure of the ice, which is generalthier granular or columnar (Timco and
Weeks, 2010). Granular ice has no preferentiahtaieon and is usually isotropic. The
conductivity of columnar ice, on the other handj ba strongly anisotropic due to the

preferential shape and orientation of the ice colsim
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In the case of anisotropic columnar sea ice, el@uyaertical columnar crystals
extend throughout the ice sheet. The columns sadldne pockets oriented
perpendicularly to the c-axes of the crystals (Fedul) (Kovacs et al., 1987). This
vertically-oriented matrix of crystals and brinelusions can additionally align in the
horizontal direction in response to dominant ocaaments (Figure 5.1) (Campbell and
Orange, 1974; Golden and Ackley, 1981; Kovacs andeyl 1986; Tucker, 1984). The
net result is that the conductivitysf) and permittivity £s) of the sea ice varies with
azimuth. The magnitude of the azimuthal variat®a factor of ice temperature, volume
of brine, the brine temperature and salinity, thapprties of the ice crystals, and the

shape of the brine inclusions.

In order to understand the implications of thissatriopy for imaging sea ice
using radar in the GPR frequency range (10 MHz &Hk), we begin by examining the
relevant electrical properties of sea ice with eg$po polarization. Then we discuss a
data example that highlights the polarization-dejeemh response. Finally, we present a
commercial radar system set-up that mitigates ffieets of the sea ice anisotropy and
allows us to reliably detect the ice bottom evermwthe ice is strongly anisotropic. Data
collected at two field sites demonstrate the systetnility to reliably image the sea

ice/water interface regardless of the prefereudii@ction of the anisotropy.
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Figure 5.1:  Sea ice crystals in columnar ice having) oriented brine pockets with
varying shape and size within randomly-oriented calmnar ice crystal matrix and b)

possible orientation of the columnar ice matrix inresponse to dominant currents
(following Kovacs et al., 1987).

Sea Ice Electrical Anisotropy
Radar wave propagation in sea ice depends onsh@thdos. Since sea ice is
strongly anisotropic, we treat the problem as tejasate cases corresponding to the
electromagnetic (EM) plane waug, polarized in the paralleE() or perpendicularK)
direction with respect to the dominant orientatidtorine inclusions. Many commercial
radar antennas are approximately horizontal dipahesemit a linearly polarizés field.
By choosing the appropriate coordinate system,amewrite the two cases with respect

to that orientation as follows (Morey et al., 1984)
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9E 9%E

VZE) — WoOsij 5 — MoEsil 5z = Ji (5.1)
OE 0°E

VZE, — Ho(’su_a_tl - Hogsiszl =1 (5.2)

where] is the source di due to radar excitation, amg andos; are polarization-
dependent. (Since sea ice is nonmagnetic, wetdiidbe constant and equal to the
magnetic permeability of free spagg,) Any case oE polarized at an intermediate
orientation with respect to the dominant directddnthe anisotropy may be decomposed

into these two cases.

Taylor's (1965) mixing formulas provide the effecipermittivity of the sea ice
if the brine pockets are parallel to the introdutiettl (¢;;,) or if they are perpendicular
(e4;1), given the complex permittivities of the brinedahe pure ice crystalsj ande/,
respectively) and the volume fraction of the bring. These formulas require some
additional assumptions about the shape and sitteedirine pockets, namely that the
long axes of the ellipsoidal pockets are smalltnatato the wavelength of the signal in
the sea ice and thag << 1. These conditions are likely satisfied indceéa ice (Jones et
al., 2010). With these assumptions, we can caleuls complex-valued permittivities

for the two-component system as follows (Moreylgt1®84):

gy = & top(ep — &) (5.3)
and
£y = =t (5.4)

eptop(e;—ep)
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Inspection of these two equations reveals the teeedlculate the complex-
valuede,, €/, andv,. The Debye (1929) formula provides the basis énuting

complex-valued;, (Stogryn, 1971) ane’ (Buchanan et al., 2011) as follows:

* €i0—Ejoo
& = €joo +——= 5.5
t 1o 1+iwT; ( )
E€po—¢€ . 0
1+iwTp WEe

using the dominant relaxation time of the spedciiiterial ¢); the low frequencyef) and

high frequencyg,) permittivity limits of the given material; the eductivity of the

brine (,); the permittivity of free spaces(); andi =v—1.

At radar frequencieg; is essentially frequency- and temperature-independ
(ef = (3.14 4+ 0.002i)g.) (Golden, 1995; Kovacs and Morey, 1986). On ttieohand,
&, depends strongly both on temperature and on fre;yugolden, 1995). Stogryn
(1971) provides equations to calculate,,, andeg, for brine as a function of temperature
(T). Brine conductivity €,) also depends oh Morey et al. (1984) discuss calculations

of op and the concurrent assumptions in detail.

Finally, estimating;, andeg;, also requires calculating, ande;,. We follow
the formulas provided by Frankenstein and Garn@8{}lto compute, as a function of
temperatureT, °C) and the bulk salinity of the ic&(). At radar frequencies, the
effective permittivity £e) is approximately equal to the real partdf(Bradford, 2007,
Knight and Endres, 2005). The differences betwggn the parallel and perpendicular

polarizations €., ande, , respectively) is less than 17% for cold sea i¢e T

n

imaginary components af;, ande;;, (e5;;, andeg;,, respectively) contribute to the
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cumulative effective conductivity of the sea icehie parallel ¢.5,) or perpendicular

(0¢r1) polarization (Knight and Endres, 2005):
Oefl = Oac + WEg, (5.7)
Oef1 = Ogc t (‘)S;EJ_ (5.8)

Following a modified Archie’s law (Morey et al., 849), 0, is a function ot
ando;, (Kovacs and Morey, 1986):
O4c = OpLp' (5.9)

wherem depends on polarization. Combining equationstr@uigh 5.9, we

proceed as follows:

oer) = (0.5 + .02T)0b1251),1,'55 + wim(g] + v, (g — €)) (5.10)
_ 1.75 X em(ep—¢;)
Oer1 = (0.5+ 0.02T)0p 250, + wlm(g; + 2v, — ) (5.112)
mTt<h

The final result is that the net effective conduityiof the ice parallel to the
preferential horizontal direction of the brine chals can be up to 2.5 times higher than
the effective conductivity perpendicular to the mhels, depending on temperature

(Figure 5.2).

Bothe,r ando, s contribute to the attenuation;, of the radar wave in sea ice:

as = w\/”Z—ef( /1 + (5%)2 -1). (5.12)
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We substitute the appropriate variables correspaniti each polarization to
calculaten;; andeg;, (Figure 5.2). The attenuation exponent increastsincreasing
oer, and saxg is greater tham,;, . Thus the radar wave experiences preferential
attenuation when aligned with the brine structdrthe ice. The differences betweep
andag;, are large at all temperatures ranging from -220G, & 10ay;,) to -2°C @ =

28ag;,) (Figure 5.2).

Finally, we use a 1D reflectivity model to mode¢ gholarization-dependent
reflection of the radar wave from the sea ice/wattarface (Bradford et al., 2010). The
model results show that preferential polarizatibthe EM signal can reduce and even
eradicate the ice bottom reflection event (Figu®.5Multiple published results
corroborate the model predictions. For example,a&tsvand Morey(1978) experienced a
complete absence of any measurable reflected digimalthe ice bottom and attributed it
to preferential attenuation. Similarly, Campbeltdl@range (1974) monitored
preferentially-extinguished ice bottom reflectioreets with changing azimuth. Nyland
(2004) observed preferential attenuation of radflection amplitudes on sea ice in
Alaska and warned that errors in ice velocity meguit from difference betweeg in

the two polarizations.

Data Example: Testing at CRREL

Materials and Methods

Site
We collected an example data set over a salingheet grown in a control

facility at the U. S. Army Cold Regions ResearcH Bmgineering Lab (CRREL) in New
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Hampshire in 2011. The testing at CRREL was paanobngoing campaign to verify the
radar’s ability to detect spilled oil in and undesa ice. For all CRREL testing, CRREL
personnel grew a saline ice sheet in an outdoasretabasin 18.25 m long by 6.7 m
wide by 2 m deep. A refrigeration unit above thektenaintained the air temperature over
the ice sheet at -15 °C during ice growth. We adplisitial water salinity such that the
final water salinity after ice growth would mimieawater, approximately 32-34 parts
per thousand (ppt). Surface ice temperatures dtestgng were -10 to -15° C. We

collected data before and after a simulated oil epent during the training exercise.

Acquisition

We collected data using Sensors and Software PkiselFro 1 GHz shielded
antennas. We processed and analyzed the data witlneknowledge of anisotropy
structure, ice depth, or oil location. Basic prabeg steps included a dewow filter, time-
zero correction, amplitude spreading correctioBs lfackground subtraction, and muting
the first arrivals. Where applicable, we convefftetn time to depth using an

approximate sea ice velocity of 0.15 m/ns.

Results

These data show a marked decrease in reflectiotitadgfrom the sea ice
bottom depending on polarization. The most likedyse of the missing reflection from
the data in the cross-tank direction (Figure Ss2xXponential decay due to attenuation of
the radar energy polarized in alignment with thedtetivity structure of the sea ice.
This result shows that unintentional survey alignthweith the preferential axis of the

conductivity structure of sea ice can obscure ioniehte reflection response from the ice
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bottom. In such cases, data analysis would ni@thiglreveal the ice/water interface.

With that in mind, we present a system to relidgbigge the ice bottom even in the

presence of strong anisotropy and regardless arisotropy direction.
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Demonstration of the modeled and realffects of sea ice anisotropy on

radar data using 500 MHz central frequency,n=0.07, and parallel (solid) or
perpendicular (dashed) polarizations: a) effectiveonductivity versus temperature;
oy is more than 2 timesayg;, at all ice temperatures above -17 °C. b) calculedl
attenuation exponenta for each polarization; for sea ice at -2° Cag;is more than 2
times greater thanay;,. ¢) 1D reflectivity model of ice bottom reflectionwith ice
thickness 0.85 m (reflection at 12 ns). The left pl uses Archie’s law exponent
m=1.75 for antenna polarization perpendicular to pimary crystal orientation; plot
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on right uses m=1.5 for parallel polarization; in his case reflection strength from
ice/oil/water interface is reduced by a factor of B. d) 1 GHz pulsed radar data
collected at CRREL in both polarizations. The almoscomplete disappearance of
the ice/oil interface and the ice-water interfacein the cross-tank direction
(rectangle) is likely a result of attenuation dued conductivity anisotropy.

Field System for Anisotropy Mitigation

Dual-Polarization Confirmation

We implement a new dual-polarization GPR systemgi4i500-MHz Sensors
and Software PulseEkko Pro shielded antennasthiosystem, we orient one source-
receiver pair in-line (parallel) with the surveyetition and the other perpendicular
(cross-line) to the survey direction. The systetects data alternately from the
orthogonally-polarized antenna pairs across thegthkeaf the survey with spatial
positioning controlled via odometer wheel (Figurg)5Data sets are collected
simultaneously by the system, so the only diffeecinetween the parallel and
perpendicular data sets is polarization directiBmce the antennas are orthogonally
polarized, regardless of the preferential direcbbthe anisotropy structure at least one
of the antenna-receiver pair should experiencemahattenuation and successfully

image the sea ice bottom.
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Figure 5.3:  Dual-polarization system: 500 MHz antena-receiver pairs oriented
parallel and perpendicular to survey direction, asshown by orientation of odometer
wheel travel.

We acquired data using the dual-polarization systeRrudhoe Bay, Alaska over
natural sea ice in 2008. During the Prudhoe Baynigsthe clean mid-winter sea ice was
approximately 1.5 m thick. Data for temperature salthity of the ice at Prudhoe are
limited, and no boreholes were drilled during tla¢adcollection to verify ice depth. In
2012, we tested the 500 MHz dual-polarization sydteconjunction with training
conducted by Alaska Clean Seas at CRREL for oll sggsponders and relevant
environmental agencies. The staff at CREEL gremidk sheet as described in the
previous section. Ice thickness was approximatelyn) and we collected data after the

simulated oil spill event during the training exeec

For all tests using the dual-polarization system,did not preplan survey
direction with respect to any anticipated anisatapsponse in the ice. We processed
and analyzed the data without foreknowledge ofiegth or oil location, using the same

processing steps as above. Additionally, usingltre-polarization data, we combined
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the orthogonally-polarized data sets into one cetepprofile by vector sum. In using the
vector sum to combine the data, we assume thaliffleeences in travel time due to
polarization are insignificant. We also assume thatreflection amplitude from the
parallell-polarized phas&() is negligible. Contrary to Nyland’s (2004) obsatien, in

our data we see less than 0.1 ns differencesiwahtimes between the two polarizations
and using the vector sum to combine the data pneasonable. The small difference in

arrival times validates our assumptions al®ut

Another advantage of the dual-polarization appraacthe ability to determine
the dominant direction and the relative strengtthefanisotropy. After basic processing
steps, we evaluate the maximum reflection strenfjtbe/water reflection event for both
polarizations R, andR;) averaged in 1 m increments across the lengtheo$tirvey.
Then, we compute the angle in degreBsbetween two vectors with respect to the

direction of travel, assuming, = 0:

—1 max(Ry)

6 = tan (5.13)

max(Ry)

Finally, we calculate the relative strength of #mésotropy asnax(R,)/max(R;). This
technigue gives the anisotropy vectors with resfredirection of travel and with respect

to the maximum reflection strength in a given syrve
Results

In the Prudhoe Bay data, the radar antenna paaripetl perpendicular to the
survey direction clearly profiles the ice/watereirice located at about 1.5 m, but the
ice/water interface is almost completely absenthfdata collected with polarization in-

line with direction of travel. We interpret thisrélctionally-dependent attentuation as a
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result of preferential alignment with the anisotoojge structure. However, using our
system, the vector sum provides the most completdeof the bottom of the ice

(Figure 5.4).

The data collected at CRREL in 2012 also demoresttéiterences in reflection
strength between the two orthogonal antenna paléwizs (Figure 5.5). In this case, both
data sets profile the reflection associated withitie bottom at approximately 0.40 m,
including topographic highs at 4 and 10 m. Howetle,in-line polarization reflection
strength is weaker at almost all locations. Thetrikaly cause is preferential attenuation
due to anisotropy. In these data, the effecte@preferential attenuation on the ice

bottom reflection event are evident both in therland oil-contaminated areas.

Finally, we plot an example showing relative direetand strength of the
anisotropy for the Prudhoe Bay data (Figure 5.4&Ihce previous work correlates the
direction of dominant crystal alignment with curtgimowing the direction of anisotropy
has important implications for application suclodspill response in Arctic conditions.
For example, the dominant current direction carncete in which direction spilled oil is
likely to migrate underneath an ice sheet. In 8 sggponse effort, this additional

knowledge can aid spill responders in efforts &@krand monitor the spilled oil.
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Figure 5.4: Data collected over sea ice at Prudhdgay, Alaska using the dual-
polarization system: a) in line with survey directon, b) perpendicular to survey
direction, and c) vector sum of a) and b). The combed information from both
polarizations provides the most complete image ohé sea ice/ water interface. d)
Solid arrows denote relative direction and relativestrength of anisotropy with

respect to the survey direction (dashed arrow) andelative to the unit circle. Two
equally valid solutions exist (£180°).
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Figure 5.5: Radar data collect over a saline ice get at CRREL at 0.1 m

increments a) in line with survey direction, b) pependicular to survey direction,

and c) vector sum of a) and b); d) shows relative eflection strength across
corresponding to a (dashed line), b (solid line),ral ¢ (bold line) with very high

amplitudes corresponding to oil locations under thece at about 4-5 m (traces 40-50)
and 9-11 m (trace 90-110).
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Conclusions

Preferential alignment of the sea ice physicalc$tme during ice growth results in
anisotropy in the physical and electrical propsrtésea ice. We decompose EM wave
propagation in sea ice into two cases: 1) the Edvlenpolarized parallel to the
conductivity structure of the ic&€(), and 2) the EM wave polarized perpendicular & th
conductivity structureK, ). Higheroesin the parallel direction can attenuate the radar
wave travel to the extent that the ice bottom otitan is completely extinguished. A data
example demonstrates the need for a GPR systerhleagfaobustly imaging the

ice/water interface regardless of anisotropy dioect

We configured a commercial radar system to prosidailtaneous acquisition
with antenna pairs polarized in line with and peigeular to survey direction. Our
approach allows for proper treatment of condugtigitisotropy and minimizes problems
with interpretation of the sea ice/water interfa@ata processing and interpretation
show that this system is effective for imaging itedwater interface regardless of
dominant crystal alignment. Our system has apjptioa for monitoring sea ice
thickness; detecting contaminants such as oil thuarder sea ice; and monitoring the
movement of contaminants under an ice sheet. Goltedata using the dual-polarization
system has proven rapid and reliable at two figessand interpretations of ice depth
have corresponded well with field data where avéala With minimal training,
personnel could use the system to monitor ice ti@sk under Arctic conditions, and
thereby reduce hazard exposure to personnel asacethio traditional methods of ice

monitoring such as core drilling.
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CONCLUSIONS

The targeted full-waveform inversion algorithm vedde to recover layer
properties to within 10% for both the seismic aadar reflection models with the
exception of conductivity for the radar case andmsie quality factor in the seismic case.
In the radar laboratory and field examples, inwetten-layer properties were within
15% of measured or estimated values. In addit@mrtwo of the radar examples the
inversion algorithm performed robustly even whelviag for properties of two separate
layers. In the seismic case, it is impossibletangitatively assess the accuracy of the
inversion results using the field data since saigmoperties for the basal ice layer
underneath Bench Glacier are unknown. Furthernsaismic properties of frozen earth
materials have a broad range in values dependiqpsity, water saturation, sorting,
overburden, and other factors (see Chapter 4 fampies). Nevertheless, |
demonstrated that the inversion results are witported literature ranges for basal ice

layers.

It is interesting to note that in both the seisamd radar cases, the inversion
algorithm does not appear to be particularly sesesto thin-layer attenuation parameters.
For example, in Chapter 3, | showed that inversimintions fors deviated up to 5 orders
of magnitude from the true model values. In Chapteesting revealed that the
inversion solution for modeled thin-lay&was up to 200% greater than the input model

value. For the radar case, if the low-loss ciatéolds, changes in permittivity dominate
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reflectivity responses. For seismic dat&iis large the second term in equation 4.3 goes
towards zero and the effect@fon the reflection coefficient is small. For exampf Q
is greater than 100, the resulting contributiothereflection coefficient may be less
than 1% depending of course on frequency. Thenptimary contribution of) oro is

to attenuate the traveling wave by** wherex is the distance traveled in the layer. For

radar-wave travet = o; (equation 1.43), and = % in the seismic case (equation 4.6).

Obviously, as the layer thickness decreases, teewation also decreases, in this case
exponentially. Then in the thin- and ultra-thigda cases | tested, the inversion may not
be sensitive to layer or Q since it contributes little either to the attenomtor to the
reflectivity response. An exception would be in tase either of high or low Q: if the
low-loss criteria is invalid or the layer thicknesgproaches the skin depth, then
attenuation due tQ or o may become significant even in the thin-layer ca$en the
inversion algorithm may provide more reliable estiions for the two parameters if layer
thickness were increased or at higher valuesafdQ. Future testing of the inversion
algorithm should include model testing to retriésggero andQ at higher, rather than

lower, layer thicknesses, and subsequent testiriggloindata.

Finally, the user must recognize that the inversilgorithm depends on many
assumptions and simplifications and any of theseeesily be violated with subsequent
detrimental consequences on inversion performakoe.example, one assumption
inherent within the 1D reflectivity model is thaetsubsurface can be represented by a
stack of homogeneous, isotropic, layered materiélge subsurface is neither
homogeneous nor isotropic. Violations of theseegions lead to problems and

inaccuracies not just within the inversion algarthccuracy but even within the data



151

itself. For example, in Chapter 5, | demonstrdked in the face of strong anisotropy
within the conductivity structure of a subsurfacatemnial, standard radar reflection
methods may fail to provide reliable subsurfacegimg. Thus, the presence of
anisotropy not only violates the assumptions ofr#flectivity model but also can
invalidate data collection methods. In eitherhaide cases, it is obvious that the
inversion will fail to generate reliable resulf8hus, | demonstrated the efficacy of a
dual-polarization radar system for robust collettid radar data even in the case of
pronounced subsurface anisotropy. By using thesesy to collect data over sea ice in
the event of a contamination event such as arpiij subsequent use of those data
within the inversion algorithm would be much makely to succeed at retrieving oil

locations and thicknesses reliably.

This targeted full-waveform inversion and the dpalarization radar system have
potential widespread use for environmental momigpand environmental remediation.
The dual-polarization system provides a reliabléhme to image the water-ice interface
rapidly and over long distances. Potential appbece include sea-ice surveys to provide
ground-truth data for satellite sea ice measuresndidith the increase of remote sensing
and modeling based on remote measurements, resesestd practitioners alike sorely
need such reliable ground verification of satelliega. In addition, personnel who
monitor sea ice depth for hazard mitigation assessim remote operating areas could
use this system to do it more quickly, safely, eglcbly than current borehole methods.
In the event of a spill, as mentioned previoustynediation workers could use the dual-
polarization system in conjunction with the inversalgorithm to best delineate priority

response areas.
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As | demonstrated, practitioners can also implemantnversion algorithm on
glacier seismic data in order to define basal domti. Such applications will enhance
environmental monitoring and modeling efforts. Speally, glacier dynamics are tied to
glacier movement and even to global climate chaage,glacier dynamics depend in
part on basal conditions (Chapter 4). Thus usiegrkiersion algorithm to quantitatively
define basal conditions is another innovative ayapion of my research. However, as
demonstrated in Chapters 2 and 3, | feel the teahgth of the inversion algorithm lies
in retrieving thin-layer properties where thoseel@yare the result of environmental
contamination. The inversion has demonstrated maabée reliability (< 15% error) in
retrieving contaminant permittivity and thicknessng both model and field data for two

different types of contaminants: LNAPLs and DNAPLSs.

Additional model testing in Chapter 2 indicatedtttine inversion may perform
well even at layer thicknesses as low as @,48hough in the presence of noise this
limit is likely to be higher. Thus, future work glid include application of this inversion
algorithm on additional field data sets. Carefubice of data sets should allow for
inversion testing on both thicker and thinner conteant layers as well as additional
types of contaminant. Testing the algorithm om@ataminant with relatively high
conductivity (> 0.05 S M, see Figure 2.3) would be particularly benefigiathe
ongoing effort to carefully and quantitatively dedithe inversion strength and

weaknesses.

Furthermore, additional work on the algorithm itstlould attempt to automate
the windowing of the reflection event. Currentlyis process involves manually picking

the target window trace by trace. The need for rabpicking limits the number of traces
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the inversion can process in any given time. Auwttng the event windowing would
allow more rapid processing of large data set®ataminated sites. One such large data
set is the Wurtsmith AFB contaminated site, whiclistussed in Chapter 3. Future work
should include testing an automated version of lggrahm on those data or another

similar data set with lower levels of noise.

In conclusion, this body of work provides a newgtded full-waveform inversion
for quantifying thin-layer parameters as well ageav method of collecting reliable radar
data where the subsurface may be highly anisotrdpere | demonstrated the inversion
robustness on both radar and seismic data. Eudigltaimplementation could provide
rapid and robust subsurface characterization afléyers over larger areas than point
source measurements. Thus it may be particulaeticial to environmental

monitoring and remediation efforts.
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A University Case Study



165

Abstract

Scientific information offers unique contributiotespublic policy decisions for
land management and resource use. Unfortunai@ligus barriers hinder transfer of
science to decision makers. Boundary organizapdasa prominent role among
constructs designed to bridge these gaps betweamcscand policy. Here we examine
the role of boundary organizations and segregatedury organization theory into
boundary organizations, boundary objects, and banyrspanning individuals. A case
study conducted within a university setting progi@elditional information about these
constructs and the processes and barriers opelsingen scientists and decision
makers. We conclude that the classification of ‘fimary objects” may include non-

traditional boundary objects such as buildings.

Problem Statement
Science strives to produce unique, verifiable, eateuinformation about the
natural world and its systems. Thus science caa\b&@l component of the decision
making process for most public policymaking relevanpublic lands use and sustainable
management of natural resources. However, whathordefines “science” is itself a
contentious issue. Decision makers must addressi¢finition in an effort to promote
stakeholder confidence and to promote minimallys&thand repeatable scientific

conclusions.

Properly understood, science is often able to pleunique information about
current resource status and expected future ou@naekey, 2007). For example,

scientists can use various methodologies to tegpathesis and make conclusions about
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reactive changes in populations within a foressgstem due to mining activities.
Decision makers could consider such informatiorinithe context of a public policy
decision concerning mining permits. Similar exaesphbound within almost all
decisions that impact natural resources, the faumdéor sustaining human life on this

planet.

Admittedly, there exist a plethora of factors besidcience that decision makers
weigh when determining public policy. Decision makifor resource management
involves balancing competing interests and stakihralemands. Economics, social
norms, public values, ecological repercussions,rataded externalities are but a few
examples. These systems are legally and morallgiatie in the decision making
process. These non-scientific factors often driatomal and global resource
management decisions and may take precedencehavpettinent science. Both legal
concerns and public demands may override sciemtifiats given the importance of our

legal and political system.

Ultimately, however, science necessarily holdseeprinent place within
resource decision making, as follows. The fundaaidydsis underlying decisions for
public land allocation and natural resource manaens the natural system. Within the
current natural resource planning and managemestdtgte within the United States,
science often serves as the preeminent sourceoefl&dge about these natural systems.
Thus science is intricately connected to such dews and decision makers involved in
this arena often make concerted efforts to incajgoscientific results. Additionally,

today’s environmental regulations require inputsrfrscientific information. What bias,
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or priority, decision makers should give to infotioa in resource allocation decisions

depends on the plethora of other factors that dviweplanet and our lives.

Realizing this relationship, if society commitsiteluding science within the
decision making process (through, for example slagjon) for management of public
lands and resources, science and decision makatsbh@weonnected to facilitate
knowledge transfer in both direction. Linking saerto decision making presents a
challenge to all participants. This paper examimgsspecific processes in forging these
links. First, we must explicitly define sciencestakeholders recognize it as relevant and
essential to public policy decisions. Then, we nfasilitate transfer of useable, useful
knowledge from the realm of science to the realmpadicy via organizations, useful
objects, or personal relationships. How decisi@kers incorporate this knowledge

within the decision making process is outside ttaps of this paper.

Mediation of the transfers between realms of s@eral public policy is the
subject of a wide body of literature. After dissimg definitions of science, we examine
a subset of that literature on mediation relatedaindary organization theory and its
role in the decision making process (i.e., Casdl.eP002; Parker and Crona, 2012; Carr
and Wilkinson, 2005; others). As part of this s, we conducted a case study among
scientists and related policy personnel within eensity setting. We use this example
and others to discuss potential changes to cub@ntdary organizational theory and
subsequent implementation within decision framewdok public land and resource

management.
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The first step: what's in a name?

What is science? The catch-all use of the wordoeaeme increasingly common
in the public domain. However, to promote scieas@n integral part of the decision
making process, citizens, scientists, and polickeramust share a common, narrow,
and valid definition of science. Scientists relythis definition to defend the validity of
their results. Decision makers use it to sepanateexaluate the scientific component of a
problem from other factors. The definition also ssgperceptions of legitimacy among

citizens and other stakeholders (Cash et al., 208¢ey, 2007).

Strictly defining science can legitimize its rofedecision making while still
upholding the validity of other factors. Stricthgfining science distinguishes science
from other inputs to the decision-making processalows decision makers to evaluate
sources of uncertainty. Both of these factordraimhaintaining public confidence in the
decision making process and in the validity of scee However, even outside the public
domain, philosophical and scientific literatureg@pts an incredibly wide array of
definitions of science. These definitions tendedbinto one of four categories:
hypothesis-driven; inductive; procedural; and carded. Below, we sift through these
definitions and present a well-rounded, utilitarg@finition for use within public policy

and by scientists alike.

What's in a name: the classical scientific method

Hypothesis-driven science is that which we firsrteabout as children,
memorizing the steps of the scientific method fitbweory to hypothesis to
experimentation to observation and conclusion (Makdethods, 2009). With this

definition, hypothesis-driven science is a spegifiell-defined process as opposed to a
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collection of truths which decision makers coulé as trump cards (Freemuth, 2011).
The foundations for this definition go back hundred years to great philosophers such
as Descartes in the i 2entury. The classical scientific method incorpesaleductive
reasoning, leading “from Ideas to Data” via coledlexperimentation (Benjamin, 1949;
Kell and Oliver, 2004). Experimental results ttoemfirm or reject the original

hypothesis.

In this strict definition, science exclusively begiwith hypothesis formulation
and continues with hypothesis testing (Nature Mash@009). Thus the hypothesis-
driven definition of science excludes many categgdf inquiry into the natural world.
For example, it excludes “pseudoscience,” dataepatecognition, or scientific claims
which are not testable, falsifiable, or reprodugiVong and Hodson, 2010). Note that
excluding these other inputs from the definitiorsofence does not necessarily exclude

them from the decision making process.

This exclusive definition promotes long-term pulihigst as hypothesis-driven
research reduces bias and promotes falsifiabititd/\eerifiability of scientific results, an
important trait of scientific inquiry. First, a foally-stated hypothesis is open to
falsifiability by another researcher following teeientific method. Second, verifiability
follows from the rigorous nature of the experiméptaase of hypothesis-driven science:
the same experimental steps should produce withahe results thereby verifying the
conclusions (Wong and Hodson, 2010). However, rekees and decision makers must
recognize that hypothesis testing cannot elimittaeinvisible hand,” that is, an unseen
preference for a particular choice (Lackey, 208f)potheses-driven research is still

susceptible to biases introduced by normative ¢pesen) hypotheses (Boumil and



170

Berman, 2010; Lackey, 2007). Normative hypothesksrently contain bias as they
reflect preference instead of fact, by includingrotative language such as “alter,”
“degrade,” or “healthy” (Lackey, 2007). Reducing tlise of normative hypotheses can

aid the overall reliability of the hypothesis-dnivecientific method.

Classical physical, chemical, and biological expental science follows the
scientific method and lends itself well towards laggtions in resource or land
management. In a decision about open-water od fedations and lease sales, policy
makers might incorporate scientific results delimgpexpected environmental
repercussions of potential oil spills. For examplgothesis-driven research has shown
that exposing fish embryos to crude oil can caesetic damage and mortality (Carls et
al., 1999). Such research might influence decisiakers when considering oil drilling
and exploration within known spawning grounds. aiether example, Coates (2005)
used the scientific method to show that crops caw gn waste water from mine tailings,
providing a use for mine waste and a potentiahfore remediation. Scientifically-
validated remediation techniques for mine tailingsy allow land use planners more

leeway for mining permits.

The inductive approach

The direction of the classical scientific methodran Ideas to Data, that is,
deductive reasoning. On the other hand, Kell ande®(2004) define inductive science
as movement “from Data to Ideas.” This definitisrdata driven. “Data mining,”
statistical inference, generalization from speafises, mapping (e.g. epidemiological
studies), and other similar observations derivethfdata (such as field observations)

subsequently provide conclusions via detailed amalyf hus, the inductive definition of
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science is broader than hypothesis testing, arlddas reasoning from example.
Deductive science and inductive science are nayswnutually exclusive but may
continuously support and inform one another, igedh iterative cycling — Data to Ideas
to Hypothesis and back to Data via experimentdaintgsnd verification (Kell and Oliver,
2004). Itis important to recognize that this eydbes not always proceed in that order,

but rather the emphasis is on iterative cyclingveen deductive and inductive reasoning.

Although not as explicitly-stated or formalizedg tftoots grounding this definition
of science may run nearly as deep as those ottaetsic method. The most famous
example of data providing an idea for investigai®the famous, unverified story about
Newton and the apple fall (Krull and Kulikov, 2006)ames Clerk Maxwell, another one
of the greatest physicists in human history, magleddvances in optics which resulted
from his observations about color mixing from spigitops. As far as we know,
Maxwell wasn’t hypothesis testing or designing &peziment when he made these
breakthroughs; he was curiously observing and exygdhe wealth of data in the world

around him (Goldman, 1983).

Inductively-driven science has increasingly prosgen the last century as
powerful computers and instrumentation progressaficientists to exploit previously-
untapped sources of data, such as large-scale te@aerature monitoring. Monumental
increases in the speed of data examination aneégso allow rapid, through
examinations for pattern and ideas. Thereforegiis somewhat broader definition for
science may aid decision makers as inductive ieandt often more plentiful than

hypothesis-driven research.



172

Unfortunately, using a broader definition also tesadvantages. For one,
inductive scientific results may have higher raiescorrect correlations than
hypothesis-driven science, since correlations aneemreadily found in data inductively,
e.g. via data mining, than they are to prove vipdtlyesis testing (Nature Methods,
2009). Inductive science does not always allowfdtsifiability or repeatability. If the
scientific result is inductive only, without expeentation, then there is no way to repeat
results. A scientist could simply examine the salai@ but cannot truly test the
conclusion without a hypothesis. Surveys of s@s&nshow that they recognize these
problems with inductive science, and most uphoédsfandard of experimental methods
over non-experimental ones (Wong and Hodson, 20t0general then, inductive
science coupled with hypothesis-driven researehsisonger foundation for scientific

conclusions than inductive methods alone.

Epidemiological studies, famous in scientific agslsince John Snow and his
London map of cholera (which disclosed that loe@rdrinkers were mysteriously
immune), are an example of data-drive science (&eid, 2012). The basis of
epidemiology is data collection for mapping, traxckicategorizing, and analyzing human
or animal diseases. In fact, the hypothesis-dre@ence may begin at the end of the
epidemiological study, with the formulation of ggoyhesis about the cause of the
specific disease. This iteration exemplifies tin& between deductive and inductive

reasoning.

Climate science is inductive reasoning appliediseovations about the earth’s
temperature, weather patterns, and circulationSQP2007; Lucarini, 2002). Although

founded on massive amounts of global data buttipravable via “application of the
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usual scientific validation criteria” (Lucarini, 80). Climate data show a relationship
between atmospheric temperature and atmosphero@otrations of certain gases, the
“greenhouse gases.” This link provides a good exawisome weaknesses of inductive
science. To rigorously verify the correlation oglabal scale is simply impossible.
Climate science, then, is not falsifiable in theitional sense. Nor is there anything

repeatable about the data set of global tempesature climatic conditions.

Decision makers are increasingly attuned to th@@woic and social
consequences of climate change. Nonetheless, sitilexholders continually question
the underlying science due to its inductive rathan deductive nature, the uncertainties
involved, and its lack of verifiability or falsifality. Decision makers might bolster long-
term public confidence by publicly addressing theseertainties and differentiating
between the inductive and deductive definitions@&énce when discussing climate
science, and, indeed, any inductive scientificltes®f course, public acceptance of
policy solutions to climate change may prove teben more difficult that public

acceptance of the science behind the decision makin

Although inductive science does have inherent flavescannot discount it.
Brilliant minds have produced a wealth of knowledgeng inductive methods. Thus in
moving from a strict hypothesis-driven approacinttuctive science, decision makers
have more breadth of results upon which to drawdi#onally, since many informed
citizens probably view our examples and inductisiersce as “real” science, legitimacy

of the decision-making process is upheld when usirsgdefinition.
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Science as a process

A third group of definitions group interrelatedesaiific and institutional
processes together (van Dijk, 2011; Kell and Oli2&04). The American Physical
Society defined science as a “disciplined quesiiderstand nature in all its aspects”
(Macilwain, 1998). Carr and Wilkinson (2005) defs@ences as a “special learning
process.” These definitions broaden science beyahdtive or hypothesis-driven
methodologies. Some examples of scientific processsude journal publication, public
presentations, collaborations, and peer reviews@&lseientific processes are not always
directly tied to the deductive or inductive methadisnvestigation but have gained
acceptance both within and outside the scientdfatm as being “science” (van Dijk,

2011; Wong and Hodson, 2010).

Including these example by defining science aaqss poses several problems
for decision makers. Whereas the hypothesis andcting definitions provided a tool to
easily distinguish scientific from non-scientifiansuits, defining science as a “quest” or
a “special process” blurs that line. That blurraayses increased uncertainty and
increased susceptibility to error. Also, the vagssnof the process definition precludes
falsifiability. Decision makers suffer as a resutten “science” loses credibility and
legitimacy in the public eye and incorporating scie into resource management
becomes increasingly difficult (Cash et al., 20@2)rthermore, defining science as
simply being special process does not innatelymdjatsh it from any other realm of

human investigation, and leaves the door opendanative science (Lackey, 2007).

As an example, consider scientific modeling. Madiglis a specific scientific

process, yet it is not necessarily restricted lysitientific method or by data-driven
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inductive reasoning. Modeling fits more clearlyiwihe “quest” or “process” definition
since creating models to portray natural phenoménobviously a “disciplined quest to
understand nature.” Modeling efforts do not usuaibet the criteria of science being
verifiable and reproducible. Known scientific laasequations may govern model
algorithms, but algorithms are generally predictiv@ature and therefore not falsifiable
in the present time. Nor is modeling reproducibluccessive tests of a modeling
algorithm with slightly different inputs can produenormous variations in response, e.g.
the well-known “Butterfly Effect” (Palmer, 2008 Decision makers often include

models in the “scientific” component of their deaisbut by doing may sacrifice

legitimacy.

Science as “truth”

The broadest definition of science is science ‘@®eaial and cultural
construction” (van Dijk, 2011), whereby “science.wbatever scientists do” (Nature
Methods, 2009). Gottfried and Wilson (1997) desesbience as “a communal belief
system.” This definition approaches the idea oféisce as truth” instead of science as a
rigorous process (Freemuth, 2011). Such socielibural definitions inherently include
normative science, and accept that “social, culte@nomic, political, and ethical
forces determine the priorities” for science (Wamgl Hodson, 2010). Scientists may
personally and professionally embrace this detnitf science and the idea of science as

truth.

The negative connotations of this definition imgigat popular opinion on a
natural or environmental topic can substitute fgdthesis-driven science, or that

science can be a “trump” card in the policy arepauperseding other decision-making
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factors (Freemuth, 2011). An additional negatesuit may be that scientists confuse
their personal values with science and the intrddnof bias and normative hypotheses

into scientific inquiry (Lackey, 2007).

Allowing culturally-based science equal footing hitt the decision making
framework may also escalate uncertainty beyondmabte bounds for decision makers.
For one thing, culturally-defined science is naittasifiable nor verifiable, and thus also
problematic for estimating associated uncertainegence based on social or cultural
beliefs may also be non-relevant to decision masenscorrect so often as to be useless

for them, given the goal of sustainable managemiptiblic lands and natural resources.

Unproven scientific ideas can become social oucalthorms even though they
are simply theoretical in nature. Examples incltiieeStandard Model of Particle
Physics, quantum chromodynamics, and, dare wecBmagte change (Gottfried and
Wilson, 1997). Many such theories are not inhdyaetevant to decision making
processes for sustainable land and resource uskeather hand, climate science has
significant implications for these decisions. Sigtebal climate change as a scientific
concept has become a social and cultural normr#tha a scientific result, the public
associates climate science with social upheavakamteous results. These problems
have limited the successful application of climst&nce for decision makers in resource

management.

On the positive side, a cultural definition of sae affords local or indigenous
knowledge equal footing with more traditionally-apted scientific approaches. In fact,
local knowledge, where available, is imperativeléod management decisions, as

indigenous groups often recognize natural phenortteatdormal researchers may
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overlook (Affolderbach et al., 2012). To allevianfusion, decision makers should
recognize indigenous knowledge as a relevant aocessary factor but take care to
distinguish it from the scientific factor. Thiscta would uphold a more-narrow
definition of science (with the commensurate adages) whilst still preserving local

knowledge or science within the decision-makingnieavork.

Given this continuum of definitions, which providiee most efficacy for public
policy decisions related to resource managementaamttiuse planning? A hypothesis-
driven definition is the most classical, “pure” uéion of science, but the classical
scientific method may be too exclusive and elimertab many relevant scientific results.
Defining science as a social construct or as utgtital processes is too inclusive and

fallible for many stakeholders to accept.

Using the middle ground, an inductive or iteratimductive definition of science,
bridges the gap between these two definitionsudtide methodology provides
reasonably firm footing for decision makers antikisly to promote credibility and
legitimacy among stakeholders. Inductive scientiisults that are subsequently tested
using the hypothesis-driven approach provide tfengest foundation for decision
makers. Such science would meet the criteria ofiakility and falsifiability, minimize
uncertainty and normative science, and promoteiptiist. Thus we define science
either as conclusions obtained and verified thrazgscientious, bias-minimizing
application of the scientific method or as infotioa obtained or recognized from data
and then verified via the scientific method. Witistidea in mind, the rest of this paper
considers “science” or scientific “knowledge” asoimation about the natural world

obtained through some combination of inductive oeasy and hypothesis testing.
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Building Bridges Between Science and Policy

Having explicitly defined science, and acceptingt tbcience has a valid,
necessary contribute to decision making for lardir@source management, we face
another problem: how to facilitate the ready transff knowledge from science to
decision makers. A wide body of literature anatygamerous methods for this transfer.
Boundary organization theory is one such method dtncept was developed at the end
of the twentieth century through the work of Gie(§895), Guston (1999, 2001), and
others and has since been broadly applied to decmsaking theory (e.g. Carlile, 2002;

Jacobs et al., 2005; Sapsed and Salter, 2004).

Boundary organization theory promotes the ideattteboundary between
scientists and decision makers can be overcomagdhrorganizational constructs.
Properly constructed organizations can bridgelibisndary and thereby facilitate the use
of scientific knowledge within the policy regimedgh et al., 2002; Cultts et al., 2011;
Guston, 2001; Franks, 2010; Michaels, 2009; MilB01). The “boundary” between
science and decision makers may be comprehensperakptual, social, cultural,
conceptual, or organizational (Carr and Wilkinsd@05; Cash et al., 2002; Michaels,

2009).

Boundary organization scholars embrace the fluiditthe boundaries between
science and policy. The lines between science¢yaddind other interests such as industry
often blur , and multiple diverse stakeholders geoaften become vested in boundary
organizations (Parker and Crona, 2012; Affolderbetchl., 2012; Safford and Norman,

2011). Although capturing the resulting complexityhin a comprehensive framework
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may be impossible, continued efforts to mediate/beh science and policy aid difficult

science-based decisions for environmental resoussegement.

In the broadest sense, a boundary organizationects fknowledge to action”
(Cash et al., 2002). Carr and Wilkinson (2005) m=f boundary organization as a
“forum” where multiple participants intermingle antultiple knowledge systems
interact. Miller (2001) refers to social constautitat “mediate between the institutions
of science and the institutions of policy.” Gus{@001) says “boundary organizations
are formal organizations designed to exist atierfiace of research and policy
organizations and facilitate communication andatwration between them.” In general,
then, boundary organizations convey scientific kieolge to decision makers as part of a

dynamic, iterative, interactive process among iteegparticipants.

Boundary organizations translate and transfer kadgé from scientist to
decision makers iteratively, build and maintainggarm relationships among
participants, and mediate between scientists aoididas makers (Cash et al., 2002;
Franks, 2010; Miller, 2001; O’Mahony and BechkyD&0Pietri et al., 2011). Successful
boundary organizations maintain salience, relevaaue legitimacy of information flows
across the boundary (Cash et al., 2002; Cutts,2Gl1; Pietri et al., 2011). Note that the
relationship building process is crucial to bouydanganization function, and indeed
may exist outside a formal organization (Smith &edly, 2003; Franks, 2010). Without
functional and interactive personal relationshipsieen participants, trust and
credibility will suffer, and resulting decisionslidbe shunned by the collaborating groups
(Cash et al., 2002). Finally, boundary organizaiserve to mediate between conflicting

values throughout the decision making process.
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While building relationships, mediating collabovatiwork, and moving
knowledge across the boundary, boundary organimmttso simultaneously operate to
maintainboundaries (Cash, 2001; Franks, 2010; Guston,)19d@8intaining boundaries
allows participants to retain credibility with th@wn stakeholders. Scientists must
maintain status and credibility within their disioie to foster credibility outside it.
Decision makers need to maintain credibility whieit constituents in order to promote
positive public opinion, especially in the heatedlm of public land debates (Cash,
2001; O’'Mahony and Bechky, 2008). These separatdilalities contribute to the
efficacy of decisions based on the credibilityls# boundary organization as a whole

(Pietri et al., 2011).

Boundary Organization Examples

The Decision Center for a Desert City (DCDC) idassic example of a boundary
organization in resource management. The Nati®o@nce Foundation (NSF) explicitly
created the DCDC via a grant to a public univensiith the purpose of bridging the gap
between science and policy for water resource menagt in the desert Southwest
(Parker and Crona, 2012; White et al., 2008). Stakkers in the DCDC included the
university, scientists, decision makers, and th& &ash et al., 2002; Parker and Crona,
2012). Similarly, and also funded by the NSF, Suatality of semi-Arid Hydrology and
Riparian Areas (SAHRA) is a boundary organizatioat produces “science to help

communities manage their water resources in aisasle manner” (SAHRA, 2001).

Agriculture Extension (AgEXx) —type constructs anether boundary organization
example, where farmers hold the role of decisiokermresponsible for their land

management. AgEx offices mediate between sciergrglfarmers, disseminate scientific
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information to the general public, and interactwother decision makers (Carr and
Wilkinson, 2005; Cash, 2001; Franks, 2010). Thepeof AgEX organizations
emphasizes the multi-dimensional aspect of boundaggnization theory (Cash, 2001).
Resulting changes in farmer practices due to AdgEbite have improved resource
management, for example by reducing superfluodsiZzer use or enhancing water

management strategies (Babcock and Silvertooti;204sh, 2001).

Although these boundary organizations meet withessatcess, they are often
unable to attain credibility, salience, and relemeand therefore often fail as a construct
for knowledge transfers and implementation (Casil.e002). For example, in spite of
being expressly created to fill the role of a baanybrganization, the DCDC suffered
from constraints imposed by its funding organizatmd its institutional framework
(Parker and Crona, 2012). These constraints lihflexibility and resulted in a
perceived gap in legitimacy and salience (Parkdr@mna, 2012). As a result it lost
credibility with its stakeholders. SAHRA suffereidhdar setbacks due to communication

problems, scientific ambiguity, and organizatiostalicture (Eden, 2011).

AgEX organizations also struggle to maintain criyblegitimacy, and salience
as boundary organizations (Cash, 2001). Problemhsmaintaining legitimacy
frequently arise when scientists presume that ktboy results are transparently
transferable to field. Salience may suffer as fasnadéten remain convinced that
scientists do not understand the difficulties oking a livelihood off the land.
Credibility is impaired due the divide between thener’s field and the laboratory: “16

hours in a laboratory differs from...16 hours on akd (Carr and Wilkinson, 2005).



182

Common use of scientific jargon by scientists axgcerbates the problems (Pietri et al.,

2011).

These examples reveal some of the difficulties damorganizations face in
their struggle for effectiveness. Other examplesuald (Affolderbach et al., 2012;
Agrawala et al., 2001, Cutts et al., 2011; Fra2kd,0; White et al., 2008; others).
Nonetheless, regardless of the difficulties reseamd public lands managers need
timely, productive, and relevant science (LackéQ 72 Pietri et al., 2011; Smith and
Kelly, 2003). The boundary-spanning individual\pdes another mechanism that may

defray these problems and encourage these knowtesigeers.

Boundary-Spanning Individuals

The boundary-spanning individual stands in the lgatpveen the two realms of
science and policy. He must maintain credibilityppth worlds in order to accomplish
the objectives of a boundary construct. This irdlnal fulfills the relationship role of the
boundary organization, and subsequently he cathese relationship bridges to mediate

between the groups while transferring and tranglétnowledge.

In fact, previous work indicates that boundaryamrigations offer the most value
in the decision making process when a specifioviddal acts to fill the role of mediator
and knowledge broker (Cutts et al., 2011; Parkdr@rmona, 2012; Michaels, 2009). For
example, Parker and Crona (2012) noted that the ©€lmjoyed success only after
employment of a specific person who personally taamed credibility with researchers
and policy makers. The relationships between fagraad scientists in AgEX
organizations are another example. AgEXx offices fadgompletely at effecting

knowledge implementation unless one scientist steyalthe role of mediator or takes
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personal responsibility for making his researciesal legitimate, and credible to farmers

(Cash et al., 2002).

The role of boundary-spanning requires a uniquedaaticated individual,
sometimes at personal expense. Time spent withdbedary organization detracts from
availability to one’s primary group and thereforerh promotions or similar benefits, i.e.,
incentives are misaligned (Brownson et al., 2086)a scientist, straddling the divide
between science and policy may compromise objégtireal or perceived (Brownson et
al., 2006). Credibility may suffer if decision maker social groups view a passionate
boundary-spanning scientist as biased. Thesegrabére exacerbated in issues about
public lands and resource management due to tleednhuncertainty of the applicable
science and the contentious nature of these isBloegever, the realm of public policy
for land use and resource management is despenateded of independently-motivated
individuals with the knowledge and skills to medi#tte boundary. Both groups stand to

gain by minimizing these difficulties or providimgcentives to collaboration.

Although we leave further analysis of the role affitcacy of boundary spanning
individuals and of principal agent theory to thader, it is important to note that
boundary-spanning individuals can act outside fétmoandary organizations. A
scientist or decision maker may choose to buildqeal relationships across the
boundary, regardless of the existence of a bounctangtruct. However, often a
boundary-spanning individuals lack the impetusetnive large-scale resource
management issues while acting independently frisoumdary organization. Thus
often a boundary organization must act as a fomupramote the efficacy of boundary-

spanning individuals.
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Boundary Objects

Boundary organizations may act as forums to promspéeific objects conducive
to the roles of scientists and decision makersh®atindary objects can mediate the
transfer of science to decision makers (Cutts.ef@ll1; Star and Griesemer, 1989; Zeiss
and Greonewegen, 1989). Star and Griesemer (198%dp the consummate definition:
“scientific objects which inhabit several worlds ) .and satisfy the informational
requirements of each of them.” Henderson (1991gsthat these objects can mean “one
thing to some group members who use them and sorgetise to other members.” The
value of these objects lies in their flexibilityrfdifferent stakeholders to use them in

different ways as needed.

Boundary objects have the potential to enhancéuthetioning of a boundary
organization. Effective boundary objects promotarutary organization goals by
establishing “a shared syntax or language, ... aretmeneans for individuals to specific
and learn about their differences and dependen(izglile, 2002). If credible with
stakeholders, these objects can translate anddrdaswledge while maintaining
credibility, legitimacy, and salience on both sidéshe boundary (Cash et al., 2002; Star
and Griesemer, 1989). As with the boundary orgdioizatself, achieving credibility for
a boundary object often requires negotiation amopgsicipants. Boundary objects
minimize bias and maximize credibility by allowistakeholders to trade information
and negotiate while maintaining their status witthieir respective groups (Sapsed and

Salter, 2004).

Boundary objects can be literal objects, e.g. m@emgraphic Information

Systems (GIS), brochures, or buildings; or symbolifects, e.g. the internet or climate
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models (Zeiss and Groenewegen, 1989; Carlile, 2@0&tientific journal can act as a
boundary object by allowing decision makers to ascesearch results applicable to a
specific land use or resource question. Scierdistsdecision makers can use internet
GIS platforms to input or interpret relevant infation (Carlile, 2002; Sapsed and Salter,
2004). In either case, boundary organization $talkkers have to accept the boundary
object as legitimate and be willing to participatéts development. Without these
actions, a boundary object’s utility will suffer fail. Thus boundary objects tend to be
more effective when concurrent user interactioilifates comprehension and
relationship-building (Zeiss and Groenewegen, 199 example, internet sites may
provide a “repository” boundary object where sdsstand decision makers can access
knowledge while using forums to interact and budthtionship, comprehension, and

salience (Cutts et al., 2011).

With such interactions around a boundary objedtisiten makers can prompt
scientists to produce science that relevant toipegiestions surrounding a land use
decision. These interactions also promote sciemgfults which themselves meet the
objectives of salience and legitimacy (Cash e28l02; Cutts et al., 2011). In this
scenario, the boundary object sustains the orgtmied goals of knowledge transfer and
translation, relationship building, and mediatiofrhe boundary object fulfills these
objectives between personal actors while imporaéidditional benefits, such as neutrality,
into the science-decision making loop. Thus bomndaject may be a bridge for

personal relationship building while facilitatingundary maintenance.
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A Case Study: The Environmental Research Building aBoise State University
With the goal of understanding barriers and bridugtsveen science and policy

participants within the context of boundary orgatian theory, we surveyed faculty and
students from several different departments ingpeeifically designed building at a
research university. The case study aims to ingate three main topics, as follows: 1)
how relevant scientist and academics view theiogighips between science and public
land resource management in the United Statebg))ublic research university’s
efficacy as a boundary organization; 2) boundaggathutility. Finally, we extrapolate
these answers to a broader forum including otheteusities and non-university

affiliated decision makers.

Previous literature has examined the public usigs role as a boundary
organization or as an agency to house boundaryn@ajgons, both as concerns
boundaries between departments within the uniyeasid boundaries between
university agencies and the larger community (@agker and Crona, 2012; Tuunainen,
2005; White et al., 2008). The university can tietioally fulfill the boundary
organizational role in either scenario. On the loaed, the university acts as an umbrella
whereby participants from differing discipline®.iacademic departments, can explore
cross-disciplinary issues for knowledge translatad transfer while building
relationships. “Can” is the operative word in teetence, and this case study
investigates the efficacy of that role and readongs fulfillment or lack thereof. On the
other hand, a university may act as a passive rarishousing different disciplines
without attempting to pollinate cross-disciplinamyeractions. We suspect that the

decision of a public university to shoulder theerof a boundary organization is an
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institutional corollary to a scientist’s personakesion to become involved with public
policy, and the same for the inverse. (It is imaottto recognize that these personal (for
a scientist) or institutional (for a university)asons are impacted to no small extent by
a growing movement to promote inter-disciplinaryrkvoFor example, the NSF often

solicits inter-disciplinary grants, and the commeage funding is powerful incentive.)

This university houses the Department of Geoscenoe the Departments of
Political Science, Public Administration and Pulialicy, Community and Regional
Planning, and Civil Engineering within the Enviroamtal Research Building (ERB) on
campus (see Figure A.1). (This paper refers toi€gdfaculty or personnel as members
of any of the latter three departments.) The pdiculty at Boise State have notable
expertise in public lands use, environmental plagnand resource management, among
other topics. The Department of Geosciences hasresxim environmental science,
contaminant transport and remediation, fire managemesearch, hydrology, space-
based remote sensing, and additional subjectsseldreas of expertise are
complementary, and one can envision a regional sedplanner consulting similar
scientists and reviewing similar scientific reswiisen faces with land management
decisions. In addition, faculty within the politicadministration, and planning
departments are integral to informing decision msike the state of Idaho and

throughout the West.

Completed in 2011, the university goals for the ER8to “encourage and
support interdisciplinary collaboration,” “forgerssrgies,” and to “enhance research
aimed at the pressing issues of the West, incluttiegnvironment, energy,

transportation, water, land use, and communityrptam” Supporting interdisciplinary
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collaborations requires fostering participationviEtn stakeholders across departmental
lines and necessarily requires transferring infaromabetween the academics in them.
Without this information transfer, and additionalationship building and mediation
between departments, interdisciplinary collaboratimuld fail and the germane research
topics would flounder. Thus these explicit goatfumtarily enshrined the institution

with the boundary organization role as pertainthéscience and policy departments

within the ERB.

Figure A.1: The Environmental Research Building at Boise State University,
Boise, ldaho

Considering the university’s goals for interdistoigky collaboration and its

assumed role as a boundary organization commegswitht those goals, we now add
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another category of literal object to those thay ito@ considered boundary objects (Sec

3.2). We hypothesize that the ERB was createplait) to act as a boundary object.

We now examine this potential role of the ERB injaaction with the discussion
and definitions presented in Section 3.2. Congmgttie Star and Griesemer (1989)
definition, the ERB houses both the science anitydepartments and does satisfy “the
needs of both,” in that all departments separatsé/the building for their own needs,
e.g. for classroom instruction, for research, &multy meetings, and for office space.
Yet the building is not a “scientific object whiathabits several worlds” but instead
several worlds inhabit this object. In this seritsis, perhaps counterintuitive to consider a
building as a boundary object when most of theditee about such roles encompasses
(generally small) objects used by different worldbere here we consider a large object
that the worlds themselves inhabit. NevertheldssBRB is maintained by a boundary
organization with goals commensurate with the ofla boundary object and we

consider its potential role as such.

Boundary objects also act to transfer knowledgesscthe boundary (Cash et al.,
2002; Star and Griesemer, 1989). We hypothesdtetile ERB acts to transfer
knowledge across the boundary between the scientpdaicy departments. For
example, both groups have posters, flyers, broshared monitors displaying
information specific to their own discipline didtuted throughout the building. We
hypothesize that these exhibits, which are path®fERB, transfer knowledge between
the two groups we have delineated, which is a fanatommon to all boundary
constructs. We liken this role of the ERB to aadary organization journal containing

multiple articles — each poster and brochure withnERB acts to translate and transfer
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knowledge in a corollary to individual articlesaiagrams within a brochure or
publication. Yet, the role of the ERB within theumdary organization (the university)
creates the ERB’s potential role as a boundaryctbjeousing these departments and

exhibits in such a manner as to foster collabondbetween the disciplines.

The building also “provides a basis for negotidti(®apsed and Salter, 2004) in
common forums and meeting spaces where partiegsada information and act across
interdepartmental boundaries. Carlile (2002) prmmohat boundary objects allow
stakeholders to learn about their similaritiesfedénces, and interdependencies, while
promoting organizational goals. The ERB is promgthn organizational goal of cross-
disciplinary collaboration by its existence. Tlase study results provide a basis for
assessment of the building’s success in that piomand for addressing the preceding,

principal part of Carlile’s definition.

Methods

We conducted an email survey of 141 student andtfamembers of the
Departments of the Department of Geosciences anbDépartments of Political Science,
Public Administration and Public Policy, and Commtyiand Regional Planning. We
did not survey the Civil Engineering (CE) personinebrder to focus on the scientists
and policy members in the building, although weoggtze that CE does inform policy

decisions for resource management.

The primary objectives of the survey were twofold:to investigate
interdisciplinary boundaries or bridges as eviddrnmg personal opinions on the

definition of science and on the role of science seientists in decision making for
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public lands and resource management; and 2) esadse role of the university and the

ERB as boundary constructs.

The survey included 19 questions that asked foraniga answers, for opinions,
or for definitions. Survey protocols ensured amoity in accordance with ethical codes
of conduct for research on human subjects. Respisitiad the option to email
responses or to submit anonymous hard copies taciménistrative staff. We collected

surveys over a period four weeks.

We received 48 completed surveys and 7 responsénidg the survey directly.
Response rates were highest in the Department@adcinces, with 42% of students and
55% of faculty responding. Thirty-three percenpoficy faculty responded, and only
16% of policy-associated graduate students. Thefgigntly higher response rates from
the geosciences participants are likely a consexpuehthe survey being conducted by a
member of the Department of Geosciences. Futuxegsi could avoid this bias by

conducting the survey anonymously.

Since the case study necessarily involves non-pibityssampling problem,
extrapolation of results to the general populatsoproblematic. However, our approach
is suitable given that a primary goal is to underdtthe social interactions and cultural
constraints which may impinge upon cross-boundasgarch and synergies (Rosner,
2011). The survey protocol minimized response byashoosing non-normative
language and allowing responders to submit any arssinstead of using list-based

responses.
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Results and Analysis

The survey asked a series of questions callingforion-type responses on the
definition of science and the role of science inisien making. It also asked for a list of
items that decision makers should consider “inlaipyolicy decision about land use
management...or resource management.” We desigeed tiuestions around our first
goal of assessing barriers or commonalities betwleethought processes and value
ideals of the two groups (the science and poligadenents) as evidenced by personal
opinions on the definition of science and on tHe of science and scientists in decision

making for public lands and resource management.

We grouped the definitions of science correspontbrtge 4 formal definitions
they most nearly represented: hypothesis-drivetudtive-iterative, institutional
processes, or cultural construct. Commensurate out efforts to avoid response bias,
we did not mention any of these terms or defingionthe questions but simply asked the
responders to define science in any way they chiiioséNevertheless, most responses
actually did incorporate keywords from our defioits, such as “scientific method” and
“inductive reasoning.” We analyzed responsesdithhot include keywords to interpret
the general sense of the definition. We assessédjaous responses in an independent
iterative manner, classifying each response, réoegrithe classification, and then after
each classification shuffling response orders aadsessing, to avoid interpreter bias

contamination.

Final grouping of responses on the definition aéisce encompassed all four

definitions: 45% percent of definitions were hypegls-driven, 30% were inductive, and
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20% were procedural. Only one answer was deemé&abbubroad as to fall into the
social and cultural definition of science:
“the study of science and technology studies al&slaps with the arts and
humanities and philosophy. So, in my world viewescie is pretty much all

encompassing. Setting artificial and narrow disogoly boundaries around what

science is (and does) only serves to limit our cép#or collaboration.”

The responses highlight one particular differenesvben the two groups. One
might reasonably expect scientists to endorse @& mgorous definition of science than
policy members. Indeed, the scientist group wapamsible for 80% of the definitions
grouped as hypothesis-driven. Overall, the distitouof definitions also highlights the
lack of a single, accepted, common definition amalhgarticipants, both scientists and
decision makers. This deficiency is a criticallgemn that both scientist and policy
makers should strive to remedy. A standardizethiiein of science common to all
stakeholders will foster credibility and shouldaeriority, but it will be difficult to

achieve we are sure.

The survey queried respondents about factors ol déend resource management
decisions, and again sought to avoid responsebgiasinimizing normative language
and allowing for written answers. Thirty-threeqent of students and faculty members
emphasized that decision making involves a “wergiitof factors and trade-off analysis.
Both scientist and policy constituents cited theartainty inherent scientific results as a

complicating factor for decision makers (see
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Table A.1). Sixty percent of responses from botiugs stated that relevant
scientific results should be included “where po&sibnd “as appropriate.” Responses
underscored a need to balance the scientific coeygamith other factors involved in the
decisions. Here we see a bridge between groupearalgap — both embrace the need
for balance and demonstrate knowledge of the niigitip of entwined factors that

decision makers face.

It is interesting to note that approximately 25%eagponses both from the science
and the policy groups expressed deference to theof@ublic opinion as a factor in the
decision making process, delineating the primadyefpublic opinion factor as essential
to upholding our democratic system of governmeéntstark contrast, one answer
explicitly stated “though public opinion and publialues are often taken into account in

policymaking, | generally do not think they shoblel”

When asked to list specific factors which decisiwekers should incorporate,
respondents overall listed between 0 and 10 itsees Table A.2). Policy faculty tended
to list more factors than scientists as demonstristé¢he statistic shown in Table A.2.
One policy faculty listed ten factors in his respenthe largest number of responses of
anyone in the survey. These statistics again igightlifferences between the groups.
The patrtition in number of responses embodiestpeated expertise of each group: the
policy faculty contains members with expertise @étidion making as related to public
land use and resource management while the geossielepartment specialty is,

obviously, science.
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Selection of responses concerning incaspation of science into

decision making which address the uncertainty in tb decision making process

Respondent

Response

Geosciences
faculty

One should never consider a single factor as ®ipgeme. All
factors should be considered in concert. No fastauld trump all
others.

Policy Faculty

There is no one most important factor and tryinglemtify one is
futile and frustrating.

Policy Faculty

There are always uncertainties, trade-offs, anaticipated side
effects in these kinds of decisions.

Geosciences
faculty

This is an impossible question to answer.

Geosciences
Student

It is impossible to keep everybody happy.

Policy Student

Trying to find a middle ground or decision thatrtys as many people
together as possible is the most important factquiblic policy
decisions.

Geosciences
faculty

When policy decisions fall in the context of scienscientific results
should be considered. However...absolute trutheatreeliverable
under the scientific method.

Nevertheless, the cohesion within both groups coriieg the need for science in

decision making was underscored throughout thegmreses. That observation

combined with the plethora of responses to thistiole demonstrates the complexity of

the issues surrounding management and use of hegscairces and public lands, as well

as the complexity of thought processes with whiathlscientists and decision makers

consider such important scientific and regulatargsiions. Many values compete for

dominance, all of which contain some uncertainfi@scision makers face a daunting task

to balance the factors involved while upholding damocratic system of government.



Table A.2:

196

Number of items mentioned per person fofother sources of
information that decision makers should consider,founded to nearest whole
number; note the policy faculty median and standarddeviation (S).

Group Scientist Policy
Subset Faculty Student Faculty Student
Median 3 3 5 3

S 1 2 2 2

Two subsequent questions investigated opinionsezairg the role of individual

scientists within public policy. Opinions were mikand, again, often reverted to the

default “it depends,” as exemplified in this respen

“It is really up to each individual scientist tadge for herself or himself if it's

appropriate for them to be involved, and whethenairthey feel comfortable in

the public arena. Nothing should compel a scietdibe involved in

policymaking.”

Over 50% of responses indicated that if scientibt®osenotto contribute via

specific research programs or dedicated boundassirg, they should still participate as

citizens. Citizen responsibility is especiallyaligiven that over 25% of survey

participants listed public opinion among the magportant factors in a decision.

Participation by citizen scientists can augmentinitelligence and core competency

contained within the body of public opinion. Intgént and knowledgeable citizen

opinion will allow decision makers to publicly rebn well-defined scientific

conclusions. Such reliance can produce land managgeplans and resource use plans

which are sustainable in the long-term. Since @286 of respondents listed
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sustainability as an essential goal for publicg@otiecisions on resource issues, having

scientists participate in their scientist role feg titizen role is equally important.

We observe that whether in a citizen or scientii, rindividuals may act to
translate and transfer results in the role of bampidpanning individual. These
functions can occur both between scientists anidypphrticipants in the ERB and
between scientists or policy members and the gepebdic. These survey results reveal
differences between the groups and a possible appty for science and policy
participants to choose to become a boundary-spgmmétividual within the boundary
object (ERB) and the larger boundary organizattbe (iniversity). This position could
be realized in a plethora of different ways, suslaaniversity-defined and funded

construct or a personal decision to dedicate torieter-disciplinary work.

The previous questions disclose thought pattervergences and divergences
between groups. The results also indicate the fagembllaboration, but the literature
demonstrates that many factors erode collaboraffeets. Here we analyze the
components of the boundary itself within this umsiy setting, as demonstrated by
survey responses to a question about “barrienstévactions between the Geosciences

and Public Policy departments.”
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Table A.3 shows responses listed by specific bamigmber of times mentioned,

and group of the responder who listed it.
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respondents could list any number of items.

Barriers listed by faculty in the ERB tointeractions; note that
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Barrier Frequency Group Listing It
Time 5 of,pf*
Culture 5 of,pf
Poor understanding of applications 5 of
Location in building 2 of,pf
Well-articulated problems 2 of,pf
Incentive 2 pf

No common overlap 2 pf
No group seminars 1 of
No group social activities 1 of
Poor understanding of decision methods 1 of
Narrow research focus 1 of
None 1 of
Tenure requirements 1 pf

*gf=geosciences faculty; pf= policy faculty

Time, culture, and a poor understanding of appboatacross the departments

were among the most common responses. Time comstase universal and obviously

act as a barrier to the effective action of boupdanstructs both internally and

externally to the university setting. In fact, @roonstraints on real-world decision

makers are more stringent than those on univapsityonnel. These limits prevent a

deeper investigation of the pertinent science anden the development of personal

relationships (Parker and Crona, 2012). Similguarents apply to the cultural divide

between the groups. While the cultural divide vmarersity setting is moderated by the
commonality of the university experience, such laucal bridge does not normally exist
for decision makers and scientists. In this casen the action of the university and the
subsequent use of the ERB seem to have left signifibarriers in place between the

groups, as evidenced by the survey responses (Aab)e
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The response of “poor understanding of applicatipeshaps uniquely captures
why boundary organization theory has tractionsitience and decision maker
interactions outside the university setting. Dietisnakers struggle to find access to
relevant scientific research, while scientists mayrecognize the applicability of their
research or area of expertise to policy makersi{@#al., 2002). Crossing those gaps
means forming bridges, whether by boundary orgéinizs, boundary objects, or
boundary-spanning individuals. Educating sciesigdiout the needs of decision makers
is an important first step. Simultaneously, deciginakers need to gain understanding
about scientific methodology, available researdtstcand potential sources of

knowledge.

Geographical location within the building was létevice as a problem hindering
interactions between departments. Once againptbtdem is likely more problematic to
real-world decision makers than to ERB personmeihé case of the ERB, personnel
from the scientist and policy departments are sgattacross several floors. In a real-
world scenario, scientists and decision makerdilegly scattered across a city or even
across the country. On the other hand, respondeitésl in-building location as an
obstacle to intradepartmental interactions, cibagiers to departmental coherency as
problematic for research development. This situafiresents a conundrum for both the
ERB’s effectiveness and for real-world organizasioPolicy-scientist interactions may
be enhanced by co-located offices, but this arnawege: may hinder colleague and peer
relationship building, especially for early-cardecision makers. The conundrum reveals
the need for an individual who can move freely leswthe two groups to enhance cross-

boundary transfer while maintaining individual gpotohesiveness. It is interesting to
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note that this two-fold role also mirrors the rofea boundary organization to bridged

maintain boundaries.

In order to more fully understand the role of tHeHzas a boundary object, the
final questions solicited information about changemiteractions across departments
before and after the move to the ERB. If the ERBffective as a boundary object, after
a year and a half housed together in the builditeydepartmental interactions and
collaborations should have increased. Howeves,tlesn 10% of responses showed
changes in the number or patterns of interactiaosmming either among students or
faculty, and the survey revealed no significantngigain patterns of collaboration. And
perhaps this stasis is not startling. In the warfdsne responder:

“Quite frankly, the idea that you could put peofstan very different research

areas together in a single building and expechs#gesustained collaboration to
magically occur is folly.”

Where personnel interactions have changed, thegehiarargely a function of
convenience, e.g. chats in the elevator or gregimghe break-room. Regardless if the
building plan is promoting increases in formal abbrations, theses casual encounters
are worthwhile in their own right. Casual encousteain be the seeds of a relationship

and a future boundary-spanning individual.

Conclusions and Recommendations
Specific comments in the survey, as discussedemtbceding section, reveal the
ERB is indeed acting as a small scale examplebofuadary object to transfer
knowledge through the availability of brochuretgrature, and posters. Through these

devices, the ERB acts to promote awareness ofitiesiand research occurring in the
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building. Once again, we use the analogy of agieghin a journal published by a
boundary organization: the ERB is the analog tgdhenal and the specific objects

within the ERB are analogous to the enclosed jdarieles.

The ERB shines as an example of a boundary objeeiding a “basis for
negotiation,” as discussed by Sapsed and Saltérj20rhe ERB provides a physical,
literal basis for negotiation in the form of comnmgpace, common meeting rooms, and,
for some, commonly-shared thought patterns, ideald,values among its inhabitants.
The boundary organization, the university, furthermotes the boundary object role for
the building through the organizational statemegmbsters, and exhibits throughout the
building. Thus the organization is using the bingpto bridge boundaries between the
departments that inhabit it, fulfilling the orgaaiional goal of promoting the research
structure and proliferation of the university. Baction and reaction within the ERB
and the university fulfills the objective of thelwlary object in promoting
“organizational goals” (Carlile, 2002). Survey coemts indicate that the ERB is having
some success as mediating between the two grodpsizing awareness of the
possibilities for productive interdisciplinary reseh. Thus, these results demonstrate
that the ERB is helping its inhabitants learn alibatr “similarities, differences, and

interdependencies” (Carlile, 2002).

Nevertheless, there is still evidence of the botierddetween groups and the
failure of the ERB to be a total success as a baynaobject. This failure is evident in
survey responses which indicated that many scitsrdimn’t know much about the policy
group: “l don’t know who they are or what they dbisn’t obvious how they can really

benefit any of my projects, but | have to confésd this is largely ignorance. ” Policy
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faculty said “I see the activity in the labs buhttainderstand what they are doing.”

Thus the ERB may be transferring knowledge buinfgito translate it.

We fully recognize that our sample size is extrgntietited, as this survey
represents a small percentage of university sesismind public policy
personnel. Nevertheless, the prevalence of reggammmenting on the role of public
opinion, democratic processes, and citizen scismaitows us to draw some conclusions

and suggestions relevant on a broader scale.

First, public opinion is an essential input fordamse decisions in our democratic
system. If public opinion is to have a major ormeweerriding influence on decisions
about management of natural resourced and publas|ahen public education is
essential. As one respondent noted, public polfceand use and resource use should
be founded on “knowledgeable input from our citgeihough we must somehow figure
out the complexity of what knowledgeable meansrh8geople within Boise State
University and many other universities do helpuhesersity act as boundary
organizations for this particular barrier and adbgetresponsibility to educate the public

and to foster “knowledgeable” citizens

Universities also directly educate future sciestetd future decision makers as
well as the public. At least 5 different responisethis case study indicated the
importance of having citizens who are concurreatlycated. For example, one response
stated that people are needed “in decision makidgpablic policy that have a scientific
background” and that “development of interdisciptynprograms across science and
policy would be very beneficial.” Scientists anctd@n makers thusly educated would

understand the processes, the cultures, and e tiwt lie on both sides of the
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boundary. They would be able to interpret and egrknowledge across the boundary in
either direction and act as boundary-spannersanyncase, before such a person can
choose to rise up and stand in the gap, he mustthaknowledge base that affords him

the opportunity to do so.

The public university, acting as a boundary orgatnin, can build those
foundations within the student body by fosteringeiactions between them. These
efforts to promote student education and interastiare likely to have more impact than
similar attempts among faculty, for several reasbmgeneral, students are at a more
social time in their lives. They experience fewsrd constraints from family and other
outside commitments. Academically, they are mtalhle and more likely to attempt
new thought processes or explore new points ofwieBtudents are not yet set on a
career path are more likely to act outside theucaltboundaries of their discipline. Thus
it is likely that boundary organization effortsgoomote collaborations among student
may give rise to a boundary-spanning individuahtothe least may provide a solid basis

for relationships between scientists and decisiakers.

This study allows universities who strive to acbasindary organization and
promote inter-disciplinary cross-pollination thepoptunity to understand some of the
constraints and difficulties of their roles andlod roles of their boundary objects. In this
case study, the ERB acted as a boundary objediwith university setting to transfer
knowledge and mediate personal interactions. Timsections are the foundation for
future relationships and the formation of boundspgnning individuals. Thus we can
see the critical ties and feedback between bounatgignizations, boundary objects, and

boundary-spanning individuals.
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The choice for scientists to develop themselves lasundary-spanning individual
is a personal one. On the other hand, by theyr nature decisions for public lands and
resource management require an understandingesfcsgi scientific processes, and
assessments of uncertainty. With that in mind, #e®mmend that public universities, in
their role as boundary organizations, set up af@ate in Science for Management
program targeted towards decision makers and eslyeiwiwards those who are active in
public lands and resource management. Althoughesoanagers do have scientific
backgrounds, this certificate would provide a foatnah for those who do not. Young
career decision makers involved in public landeesource management could complete
this certificate as part of their professional degement. Recommended course work
would include natural sciences, a course in stegisind a course in scientific ethics.
Such a program would enhance boundary-spanningdetse university setting by give

young decision makers a solid foundation for thersme involved in their decisions.

Final Remarks

This paper began with defining science. Our définiof science is narrow
enough to maintain the rigor of scientific resditg broad enough to include data
analysis techniques made possible by today’s téogypoThis science also embraces and
delineates uncertainty in results. Such a definipoomotes public credibility and
legitimacy in the scientific component of policyaions for lands management and
resource use. This credibility and legitimacy emages decision makers to consider the
science slice of the decision-making pie. Thussiesimakers can promote

scientifically-based decisions for sustainable ngenaent of resource and lands.
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In regards to boundary organization theory, thecsgtudy presents a potential
example of a boundary object that outside the redltraditional boundary objects by
proposing that a building can act effectively dsandary object. We recognize that the
study is limited in scope, but hope that the raspitovide a basis for growth of the theory
underlying boundary organizations and boundaryatbjas well as continued discussion
on the role of the public university as a boundaiganization. Furthermore, these
results have some extension outside the univessiting — real-world scientists and
decision makers face some of the same barriefsegsetrsonnel who participated in this
study, including time and geography. With thatrimd, future work will investigate

potential non-traditional boundary objects outgiue university setting.
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