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ABSTRACT 

Ground penetrating radar (GPR) and seismic reflection methods are useful 

geophysical tools for near-surface characterization.  Analysis of radar or seismic 

reflection data can combine velocity analysis with common physical transformations to 

provide subsurface physical properties such as subsurface porosity, density, and 

contaminant locations. However, reliable quantitative characterization of thin subsurface 

layers may be impossible using standard reflection data processing techniques, e.g. 

velocity analysis, if the layer thickness is below the conventional resolution limits of the 

data.  The limiting layer thickness for layer resolution may be up to ½ or even ¾ of the 

dominant wavelength (λ) of the signal in the medium of interest. This limitation often 

depends on data noise levels and source characteristics.  In many environmental 

problems, target layers may be below this layer thickness and accurate determination of 

layer properties becomes problematic.  In order to reliably quantify thin-layer parameters 

in these cases, geophysical practitioners require additional tools such as attribute analyses 

and inversion methodologies.  Full-waveform inversions may be able to quantify layer 

parameters even in the case of thin (< ½λ) and ultra-thin (< ⅛λ) layers by inverting 

directly for thin-layer properties.  Therefore, I provide a targeted full-waveform inversion 

algorithm to quantify thin- and ultra-thin layer parameters for multiple relevant 

environmental problems including oil in and under sea ice and basal conditions of 

glaciers.  I demonstrate the efficacy of this approach on model and field data collected 

using radar and seismic reflection methods.  These methods depend on surface records of 
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reflection information from subsurface interfaces and may fail if reflections are obscured 

or attenuated in the subsurface. Therefore, I demonstrate that a new dual-polarization 

system can mitigate the effects of the overburden anisotropy and conductivity attenuation 

on radar data collected in Arctic conditions. Combining my full-waveform inversion 

algorithm with improved sea ice radar data collection may enhance reliable quantification 

of spilled oil in the event of an accidental release in Arctic environments. 
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CHAPTER ONE: INTRODUCTION 

Overview 

Seismic and radar reflection methods are a common and useful tool for near-

surface geophysical investigation (e.g. Bradford et al., 2009; Dow et al., 2013; Kim et al., 

2010; Zeng et al. , 2000).  Surface-based use of either method requires introducing wave 

energy into the subsurface and recording the return signal at the surface.  One major 

difference between the two methods is signal frequency. For example, seismic 

frequencies may range from 1 to 100 Hz while the radar range is generally between 10 

MHz and 10 GHz.  In addition, seismic waves and radar waves are sensitive to different 

subsurface properties: density (ρ, kg m3), velocity (α, m s-1), and seismic attenuation (Q) 

in the case of seismic methods but permittivity (ԑ, F m-1) and conductivity (σ, S m-1) in 

the case of radar waves (Aki and Richards, 2002).  However, the basic underlying 

equations for analyzing wave travel and reflectivity response are similar for both 

techniques. The similarities between the two methods allow for effective application of 

multiple seismic data processing techniques to radar data (Bradford, 2007; Bradford and 

Wu, 2007).   

My research focuses on using radar and seismic reflection data to quantify thin 

layers that may be present in the near-subsurface.  I am especially interested in 

environmental problems such as contaminated site characterization and snow and ice 

research.  Thus, I begin by discussing radar-based subsurface investigations and the 
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underlying wave equations for electromagnetic wave propagation.  I subsequently 

summarize the appropriate analogs with respect to seismic reflection methods.  Since 

“thin” subsurface layers often arise in environmental problems, I discuss the problems 

that arise with either method due to the presence of thin layers in the subsurface. Two 

relevant methods for overcoming those difficulties include amplitude variation with 

offset (AVO) analysis and full-waveform inversions (FWIs). My research has produced a 

targeted FWI algorithm that can use radar or seismic reflection data to quantify thin 

layers of near-surface material, including environmental contaminants.  The subsequent 

chapters delineate my modeling and inversion methods, including testing on model and 

field or laboratory data collected both with radar and seismic reflection methods.   

Radar Methods for Environmental Problems 

Ground penetrating radar (GPR) is a near-surface geophysical tool well-suited for 

detecting subsurface contamination (Brewster and Annan, 1994; Bradford and Deeds, 

2006; Bradford et al., 2010; Luciano et al., 2010; Orlando, 2002).   Reflection GPR 

methods traditionally incorporate velocity analysis combined with common petrophysical 

transformations to indirectly estimate subsurface electrical and physical properties at a 

contaminated site (Annan, 2005).  Zones of anomalous electrical properties may indicate 

the presence of contamination (Bradford and Deeds, 2006).  Contaminants of interest 

relevant to my research are non-aqueous phase liquids (NAPLs). These contaminants are 

often harmful to human health (Brusseau et al., 2011).  

GPR methods can provide a non-invasive, cost-effective, rapid methodology for 

site characterization.  2D or 3D radar reflection surveys can delineate zones of 

contamination with greater site coverage than borehole monitoring (Bradford and Deeds, 
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2006). Accurately delineating zones of subsurface contamination allows prioritization of 

remediation efforts.  Of course, rigorous use of all geophysical data including radar and 

seismic data requires confirmation with boreholes or other lower resolution point-

sampling methods (Hinz, 2012). These methods can provide detailed vertical 

characterization but only at specific point locations.  Said another way, point 

measurements lack horizontal resolution. Thus when correctly verified with point 

measurements, GPR data may provide improved spatial characterization. When 

integrated with control data and careful interpretation, GPR reflection surveys may offer 

site managers a robust tool for contaminant detection, monitoring, and remediation 

(Bradford and Babcock, 2013; Babcock and Bradford, 2013).  

However, the robustness of GPR-aided contaminant detection and quantification 

may be compromised when contaminants migrate from their initial source location and 

disperse across a contaminated site.  This dispersion may result in a thin contaminant 

layer.  “Thin” is relative to the dominant wavelength (λ) of the signal in the material of 

interest. Although researchers have addressed thin-layer problems since the mid-1900s 

(Widess, 1973), accurately quantifying thin-layer parameters continues to be problematic 

for both seismic and radar exploration. Basic understanding of radar methods and 

subsequent detection and quantification of thin subsurface layers begins with the relevant 

electromagnetic (EM) theory as applicable to reflection GPR methods and the thin-bed 

problem.   

Maxwell’s Equations 

Due to the breadth of his contributions to the study of electricity and magnetism, 

James Clerk Maxwell is known as the father of electromagnetics. Two of his outstanding 
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contributions to the field came via his extraordinary observation that light is 

electromagnetic (EM) radiation and through the addition of an important term to 

Ampere’s law (Goldman, 1983). Maxwell’s equations provide the basis for deriving the 

equation for electromagnetic (EM) wave propagation in subsurface materials (Griffiths, 

1999). As a historical byline, it was Oliver Heaviside, rather than James Clerk Maxwell, 

who developed modern vector notation and composed Maxwell’s equations in the 

modern formulation with which the reader is familiar (Goldman, 1983).   

In any case, “Maxwell’s” equations consist of Faraday’s law, Ampere’s law, 

Gauss’s law, and the monopole law.  Either differential or integral forms of the equations 

are equally valid.  Maxwell’s equations provide empirical descriptions of the behavior of 

electric and magnetic fields and their coupled nature. Here I present the differential form 

of Maxwell’s equations in earth materials and include several relevant simplifying 

assumptions (Fleisch, 2008).  Combining these equations in the presence of certain 

simplifying assumptions leads to the EM wave equation.  The wave equation is the basis 

for understanding the physics of radar propagation and subsequent attempts to extracting 

meaningful physical information using data processing techniques and petrophysical 

relationships (Griffiths, 1999). 

The curl of a vector field describes the circulation of that field around a point, 

while the divergence of a vector field is the amount of flux passing through an 

infinitesimally small surface enclosing some charge, per unit volume (Fleisch, 2008).  

One can conceptually think of that charge as acting a source (positive divergence) or sink 

(negative divergence) of the field. Faraday’s law expresses the curl of the electric field, 

E, as the time derivative of the magnetic field, B: 
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∇	× 	���, �� = 	− ����,���� .        (1.1) 

The electric field is a vector force field describing the electrical force per unit 

charge acting on a charged particle.  Therefore E has units V m-1. Conversely B is also a 

vector field but describes the magnetic force per unit charge per unit velocity acting on a 

particle moving perpendicularly to the magnetic field direction. Units of B are Tesla (T).  

Next I introduce two definitions that I will use in Ampere’s law and Gauss’s law.  

The first relates the electric field to electric displacement, D and the electric polarization, 

P:  

	���, �� ≡ 	 ԑ����, �� + ".        (1.2) 

Electric polarization is the electric dipole moment per unit volume. The electric 

displacement and the electric polarization have units of C m-2.  

The second equation defines the magnetic field strength H in terms of B and the 

magnetic polarization, M:  

#��, �� ≡ 	 $%&���, �� −'.        (1.3) 

The magnetic field strength H has unit of A m-1, as of course does M. In free space, the 

magnetic permeability and the permittivity are constant: µ0 ≡ 4π x 10-7 H/m and ε0	≌	
8.58	x	10-12	F/m.  Permittivity is a measure of a material’s ability to store charge in the 

presence of an applied electric field. 

I use equations 1.2 and 1.3 in my statements of Ampere’s law (equation 1.4) and 

Gauss’s law (equation 1.5): 

∇	× 	#��, �� = 	0��, �� 	+ ����,���� 	.       (1.4) 
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∇	• 	���, �� = 	2.         (1.5) 

where J is electric current density. Thus, Gauss’s law states that the divergence of D is 

equal to the enclosed free charge density ρ. 

Finally, the monopole law defines the divergence of B to be zero everywhere: 

∇	• 	���, �� = 	0         (1.6) 

Since the divergence is zero in all space, sources or sinks of B can never exist.  

Therefore, free magnetic charges cannot exist, and magnetic charges always exist in 

positive/negative pairs.  To date, no one has ever observed a free magnetic charge. 

In order to combine and transform Maxwell’s equations to the wave equation for 

radar travel in earth materials, I first assume that M is zero. In that case, the magnetic 

permeability in the material of interest is always equal to µ0. This approximation is valid 

in most near-surface material of interest to many GPR practitioners, such as sandy soils 

and aquifers.  However, some rocks and ores, e.g. iron and steel, may have magnetic 

permeability one or two orders of magnitude higher than µ0. In those cases, I could not 

make the approximation that µ = µ0.  

In a linear, homogeneous, and isotropic material J is proportional to E: 

0��, �� = 3���, ��.          (1.7) 

Equation 1.7 is Ohm’s law. Ohm’s law expresses electric current density, J, as a function 

of the electric field and the conductivity σ, of the material carrying that current. In 

contrast with ε, conductivity is a measure of a material’s ability to transmit charge. It has 

units of S m-1. 
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To simplify the expression for electric displacement in a linear dielectric, I start 

with equation 1.2 and recognize that P is proportional to E in such a material: 

"��, �� = 	 ԑ456���, ��        (1.8) 

���, �� = 	 ԑ4���, �� + ԑ456���, ��       (1.9) 

and 

���, �� = 	 ԑ4�1 + 56����, ��.       (1.10) 

Then defining ԑ = ԑ4�1 + 56�, I can write D in terms of E: 

���, �� = 	ԑ���, ��         (1.11) 

where ԑ is the material’s permittivity.  Taking ԑ7 = 1 + 56, it follows from examining 

equation 1.10 that ԑ is proportional to the permittivity of free space (Table 1.1): 

ԑ = ԑ7ԑ4           (1.12) 

where ԑ7 is the relative permittivity. 

Then, Ampere’s and Faraday’s law easily simplify as follows: 

∇	× 	���, �� = 	84[3���, �� + : ����,���� 	] .     (1.13) 

and 

∇	× 	���, �� = 	− ����,���� .        (1.14)  

Since σ is multiplied with the vector field E to produce the vector field J, σ is a 

tensor in anisotropic materials. Similarly, ε is also a tensor in anisotropic materials. 

However, if one assumes a homogeneous, isotropic earth material, ε and σ reduce to 

scalar quantities.  Most earth materials are neither homogenous nor isotropic in nature.  
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Nevertheless, these simplifying assumptions promote comprehension of the derivation of 

the EM wave equation and its physical meaning. The assumptions often provide a good 

approximation of the bulk properties and behavior of many subsurface materials.  

Nonetheless, one must remain alert for situations where these assumptions fail and be 

prepared to apply a more rigorous treatment of the Maxwell’s equations. One example I 

address in Chapter 5 is the anisotropic nature of the conductivity structure of sea ice.   

The Wave Equation 

That being said, with those simplifying assumptions and the previous assumption 

that µ = µ0 for our materials of interest, I take the curl of both sides of Faraday’s law 

(equation 1.11) and substitute Ampere’s law for the curl of B with the following result: 

∇	× ∇	× 	���, �� = 	∇	× �− ����,���� �       (1.15)  

A vector identity provides the mathematical key to break apart the left-hand side of the 

preceding equation (Fleisch, 2008): 

∇	× <∇	× 		���, ��= = 	∇<∇ • 	���, ��= − 	∇>	���, ��.        (1.16) 

I can combine Gauss’s law given in equation 1.5 with equation 1.11 to analyze the 

term ∇ • ���, ��.  If there is zero enclosed charge in a region, then ∇ • ���, �� = 0 in that 

region.  By making this statement, I am assuming that there are no free charges present in 

the subsurface materials.  Subsurface conditions may sometimes violate this assumption. 

Nonetheless, I proceed assuming ∇ • ���, �� = 0 in the case of zero enclosed charge and 

equation 1.15 reduces to the following form: 

−∇>���, �� = 	∇ 	× �− ����,���� �.       (1.17) 
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I assume that the spatial and temporal derivatives of � are independent and can 

thus manipulate equation 1.17 to the following form: 

−∇>���, �� = 	− ?�∇×���,���?@ .        (1.18) 

Substituting equation 1.13 into equation 1.18 provides the following result:  

∇>���, �� = 	 ?�%&[A���,��BCD���,E�DE 	]	�
?@ .       (1.19) 

Breaking apart the right hand side of equation 1.19 and grouping all terms on the 

left provides the familiar form of the wave equation (Griffiths, 1999): 

∇>���, �� − μ43 ?���,��?@ − μ4: ?G���,��	?@G = 0.      (1.20) 

Remember that with the previous assumptions I can treat µ0, σ, and ԑ as constant and 

move them outside the time derivative.  On the other hand, if a 2D medium is anisotropic, 

ε and σ become second-order tensors: 

:	H = Iԑ$$ ԑ>$ԑ$> ԑ>>J         (1.21) 

and 

3	H = I3$$ 3>$3$> 3>>J.         (1.22) 

If coupling between tensor components is negligible, 3>$, 3$>, ԑ>$, and ԑ$> are 

zero.  I substitute the modified tensors into the wave equation: 

∇>���, �� − μ4 K3$$ 00 3>>L ?���,��?@ − μ4 Kԑ$$ 00 ԑ>>L ?G���,��	?@G = 0.   (1.23) 
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By choosing an appropriate coordinate system, given my previous assumptions I can treat 

the problem as two separate cases with respect to the orientation of the anisotropy and the 

relative direction of propagation of �, here denoted as M$and M>: 
∇>M$��, �� − μ43$$ ?NO��,��?@ − μ4ԑ$$ ?GNO��,��	?@G = 0     (1.24) 

and 

∇>M>��, �� − μ43>> ?NG��,��?@ − μ4ԑ>> ?GNG��,��	?@G = 0.     (1.25) 

In Chapter 5, I start with a variation of these two equations and proceed to describe the 

anisotropic nature of EM wave propagation in sea ice. 

Now I revisit equation 1.20 in the case of a homogeneous, isotropic, linear 

dielectric. Note that it has 3 terms.  The first describes the second-order spatial derivative 

of �.  The second term is a diffusion term.  The fact that this term is proportional to σ 

demonstrates that conductivity acts to attenuate the travel of a radar wave in the 

subsurface (Hohmann, 1988). The final term is a second-order time derivative.  It is the 

wave propagation term.  Since the propagation term is proportional to ԑ, velocity is 

inversely proportional to the square root of a material’s ԑ: 

P = 	Q $R&C.          (1.26) 

Thus, if one can estimate the velocity of the radar wave, one can subsequently 

estimate a material’s ԑ.  Knowing ԑ, common petrophysical transformations provide 

means to transform its estimated value to physical material properties such as density (ρ) 

and porosity (ϕ) (Annan, 2005; Knight and Endres, 2005).  I review several of these 

transformations in Chapter 2.  
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One can easily solve the wave equation. One common method is separation of 

variables. The result is the total plane-wave solution: 

���, �� = M4ST�UV �WX��         (1.27) 

where the subscript 0 indicates the constant initial field defining the appropriate 

coordinate system I can define a wave traveling in the arbitrary x-direction using 

equation 1.27: 

��Y, �� = M4ST�UV ZWX��ĵ        (1.28) 

where ĵ is a unit vector in the y-direction.  

One can also use Maxwell’s equations to find the wave equations for B by starting 

with the curl of Ampere’s law. I can also take the curl of equation 1.28 and apply 

Faraday’s law as follows: 

∇	× ��Y, �� = ∇	× M4ST�UV ZWX��	ĵ       (1.29) 

− ���Z,���� = − �\&�� ST�UV ZWX��]̂        (1.30) 

As Griffiths (1999) shows, the result is a wave equation for B traveling with E but 

oriented perpendicularly with respect to E:  

��Y, �� = $_M4ST�UV ZWX��]̂        (1.31) 

where ]̂ is a unit vector in the z-direction. Thus, the amplitude of B is proportional to that 

of E divided by the EM wave velocity: 

`4 = $_M4.          (1.32) 

I will revisit equation 1.28 and 1.31 in the reflectivity section. 
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Going back to equation 1.27, I take the appropriate derivatives of � and substitute 

them back into the wave equation: 

?G���,��?aG = −	M4]V>ST�UV �WX��        (1.33) 

?���,��?@ = −	M4bωST�UV �WX��        (1.34) 

?G���,��?@G = −	M4d>ST�UV �WX��        (1.35) 

−	M4]V>ST�UV �WX�� = −	M4bωμ43ST�UV �WX��−	M4d>μ4:ST�UV �WX��.   (1.36) 

Regrouping yields the following form: 

−	M4]V>ST�UV �WX�� = −	M4�bωμ43+d>μ4:�ST�UV �WX�� = 0    (1.37) 

which reveals that the complex-valued wavenumber ]V describes the propagation of the 

wave and is a function a 3 and :: 
]V> = 	bωμ43 + d>μ4:.        (1.38) 

The wavenumber demonstrates that the propagation of the wave, including 

attenuation and velocity, depends on the material properties. Table 1.1 gives some 

relevant subsurface electric properties and the corresponding EM wave velocities in the 

material following equation 1.26.  

Next, I solve for ]V and substitute the result into equation 1.27.  First I take the 

square root of equation 1.38: 

]V = 	ebωμ43 + d>μ4:.        (1.39) 
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Since ωμ43 must be positive, the principal square root of the complex-valued 

wavenumber takes the following form (Bradford, 2007; Griffiths, 1999): 

]V = 	f + g�b.          (1.40) 

where  

f = hXGR&CBQXi%&GCGWXG%&GAG> .        (1.41) 

and 

g� = hWXGR&CBQXi%&GCGWXG%&GAG> .       (1.42) 

I use g� instead of just α to distinguish from the symbol I will later use for seismic wave 

velocity.  In a more useful form, it is evident that β and g� depend on frequency 

(Bradford, 2007): 

f = 	dhRC> jQ1 + k ACXl> + 1m.       (1.43) 

g� = dhRC> jQ1 + k ACXl> − 1m       (1.44) 

Finally, I substitute ]V = 	f + g�b into equation 1.27 and simplify: 

���, �� = M4ST��nBoET��WX��        (1.45) 

���, �� = M4ST�n�WX��BTGoEZ        (1.46) 

���, �� = M4ST�n�WX��WoEZ        (1.47) 
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The propagation term is ST�n�WX�� while the diffusion term is SWoEZ. Thus diffusion 

depends on propagation distance and the magnitude of g�.  The skin depth is inversely 

proportional to g�: 
p = $oE           (1.48) 

where d is the skin depth in m since g� has units of m-1. Equation 1.48 and 1.47 show that  

the skin depth is the propagation distance such that the original amplitude of the traveling 

wave is reduced by 1/e. Thus, increasing the value of g� results in more rapid attenuation 

of the traveling wave if all other factors are equal.  For example, skin depths in metals at 

GPR frequencies may be on the order of micrometers.  On the other hand, reasonable 

values for g� in earth materials give corresponding skin depths on the order of meters 

(Annan, 2005). Finally, the propagation term depends on β and I rewrite equation 1.26 as 

follows:                                                                                                                                                                                                                                                          

 P = 	Xn.          (1.49) 

and one can easily see that velocity depends on frequency as well as the real-valued part 

of ]V. 
Disregarding transient behavior following Griffiths (1999), the divergence of E is 

zero in earth materials.  The divergence of B is zero everywhere via the monopole law 

(equation 1.6).  For the plane-wave monochromatic solution, it is obvious that 
?���,��?q = 0 

and 
?���,��?r = 0, and thus for ∇	• 	� to be zero, 

?���,��?a = 0 and �M4�x must be zero.  

Similarly,  �`4�x = 0.  Thus EM waves are transverse, meaning the direction of 
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polarization is perpendicular to the direction of propagation (Griffiths, 1999). Next, I 

investigate reflection of such EM waves from subsurface interfaces. 

Table 1.1: Relevant subsurface material properties of interest. For simplicity, I 
list effective conductivity (���)* and relative permittivity where 

ԑ�����	�
ԑ� = ԑ�.  
Velocity is approximate. See Chapter 2 for additional discussion. 

Material ԑr ���  (S/m) v (m ns-1) 

Air 1 0 0.30 

Quartz 4.7 10-15 0.14 

Kaolinite 5-10 10-8 0.11 

Montmorillonite 5-10 10-7 0.11 

Fresh water 80 10-2 – 10-3 0.03 

Salt water 88 1 - 3 0.03 

Dry Sand 3-5 10-5 0.15 

Saturated Sand 20-30 10-2 0.06 

Saturated Clay 5-40 1 0.06 

Granite 4-6 10-5 0.13 

Ice 3-4 10-5 0.169 

Sea Ice 3-8 10-1 0.15 

*I take effective conductivity to be the DC conductivity (Annan, 2005). 

Reflectivity 

As E propagates into the subsurface, if it encounters contrasts in material 

electrical properties (σ and ԑ) at a subsurface boundary part of the wave energy is 

reflected back from that boundary.  Reflection methods involve measuring and 
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interpreting that reflected energy. After defining the appropriate coordinate system, I 

write the incident wave traveling towards the interface in the arbitrary x-direction using 

equation 1.28: 

�	��, �� = MTST�UOZWX��ĵ.        (1.50) 

Of course, the reflected wave travels in the opposite direction: 

 ����, �� = M7ST�WUOZWX��ĵ.        (1.51) 

Subscripts i and r denotes the incident and reflected waves respectively while 

subscripts 1 and 2 refer to layers. Thus, k1 is the wavenumber in the first layer while k2 

would denote the wavenumber in the subsequent layer.  

The magnetic field B behaves in the same fashion. Equation 1.31 shows that the 

magnitude of the magnetic field is proportional to the magnitude of E and that B is 

oriented at right angles to E (Griffiths, 1999):  

�	��, �� = $_O MTST�UOZWX��]̂        (1.52) 

It follows that the reflected magnetic field has a similar form to equation 1.51: 

����, �� = − $_O M7ST�WUOZWX��]̂.       (1.53) 

At an interface between two linear materials, the EM wave traveling across the 

interface must satisfy four boundary conditions (Griffiths, 1999).   

Boundary Conditions: 

1) The components of E parallel to the interface must be continuous: 

M$∥ = M>∥.          (1.54) 
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2) The ratio of perpendicular components of E is inversely proportional to the ratio of 

change in permittivity for the case of zero free change on the boundary:  

NOsNGs = ԑGԑO.          (1.55) 

3) Since B is aligned at right angles to E, the perpendicular components of B must be 

continuous across the interface. The ratio of the parallel components of B across the 

interface is proportional to the ratio of change in µ: 

`$t = `>t.          (1.56) 

and 

\O∥�Z,��\G∥�Z,�� = %O%G.          (1.57) 

Combining the boundary conditions with equations 1.50 to 1.53 provides a mean 

to calculate the amount of the introduced energy that is reflected back.  The reflection 

coefficient R is that ratio of reflected to incident energy: 

 u = 	 NvNw.          (1.58) 

In order to derive R in a more useful form for an incident EM wave polarized 

parallel to the plane of interface, I start by substituting equations 1.51 and 1.52 into 

equation 1.56. Note that `$ is equal to the sum of the incident and reflected energy while 

`>	represents transmitted energy: 

�\w∥�Z,��B\v∥�Z,���\G∥�Z,�� = %O%G.         (1.59) 

OxONw6w�yOz{|E�W OxONv6w�{yOz{|E�OxGNE6w�yGz{|E� = %O%G.         (1.60) 
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For the purposes of the following discussion, I further assume that conductivity is 

negligible in the material (3 ≪ ԑd�.  This condition is the “low-loss” criteria for radar 

wave travel (Annan, 2005). Since B is oriented orthogonally to E, I evaluate equation 

1.60 at x = 0 and simplify:  

OxO�NwWNv�OxGNE = %O%G          (1.61) 

For this simplification to be valid at all time and space, I could also evaluate equation 

1.60 by only considering the amplitudes of the traveling waves.  I proceed by simplifying 

equation 1.61 as follows: 

_GNwW_GNv_ONE = %O%G          (1.62) 

8>P>MT − 8>P>M7 = 8$P$M�        (1.63) 

8>P>MT − 8>P>M7 = 8$P$�MT + M7�       (1.64) 

8>P>MT − 8>P>M7 = 8$P$MT + 8$P$M7.      (1.65) 

8>P>MT − 8$P$MT = 8$P$M7+8>P>M7.       (1.66) 

Dividing through by MT produces a reformulation of the reflection coefficient: 

8>P> − 8$P$ = �8$P$ + 8>P>� NvNw       (1.67) 

%G_GW%O_O%O_OB%G_G = NvNw = u.         (1.68) 

Equation 1.68 is the formula for calculating the reflection coefficient of the EM 

wave as it encounters a subsurface layer at normal incidence.  Since I assume that the 
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magnetic susceptibilities of the materials are negligible for my relevant materials of 

interest, 8$ = 8> = 84:  
_GW_O_GB_O = u.          (1.69) 

Substituting equation 1.26 into equation 1.69 yields the reflection coefficient in 

terms of ԑ: 

Q O~&�G	WQ O~&�O
Q O~&�GBQ O~&�O

= u         (1.70) 

√COW√CG√CGB√CO = u.          (1.71) 

To be more rigorous, I could neglect the assumption that 3 ≪ ԑd	and instead use the full-

form of the complex-valued wavenumber (equation 1.38) to compute R with the 

following result assuming µ1 = µ2 = µ0: 

UVOWUVGUVGBUVO = u.          (1.72) 

Examining equations 1.72 and 1.39 thereby reveals that radar reflectivity response does 

in fact depend on 3 as well as ԑ. 

In the case of an incidence wave at oblique incidence to the layer boundary, the 

incidence angle and the orientation of the EM wave polarization with respect to the 

boundary affect the reflectivity response (Griffiths, 1999). When using broadside 

acquisition, GPR practitioners refer to the EM wave orientation as transverse electric, or 

TE, mode. For a 2D medium symmetric about the plane of acquisition, the TE reflection 

coefficient u�N is given as follows: 



20 

 

UVO ����OWUVG ��� �GUVO ����OBUVG ��� �G = u�N        (1.73) 

where θi is the incidence angle as shown in Figure 1.1. Snell’s law allows me to compute 

the ray parameter in terms of velocities and �$and �>: 
� = ����O�O = ����G�G  .         (1.74) 

Griffiths (1999) provides a derivation of the reflection coefficient for the case 

where the incident wave is polarized parallel to the plane of reflection. The plane of 

reflection is the plane perpendicular to the reflecting interface.  Such polarization is the 

transverse magnetic, or TM mode, and has the following reflection coefficient denoted 

RTM (Annan, 2005): 

UVO ����GWUVG ��� �OUVG ����OBUVO ��� �G = u��        (1.75) 

Note that in the case of zero incidence angle (�> = 	�$ = 0), the two reflection 

coefficient are equal.  The angle dependence of the preceding reflection coefficients 

forms the basis for analyzing the angle-dependent reflectivity response of the subsurface.   
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Figure 1.1: Diagram showing incident, transmitted, and reflected plane waves 
(denoted by arrows) at a subsurface interface marked by contrast in material 
electric properties.  

Seismic Considerations 

Seismic energy also propagates as a wave in the subsurface.  As a result, there are 

many similarities between radar reflection and seismic reflection. To derive the wave 

equations for seismic motion in the subsurface, one starts with the general equation of 

motion in spatial and time coordinates x and t (Pelton, 2005): 

 2��, �� �_w��,���� � 2��, ���T��, �� ! ���� �T���, ��      (1.76) 

where	2 is density. The left-most term describes the rate of change of the momentum of 

the body of interest while the right side of the equation is describes the body force (�T) 
per unit mass and the surface force (

���� �T���, ��) acting on the system.  

Next, assuming a linearly elastic, homogeneous, and isotropic material allows me 

to neglect the spatial dependence of material properties as follows (Pelton, 2005): 
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�T���, �� = ����, ���T� + 28�ST���, ��.      (1.77) 

Here ���, ��is dilatation; �T� is the Kronecker delta function; ST���, ��is the strain 

component; η is the Lamé modulus; and	8� is the shear modulus (Aki and Richards, 

1980; Pelton, 2005).  A material’s 8�describes its stiffness or resistance to shear.  The 

Lamé modulus is proportional to the sum of the bulk modulus к and 8�: 
�	 = к −	>� 8�.          (1.78) 

The bulk modulus describes a material’s resistance to compression. Dilatation is the 

divergence of the displacement field u: 

���, �� = � ∙ ���, ��         (1.79) 

and I can write the strain component in terms of displacement gradients: 

ST���, �� = $> [�����,���Zw + ��w��,���Z� ].       (1.80) 

The next step in deriving the seismic wave equations is to substitute equation 1.77 

into equation 1.76. I consider the simplest case. First, I neglect the convective term in the 

material derivative  
�_w��,����  as follows: 

�_w��,���� = ?_w��,��?@ + ���, �� ∙ �PT��, ��       (1.81) 

�_w��,���� = ?_w��,��?@          (1.82) 

and 

PT��, �� = ��w��,���� .         (1.83) 
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Substituting equation 1.83 into 1.81 provides the following result for the material 

derivative: 

�_w��,���� = �G�w��,����G .         (1.84) 

Neglecting the convective term � ∙ �PT is safe if displacement gradients are small, and 

this condition generally holds for seismic motion where the wave is propagating 

relatively far away from its source. In near-surface geophysics, practitioners must be 

carefully consider when this “far-field” assumption may be invalid. 

Next, I substitute equations 1.77 through 1.84 into equation 1.76, assume that 2	is 

constant, and exclude body forces (�T = 0). In that case, I am only considering the total 

surface force (Pelton, 2005):  

2 �G�w��,����G = ���� K�<� ∙ ���, ��=�T� + 8�������,���Zw + ��w��,���Z� �L.    (1.85) 

Assuming our material properties are constant as previously stated, I can gather the 

components of the displacements u.  The result is as follows: 

2 �G���,����G = �� + 8���<� ∙ ���, ��= + 8�∇>���, ��.     (1.86) 

Equation 1.86 is the Navier equation.  Furthermore the completeness theorem 

states that any solution to the Navier equation is the sum of a gradient of a scalar field 

and the curl of a solenoidal field (Pelton, 2005) (A solenoidal field is one whose 

divergence is zero everywhere, that is, ∇ ∙ � = 0.): 

���, �� = ∇���, �� + ∇ × ���, ��.       (1.87) 

Both P and S also satisfy wave equations of the following forms: 
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∇>���, �� − $_�G
?G ��,��	?@G = 0        (1.88) 

and 

∇>���, �� − $_¡G
?G���,��	?@G = 0        (1.89) 

where vs and vp are the velocity of the S-wave and P-wave, respectively, and are given 

by	P¢ = Q£B>%¡¤  and P� = Q%¡¤  (Pelton, 2005). Acknowledging the assumption that 2 and 

8�	are constant, I can take the the divergence of the Navier equation to arrive at the 

following equations:  

∇ ∙ 2 �G���,����G = ∇ ∙ [�� + 8���<� ∙ ���, ��= + 8�∇>���, ��]    (1.90) 

2 �G��G ∇ ∙ ���, �� = �� + 8��∇ ∙ �<� ∙ ���, ��= + 8�∇ ∙ ∇>���, ��].   (1.91) 

Using equation 1.79, I can simplify the preceding equation and write it in terms of the 

dilatation: 

2 �G��G���, �� = �� + 8���>���, ��+8��>���, ��     (1.92) 

2 �G��G���, �� = �� + 28���>���, ��       (1.93) 

�� + 28���>���, �� − 2 �G��G���, �� = 0      (1.94) 

�>���, �� − ¤£B>%¡
�G��G���, �� = 0.       (1.95) 

Comparison of equation 1.95 with the P-wave equation (1.88) confirms that the P-wave 

velocity is related to the physical and mechanical material properties as stated previously: 
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P¢ � Q£B>%¡¤           (1.96) 

Thus, the velocities of seismic waves depend on 3 physical properties (density, 

stiffness, and compressional strength).  In contrast, according to equation 1.26, the 

velocity of EM wave propagation depends on 2 physical properties: the magnetic 

permeability and the permittivity of the material.  Table 1.2 gives relevant representative 

material properties. Similarly, the seismic reflection coefficients depend on the angles of 

incidence and reflection as well as ρ, P�, and P¢.  For example, the acoustic reflection 

coefficient (u¢) is given by the following equation for a plane wave normally incident on 

a horizontal interface between two layers, 1 and 2 respectively (Aki and Richards, 2002): 

u¢ � ¤G_�GW¤O_�O¤G_�GB¤O_�O         (1.97) 

The product of density and seismic velocity is impedance and of course Snell’s 

law still applies to �$and �> (Booth et al., 2013).  Note the similarities and differences 

between equation 1.97 and the reflection coefficient for EM waves (equations 1.69 and 

1.75). Under our extensive simplifying assumptions and not considering either 

conductivity or seismic quality factor, one observes that the EM wave reflections exhibit 

a first-order dependency on just one material property (ԑ), while seismic wave reflections 

depend both on ρ and on v.  The coupled nature of those two seismic properties may 

complicate estimation of material properties such as porosity or the application of ill-

constrained geophysical techniques such as inversion algorithms.  

Of course when seismic energy encounters a subsurface layer, there is P- and S-

wave splitting across the boundary, such that an incident P-wave results in transmitted 

and reflected P- and S-waves and both P- and S-wave reflection coefficients (Castagna, 
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1993) (Figure 1.2).  I discuss the more general case for all seismic reflection coefficients 

and the elastic case for the P-wave reflection coefficient in the next section.  

Table 1.2: Representative seismic material properties (Burger et al., 2006; Press, 
1966).  All properties depend on pressure and temperature. 

Material vp (m s-1) Vs (m s-1) ρ (kg m-3) 

Air 330 0 1.275 

Water 1400-1600 0 1000 

Ice 3600-3800 917 917 

Saturated Sand 800 - 2200 400 - 600 1500 - 2400 

Unsaturated Sand 200 - 1200 100 -500 500 - 1700 

Clay 1100 – 2500 200 - 800 2000 - 2400 

Shale 1400-1600 1400 - 2000 2670 

Sandstone 2000 - 3500 500 - 1700 2100 - 2400 

Granite 4500 - 6000 2500 - 3300 2500 – 2700 

Basalt 5000 - 6000 2800 – 3400 2700 - 3100 

Examples and Thin-Layer Problems 

In the preceding sections, I demonstrated how the propagation of wave energy in 

the subsurface depends on material properties that influence the velocity of the wave in 

either the seismic or the radar case. Changes in material properties across an interface 

cause some energy to be reflected back to the subsurface. A plethora of data collection 

techniques, data processing methods, and petrophysical transformations enable us to 

examine those reflections and derive information about the subsurface.  For example, 

assuming a plane-wave contacting an infinite planar interface between two homogeneous, 

isotropic, linearly elastic half spaces, the Zoeppritz equations provide the full solution for 
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16 reflection and transmission coefficients for both P- and S-waves as a function of angle 

of incidence (Aki and Richards, 2002) (Figure 1.2): 

Q=P-1R=¥�′�" ¨′�" �"�" ¨"�"�′¨" ¨′¨" �"¨" ¨"¨"�©�© ¨′�′ �"�′ ¨"�′�′¨′ ¨′¨′ �"¨′ ¨"¨′ ª      (1.98) 

where ′ denotes down-going waves and " denotes up-going waves.  For example, �′�" 
represents a down-going P-wave reflected to an up-going one; thus	�′�"  is the elastic P-

wave reflection coefficient as compared to equation 1.97 for the acoustic reflection 

coefficient. Similarly �′¨" represents a down-going P-wave reflected to an up-going S-

wave and �′¨"   is the standard S-wave reflection coefficient.  To further hammer the 

point home, consider that �′�′ represents a down-going P-wave transmitted to down-

going P-wave is therefore the P-wave transmission coefficient.  The matrices P and R are 

functions of incidence angles and seismic properties: 

P=

«¬¬
¬ − sin �$ −cos ³$ sin �> cos ³>cos �$ −sin³$ cos �> −sin³>2ρ$PµOsin ³$ cos �$ ρ$PµO�1 − 2sin> ³$� 2ρ>PµGsin³> cos �> ρ>PµG�1 − 2sin> ³>�−ρ$P O�1 − 2sin> ³$� ρ$PµOsin	2³$ ρ>P G�1 − 2sin> ³>� −ρ>PµGsin	2³> ¶··

·̧ 
           (1.99) 

and 
R=

«¬¬
¬ sin �$ cos ³$ −sin �> −cos ³>cos �$ −sin³$ cos �> −sin³>2ρ$PµOsin³$ cos �$ ρ$PµO�1 − 2sin> ³$� 2ρ>PµGsin³> cos �> ρ>PµG�1 − 2sin> ³>�ρ$P O�1 − 2sin> ³$� −ρ$PµOsin	2³$ −ρ>P G�1 − 2sin> ³>� ρ>PµGsin	2 ³> ¶··

·̧ 
(1.100) 

where PµOand	P O are the S- and P-wave velocities respectively in Layer 1; PµGand	P G are 

the S- and P-wave velocities respectively in layer 2; ρ$	and ρ> are the densities of each 
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layer fill; �$	and �>	are the incident and transmitted P-wave angles; ³$and ³>	are the 

incident and transmitted S-wave angles respectively; and Snell’s law relates the P- and S-

wave angles (Castagna, 1993) (Figure 1.2): 

� � ����O_¹O � ����G_¹G � ���ºO_»O � ���ºG_»G         (1.101) 

Unique combinations of the physical properties of the materials influencing P and 

R (i.e. ρ and v) give rise to unique changes in reflection coefficients as the angle of 

incidence changes as demonstrated by Figure 1.2.  This technique is amplitude variation 

with offset (AVO) analysis or amplitude variation with angle (AVA) analysis. Either 

name is valid since angle of incidence is a function of offset. Modeling and inversions 

based on AVA/AVO curves may enable skilled practitioners to estimate subsurface 

parameters. However, the Zoeppritz equations are not valid if a thin layer is present 

between the two half-spaces and one must turn to reflectivity modeling or numerical 

solutions. 

Another common tool for interpreting reflection data is velocity analysis (Yilmaz, 

2002).  As previously stated, the velocity of the seismic wave depends on the physical 

properties of the material (equation 1.96) and the velocity of the radar wave is a function 

of the electrical properties (equation 1.26).  If one measures the velocity of the wave in 

the material, one can use those equations to quantify the material properties. Subsequent 

judicious use of petrophysical transformations can provide information about a range of 

parameters including porosity, pore geometry, grain size distribution, and pore fluids. 

Recovering information about pore geometry and pore fluids is particularly relevant to 

hydrocarbon exploration and extraction (Aki and Richards, 1980). Using GPR to estimate 

pore fluid properties may help contaminated site managers delineate source zones and 
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contaminant plumes and subsequently prioritize remediation efforts (Bradford and Deeds, 

2006). 

In either case, the foundation of conventional velocity analysis is the normal 

moveout (NMO) traveltime equation (Yilmaz, 2002): 

�> � �4> ! ZG_G          (1.102) 

where t is traveltime, t0 is zero-incidence traveltime, x is separation between source and 

receiver, and v is velocity.  This equation assumes planar horizontal layers and is limited 

to small angles of incidence. More advanced techniques include dip moveout analysis 

and pre-stack depth migration (PSDM).  These provide more accurate velocity analysis in 

the face of subsurface irregularities or large angles of incidence.  The hydrocarbon 

exploration industry has been using such methods for years, and more recently GPR 

practitioners have expanded those techniques for use with radar data (Yilmaz, 2002; 

Bradford, 2002; Bradford, 2006). 

a)   



30 

 

b)  

Figure 1.2: a) Schematic demonstrating P- and S-wave reflections and 
transmissions if v1 < v2; compare to Figure 1.1. b) P-wave reflection coefficients 
(Q(1,1), equation 1.64) versus angle of incidence (θi) for three different models: 
glacier ice (vp = 3690 m s-1, ρ = 917 kg   m-3) overlying bedrock (vp= 5400 m s-1,  ρ = 
2700 kg m-3) (solid line); glacier ice overlying till (vp= 2000 m s-1, ρ = 1900 kg m-3) 
(dash-dot line); and glacier ice overlying water (vp= 1500 m s-1,  ρ = 1000 kg m-3) 
(dashed line) with Rp calculated using the full form of the Zoeppritz equations and 
material properties given in Table 1.2 (following Booth et al., 2013).  Note that these 
reflection coefficients are only accurate for a reflection from 2 homogeneous, 
isotropic, welded half spaces, which does not accurately account for the presence of 
a thin layer. 

Nevertheless, I proceed using equation 1.102. Since reflection methods record 

traveltime at the surface, for one layer I calculate subsurface layer velocity as a function 

of x and t: 

P¼½¾ � Q ZG�GW�&G         (1.103) 

One can also sometimes apply this equation to reflections recorded from subsequent 

planar interfaces and transform the NMO velocity into a layer interval velocity using the 

Dix equation (Yilmaz, 2002)   
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Where thin-layers are present in the subsurface, NMO velocity analysis fails.  If a 

layer is below some limiting layer thickness, the reflections from the top and bottom of 

that layer are inseparable (Figure 1.3) (Widess, 1973). The theoretical limit for such 

resolution of reflection events is ⅛λ. However, additional considerations such as noise 

and signal characteristics make the practical limit for wavelet separation ½λ or even ¾λ 

(Bradford and Deeds, 2006). Without adequate separation of these reflection events, 

velocity analysis of the layer fill using travel-time methods is impossible. Practical limits 

for velocity analysis even using PSDM are wavelet separations of 1 - 2λ. In addition, 

conventional travel-time analysis of such a layer cannot reliably quantify layer thickness, 

and practitioners must turn to other analysis tools. 

 

Figure 1.3: Wavelets for reflection event from a representative 3-layer system 
where the second layer (L2) has thickness ranging from λ/10 to λ. Note that where 
L2= λ (right-most trace), two reflection events are clearly present, from the top and 
bottom of L2 (arrows).  However, below L2=3λ/4, the upper and lower reflections 
become convolved with one another, making clear identification impossible.  
(Annan, 2005; Widess, 1973). 
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Having demonstrated that conventional tools fail in the presence of thin layers, 

finally I briefly summarize 2 techniques that may be able to quantify thin-layer 

parameters: attribute and inversion methods.  

Introduction to Attribute Analysis for Thin Layers 

The attributes of the thin-bed reflectivity response depend of course on the 

material properties of all layers involved (Annan, 2005).  Previous work with seismic and 

radar methods has demonstrated that analyzing instantaneous phase, instantaneous 

frequency, reflection strength, and AVO response may allow detection of thin subsurface 

layers (Booth et al., 2013; Bradford and Deeds, 2006; Bradford et al., 2010; Deparis and 

Garambois, 2009; Orlando, 2002; Smith, 2007; Taner et al., 1979).  In the presence of a 

thin layer sandwiched between two half spaces, the bulk reflection response becomes a 

summation of successive reflection and transmission coefficients from the top and bottom 

of the layered stack (Annan, 2005).  

In Chapter 2, I describe a method for depicting that reflection response using a 1D 

model.  Here I use that model to demonstrate that changes in layer thickness can increase 

or decrease the reflection amplitude as well as alter the reflection phase (Figure 1.4) 

(Bradford et al., 2010).  The model simulates a saturated sand (ԑr =22) overlying 

saturated clay (ԑr =35).  For the thin layer case, I introduce a simulated thin layer of a 

common environmental contaminamt (ԑr =7) at the sand/clay interface.  I calculate the 

reflectivity response at normal incidence at 1500 MHz for 2 layer thicknesses: 0.2λ and 

0.1λ.  Qualitatively, visual inspection of the resulting waveforms shows changes in both 

wavelet shape and amplitude as the thin-layer thickness decreases (Figure 1.4). 
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Figure 1.5 demonstrates similar response in a laboratory data set.  Here I collected 

data over saturated sand/clay system in a plastic tank in the laboratory.  Details of the 

experiment and data collection are in Chapter 3.  The physical layer properties match 

those used in the previous 1D model, but I show the processed data for the control case 

(no thin layer present) and a thin layer with layer thickness (d) =  3%λ.  Again, 

qualitatively it is easy to identify an amplitude anomaly where the thin-layer is present.   

         a)       b) 

  

Figure 1.4: Modeled changes in reflection characteristics for a) L2=0.2λ and 
b)L2=0.1λ where L2 is the thin-layer thickness in a 3 layer model. Reflectivity 
response is from a 1D radar reflectivity model that I will describe in Chapter 2.  
Layer properties simulate a saturated sand (ԑr =22) / saturated clay(ԑr =35) system 
with a thin layer of a common environmental contaminamt (ԑr =7) present at the 
sand/clay interface. Relative changes in reflection phase and amplitude (note scale) 
are obvious in the thin-layer response of this model.  For example, compare the 
leading edges of the two reflection events (arrows). 

However, the real goal is to quantitatively assess such changes.  In subsequent 

chapters, I use a targeted full-waveform inversion to quantitatively assess layer 

properties.  Here, I also compare the data against a 2D model in an attempt to extract 

quantitative information. I use a 2D Finite-Difference Time-Domain (FDTD) algorithm 
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to model the laboratory experiment shown in Figure 1.5 (Figure 1.6).  (For an explanation 

of FDTD models, see Irving and Knight  (2006) and Yee (1966). Numerical analysis 

reveals that the reflection strength change in the model between the control and the thin 

layer is within 5% of the changes noted in the data for the two cases.  Five percent is well 

within  level of noise in of the data. The similarity between the model and data result is 

especially remarkable especially considering the thinness of the modeled and measured 

layers (<10%λ).  Comparing relative changes in attributes between the laboratory and 

model data may provide some information about layer properties.  Thus, one can see that 

using attributes in conjunction with modeling efforts may overcome some of the 

difficulties inherent with interpreting thin subsurface layers. 

Furthermore, AVA analysis may still prove a useful tool even in the presence of 

thin beds. For example, Bradford and Deeds (2006) use a formulation of the reflectivity 

response for a 3-layered system to derive AVA curves in the presence of a thin-layer.  

Figure 1.7 demonstrates extraction of AVA curves from model data using the 1D 

reflectivity model for the same saturated sand/clay system.  These data provide 

quantitative differences in reflection amplitude and change in reflection strength with 

increasing incidence angle and increasing layer thickness (Figure 1.7). 
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Figure 1.5: Laboratory data demonstrating changes in reflection characteristics 
using 1 GHz pulsed GPR data collected over a tank filled with saturated sand 
overlying saturated clay (for more details on data collection and processing see 
Chapter 3).  The sand/clay boundary is approximately at 40 cm, and the sand/clay 
reflection event is clearly visible in both cases (arrows); Wavelets are color coded 
with respect to amplitude; i.e. a red/blue/red event corresponds to a wave 
trough/peak/trough. The depression located at CDP 40-60 contained no thin layer in 
a) but a 0.005 m layer (3%λ) of a simulated contaminated in b).  Note the relative 
change in reflection strength (28% increase) and characteristics in the presence of 
the thin layer. 
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Figure 1.6: Synthetic data from a 2D model with a source frequency of 450 MHz 
and a model space simulating the laboratory conditions in Figure 1.5.  Black arrow 
annotates the sand/clay reflection event; red arrow points to region of increased 
reflection strength where the simulated thin layer is present. Although the layer 
thickness in part b) is twice that in Figure 1.5b, numerical analysis reveals that the 
reflection strength increase for the same layer thickness (not shown) from Figure 
1.5a) to Figure 1.5b) is 51% while for the model case shown is 54%.  The similarity 
between the model and data result is remarkable especially considering the thinness 
of the layer (only 6%λ). 
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Figure 1.7: The modeled reflectivity response of the 3-layer system given in 
Figure 1.4 using the same 1D reflectivity model (to be described in Chapter 2). I give 
Layer 2 (L2) thickness as %λ; L1 = L2 is the case where no thin layer is present. 
Note that both the zero-offset reflection coefficient and the slope of the AVA curve 
may change with increasing layer thickness.  Quantifying this change and 
comparing to the AVA response in a field data set may allow interpreters to detect 
thin layers and estimate thin-layer properties (following Bradford and Deeds, 2006). 

Inversion Methods 

The previous examples provided some insight into the use of models to 

understand subsurface response particularly in the presence of thin layers. Skilled 

practitioners can sometimes detect thin layers and estimate their parameters based on 

comparison of model data to the field or laboratory data.  Such a process is often time-

intensive and inexact.  A more rigorous approach to deriving thin layer properties from 

reflection data could provide robust and accurate estimates of those properties.  For that 

geophysicists often turn to inverse methods.  Here I present a short discussion and 

example of inversion methodology.   
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When using radar or seismic reflection methods, one records information at the 

surface that arises due to subsurface properties. Inverse methods apply various algorithms 

to the recorded data in an attempt to recover earth properties (Figure 1.8) (Aster et al., 

2005).   

 

Figure 1.8: Schematic illustrating the difference between forward methods (e.g., 
reflection methods) and inversion. 

Inverse methods often use a synthetic model to replicate the data response and 

then iteratively minimize the misfit between the observed data and that synthetic model. 

Inverse theory implies that modeled parameters relate to measured data in a coherent, 

meaningful fashion (Menke, 1984). A simplified summary of example ordinary least 

squares inversion (OLS) for reflection data proceeds as follows: 

¿� � À          (1.104) 

where G is an n x m matrix having n receivers to record the subsurface reflection event 

and m subsurface layers; m is an m x 1 vector of parameters; and d  is an n x 1 vector of 

observed travel times (s). Having recorded d at the surface, I want to find m, the 

subsurface parameters. I can calculate a relevant model, using perhaps a 1D reflectivity 

model or a 2D FDTD model.  Then, I can implement an inversion algorithm to minimize 

the misfit r between the calculated model and the real data: 



39 

 

  � � À − 	¿�          (1.105) 

Inverse methods often iteratively update the model parameters in an effort to 

minimize the misfit. Where such minimization is possible, the solution then corresponds 

to the parameter values that produce the minimum misfit when applied to the model.  

Unfortunately, one daunting and ubiquitous problem for inversion methods is that such a 

minimum may be only a local value and not a global one. Ongoing research continues to 

investigate and mitigate the problems inherent in enhancing algorithm convergence to the 

global minimum even in the presence of many local minimum. 

In any case, in this OLS example, assuming the solution exists I can estimate m as 

follows: 

 � � [ÁÂÁ]WÃÁÂÀ          (1.106) 

where the superscript T indicates the matrix transpose and superscript -1 indicates the 

matrix inverse. If I find a solution, next I need to estimate the robustness of my solution.  

Assuming constant, uncorrelated data errors, the parameter covariance matrix Cm is a 

function of the data covariance (ϭ2): 

Ä� � [ÁÂÁ]WÃÁÂϭ>�[ÁÂÁ]WÃÁÂ�Æ       (1.107) 

Finally, I can use the parameter covariance in combination with statistical methods such 

as the student’s T distribution to bound the confidence intervals of the solution (Aster et 

al., 2005; Menke, 1984).   

The preceding discussion was a simplified discussion of some of the methodology 

for a linear inverse problem. A plethora of inversion problems and algorithms exist, many 

of them exceedingly more complicated and often non-linear. Unfortunately, all these 
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inverse methods are plagued by monstrous problems, which include the following: 1) the 

solution may not exist; 2) if it does exist, the solution may be non-unique; 3) inverse 

problems may be ill-constrained or ill-posed; and 4) required computing time may be 

prohibitive (Aster et al., 2005).  

Nevertheless, geophysical inverse methods provide a powerful weapon in the face 

of thin-layer problems in reflection data.  For example, an inversion algorithm could 

potentially provide a quantitative, bounded solution for a subsurface thin-layer parameter, 

such as permittivity or thickness or both, by minimizing the misfit between observed 

AVO curves and a subsurface layered model (Deparis and Garambois, 2009). Even such 

a relatively simple inversion would provide a more robust and reliable technique than 

trial and error curve fitting.  

A real advance in subsurface parameter estimation has occurred in the past thirty 

years with the advent of full-waveform inversions (FWIs) (Plessix et al., 2012).  These 

inversion problems are non-linear and require advanced computational power far beyond 

what might be necessary for the linear OLS squares example I presented in this section. 

However, full-waveform inversions are able to directly invert for subsurface parameters. 

As such, they are uniquely able to incorporate all the information within recorded data, 

including the attributes, which often are relevant to thin-layer detection.  Thus, these 

methods lend themselves to quantification of thin-layer properties.  I discuss FWI more 

thoroughly in Chapters 2 through 4. 

Overview of Research 

The following chapters detail my efforts to create and test a novel targeted full-

waveform inversion algorithm that can reliably quantify thin-layer parameters and a new 
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method to provide high-quality, reliable data for use within the inversion algorithm even 

in the presence of subsurface anisotropy (Chapter 5).  Each chapter is a separate paper for 

publication.  I have submitted Chapters 2 and 3 to Geophysics, Chapter 4 to Journal of 

Glaciology, and Chapter 5 to Cold Regions Science and Technology.  

Chapter 2 begins by providing an in-depth discussion of the thin-layer problem as 

related to radar reflection data.  Previous research has noted that attribute analysis such as 

AVO techniques may allow some detection and qualification of thin-layer properties, but 

in an effort to rigorously and reliably quantify those properties, I introduce a novel 

targeted full-waveform inversion algorithm.  Chapter 2 provides a detailed description 

both of the inversion methodology and 1D vertical-incidence forward model. I use the 

reflectivity model to produce synthetic data for testing. The second chapter concludes by 

demonstrating the reliability of the targeted FWI as tested on synthetic data simulating 

thin subsurface layers of contamination: in all cases, the FWI recovered thin-layer 

permittivity and thickness within 10% of true values. I also test the sensitivity of the 

inversion to thin-layer thickness and conductivity using the synthetic data.  

Chapters 3 and 4 describe inversion testing on field data. Chapter 3 gives my 

methodology and results for testing the targeted FWI on 4 field GPR reflection data sets.  

In each data set one of three different contaminants (oil and two different NAPLs) was 

present in a thin layer in the subsurface.  The targeted inversion approach reliably 

recovers thin-layer parameters within 15% of real estimated values even for noisy field 

data.  Chapter 4 demonstrates the use of the inversion algorithm as adapted to seismic 

reflection data.  I test the algorithm both on synthetic data and also on field data collected 
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at Bench Glacier, Alaska. Careful analysis of the inversion results provides a greater 

understanding of basal conditions in the survey area. 

Finally, Chapter 5 introduces a new dual-polarization radar system that uses 

reflection methodology to reliably image subsurface interfaces even in the presence of 

strong conductivity anisotropy. In particular, collecting radar data with this new system 

over sea ice provides a reliable image of the ice-water interface when traditional radar 

systems have failed to do so.  Since my targeted inversion algorithm requires high-quality 

reflection data, this system contributes a vital component in this specific situation.  

Furthermore, in the event of an oil spill in or under sea ice combined use of the dual-

polarization system for data collection in conjunction with my inversion algorithm for 

data analysis could help direct and prioritize remediation efforts. 

As part of my PhD work, I have undertaken a minor focal area concentrating on 

the role of science within public policy and decision making for public lands and resource 

management. Public policy for these decisions often includes a scientific component, 

although both scientists and policy makers frequently and vigorously debate the relative 

weight and merit of that inclusion.  I began my graduate work as the Department of 

Geosciences relocated into a new university building, the Environmental Research 

Building (ERB). Boise State University simultaneously moved the Departments of Civil 

Engineering (CE), Political Science, Public Administration, and Community and 

Regional Planning to the ERB with the stated goal of fostering “interdisciplinary 

collaboration” and promoting “research aimed at the pressing issues of the West, 

including the environment, energy, transportation, water, land use, and community 

planning.”  Thus I had the fortunate opportunity to study the role of this new building as a 
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boundary construct that might bridge a perceived gap between scientists and policy 

makers. Appendix A presents a literature summary of boundary theory relevant to this 

problem and provides results from my research examining the role of the ERB as a 

boundary object. 



44 

 

CHAPTER TWO: TARGETED FULL-WAVEFORM INVERSION OF GROUND-

PENETRATING RADAR REFLECTION DATA FOR THIN AND ULTRA-THIN 

LAYERS OF NON-AQUEOUS PHASE LIQUID CONTAMINANTS PART I: 

ALGORITHM AND SYNTHETIC MODELING 

Abstract 

Quantification of thin-layer parameters is a ubiquitous problem in near-surface 

investigations using ground-penetrating radar (GPR).  We implement a full-waveform 

inversion algorithm to quantify thin-layer permittivity (ԑ), thickness (d), and conductivity 

(σ) for non-aqueous phase liquid (NAPL) thin (≤½ dominant wavelength λ) and ultra-thin 

(≤⅛λ) layers using GPR reflection data. The inversion uses a non-linear grid search with 

a Monte-Carlo scheme to initialize starting values to find the global minimum.  We tested 

the inversion on 3 different thin (≤½λ) and ultra-thin (≤⅛λ) layer models with 5% added 

Gaussian noise. The models simulate oil overlying sea water, a dense NAPL (DNAPL) 

trapped at a sand/clay interface, and saturated sand overlying bedrock, respectively. In all 

cases, the inversion retrieved thin-layer permittivity and thickness within 10% of true 

values.  The inversion demonstrates a robust capability to quantify ultra-thin-layer 

properties across a range of source functions and subsurface conditions relevant to NAPL 

detection and remediation. By taking a targeted approach, our algorithm reduces the 

complexity in the inverse problem.  It appears especially useful for monitoring thin-layers 

at contaminated sites.   
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Introduction 

The anthropogenic release of non-aqueous phase liquid (NAPL) contaminants 

causes environmental degradation and has deleterious impacts on human health (Hwang 

et al., 2008). Although environmental regulations in the past 40 years have reduced 

intentional and accidental discharge, long-term releases of NAPLs have historically 

occurred through improper disposal in unlined pits, leaking underground storage 

facilities, and other mechanisms. Such long-term releases can introduce correspondingly 

large quantities of NAPLs into the subsurface. On the other hand, short-term accidental 

pollution events, e.g. oil spills, can also release large quantities of NAPLs with similar 

long-term implications for ecosystem functioning (Chapman and Riddle, 2005; Sydnes et 

al., 1985).  

NAPL contaminants fall into one of two categories: 1) Light-NAPLs (LNAPLs), 

which are less dense than water; and 2) Dense NAPLs (DNAPLs), which are denser than 

water.  Examples of LNAPLs are crude oil, jet fuels, and gasoline. DNAPL contaminants 

include chlorinated solvents such as trichloroethylene (TCE) and tetrachloroethylene 

(PCE). Ubiquitous sources of NAPL contamination are dry-cleaning operations and 

aircraft maintenance facilities, where pit disposal of organic solvents and jet fuels was 

commonplace for decades (Brusseau et al., 2011; Nellis et al., 2009).  

LNAPL and DNAPL release, subsequent migration, and entrapment have polluted 

aquifers throughout the world. Aquifer degradation is especially problematic given the 

implications of climate change for arid and semi-arid regions.  For example, in Arizona, 

previously viable drinking water sources are no longer potable due to large-scale 

contaminant plumes containing NAPLs (Brusseau et al., 2007). Successful remediation 
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and recovery of contaminated aquifers depends on the detection and removal of the 

primary source zone and all discretely trapped contamination, which acts as secondary 

source zones.   

Complete removal of secondary source zones depends on locating and quantifying 

the NAPL accurately. However, as they migrate in response to hydraulic gradients, 

fracture zones, capillary forces, and density profiles, NAPLs frequently become trapped 

in thin layers.  Such traps complicate accurate characterization (Illangasekare et al., 1995; 

Pankow and Cherry, 1996).  For instance, DNAPLs can become trapped in thin layers at 

permeability barriers.  Examples of DNAPL traps include an aquifer/aquitard boundary 

or clay inhomogeneities distributed within the aquifer.  LNAPLs may smear in thin zones 

across the top of the saturated zone in response to water table fluctuations (Bradford and 

Deeds, 2006).  While both LNAPLs and DNAPls are biodegradable, DNAPL rates of 

biodegradation are so slow as to effectively nullify any temporally relevant mitigation of 

large-scale releases (Nellis et al., 2009). Thus remediating thin layers that act as 

secondary source zones is particularly imperative at DNAPL-contaminated sites.  

Remediation of spilled oil in and under sea ice presents a similar case whereby 

thin layers of LNAPL can be dispersed in the environment for long distances in response 

to density contrasts and ocean currents (Stanovoy et al., 2012; Yapa and Weerasuriya, 

1997). In this scenario within the Arctic environment, the presence of ice and snow, 

severe weather conditions, and the growth of ice sheets throughout the winter all hamper 

the characterization and removal of the source zone and dispersed contamination.  In 

addition, biodegradation rates are generally proportional to temperature and thus may be 

even slower in these cold environments (Sydnes et al., 1985). The combination of slower 
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biodegradation and rapid transport mechanisms with unpredictable weather intensifies the 

need for timely and accurate quantification of spilled NAPL in the Arctic. 

In both of these examples, the resulting thin, discrete layers of contamination 

cause significant uncertainty when using traditional methods to estimate NAPL quantity 

and location (Luciano et al., 2010). For example, conventional contaminated site work 

plans often implement boreholes for characterization and subsequent monitoring 

(USEPA, 2007). However, boreholes are expensive, time-consuming, invasive, and 

localized. In the Arctic, drilling boreholes through sea ice to locate spilled oil engenders 

significant exposure and risk to spill response personnel.  

On the other hand, ground penetrating radar (GPR) has demonstrated its 

suitability for rapid, cost-effective, and non-invasive detection of dielectric permittivity 

anomalies in the subsurface in certain cases (Brewster and Annan, 1994; Bradford and 

Deeds, 2006; Bradford and Wu, 2007; Bradford et al., 2010; Orlando, 2002; Luciano et 

al., 2010). Skilled interpreters can correlate these permittivity anomalies with 

contaminant location by considering site characteristics and contaminant electrical 

properties (Bradford and Deeds, 2006; Brewster and Annan, 1994; Hwang et al., 2008). 

With such careful implementation, GPR can characterize a contaminated site more 

thoroughly and rapidly than conventional tools. However, conventional methodologies 

provide essential control data for such GPR site characterization. 

Besides NAPL delineation, analysis of GPR data can provide additional site 

information relevant to remediation efforts.  Examples include site stratigraphy, porosity, 

and current direction in the case of Arctic oil spills under sea ice (Babcock and Bradford, 

2014c).  At contaminated aquifers, incorporating information derived from GPR data can 
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reduce time for aquifer remediation using pump-and-treat, air sparging, or other 

technologies (Brusseau et al., 2007). 

Reflection GPR methodology involves measuring the reflection of an introduced 

radar signal from a boundary in the subsurface and translating the measured data into 

information about the subsurface physical properties.  The propagation of the radar signal 

in the subsurface and its reflection from a subsurface boundary depends on the effective 

subsurface permittivity (ԑ6Ç) and conductivity (σef) and the contrast in those properties 

across the boundary.  Well-documented petrophysical transformations, such as Archie’s 

law and the complex refractive index method (CRIM), provide the link between electrical 

and physical properties (Knight and Endres, 2005). 

Since the electrical properties of NAPLs and NAPL-saturated earth materials can 

be markedly different from those of common earth materials at contaminated sites (Table 

2.1), reflection GPR surveys are particularly useful for NAPL detection.  However, the 

possible non-uniqueness in the system’s material properties complicates data 

interpretation and subsequent identification of contaminant location (Bradford et al., 

2010).  Solution non-uniqueness may be particularly problematic for detecting oil in 

Arctic environments due to overlap between the permittivies of oil, snow, and sea ice. 

If reflections from the top and bottom of a layer are well separated in time, 

conventional velocity analysis can yield an estimate of the speed of the radar wave 

propagation in that layer (Annan, 2005).   Since velocity is inversely proportional to the 

square root of the effective permittivity, ԑ6Ç, careful velocity analysis can yield an 

estimate of the permittivity of the layer fill and via a simple time-to-depth conversion  
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Table 2.1 Representative electrical properties for the NAPL contaminated sites 
(Bradford et al., 2010; Annan, 2005; Hinz, 2012); values for water- and DNAPL-
saturated sand calculated using the complex refractive index method (CRIM) for 
relative permittivity ( ԑr) and Archie’s law for σ using m=1.3 and n=1.4 (Knight and 
Endres, 2005). 

Material  ԑr 
σ  

(S/m) 
Radar Velocity 
(m s-1 x 10-9) 

Air 1 0 0.3 

Water 79 – 88* 0.01 - 0.5 ∽0.033 

Sea Water ∽88 3-5 No propagation 

Sea Ice 3-8 10-2 – 10-1 0.11-0.15 

Snow 1.4-3.1 ∽10-6 0.16-0.25 

DNAPLS 2 - 8 10-6 – 10-7 0.1 – 0.2 

Crude Oil 2 - 8 10-4 – 10-5 0.15-0.21 

Water-Saturated Sand 20 -30 10-2 – 10-4 0.05 – 0.07 

Water-Saturated Clay 5 - 40 0.1 - 1 No propagation 

DNAPL Sand (85% 
DNAPL saturation) 

5 - 8 1.9 – 9.6 x 10-4 0.11 – 0.13 

*Temperature-dependent 

 

produces the layer thickness.  Subsequent judicious comparison of the velocity-

derived	ԑ6Ç to properties of known or suspected site contaminants, e.g. Table 2.1, may 

predict NAPL location.  

However, in the case of thin layers, the reflection events from the top and bottom 

of the layer interfere with each other, and conventional velocity analysis is not possible 

(Bradford et al., 2009). We define an ultra-thin layer as one layer whose thickness is ≤⅛ 

the dominant wavelength (λ) of the signal (Booth et al., 2012). Below this limit, the total 

reflection event from the thin layer is proportional to the time derivative of the source 

function (Widess, 1973). However, the capability to resolve thin-layer reflection events is 
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influenced also by source wavelet characteristics and the presence of noise (Guha et al., 

2005). Modeling results suggest that quantitative data analysis may require a thin-layer 

solution even at layer thicknesses up to ¾λ (Bradford and Deeds, 2006). As previously 

mentioned, in several relevant environmental problems spilled NAPLs tend to 

redistribute into thin layers.  These layers may be much thinner than ¾λ, and we define 

thin-layers as those with thickness ≤ ½λ.  In these cases, predicting contaminant location 

using conventional velocity analysis is not possible.   

Attribute analysis of GPR data has proven a useful tool to estimate the electrical 

properties for such thin layers of NAPL contamination (Baker, 1998; Bradford and 

Deeds, 2006; Bradford et al., 2010; Deparis and Garambois, 2009; Orlando, 2002). These 

attributes include instantaneous phase, instantaneous frequency, and reflection strength 

(Figure 2.1). Where detection is possible, quantification of layer properties remains 

problematic.  For example, Hwang et al. (2008) used reflection strength to quantify 

relative, but not absolute, DNAPL volume during a controlled spill.  Bradford et al. 

(2010) demonstrated that reflection strength is a reliable indicator of oil trapped between 

snow and ice for oil thicknesses as low as 0.01 m.  Nevertheless, the expected changes in 

reflection amplitude differed from the model prediction by 16%, making layer 

quantification problematic. In fact, Orlando (2002) concludes that extracting DNAPL 

layer thickness from reflection strength alone could be impossible. 
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Figure 2.1: 1D reflectivity model and attribute results computed for 50 different 
cases of DNAPL layer thickness. a) Model with saturated sand (L1, ԑr = 29.1, brown) 
overlying clay (L3, ԑr = 35, white) and increasing DNAPL-saturated sand (L2, ԑr = 
10.5, yellow) layer thickness from left to right; b) results from 1D reflectivity model; 
and extracted c) reflection strength, d) instantaneous frequency, and e) 
instantaneous phase.  Full-waveform inversion can incorporate all of this 
information and best constrain the solution for thin-layer properties. 
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Instantaneous phase and frequency are also useful in thin-layer problems but have 

limitations (Taner et al., 1979). For example, Orlando (2002) found that changes in 

instantaneous phase and frequency delineated of a zone of DNAPL contamination, but 

was unable to quantify layer thickness. Bradford et al. (2010) extracted instantaneous 

phase within 6% of the model predication for thin-layers of LNAPL trapped between 

snow and ice.  However, both the instantaneous phase and frequency in their research 

varied widely due to noise, and their results for instantaneous phase had a coefficient of 

variation (cv) greater than 150%. The high cv reflects the uncertainty of correlating 

instantaneous phase with thin-layer parameters and highlights the difficulty of attribute 

analysis for thin-layer quantification using GPR data.  

On the other hand, full-waveform inversion allows practitioners to directly invert 

for subsurface properties (Plessix et al., 2012). Full-waveform inversions incorporate all 

the information contained in the reflected wavelet in the effort to directly quantify 

subsurface parameters. Thus, this methodology can be more robust than attribute 

analysis, which singles out specific pieces of information such as the attributes mentioned 

above (Figure 2.1).  

Previous work has used full-waveform inversion on GPR reflection data to 

estimate subsurface electrical parameters (Kalogeropoulos et al., 2013; Lambot et al., 

2004; Tran et al., 2012). Busch et al. (2012) implemented a full-waveform inversion to 

recover ԑ6Ç and σef within 15% and 62% respectively of measured data. Kalogeropoulos 

et al. (2013) inverted GPR reflection data for ԑ6Ç and conductivity gradients within 

concrete due to chlorine infiltration. They retrieved the uppermost concrete ԑ6Çwithin 1% 

of the true value using the air/concrete reflection.  Tran et al. (2012) use full-waveform 



53 

 

inversion combined with a mixing model to estimate water content and sand thickness for 

a sandy soil.  Their solutions for water content erred by less than 1.3%.  Sand thickness 

results were within 5% of true values. In many cases, correct parameterization of the 

source wavelet has proven crucial for reliable inversion results (Klotzsche et al., 2010; 

Busch et al., 2012). 

Previous research has also implied that full-waveform inversion on GPR data may 

also be a promising tool for thin-layer quantification. For example, Deparis and 

Garambois (2009) inverted for the AVO characteristics of reflection GPR data with 

respect to frequency. They concluded that a global inversion scheme may allow for 

improved thin-layer characterization. Zeng et al. (2000) qualitatively correlated model 

AVO curves with field GPR data, and predicted that full-waveform inversion of GPR 

data may allow for quantitative analysis of thin layers. With these advantages in mind, 

here we present a targeted full-waveform inversion algorithm for quantifying thin (≤½λ) 

and ultra-thin- (≤⅛λ) layer properties using GPR reflection data.  

Methodology 

Forward Model 

We use a 1D, vertical-incidence reflectivity method to generate our forward 

model.  The reflectivity method provides an exact solution to the wave equation for an 

electromagnetic (EM) plane wave propagating through a homogeneous, isotropic, 1D 

layered material.   
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Petrophysics 

Thus we begin by calculating or estimating 36Ç and ԑ6Ç. These properties are 

frequency-dependent and given as follows, assuming that the imaginary part of the 

complex-valued σ is insignificant (Knight and Endres, 2005):  

36Ç�d� � 3ÉÊ ! dԑ©©�d�        (2.1) 

and  

ԑ6Ç�d� � ԑ©�d�         (2.2) 

where 3ÉÊis the low frequency conductivity limit; ԑ©© is the imaginary part of the 

complex-valued permittivity, ԑ; ԑ©	is the real part of ԑ; and ω is frequency (Knight and 

Endres, 2005).  

Values for 3ÉÊ of common earth materials are well-known, and we can use 

reasonable representative values from the literature or measured values in equation 2.1 

(Annan, 2005; Knight and Endres, 2005; and others).  Additionally, for a saturated 

porous material the modified Archie’s law provides an empirical approximation for 3ÉÊ 
as function of the cementation factor (m), the conductivity of the pore fluid (3Ç), and the 

water saturation (Sw): 

3ÉÊ � 3ÇË½¨Ì¼          (2.3) 

Literature values for m range from 1.5 to 2.5, and for n range from 1 to 2 (Knight and 

Endres, 2005; Archie, 1942).   
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Next, we must calculate the complex-valued permittivity and substitute ԑ©©�d� 
into equation 2.1. In this paper, we use the CRIM equation to estimate ԑ∗ of a mixture as 

follows (Knight and Endres, 2005):   

ԑ∗ � [�1 − Ë�eԑ� ! Ë¨Ìe:Ì∗ ! Ë�1 − ¨Ì�eԑ�]>     (2.4) 

where ԑÌ is the complex, frequency-dependent permittivity of water; φ is the porosity of 

the mixture; ̈Ì is the percent saturation; ԑ� is the permittivity of the soil grains; and ԑ� is 

the permittivity of a third phase, if present. 

The complex-valued frequency-dependent permittivity for water,	:Ì∗ , is given by 

the Debye equation (Debye, 1929). It describes the dielectric molecular relaxation of 

water at a specific ω: 

 :Ì∗ � ԑÎ ! ԑÏÐWԑÑ$BTXÒ          (2.5) 

where  ԑÎis the permittivity limit at frequencies much higher than the characteristic 

relaxation frequency of water, about 17 GHz; ԑÉÊ is the low frequency permittivity limit; 

and τ is the characteristic relaxation time.  

Thus, we can calculate the relevant material properties in each layer of our 

reflectivity model. Combining equations 2.3, 2.4, and 2.5 produces 36Ç. Substituting 

equation 2.4 into equation 2.2 provides ԑ6Ç. Combining 36Ç and ԑ6Ç gives the wave 

number (k) in a given material as follows: 

]∗> � 84ԑ6Çd> − bdμ436Ç        (2.6) 

where μ4is the magnetic susceptibility of free space.  
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Algorithm 

We use the model to simulate the reflectivity response to a series of stacked 

layers. The 1D reflectivity calculation begins at the lowermost layer and then calculates 

the total reflectivity response, MBi, recursively at each successively higher boundary 

using the Fresnel reflection (R) and transmission (T) coefficients and MTi as follows:  

MT� � MB�eW>�Uw∗Éw         (2.7) 

MB� � ×ØÙOÚ BÆØÙOÚ ÆØÙOÛ ÜÆØÙO$W×ØÙOÛ ÜÆØÙO                        (2.8) 

The recursive algorithm uses those relationships to compute reflectivity from the 

total stack, which we observe at the uppermost boundary, u$ (Muller, 1985):  

u$ � Ý`4          (2.9)                                     

where d is the layer thickness.  The superscripts u and d refer to the up-going and down-

going reflection and transmission coefficients, respectively, at a boundary.   

The model then convolves R1 with a source wavelet spectrum in the frequency 

domain. We use a Gabor wavelet (G) as it provides a source spectrum which closely 

models the source wavelet of our commercial radar system while allowing for flexibility 

in reproducing a range of source wavelets (Morlet et al., 1982).  These wavelets are the 

product of a Gaussian window with a sine function. G is defined in the frequency domain 

as follows: 

Þ � $e>¢ SWGß�à{à&�Gi� SWT£         (2.10) 

where f0 is central source frequency (Hz), η is phase rotation, and � is a function of the 

width of the Gabor function, δ0 (s): 
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� �	 $>á&G          (2.11) 

After convolution, we transform the result to the time domain using the inverse 

Fourier transform to generate a complex-valued wavelet W. This result simulates a radar 

reflection event from the layer stack.  It provides the full analytical 1D solution including 

all multiples. 

Inversion 

The inversion evaluates the cost function, ϕ, as follows: 

³ � ∑�p¾ã� − pÊäåÊ�>              (2.12) 

where dcalc is a reflected wavelet calculated using the 1D reflectivity model, and p¾ã� is 

the data.  In taking this approach, we assume a 1D response is an adequate representation 

of the radar data. Furthermore, based on the derivation of the 1D reflectivity model, we 

are assuming the electrical properties of the layers are homogenous and isotropic.  

The inversion uses a Nelder-Mead gradient-based simplex search method to find 

the values of those user-chosen inversion parameters which minimize ϕ (Lagarias et al., 

1998). The total set of inversion parameters within the reflectivity model are the source 

wavelet parameters (f0, δ0, and η) and all layer properties (ԑef, σef , and d). Thus for the 3-

layer case there are a total of 12 available parameters. We can choose to invert for the 

values of any subset of those parameters, and we define that subset as the inversion 

parameters.  In general, we may choose to include an arbitrary number of layers, but all 

models in this paper have 3 layers. 

Typically, we seek a solution for the thin-layer parameters while assuming that 

the upper and lower layer properties are well-known. With that assumption, we first 
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invert for the source parameters. Then we can use the resulting source wavelet parameters 

within the inversion to solve for the thin-layer properties ԑef, d, and σef. In most cases, the 

thickness of the overburden, l, is an additional inversion parameter. Inverting for the 

effective source function allows us to include propagation effects due to the overburden 

in our source wavelet characterization.  The model may not directly include such effects.  

Thus, this method provides the most complete estimate of effective source properties.   

While inverting for either thin-layer or source parameters, we take a Monte-Carlo 

approach to initialize the starting values for each inversion parameter. We randomly 

select the initial value for each parameter from a uniform distribution that bounds the 

range that is physically realistic for each case.  The inversion continues the gradient-

based search to minimize ϕ using the specified inversion parameters until reaching a user-

specified minimum value for ϕ or a user-specified maximum number of function 

evaluations. The algorithm then returns the thin-layer parameters and l which correspond 

to that local minimum value (ϕLM). For all inversion testing, the complete inversion 

routine replicates 1000 times and finds the global minimum (ϕGM) from those 1000 

iterations.  We report the mean of the inversion parameters from the subset of solutions 

which correspond to ϕGM.  

To estimate uncertainty, we evaluate equation 2.11 for 10,000 parameter pairs 

around the solution mean. We then calculate the root mean square (RMS) error and 

estimate the range of parameter pairs that fit the data within an estimated noise level. For 

the source parameters, we test the coupled uncertainty for f0, δ pairs and for f0, η pairs.  

For the thin-layer problems, we report uncertainty from εr, d pairs and from εr, σ pairs. 

Although additional exploration of the solution space is necessary to fully constrain the 
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coupled, multi-dimensional uncertainties, this approach gives a good idea of solution 

uncertainty while remaining easy to visualize.  

In summary, steps for implementation of this algorithm are as follows: 

•  Estimate/define layer properties for contaminated and uncontaminated case 

•  Estimate/define source properties 

•  Invert for effective source wavelet parameters using uncontaminated 

reflection event 

•  Define inversion parameters (subset of all layer parameters, usually 

contaminated layer properties) and invert for those parameters using effective 

source function in 1D reflectivity model 

•  Estimate uncertainties from parameter pairs 

Testing 

In order to test the inversion, we first calculate 3 forward models.  We use 3 

different source frequencies to test inversion robustness and add 5% random Gaussian 

noise to each of the models before the inversion.  Each model has up to 3 layers each 

(Table 2.2). Relative change in permittivity from layer 1 to layer 3 is low/medium/high, 

high/low/high, and low/high/low for Models 1, 2, and 3, respectively.  These models 

simulate oil overlying salt water, a DNAPL trapped a sand/clay interface, and dry sand 

overlying saturated sand trapped above bedrock. We also generate 3 corresponding 

secondary 2-layer models representing a reflection from an uncontaminated Layer 

1/Layer 3 boundary with Layer 1 and Layer 3 properties as listed for the primary model 

in Table 2.2.  We use these models to invert for the source wavelet parameters.  Thus, for 
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the source parameters inversions, f0, δ0, and η were the inversion parameters.  For the thin 

layer inversions, ԑr, d, σ, and the thickness of the overburden (l ) are the inversion 

parameters.  We estimate uncertainties from the range of coupled parameter pairs that fit 

the data within 5% of ϕGM. 

Models 

Model 1 simulates an oil layer overlying sea water with 1 m of air between the 

antennas and the oil layer (Table 2.2).  The model replicates a radar trace collected with 

the antennas suspended in air over oil spilled in ocean water.  We use representative 

values for εr and σef of air, oil, and salt water, where εr  equals ԑ6Çdivided by the 

permittivity of free space, ԑ4.  For this model, we generate 2 separate examples having oil 

layer thicknesses equal to 10%λ and 25%λ respectively.  The central source frequency (f0) 

is 1500 MHz, and η=0. The secondary model for the source inversion testing on Model 1 

simulates air over salt water. 

The second model simulates a DNAPL contaminant trapped at a sand/clay 

impermeability barrier.  DNAPLs can become trapped in this way at the bottom of an 

aquifer or at isolated clay lenses within the aquifer. We use equations 2.4 and 2.5 to 

calculate the ԑef for the saturated sand (layer 1) assuming φ=37% and ԑ�=4ԑ4 for quartz.  

For the properties of water (equation 2.5), we set ԑÎ= 1.8ԑ4,	ԑÉÊ = 81ԑ4,	and τ = 9.3 x  

10-12 s (Cole and Cole, 1941).  To calculate ԑef for the DNAPL-saturated sand (layer 2), 

we assume that the DNAPL displaces 85% of the pore water (Sw =15%), and that ԑ�= 2ԑ4 
for the DNAPL (Hinz, 2012). Finally, substituting ԑ©©�d� from equation 2.4 and 

representative values for 3ÉÊ into equation 2.1 yields 36Çin layers 1 and 2. We use 
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equation 2.3 to calculate 3ÉÊ using m = 2, n = 1, and 3Ç= 1 x 10-2 S/m and representative 

values from the literature for clay ԑef and 36Ç (Knight and Endres, 2005). The DNAPL 

layer thickness in this model is 9%λ; f0 is 500 MHz; and η=0 (Table 2.2). The secondary 

model for the source inversion testing on Model 2 simulates a reflection from the 

sand/clay barrier. 

The final model simulates a thin layer of saturated sand underlying the vadose 

zone and overlying bedrock. We calculate ԑef  for the saturated sand following the 

methodology for Model 2.  However, we set 36Ç= 0.01 S/m for the thin layer in order to 

test the inversion at higher values of conductivity. Electrical properties for layers 1 and 3 

are based on representative values from the literature for dry sand and granite (Knight 

and Endres, 2005). The thin-layer thickness for Model 3 is 8%λ.  Central source 

frequency is 1000 MHz, and η=0. The secondary model for the source inversion testing 

on this model simulates a reflection from the sand/granite interface. 
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Table 2.2: Model parameters:  Model 1 simulates an oil layer overlying sea 
water; Model 2 represents a DNAPL trapped at a saturated sand/clay interface; and 
Model 3 describes an overland flow model with a saturated sand layer underneath a 
dry sand overlying bedrock. We estimated or calculated parameters as described in 
the text; d is also given as %λ.  Note that we generated Model 1 for 2 layer 
thicknesses. 

Model Layer # ԑ� ���  (S/m) d (m) 

1 1, air 1 0 1 

f0=1500 MHz 
 

2, oil 3.5 5.3 x 10-4 
a) 0.01 (10%λ) 

b) 0.025 (25%λ) 

δ0 = 0.3 ns 3, salt water 81 1 1 

2 1, saturated sand 22 0.004 0.039 

f0=500 MHz 2, DNAPL- sand 7 9.6 x 10-4 0.02 (9%λ) 

δ0 = 0.9 ns 3, clay 35 0.1 1 

3 1, dry sand 4 10-4 1 

f0=1000 MHz 2, saturated sand 22 0.01 0.005 (8%λ) 

δ0 = 0.9 ns 3, granite 5 10-5 1 

Inversion Results 

Source Inversion 

For all models, the inversion recovers the source parameters within <1% of the 

true values for f0 and δ0 (Figure 2.2 and Table 2.3). The values for η are small (<4 x 10-3) 

positive numbers in all three tests, but the true value of η is 0. Uncertainties for the 

inversion results for f0 and δ0 are <10% of solution values (Table 2.3).  However, the cv 

associated with the solution η is up to 25%.  
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Figure 2.2: a) Paired f0, δ0 uncertainties and b) paired f0, η uncertainties for the 
solutions from the source parameter inversion for Model 2; darker indicates lower 
values. The + is the true model value and the line encloses all paired values where 
the objective function is within 5% of ϕGM, which is the level of added Gaussian 
noise in the models.  Although we only include the plots for the inversion solution 
for Model 2, the results from Models 1 and 3 are similar and are enumerated in 
Table 2.3. 

Table 2.3: Inversion solution and standard deviation for source wavelet 
parameters using reflection from Layer 1/Layer 3 in an uncontaminated area for 
models; true η = 0 for all model source functions. 

Model 
Convergence 

Rate 

f0 

(true value) 
(MHz) 

f0 

(solution) 
(MHz) 

δ0 
(true value) 

(ns) 

δ0 x 10-4 
(solution) 

(ns) 

η 
(x 10-3) 

1 24% 1500 1499 ± 3 0.3 0.30 ± 0.03 3.4 ± 0.2 

2 43% 500 499  ± 3 0.9 0.90 ± 0.03 1.1 ± 0.2 

3 57% 1000 1000 ± 4 0.9 0.89 ± 0.04 1.2 ± 0.3 

Model 1 

For Model 1, the rate of convergence is 2%. (We define the rate of convergence 

as the percentage at which the inversion algorithm converges to ϕGM out of the 1000 

iterations. Convergence to ϕGM is constrained to starting values for layer depth from the 

surface (l) being within 50% of the true value (Table 2.4).  The mean inversion solution is 
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within 8% and 14% of the true values for the oil layer εr and d, respectively (Table 2.4).  

The solution for l is within 1% of the true value. However, the σ solution deviates up 66% 

from the true model value. The inversion algorithm does not appear to be sensitive to the 

thin-layer conductivity for this example. 

The solution εr and d are 6% and 13% more accurate for the thin oil layer (Model 

1b, d = 25%λ) than for the ultra-thin one (Model 1a, d = 10%λ), and the associated 

uncertainties are 90% smaller (Figure 2.3). In addition, the difference between ϕGM and 

the next lowest ϕLM is 3 times larger for the thin-layer case (ϕGM ≌ 27%ϕLMnearest) than for 

the ultra-thin layer example (ϕGM ≌ 96%ϕLMnearest)  (Figure 2.4).  Thus overall results for 

Model 1 suggest that the inversion accuracy may increase as layer thickness increases, if 

all other parameters were to remain constant. 

Model 2 

The rate of convergence to ϕGM is 20%, and ϕGM is 75% greater than the next 

lowest ϕLM.  The inversion on Model 2 data retrieved the ultra-thin-layer parameters 

within 2% of the true values for εr, d, and l (Table 2.4).  The paired εr, d uncertainties are 

±15% of the true values (Figure 2.3). The accuracy of these results is promising given the 

thinness of the DNAPL layer (9%λ) as compared with Model 1 oil layer thinness (25%λ 

and 10%λ). The conductivity solution deviates up 80% from the true layer σ.  

Model 3 

The rate of convergence to ϕGM is 11% for this model, and ϕGM is 18% of the next 

lowest ϕLM. Examining the starting range for thin-layer parameters (Table 2.4) reveals 

that convergence to ϕGM again is limited to the randomly chosen starting value for l being 
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within 50% of the true value. (In field data, the overburden thickness will likely be 

constrained within ±5% of the true values, but here we allowed deviations up to 100% 

from true overburden thickness in order to test model robustness.) 

The inversion solution for the thin-layer parameters is within 4% of the true εr and 

d, and within 1% of the true l (Table 2.4). The paired εr, d uncertainties are within ±25% 

of the true values (Figure 2.3). Here we purposely tested a thin-layer σ 2 orders of 

magnitude higher than either Model 1 or Model 2.  In this case, the resulting solution for 

σ is 5 orders of magnitude lower than the true layer σ. 

 

Figure 2.3: Uncertainties calculated for ԑr, d pairs centered around the inversion 
solution for a) Model 1a, b) Model 1b, c) Model 2, and d) Model 3; blue colors are 
low. The + is the exact model value, the triangle is the inversion solution, and the 
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line encloses all paired values where the objective function is within 5% of ϕGM. 
Uncertainties in solutions for σ and l  are the range of values enclosed by the line for 
these parameters for coupled ԑr, σ pairs and ԑr, l  pairs respectively (not pictured 
here, values in Table 2.4). 

 

Figure 2.4: Comparison of the difference between ϕGM (+) and ϕLM (.) from the 
1000 inversion iterations for a) Model 1a and b) Model 2.  For Model 2, 
ϕGM≌≌≌≌25%ϕLMnearest, while for Model 1a, ϕGM≌≌≌≌96%ϕLMnearest. A larger difference 
between the two may indicate a more reliable solution. 
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Table 2.4: Ultra-thin-layer parameters for a) Model 1, b) Model 2, and c) Model 
3 and the inversion mean calculated from all results for ϕGM.   Uncertainties for εr , d 
pairs are in Figure 2.3. 

a) ϕGM(a)=96%ϕLM(a)nearest and ϕGM(b)=27%ϕLM(b)nearest 

Parameter 
True 

Value 
Solution Bounds 

Starting 

Range 

Range 

 Leading to ϕGM 

εef 3.5 
a) 3.24 
b) 3.45 

1 - 50 2 - 15 
2-15 

2.39 - 14.94 

d (m) 
a) 0.01 
b) 0.025 

a) 0.01 
b) 0.025 

0 – 1 0.001 - 0.15 
0.001-0.15 

0.0011 - 0.107 

l (m) 1 
0.99 ± 0.01 

1.001 ± 0.001 
0 – 10 0.2 - 2 

0.51-1.49 
0.56 - 1.49 

σ (S/m) 5.3 x 10-4 
3.8 ± 3.1 x 10-4 

1.8 ± 1.3 x 10-4 
0 – 0.1 1 - 25 x 10-4 1.13 – 8.96 x 10 -4 

 
 
b) ϕGM=25%ϕLMnearest 

Parameter True 
Values 

Solution Bounds Starting 
Range 

Range 
Leading to ϕGM 

εef 7 6.9 1-40 2 - 15 2.02 - 15 

d (m) 0.02 0.02 0-1 0.001 - 0.15 0.01 - 0.145 

l (m) 0.40 0.399 ± 0.002 0-10 0.2 - 1.0 0.2 - 0.69 

σ (S/m) 9.6 x 10-4 1.8 ± 1.6 x 10-4 0 - 0.1 1 - 25 x 10-4 1 x 10-4 – 2.4 x 10-3 

 
c) ϕGM=18%ϕLMnearest 

Parameter 
True 

Values Solution Bounds 
Starting 
Range 

Range 
Leading to ϕGM 

εef 22 22.51 1-40 15 - 30 15 – 29.9 

d (m) 0.005 0.0048 0-1 0.001 – 0.05 0.001 - 0.0048 

l (m) 1 1.007 ± 0.005 0-10 0.1 - 2 0.57 – 1.42 

σ (S/m) 0.01 8.2 ± 3.5 x 10-7 0 - 1 0.005- 0.05 5 x 10-3 – 5 x 10-2 
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Parameter Sensitivity Testing 

First we test the robustness of the source parameter inversion to errors in 

overburden permittivity for Models 2 and 3.  For each model, we inverted for the source 

wavelet parameters 20 separate times.  For each separate inversion, the model overburden 

permittivity (ԑ1) deviated from the true permittivity while the rest of the inversion routine 

remained constant.  We tested the source parameter inversions for deviations in ԑ1 ±20% 

in increments of 2%. For both Model 2 and Model 3, the solution f0 was within 5% of the 

true value even when ԑ1 varied ±20% from the true value. The same is true of the solution 

δ0 for Model 2.  However, in Model 3, the solution for δ0 deviated up to 135% from the 

true value as ԑ1 increased above +10% of the true value.  In addition, the solution η for 

both models deviated from the true value. Over the range of deviations from true ԑ1 

tested, the change in phase Model 3 was 1 order of magnitude greater than that for Model 

2.  The discrepancy in the solution deviations between the two models may be due to the 

fact that the Model 3 overburden was 2.2 times as thick as in Model 2.  The greater the 

propagation distance through the overburden with a fixed conductivity, the greater the 

apparent change in phase of the wavelet.  Thus, as the overburden thickness increases, 

any errors in overburden characterization have a greater effect on the inversion solution 

for the source parameters.   

After testing the inversion robustness for overburden permittivity estimation 

errors, next we systematically test the inversion for conductivity only using Model 3. We 

generate 9 different models based on Model 3 with the other parameters listed in Table 

2.2 held constant.  Each model has a different σ starting from Model 3_1 having σ = 10-0.5 

S/m to Model 3_7 having σ = 10-7 S/m.  In this inversion, we hold all other model 
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parameters constant and allow σ to be the sole inversion parameter.  The inversion 

solutions were within 10% of the true value for the models with the 4 highest σ values 

(10-2, 10-1.5, 10-1, and 10-0.5 S/m), but for the other 5 tests the solutions for σ vary more 

than 5 orders of magnitude from the true value. The associated uncertainties encompass 

roughly the same set of values for all σ except the two highest values tested (Figure 2.5).  

Furthermore, the inversion solutions for σtrue= 10-4 S/m and for σtrue= 10-5  S/m were 

within 12% of the solution given when σtrue= 10-2 S/m. We conclude that there are no 

discernible trends in the inversion solution accuracy over the range of σ values from 10-7 

to 10-1.5 S/m. For the 2 highest conductivities tested, the solution is reasonable and the 

error is confined to 1 order of magnitude.  Reliably estimating σ and its uncertainty may 

only be possible when layer σ  > 10-1.5 S/m. However, the limit for σ estimation most 

likely also depends on f0 as well as the layer thickness (Tsoflias and Becker, 2008).  Here 

we have tested σ sensitivity using an ultra-thin layer model, and it may be possible that 

sensitivity will increase with increasing layer thickness. 

Finally, we test the inversion sensitivity to layer thickness using variations on 

Model 2.  With the other parameters in Model 2 constant (Table 2.2), we test the 

following values of DNAPL-layer thicknesses: d = 0.02 m (9%λ); d = 0.015 m (7%λ); d = 

0.01 m (4%λ); d = 0.005 m (2%λ); d = 0.002 m (0.9%λ); and d = 0.001 m (0.4%λ). In this 

case, we hold all other parameters constant and allow d to be the sole inversion 

parameter.  The inversion algorithm demonstrated a remarkable accuracy (within 5%) in 

retrieving ultra-thin-layer thicknesses that were much less than 10%λ, including two tests 

where d <1%λ (Figure 2.5).  This result demonstrates that reflection radar data is 

sensitive to extremely thin-layers (<1%λ). 
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Figure 2.5: Sensitivity testing for a) σ using Model 3 and b) d using Model 2, 
where · is the inversion solution, and the dashed line marks 1:1 correlation. Note 
scales. Error bars are those solutions within 5% of ϕGM.  The inversion does not 
appear to be sensitivity to σ, which corroborates our observations throughout model 
testing.  On the other hand, the inversion retrieves layer thicknesses accurately 
(within 5% of the true model value) down to a layer thickness of 0.4%λ. 

Conclusions 

The full-waveform inversion performs robustly for 4 different models. The 

inversion recovers thin-layer εr within 8%, d within 14%, and l within 2% of the true 
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values for all models, but is insensitive to low σ values.  The inversion performed well for 

layer thickness well less than ⅛λ.  Accurate overburden characterization will aid the 

inversion’s rates of convergence by tightening the range for initial values of l.  Our results 

demonstrate the importance of accurate overburden characterization as conversion to the 

true solution depends on the starting estimate for overburden thickness being within 50% 

of true value.  GPR site characterization can provide these parameters using velocity 

analysis or other methods such as Time Domain Reflectometry (TDR) before 

implementing the full-waveform inversion for quantification of thin-layer parameters.  

Careful analysis of the overburden should allow users to determine overburden 

permittivity, and thus thin-layer depth, within 5% of its true value (Bradford et al., 2009).  

We demonstrated a positive correlation between solution accuracy and increasing 

differences between ϕGM and ϕLM. Thus comparing the two may provide an indication of 

solution reliability, in that a larger difference (>70%) between them may signify a more 

accurate result (Figure 2.4). Finally, convergence rates are as low as 2% (Model 1) and 

less than 20% in all model examples, confirming the requirement to perform multiple 

iterations in order to generate reliable results. Our protocol calls for 1000 iterations per 

inversion. This protocol gives good results for these models.   

Although it performs well for all other layer parameters, the inversion is not 

sensitive to conductivity values. During specific testing for solution σ, solution σ deviated 

up to 5 orders of magnitude from true or estimated values at low σ values.  Examination 

of the wave number reveals that wave attenuation depends on	36Ç whilst the wave 

propagation depends on ԑ6Ç.  Therefore, changes in ԑ6Ç dominate the reflectivity response 

at low σ values (Zeng et al., 2000).  Thus, although the 1D reflectivity model computes 
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dcalc based on the full, frequency-dependent wave number calculation, the impact 

of	36Ç 	is much less than that of ԑ6Ç on the objective function.  Therefore, the insensitivity 

of the inversion to the thin-layer conductivity follows from the nature of the reflectivity 

model used to calculate the objective function.  

Overall, the accuracy of our inversion algorithm for recovering thin- and ultra-

thin-layer parameters other than σ using GPR reflectivity data demonstrates its potential 

usefulness for quantitatively characterizing thin-layer parameters.  Our inversion may 

provide reliable estimates of layer thickness well below the conventional thin-layer 

resolution limits, and even at layer thicknesses below 1%λ as demonstrated during model 

testing.  Since we use an effective source function inversion, the inversion is well-suited 

for application to targeted time-lapse monitoring of contaminated sites. Future work 

includes testing the inversion on field data from contaminated sites. If successful, site 

managers could implement this inversion to estimate total contamination at a site and to 

prioritize remediation efforts based on NAPL concentrations and thicknesses.  Due to the 

ubiquitous nature of these classes of contaminants, careful implementation of this 

algorithm could greatly reduce remediation costs and time. Finally, the accuracy of the 

inversion performance for the third model suggests that this full-waveform algorithm 

may be applied to other thin-layer problems such as snowmelt monitoring or fracture 

characterization. 
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CHAPTER THREE: TARGETED FULL-WAVEFORM INVERSION OF GROUND-

PENETRATING RADAR REFLECTION DATA FOR THIN AND ULTRA-THIN 

LAYERS OF NON-AQUEOUS PHASE LIQUID CONTAMINANTS PART 2: DATA 

TESTING 

Abstract 

Accurately quantifying thin-layer parameters by applying full-waveform 

inversion methodology to GPR reflection data may provide a useful tool for near-surface 

investigation.  Such quantification would be particularly useful for contaminated site 

investigation where non-aqueous phase liquid (NAPL) contaminants are present. We test 

a full-waveform inversion algorithm on 4 GPR reflection data sets in an attempt to 

quantify thin-layer permittivity (ԑ), thickness (d), and conductivity (σ) for thin (≤½ 

dominant wavelength λ) and ultra-thin (≤⅛λ) layers using GPR reflection data. The data 

examples include 3 different contaminants: 1) oil overlying cold salt water, 2) dense 

NAPL (DNAPL) trapped at a sand/clay interface, 3) light NAPL (LNAPL) accumulated 

at the top of the saturated zone, and 4) oil overlying sea ice covered by a thin layer of 

snow. We collected the first two data sets in a laboratory, while the latter two are from 

field sites.  The inversion initializes starting values with a Monte-Carlo scheme and finds 

the global minimum of the objective function using a non-linear grid search. In all 4 

examples, the inversion solved for NAPL-layer properties within 15% of the measured 

values.  The inversion successfully quantified thin-layer properties for 2 different source 

frequencies and 4 different subsurface conditions relevant to the investigation and 
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remediation of contaminated sites.  This algorithm provides a tool for site managers to 

prioritize remediation efforts based on quantitative assessments of contaminant quantity 

and location using GPR. 

Introduction 

Subsurface accumulation of non-aqueous phase liquid contaminants (NAPLs) can 

degrade soil and groundwater resources and pose a significant risk to human health 

(Hwang et al., 2008).  These classes of contaminants falls into two categories based on 

density: light NAPLs (LNAPLs) are less dense than water and thus rise to the top of a 

water column while dense NAPLs (DNAPLs) sink (Carcione et al., 2003; Luciano et al., 

2010).  Many NAPL-contaminated sites are the result of improper disposal of used 

solvents or fuels (Brusseau et al., 2011; Nellis et al., 2009). Over time, these NAPLs can 

migrate vertically and horizontally for long distances in the subsurface. LNAPLs can 

smear across the vadose zone/saturated zone interface due to fluctuations in the water 

table (Bradford and Deeds, 2006). DNAPLs can become trapped at impermeability 

barriers as they simultaneously migrate downward and laterally in response to dominant 

groundwater gradients. 

In both scenarios, the result is the same: NAPLs often disperse into thin layers.  

These thin, discrete layers of contamination pose a problem for traditional methods of 

detection such as borehole sampling (Illangasekare et al., 1995; Pankow and Cherry, 

1996).  However, ground penetrating radar (GPR) has proven a useful tool for 

characterizing contaminated sites in a rapid and cost-effective manner (Brewster and 

Annan, 1994; Bradford and Deeds, 2006; Bradford and Wu, 2007; Orlando, 2002; 

Luciano et al., 2010). Careful assessment of GPR reflection data can allow practitioners 
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to identify zones of anomalous subsurface permittivity and correlate these anomalies with 

the presence of subsurface contamination (Carcione et al., 2003). 

However, when NAPLs disperse into thin layers, the problem of reliably detecting 

and quantifying the contamination becomes more difficult. Here we define thin layers as 

those layers where recorded reflection events from the top and bottom of the layer are not 

well-separated in time (Widess, 1973).  Depending on source characteristics, noise, and 

other factors, this limiting layer thickness may be as high as ¾ the dominant wavelength 

of the signal, λ (Bradford and Deeds, 2006; Guha et al., 2005). Following Babcock and 

Bradford (2014a), we take thin layers to be those whose thickness is ≤½λ and ultra-thin 

layers those whose thickness is ≤⅛λ. In such cases, measuring layer thickness (d) or 

effective permittivity (ԑef) using conventional velocity analysis is impossible, and we 

must turn to other techniques if we seek to quantify thin-layer parameters (Bradford et al., 

2009). 

Full-waveform inversion may provide such a tool to quantify contaminated sites 

by directly inverting for the properties of subsurface layers (Babcock and Bradford, 

2014a). Full-waveform inversion methods incorporate all the information present in the 

reflected waveform and thus may provide a tool to reliably and accurately quantify thin-

layer parameters even in the presence of signification noise.  Previous research has 

demonstrated the efficacy of this approach using GPR reflection data for a variety of 

subsurface problems, including detecting contaminant infiltration (Kalogeropoulos et al., 

2013), measuring soil water content (Lambot et al., 2004; Tran et al., 2012), and 

quantifying subsurface ԑef  and conductivity (σ) (Busch et al., 2012; Klotzsche et al., 

2010). Babcock and Bradford (2014a) use a targeted full-waveform algorithm to estimate 
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thin- and ultra-thin layer properties on model GPR reflection data.  Targeting a single 

reflection event of interest, e.g. a reflection from a contaminated zone, simplifies the 

inverse problem. They recovered thin-layer εef within 8% and d within 10% of the true 

value for layer thicknesses as low as 8%λ for 4 different models.  Here, we test that 

inversion algorithm on GPR reflection data collected in the field and in the laboratory. 

Methodology 

Inversion 

The inversion uses Nelder-Mead gradient-based simplex search method to 

minimize the cost function, ϕ, with respect to user-defined parameters as follows 

(Lagarias et al., 1998): 

³ � ∑�p¾ã� − pÊäåÊ�>              (3.1) 

where p¾ã� is the data and dcalc is a model wavelet. Babcock and Bradford (2014a) 

provide a full description of the forward model used to generate dcalc.  Given a layered 

earth model, the 1D reflectivity model starts at the lowermost layer and recursively 

computes reflection and transmission coefficients upwards through a stacked multi-layer 

system to compute R1, the reflectivity from the total stack, which we observe at the 

uppermost boundary (Muller, 1985).  The model then convolves R1 with a user-defined 

source wavelet. The resulting waveform simulates the measured GPR signal assuming 

that a 1D model is a good approximation and that layer properties are homogeneous and 

isotropic.  

The 1D model can include any number of layers.  It uses ԑef , σ, and d for each 

layer in calculating R1. Then, we can define any subset of these parameters as the 
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inversion parameters. In most cases, we fix the layer properties above and below the thin-

layer and solve for thin-layer parameters as well as overburden thickness (l). We assume 

that some other methods (velocity analysis, direct sampling) have provided estimates of 

the upper and lower layer properties. As demonstrated in the model testing, we first must 

invert for the effective source parameters using a reflection from an uncontaminated layer 

1/layer 3 boundary. Inverting for the effective source function allows the algorithm to 

compensate for propagation effects due to overburden characteristics. Assuming a Gabor 

wavelet source function, the user-defined inversion parameters are central frequency (f0) 

(Hz), phase rotation (η), and function width (δ0) (s). We then can use these source 

parameters as the effective source wavelet parameters in the reflectivity model to invert 

for thin-layer parameters. 

In either case, we randomly select starting values using a Monte-Carlo approach 

from a pre-determined uniform distribution.  The algorithm searches for those inversion 

parameters that minimize equation 3.1 and returns parameters that correspond to that 

local minimum value (ϕLM). It replicates this gradient-based search 1000 times and finds 

the global minimum (ϕGM) from all ϕLM. We estimate uncertainty from the root mean 

square (RMS) error of 10,000 parameter pairs around a parameter pair corresponding to 

ϕGM and choose those paired parameters which fit equation 3.1 within the estimated level 

of noise. We perform this analysis for several available combinations of parameter pairs, 

but caution that the total uncertainty is coupled to the 4+ dimensions of the solution. For 

additional details, see Babcock and Bradford (2014a). 
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Testing 

Examples 

We tested the inversion on 2 laboratory and 2 field data sets for 4 different NAPL 

scenarios. All data were collected in transverse electric (TE) mode using Sensors and 

Software PulseEkko Pro antennas. Example 1 is air -oil-water. Example 2 is saturated-

sand/DNAPL-sand/clay. Example 3 is moist sand/LNAPL-sand/saturated sand.  Finally, 

Example 4 is air/snow/oil/ice, where the snow layer was a thin-layer and the oil layer was 

an ultra-thin layer.  This example presents a challenging test case for the inversion 

algorithm as we inverted for the electrical properties of both the snow and oil layers.  

For each data example, the reflection event from an uncontaminated area provides 

a background wavelet which we use to invert for the source parameters.  For that 

inversion, the electrical properties of the uncontaminated layers can remain fixed, while 

f0, δ0, and η act as the inversion parameters. For Example 2 and 4a, additional thin layers 

in our data forced us to simultaneously invert for the source parameters as well as 

additional thin-layer properties.  

Except for the change in parameters to be optimized, the source inversion routine 

follows the same methodology as the thin-layer inversion.  Subsequently, for each 

example, we use the corresponding inversion solution for f0, δ0, and η as the source 

parameters in the inversion for thin-layer properties. In taking this approach, we assume 

that the background electrical properties are constant over the survey area.   
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Example 1 

The first data example simulates an oil spill on cold ocean water. We set up a 

plastic tank in a freezer room and maintained the water temperature at 2° C.  The addition 

of commercial rock salt (NaCl) raised the water salinity to 32 parts per thousand (ppt) in 

order simulate cold sea water.  We collected data with antennas (f0=1000 MHz) 

suspended on a wooden plank 1.16 m over the water (Figure 3.1).  After collecting 

control data without oil present, 189 liters (L) of oil released into the tank formed a 0.027 

m (16%λ) layer of oil over the salt water.  The oil for the experiment was a commercially 

available motor oil.  Addition of 0.1% by volume naphthenic acid and 0.5% by volume 

brine solution (35 ppt) altered motor oil conductivity and total acid number (TAN) to be 

more similar to that of crude oil. Direct measurements of salinity and TDR measurements 

for εoil provided a comparative reference for inversion performance (Table 3.1). Pre-

inversion data processing steps included a time-zero correction, bandpass filter (250-500-

2000-4000 MHz), spherical spreading correction (t1), and reflection event windowing.  

Example 2 

The second laboratory example consisted of a plastic tank filled with a well-sorted 

saturated sand overlying a saturated sodium bentonite clay 

(Na2Ca[Al2Si4O10(OH)2(H2O)10]10) (Figure 3.2 and Table 3.1). The tank was 1.25 m x 

0.48 m x .45 m. A depression with dimensions 0.34 m x 0.47 m x 0.04 m in the center of 

the saturated clay simulated a stratigraphic trap.  Plastic tubing provided an injection port 

to introduce a non-toxic DNAPL (Novec HFE-7200) into the trap. We collected data 

before and after introduction of the simulated contamination. Calculated DNAPL-layer 
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thickness was approximately 0.022 m (9%λ). Babcock and Bradford (2013) further 

describe characterization of relevant material properties for the experiment.  

 

Figure 3.1: Example 1 showing a) Diagram of setup for data collection; b) Data 
(solid line) from the air/salt water reflection and the inversion results (dashed line) 
from the source wavelet inversion;  c) Data (solid) from the air/oil/water reflection 
and inversion results (dashed). Vertical dotted lines indicate the data window used 
for the targeted inversion algorithm. d) plot showing coupled uncertainties between 
εoil and doil; + is solution corresponding to ϕGM, triangle is measured values, and the 
line encloses all paired values where the objective function is within 10% of ϕGM. 
Darker shading indicates lower values of the objective function. 
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Table 3.1: Physical and electrical properties for laboratory and field data 
examples. 

Data Layer ԑ� 36Ç  (S/m) d (m) (%λ) 

 1, air 1 0 1.01 

1 2, oil 3.0 ± 0.5 5 ± 1 x 10-4 0.027 (16%) 

f0=1000 MHz 3, salt water 88 3.5 ± 0.1 0.25 

 1, saturated sand 25 ± 1 0.007 ± 0.003 0.39 

2 2, DNAPL-saturated sand 7.3 ± 0.4 9.6 x 10-4 0.022 (9%) 

f0=1000 MHz 3, clay 35 1 0.07 

 1, dry sand 4.9 
5 x 10-5*  
2 x 10-4*  

4 

3 2, LNAPL-saturated sand 8.5 0.016 ± 0.007 0.3 (19%) 

f0=100 MHz 3, saturated sand 21.3 3.3 ± 0.2 x 10-3 15 

 1, air 1 0 1 

4a 2, snow 1.4 – 2 10-5 0.05 – 0.14 (<50%) 

f0=1000 MHz 4, sea ice 4.5 0.03 NA 

 1, air 1 0 1 

4b 2, snow 1.4 - 2.4 10-5 ** 0.05 – 0.20 

f0=1000 MHz 3, oil 3.5 10-5 ** 2 ± 1 (≌ 9%) 

 4, sea ice 4.5 0.03 NA 

* Reported σ values for vadose zone are higher in contaminated region; lower value 
used in source inversion; see Sauck et al. (1998) for details. 

** Estimates only; not measured on-site (Bradford et al., 2010) 
 

We collected multi-offset data in 0.02 m source-receiver separation increments 

across the top of the tank with 1000 MHz antennas. Data processing steps included a 

time-zero correction, bandpass filter (100-200-2000-4000 MHz), pre-stack phase-shift 

time migration (Gazdag and Sguazzero, 1964), stacking, applying a top mute, and target 

windowing.  
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We picked individual traces to use for the source wavelet inversion from the 

uncontaminated layer 1/layer 3 reflection (Figure 3.2).  However, close examination of 

the data indicated the presence of another thin layer above the primary sand/clay horizon.  

This thin-layer was likely caused by sand compaction during the experimental setup and 

therefore probably reflects a porosity difference between the bulk overburden sand and 

the sand just above the clay layer.  Due to the extra thin layer, during the source inversion 

we inverted for the permittivity (ԑsand2) and thickness (dsand2) of the extra layer as well as 

for f0, δ0, η, and l. Unfortunately, we have no direct measurements of the properties of this 

layer to use in evaluating solution accuracy. Subsequently, we used the inversion solution 

for ԑsand2 in the inversion for the DNAPL-layer parameters for the 4-layer case: saturated 

sand/dense-saturated sand/DNAPL-saturated sand/clay. We inverted ԑnapl, σnapl, and dnapl 

as well as dsand2 and σsand2.  
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Figure 3.2: Laboratory setup for saturated-sand/DNAPL-saturated sand/clay 
system, where a) shows Layer 3, the sodium bentonite clay, with the depression to 
contain the injected DNAPL, and b) shows an example of antenna positioning for 
multi-offset data collection after filling the remaining tank space in the tank with 
saturated sand. c) The processed, time-migrated stacked data with top mute 
applied; topographic depression is located approximately between CDP 40 and 60 
(box). Solid arrow points to first arrival of the sand/dense sand/clay reflection event; 
the reflection arrives earlier in time at the center of the tank (CDP 50), 
corroborating our result for a thicker dense sand layer over the topographic 
depression. Dashed arrow points to the first arrival of the sand/dense sand/DNAPL 
sand/clay reflection event over the center of the depression. 

  

a) b)
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Example 3 

The first field example was collected at former Wurtsmith Air Force Base, 

Michigan.  A plume of spilled LNAPL hydrocarbons is floating on the water table and 

has subsequently smeared approximately 0.3 m thick over the vadose zone/saturated zone 

interface (Figure 3.3). Extensive use of geophysical methods including GPR has 

thoroughly characterized this contaminated site (Table 3.1) (Bradford and Deeds, 2006; 

Bermejo et al., 1997; Sauck et al., 1998). Markedly reduced reflection strength and a 

“shadow” zone of preferential attenuation clearly marks the contaminated region 

(Bradford and Deeds, 2006; Sauck et al., 1998).  

We collected data using 100 MHz unshielded antennas with a fixed offset of 0.3 

m and suspended slightly above ground level. We performed the source inversion on 2 

different traces from the uncontaminated regions (located at approximately 152 m and 

240 m) and the thin-layer inversion using 3 traces from the contaminated region (at 

approximately 187, 198, and 210 m) (Figure 3.3). Processing steps include a time-zero 

correction, bandpass filter (12-25-200-400 MHz), spherical spreading correction (t1), and 

reflection event windowing. We also tested the thin-layer inversion routine on 3 traces 

from the uncontaminated region in order to assess the robustness of the inversion. 
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Figure 3.3: a) Data from Wurthsmith field site; contaminated region is marked 
by increased attenuation below the water table. Leftmost arrow is approximate 
position of traces for source parameters inversion; rightmost arrow is approximate 
position of traces for thin-layer inversion. b)  Data (solid line) from the 
uncontaminated water table reflection and the inversion results (dashed line) from 
the source wavelet inversion;  c) Data (solid) from the LNAPL region and inversion 
results (dashed).  Vertical dotted l;ines indicated target window. d)  Coupled 
uncertainties between εnapl and dnapl; + is solution corresponding to ϕGM, triangle is 
measured values, and the line encloses all paired values where the objective function 
is within 10% of ϕGM. Darker shading indicates lower values of the objective 
function. 

Example 4 

The second field example is a controlled oil spill above sea ice. Testing occurred 

at Svalbard, Norway. We collected radar data over clean and contaminated areas using 

1000 MHz central-frequency antennas slung beneath a helicopter (Figure 3.4) (Bradford 

60 80 100 120

−2

−1

0

1

Time (ns)

R
e
la
ti
v
e
 A
m
p
li
tu
d
e

b)

50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

Time (ns)

R
e
la
ti
v
e
 A
m
p
li
tu
d
e

c)

Water

Table

Attenuation

                         Zone



86 

 

et al., 2010). In the contaminated zone, the introduced ultra-thin oil layer overlying the 

ice was covered by a thin layer of snow. The inversion uses data from helicopter traverses 

at 5 m elevation above the surface; elevations are approximate due to helicopter flight 

characteristics. Bradford et al. (2010) provide further details on the experiment design 

and describe measurement of the relevant electrical properties using travel-time analysis.  

Data processing steps included a time-zero correction, bandpass filter (250-500-2000-

4000 MHz), background subtraction, and target windowing. 

For Example 4, we performed the inversion routine on 5 different data traces: 2 

from the uncontaminated region and 3 from the contaminated locations across the survey 

area. We hand-picked data traces having different snow and oil thicknesses in order to 

demonstrate the inversion robustness. In example 4a, we used the snow/ice reflection 

event for the source wavelet inversion in the uncontaminated three-layer case of 

air/snow/ice, meaning that f0, δ0, η, ԑsnow, dsnow, and l were the inversion parameters.  The 

snow layer was less than ½λ for all traces.  For Example 4b, two thin layers were present: 

snow and oil (Table 3.1). Thus l, ԑsnow, and ԑoil as well as dsnow and doil were all inversion 

parameters in the contaminated area. Snow permittivity at the site varied due to wind 

redistribution (Bradford et al., 2010).  We used the range for ԑsnow from the source 

inversion to bound solution values for ԑsnow in Example 4b. Oil layer thickness ranged 

from 0 to 0.036 m (<17%λ). Mean oil thickness was 0.0192 m (<9%λ). We do not report 

values for either σsnow or σsnow since previous work demonstrated that the algorithm is not 

sensitive to low σ values (Babcock and Bradford, 2014a). 
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Figure 3.4: a) Helicopter flight path over the uncontaminated (control) cell and 
the oily cell for Example 3; b) example data collected along flight path over clean 
test cell demonstrating variable snow thickness,  and c) oily cell (Bradford et al., 
2010). 
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Inversion Results 

Source Wavelet Inversion 

All data were collected with 1000 MHz antennas. In Example 1 and 4, with the 

antennas suspended in air, the inversion solution for f0 is up to 40% greater than the 

manufacturer-specified f0 (Table 3.2).  In Example 2, the antennas were coupled to the 

saturated sand, and the effective source frequency corresponding to the inversion solution 

is 525 MHz.  Estimated f0 for Example 3 is within 6% of the values reported by Bradford 

and Deeds (2006). Uncertainties in the source parameters are estimated from coupled f0, 

δ0 and f0, η pairs (Figure 3.5 and Table 3.2). We proceed with the inversion for the thin- 

and ultra-thin-layer parameters using the results for the Gabor source wavelet parameters 

for the effective source function. 

Example 1 

The inversion retrieves ultra-thin layer ԑr and d within 10% of the estimated value 

(Figure 3.1 and Table 3.3).  The inversion solution for σ deviates over an order of 

magnitude from the estimated oil σ.  The rate of conversion to ϕGM is 5%, and the global 

ϕGM is 99% of the next closest ϕLM.   

 

b)
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Figure 3.5: Paired f0, δ0 (a) and f0, η (b) and uncertainties for the solutions from 
the source parameter inversion for Example 1. The + marks the inversion solution 
and the line encloses all paired values where the objective function is within 10% of 
ϕGM. Darker shades are smaller values of the objective function. Results for other 
tests are in Table 3.2. 

Table 3.2: Inversion solution and standard deviation for source wavelet 
parameters using reflection from Layer 1/Layer 3 in an uncontaminated area; in 
Examples 2 we simultaneously inverted for additional dense-sand thin layer 
parameters, and in Example 4 for thin snow layer parameters; those results are in 
Table 3.3.  Figure 3.5 shows an example of solution uncertainties for f0, δ0  and f0, η 
pairs. 

Example Source 
(MHz) 

Convergence 
Rate 

f0 (MHz) δ0 
(ns) η 

1 1000 22% 1400 ± 10 .46 ± 0.04 1.5 ± 0.2 

2 1000 <1% 525 ± 30 1.175 ± 0.001 -0.785 ± 0.01 

3 100 47% 75 ± 5 6.3 ± 0.7 0.54 ± 0.06 

4 1000 <1% 1360 ± 200 .63 ± 0.08 0.745 ± 0.005 

Example 2 

Results obtained during the source parameter inversion included the parameters of 

the thin dense sand layer: dsand2 = 0.037 m and ԑsand2=20.7 (Figure 3.6). The inversion for 

DNAPL-layer parameters retrieved ԑnapl and dnapl within 6% of measured values (Figure 

3.6 and Table 3.3). The solution for σsand2 is reasonable, but the solution σnapl is an order 

of magnitude different from the calculated value. Although the solution for Example 2 is 

quite good overall, as discussed by Babcock and Bradford (2014a) low rates of 

convergence (<1%) and small differences (<1%) between ϕGM and ϕLMnearest  may indicate 

the increased difficulty of finding a unique and accurate solution given the complicated 

nature of this 4-layer problem. 
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Example 3 

Bradford and Deeds (2006) estimated the control values using a calculation of the 

offset-dependent reflectivity and comparison of measured values to a range of 

background models.  There are also several literature values for NAPL thickness at this 

site (Bradford and Deeds, 2006; Sauck et al., 1998). The inversion retrieves ultra-thin 

layer ԑr within 8% of their estimated value and d within 13% (Figure 3.3 and Table 3.3).  

The rate of conversion to ϕGM is 24%, and the global ϕGM is 96% of the next closest ϕLM.  

The uncertainty associated with these results is highly variable depending on the coupling 

between parameters pairs, and may not be well-constrained by the 2D representation of 

the RMS error (Figure 3.3).  When tested in the uncontaminated area, the inversion 

retrieved “layer” permittivity within 2% (ԑr = 4.8 + 0.2) of the value measured by 

Bradford and Deeds (2006) (ԑr  = 4.9).   
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Figure 3.6: a) Trace (solid line) located at CDP 20 with inversion solution for 
source parameters (dashed line); vertical dotted lines indicate target window used in 
inversion algorithm; arrow points to the same location as the leftmost arrow in 
Figure 3.2c.  Note the high amount of noise present in the data. b) Plot showing 
coupled uncertainties for εsand2 , dsand2 from the source inversion; + is solution 
corresponding to ϕGM and the line encloses all paired values where the objective 
function is within 10% of ϕGM; darker shading indicates lower values of the 
objective function. The true values for εsand2 , dsand2 are unknown. c) Solution (solid) 
vs data (dashed) for DNAPL parameters using trace at CDP 50; the arrow 
corresponds to the rightmost arrow in Figure 3.2c. The presence of multiple 
reflection events causes uncertainty in defining the target window. d) Plot showing 
coupled uncertainties between εnapl and dnapl; triangle indicates measured values 
(other notation the same as part b). 

Example 4 

Solutions for ԑsnow from the source wavelet inversion ranged from 1.46 to 1.81 

(Table 3.3). Assuming a dsnow ≤ 2ԑ0, these results suggest a maximum %error for snow 
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permittivity in the uncontaminated area of 10% (Figure 3.7). Results for dsnow from the 

source inversion were well within the measured values across the cell. In addition, the 

inversion solution matches the data well over a range of snow layer thicknesses (Figure 

3.7). The inversion demonstrates an overall lack of sensitivity to σ again in this example.  

We proceed with the inversion for oil and snow layer parameters in Example 4b 

and constrain ԑsnow to the solution range from Example 4a during the inversion for snow 

and oil thin- and ultra-thin layer properties.  Low rates of convergence (<1%) and small 

differences between ϕGM and ϕLM (ϕGM >90% ϕLMnearest) may indicate that the non-

uniqueness of the solution is problematic for this example.  Nevertheless, the inversion 

retrieved ԑoil within 10% of the estimated value, and the solutions for doil are within the 

range of measured oil thicknesses (Figure 3.7 and Table 3.3). The inversion results for 

dsnow exceed the measured snow cover by a maximum of 12% (Table 3.3).   
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Figure 3.7: Data (solid) and inversion results (dashed) for Example 3. Labels 
indicate reflection events and vertical dotted lines show the data window used for 
the targeted inversion algorithm.  a) uncontaminated snow over ice with dsnow ≌≌≌≌ 0.11 
m (46%λ);  b) uncontaminated snow over ice with dsnow ≌≌≌≌  0.07 m (25%λ) ; c) Plot 
showing coupled uncertainties between εsnow and dsnow for b); + is solution 
corresponding to ϕGM, triangle marks the estimated values, and the line encloses all 
paired values where the objective function is within 10% of ϕGM. d) data (solid) and 
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inversion results (dashed) for an ultra-thin oil layer (0.02 m, 9%λ) underneath an 
thin snow layer (0.04 m, 16%λ). e) Plot showing coupled uncertainties between εoil 
and doil; notation same as part c). 

Table 3.3: Ultra-thin-layer parameters for a) Example 1, b) Example 2, c) 
Example 3, d) Example 4a, and e) Example 4b  with the inversion results 
corresponding to ϕGM. Uncertainties for εr, d pairs are shown graphically in Figures 
3.1- 3.7. 

a) ϕGM = 99%ϕLM (nearest) 

Parameter Control Value Solution Bounds 

ԑoil 3 2.686 ± 1.3 2 - 8 

doil (m) 0.027 0.030 ± 0.05 0 – 1 

l (m) 1.03 0.965 ± 0.001 0 – 5 

σ (S/m) ≈5 x 10-4 8 ± 3 x 10-6 0 – 0.1 

 

b) ϕGM = 99%ϕLM (nearest) 

Parameter Control Value Solution Bounds 

ԑnapl 7.3 ± 0.3 7.7 ± 0.8 2-10 

dsand2 (m) * 0.050 ± 0.001 0 – 0.1 

dnapl (m) 0.022 0.024± 0.002 0 – 0.1 

σsand2 (S/m) * 0.012 ± 0.002 0 – 0.1 

σnapl (S/m) 9.6 x 10-4 4 ± 5 x 10-3 0 – 0.1 

*Properties not measured; refer to text for discussion 

c) ϕGM= 96%ϕLM (nearest) 

Parameter Control Value Solution Bounds 

ԑnapl 8.5 8.2 ± 1.5 2 - 12 

dnapl (m) 0.3 0.34 ± 0.06 0 – 1 

l (m) 4 4.1 ± 0.2 2 – 10 

σ (S/m) 0.016 ± 0.007 0.001 ± 0.001 0 – 0.1 
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d) ϕGM= 76% - 94%ϕLM (nearest) 

Parameter Control Value Solution Bounds 

ԑsnow 1.4 – 2 1.46 – 1.81 1 - 5 

dsnow (m) 0.05 - 0.14 0.04 – 0.15** 0 – 1 

l (m) 5 - 10 5.4 - 8.3 5 - 15 

**Dependent on snow depth at trace location; see Figure 3.7 

e) ϕGM = 74 - 94%ϕLM (nearest) 

Parameter Control Value Solution Bounds 

ԑoil 3.5 3.2 ± 0.2 1 – 8 

dsnow (m) 0.04 – 0.07 0.005 – 0.0787 0.001 – 1 

doil (m) 0 – 0.036 0.004 - 0.0321 0.001 – 1 

l (m) 5 – 10 8.67 ± 0.5 0 - 20 

*Estimated range based on snow density at site and constrained by solution from  
**Snow σ and oil σ not measured at field location 

Discussion 

In 2 different scenarios, the inversion algorithm recovered effective source 

wavelet parameters and an additional set of thin-layer parameters simultaneously 

(Examples 2 and 4).  For Example 2, since we have no direct measurement of these 

properties, we assess the resulting estimate for sand permittivity in relation to known 

physical properties using petrophysical transformations. Babcock and Bradford (2013) 

calculated to the bulk overburden sand porosity of approximately 37.8% from Time 

Domain Reflectometry (TDR) measurements.  The inversion retrieved thin-layer 

permittivity for this addition layer of 20.7. Assuming complete saturation, an ԑsand2 of 

20.7 yields a porosity of 34.8% using the CRIM equation (Knight and Endres, 2005). 

Thus, the inversion result for ԑsand2 seems to corroborate the presence of a compacted, 
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lower-porosity sand layer above the clay.  We were unable to measure the depth of this 

layer directly, but 0.037 m ≌ ¼λ at 525 MHz. In addition, the inversion solution for dsand2  

from thin-layer inversion for contaminant properties is approximately 0.013 m thicker 

than the solution for dsand2  from the effective source parameter inversion.  Visual 

examination of the stacked section corroborates this result as the reflection event arrives 

slightly earlier in time above the center of the depression than over the flat-lying part of 

the clay/sand horizon (Figure 3.2).  

In Example 4a, the inversion results for ԑsnow from the source parameter inversion 

agreed well with the findings of Bradford et al. (2010). They observed that snow 

densities, and therefore permittivities, were relatively low for the loosely packed snow in 

the uncontaminated area, and our results for ԑsnow, ranging from 1.46 – 1.81, are within 

10% of the values measured in the field.  When inverting for snow and oil layer 

properties simultaneously in Example 4b, the overall reliability of the results are 

remarkable considering the thinness of both the oil and snow layers and the added 

difficulty having one thin layer (snow) and one ultra-thin layer (oil) present above the ice.   

However, the inversion results for σ deviate significantly from real values.  

Previous work (Babcock and Bradford, 2014a) notes that σ solutions may be unreliable 

until reaching a certain threshold value.  This observation makes intuitive sense given 

that σ functions both to attenuate EM wave propagation and also to change the 

reflectivity response (notably in the case of high σ). That threshold may be >0.0316 S/m, 

and none of these data had a thin-layer σ greater than that value.  Thus, we caution that 

this inversion algorithm, while performing robustly for ԑr and d, is not likely to retrieve σ 

accurately for thin-layers of these types of contaminants.  Continued work to retrieve 
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thin-layer σ should include testing on data at lower frequencies, <100 MHz, as per 

Tsoflias and Becker (2008). 

Finally, our full-waveform inversion relies on a user-defined window to target the 

reflection event. Correctly identifying and windowing the desired reflection event is 

paramount for robust inversion performance. The choice of the reflection window has a 

large impact on inversion results and subsequent errors. Our testing indicates that 

choosing a shorter window length centered on the peak of the reflection event promotes 

more reliable inversion performance (Figure 3.8).  In fact, this result is promising because 

it demonstrates that the inversion algorithm may be relatively insensitive to noise, since it 

depends on more of the information within the wavelet that is contained near the peak of 

the reflection event and that peak is less sensitive to noise than the edges of the wavelet.   

 

Figure 3.8: Inversion results (dashed) plotted vs data (solid) to demonstrate the 
effect of changes in user-defined reflection window on solution accuracy; dashed 
lines show the data window used for the targeted inversion algorithm.  a) Solution 
corresponding to data windowed between 29.0 and 31.5 ns; b) Solution when using a 
longer reflection window (28.5 - 31.5 ns). The solution shown in b) returns 
anomalously high values for ԑoil (>6). 
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Conclusions 

Reliable estimation of thin-layer parameters using this inversion algorithm hinges 

on estimating the effective source wavelet parameters.  Our source wavelet inversion was 

able to recover effective wavelet parameters as well as additional thin-layer parameters in 

the case of Example 2 and Example 4a. Given an effective source parameter function, 

this full-waveform inversion algorithm for GPR reflection data may accurately recover 

thin- and ultra-thin layer ԑr and d at contaminated sites.  The full-waveform inversion 

recovered thin- and ultra-thin layer ԑr and d within 15% of the measured or estimated 

values down to layer thicknesses as low as 9%λ.  In Examples 2 and 4b, the algorithm 

also successfully simultaneously inverted for the properties of 2 thin layers: an 

overburden layer and the contaminant layer.  Our testing and observations indicate that 

practitioners could implement this algorithm to characterize contaminated sites where 

contamination has dispersed throughout the subsurface into thin- and ultra-thin layers.  

Careful use of this inversion could reduce remediation costs and time.  Our algorithm is 

especially applicable to time-lapse monitoring of NAPL-contaminated sites. 
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CHAPTER FOUR: QUANTIFYING THE BASAL CONDITIONS OF A MOUNTAIN 

GLACIER USING A TARGETED FULL-WAVEFORM INVERSION: BENCH 

GLACIER, ALASKA 

Abstract 

Understanding glacier dynamics is a vital component of long-range climatological 

modeling, and glacier dynamics are inextricably linked to the basal conditions of glaciers. 

Seismic reflection methods can image the glacier bed under certain conditions.  However, 

where a seismically thin layer of material is present at the bed, traditional analyses may 

fail to fully characterize bed properties.  We use a targeted full-waveform inversion 

algorithm to quantify the basal layer parameters of Bench Glacier, Alaska: thickness (d), 

P-wave velocity (α), and density (ρ).  We simultaneously invert for the seismic quality 

factor (Q) of the bulk glacier ice.  The inversion seeks to minimize the difference 

between the data and a 1D reflectivity model using a gradient-based algorithm with 

starting values initialized from a Monte-Carlo scheme. We test the inversion algorithm on 

4 basal layer models with 5% added Gaussian noise. The inversion retrieved thin-layer 

parameters within 10% of model parameters with the exception of seismic Q.  For the 

seismic data set from Bench Glacier, inversion results indicate a thin basal layer of 

debris-rich ice within the study area having mean velocity 4000 ± 700 m s-1 , density = 

1900 ± 200 kg m-3, and thickness = 6 ± 1.5 m. 
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Introduction 

Glacier dynamic processes contribute to climate change. Furthermore, changes in 

the dynamic parameters even of relatively small glaciers may have a disproportionately 

large impact on climate cycles (Meier, 2007). Thus ongoing research efforts recognize 

that understanding and modeling the glacier dynamics of mountain glaciers contributes a 

significant component to the validity of long-range climatological modeling (Nolan and 

Echelmeyer, 1999).    

Glacier dynamics are strongly tied to the basal conditions of glaciers (Dow et al., 

2013; MacGregor et al., 2005; Nolan and Echelmeyer, 1999).  For example, movement of 

hard-bedded glaciers depends largely on friction and shear forces at the ice/bedrock 

interface (Cohen et al., 2005).  In other cases, a distinct basal layer of debris-rich ice may 

exist (Hart, 1995). Increased rates of shear deformation or compression due to stratified 

facies and debris lenses within such a layer may cause over 50% of overall overall glacier 

motion (Chandler et al., 2005; Hart and Waller, 1999; Knight, 1997; Waller et al, 2000). 

Water inputs at the bed of the glacier can cause glacier surging (Anderson et al., 2004; 

Clarke, 2005; Howat et al., 2008; Magnusson et al., 2010; Smith, 2007), and the 

thickness of an existing water layer may be critical to estimating debris-bed friction 

(Cohen et al., 2005). The presence of subglacial sediments may impact glacier movement 

through deformation, decoupling, sliding, and uplift mechanisms (Alley et al., 1987; 

Anandakrishnan, 2003; Evans et al., 2006; Hart et al., 2011; MacGregor et al., 2005; 

Porter and Murray, 2001). In fact, interactions with basal sediments may be responsible 

for up to 80% of glacier movement in some cases (Hart et al., 2011). Given the gamut of 

possible basal parameters, it is obvious that reliably estimating subglacial conditions 
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predicates the understanding and modelling of glacier dynamics and of larger global 

climate models. 

However, reliably quantifying the exact nature of the glacier bed is difficult 

(Smith et al., 2013).  Such quantification is especially problematic over the substantial 

spatial extent of even small mountain glaciers. For instance, borehole video and 

penetrometer tests are time-consuming and only provide discrete observations. Previous 

research has used a plethora of geophysical techniques including both radar and seismic 

reflection methods in attempts to define basal conditions such as estimations of basal 

water conditions, constraining thickness and physical properties of glacial sediments, 

characterizing debris-rich basal ice layers, and defining bedrock topography (Baker et al., 

2003; Blankenship et al., 1986; Bradford et al., 2013; Brown et al., 2009; Booth et al., 

2013; Dow et al., 2013; Hart, 1998; Harper et al., 2010; Kim et al., 2010;  King et al., 

2004; Smith, 2007; Smith et al., 2013; Waller et al., 2000).  Proper interpretation of 

seismic reflection data in particular can sometimes provide information about the 

physical properties of glacial ice and subglacial materials (Anandakrishnan, 2003; 

MacGregor et al., 2005; Smith, 2007). Velocity analysis is one common seismic tool 

often applied in the glacier environment. 

Nevertheless, when a thin layer of material is present between the glacier bed and 

underlying bedrock, conventional seismic analysis tools may fail to reliably define basal 

conditions. If a thin-layer is present between two half-spaces, reflections of an incident 

wave from the top and bottom of that layer become convolved with one another. Widess 

(1973) demonstrated that resolving distinct reflections from the top and bottom of such a 

layer becomes impossible as a layer’s thickness decreases below ¼ the dominant 
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wavelength, λ, of the signal in the material of interest. Depending on the source wavelet 

characteristics and the presence of noise, the limiting layer thickness for resolving those 

reflections may be as high as ½ or even ¾λ (Booth et al., 2013; Bradford and Deeds, 

2006; Guha et al., 2005; Smith, 2007).  In these situations, using traditional velocity 

analysis to quantifying the layer thickness (d), density (ρ), and P-wave velocity (α) is 

therefore also impossible (Anandakrishnan, 2003).   

In the glacial environment, the limitations due to thin-bed problems may preclude 

detection of basal layers (Booth et al., 2013; Smith, 2007). Given the typical range of 

seismic P-wave velocities (α) for subglacial materials (Table 4.1), at a central frequency 

of 250 Hz, the resulting wavelength of 8 m means that a layer of sediment may be 

seismically thin even at thicknesses up to 6 m.  Furthermore, at that frequency, an 11 m 

thick basal ice layer (BIL) may still be “thin.” Although subglacial sediments or basal ice 

layers can sometimes accumulate in layers as thick as 12 -15 m, realistically these layers 

or layers of basal water may be much thinner still, on the order of 1 or 2 m or even less 

(Hart, 1995; Hart et al., 2011; Knight, 1997; MacGregor et al., 2005; Smith, 2007). 

Nonetheless, these “thin” layers may dramatically impact glacier dynamics (Chandler et 

al., 2005; Smith, 2007). In such a scenario, quantifying the basal characteristics is 

essential. Performing such quantification using seismic reflection methods can require the 

use of advanced techniques such as attribute analysis and inversion methodologies 

(Booth et al., 2013). 

Accordingly, previous research has detected and parameterized subglacial 

characteristics based on reflection attributes such as phase, reflection strength, and 

reflection amplitude variation with offset (AVO) attributes (Anandakrishnan, 2003; 
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Booth et al., 2013; Dow et al., 2013; Smith et al., 2013). King et al. (2004) detected high 

amplitude reflection anomalies in a seismic reflection survey on an Antarctic ice stream 

and correlated the amplitude variances with the presence of basal water layer as thick as 

0.6 m. Smith and others (2013) identified a basal sediment layer by extracting reflection 

coefficients from seismic data using the ratio of the multiples to primary reflections and 

comparing the reflection strength to common values for the acoustic impedances of 

sedimentary layers. Smith (2007) isolated changes in reflection polarity at the glacier bed 

within a seismic data set and defined spatially-discrete changes in ice sheet basal 

conditions based on reflection attributes. He concluded that saturated basal sediment 

thickness was ≥ 1.5 m.  

Amplitude variation with offset analysis is particularly applicable to analysis of 

basal conditions in the presence of thin layers of basal material.  This technique 

comprises quantification of change in reflection strength as a function of source-receiver 

offset (Castagna, 1993).  Since the direction and amplitude of the AVO response depends 

on the properties of any thin layers present at a reflecting boundary, judicious analysis of 

AVO attributes thus can sometimes produce estimates of thin-layer parameters (Dow et 

al., 2013).  For example, Anandakrishnan (2003) identified two different sediment 

lithologies beneath an ice sheet using normal incidence reflection strength and estimated 

α = 1700 m s-1 for a dilatant sedimentary layer by examining the AVO reflection 

attributes. Dow et al. (2013) used a modified AVO approach to model the reflection 

characteristics of an ice sheet basal reflection event and infer the presence of thin 

underlying sediments having α = 2100 m s-1 and ρ = 1700 kg m-3, but were unable to 

quantify layer thickness.  
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However, AVO analyses often rely on comparison of modeled AVO curves with 

extracted amplitude information or inversions based on the AVO curves (Dow et al., 

2013; Booth et al., 2013). On the other hand, targeted full-waveform inversions (FWIs) 

incorporate all the information contained within a reflection event rather than 

parameterizing individual attributes such as phase or AVO characteristics (Babcock and 

Bradford, 2014b; Plessix et al., 2012). In general, FWIs invert for subsurface parameters 

by iteratively minimizing the difference between the observed data and a synthetic model 

with respect to subsurface parameters (Operto et al., 2012). Full-waveform inversions 

thus have the potential to directly recover layer properties (Babcock and Bradford, 

2014a).  However, full-waveform inversion is complicated by problems of non-linearity 

and solution non-uniqueness, the coupled nature of material properties, and computing 

speed (Operto et al., 2012). Nevertheless, previous work has successfully applied a 

targeted full-waveform inversion algorithm to quantify thin-layer properties using radar 

reflection data (Babcock and Bradford, 2014b). The targeted approach simultaneously 

reduces the complexity of the inverse problem and minimizes computing time. Here we 

demonstrate the efficacy of that approach on synthetic seismic data.  We then apply the 

inversion algorithm to a seismic data set from Bench Glacier, Alaska, in an attempt to 

quantify its basal conditions. 
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Table 4.1: Representative material properties in the glacier system (Booth et al., 
2013; Bradford et al., 2009; Fowler, 1990; Gusmeroli et al., 2010; Johansen et al., 
2003; McGinnis et al., 1973; Mikesell et al., 2013; Nolan and Echelmeyer, 1999; 
Press, 1966; Smith, 2007). We distinguish basal ice from bulk glacier ice as ice 
carrying stratified or dispersed debris from the glacier bed with distinct physical, 
chemical, and mechanical properties (Knight, 1997). 

Material α (m s-1) ρ (kg m-3) Q 

Glacial Ice 3600 - 3800 917 22 - 220* 

Water 1400 - 1600 1000 800 - 1000 

Saturated Sediment 1400 - 2500 1700 - 2400 200 - 400 

Basal Ice 2300 - 5700** 1500 - 2100 22 - 400 

Bedrock 5000 - 5500 2700 100 -1500 

* for temperate ice 

** strongly temperature- and saturation- dependent  

Materials and Methods 

Forward Model 

We use a 1D, vertical incidence reflectivity method to generate a reflection series 

from any given layered subsurface model (Babcock and Bradford, 2014c; Muller, 1985). 

This model accounts for multiples and attenuation via the full wavenumber calculation.  

However, it assumes a vertical incidence reflection in a system composed of linearly 

elastic, homogeneous layers and does not account for 2- or 3-D effects. Obviously these 

assumptions are violated to some extent in the glacier environment since glacier ice is not 

homogeneous and the bed of the glacier may be able irregular. Nevertheless, we feel this 

1D approach provides a reasonable first-order approximation for modeling seismic 

reflection events where a thin layer is present and violations of the assumptions are not 

too severe. Babcock and Bradford (2014b) detail the use of a similar forward model for 
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modeling radar data.  Here we present additional considerations and theory relevant to 

seismic methods. 

Seismic Considerations 

Seismic velocities are well-known to be frequency-dependent (Aki and Richards, 

1981).  We calculate the frequency-dependent velocity g© as follows: 

g© � g	�1 ! $æç èé XX&)         (4.1) 

where ω is frequency, Q is the seismic quality factor, and α denotes the material’s 

reference velocity P-wave velocity at the central frequency d4 (Aki and Richards, 2002).   

The real part of complex-valued seismic wavenumber ]∗ is a function of g© while the 

imaginary part is the attenuation component and depends on g© and Q as follows: 

]∗ �	 Xoê − X>çoê b         (4.2) 

When seismic energy traveling through the subsurface encounters a contrast in 

material properties, the energy is partitioned at that interface and some of the energy is 

reflected back to the surface.  We use ]∗ and ρ to compute the acoustic reflection and 

transmission coefficients for upgoing and downgoing energy at an interface assuming 

waves impinging at normal incidence on planar, flat-lying layers composed of 

homogeneous linearly elastic materials separated by a welded interface.  

The reflectivity method uses those coefficients to calculate the reflectivity 

response from the uppermost boundary (R1) in a series of stacked layers by calculating 

the reflectivity response starting at the lowermost layer first and recursively thereafter at 

each successively higher boundary following Muller (1985): 
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MT� � MB�eW>�Uw∗Éw         (4.3) 

MB� � R�B$ì ! ÆØÙOÚ ÆØÙOÛ ÜÆØÙO$W×ØÙOÛ ÜÆØÙO      i= n-1, n-2,…           (4.4) 

where di is layer thickness and superscripts d and u denote upgoing and downgoing 

coefficients. We use the appropriate equations to calculate the downgoing reflection 

coefficient and upgoing and downgoing transmission coefficients (e.g., Ti) at any 

boundary.  For example, uTÉ 	denotes the reflection coefficient for a downgoing wave at a 

boundary as follows: 

uTÉ � ¤wÙOUw∗W¤wUwÙO∗¤wÙOUw∗B¤wUwÙO∗          (4.5) 

where i denotes layer number. The resulting reflectivity from the total stack models that 

which we observe at the surface. It is the exact analytical response including multiples, 

scattering, and transmission effects:  

u$ � Ý`4          (4.6)                                     

We then convolve R1 with a source spectrum.  After transforming the result to the 

time domain with an inverse Fourier transform, the final model result is a simulated 

seismic reflection series from the layer stack that includes all multiples. 

Inversion 

The inversion algorithm uses a Nelder-Mead simplex search to minimize the 

objective function ϕ with respect to user-defined parameters (Babcock and Bradford, 

2014a; Lagarias et al., 1998). The objective function minimizes the misfit between the 

data and the computed model as follows: 

³ � ∑�p¾ã� − pÊäåÊ�>              (4.7) 
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where p¾ã� is the data and pÊäåÊ is the reflectivity response calculated using the 1D 

forward model discussed in the previous section.   

We use a Monte-Carlo scheme to initialize starting values from a random 

distribution bounded by physically realistic limits for each parameter.  The inversion 

parameters may consist of any subset of the input model parameters.  In the 3-layer case, 

each layer has 4 parameters (α, Q, ρ, and d) for a total of 12 parameters.  We can invert 

for any subset of these parameters.  The algorithm then uses the gradient-based search 

around the user-defined parameters to find a local minimum (ϕLM) for each iteration. We 

repeat the minimization routine 1000 times for each example and calculate the mean (x) 

for each parameter from the subset of global minima (ϕGM).   

We estimate uncertainty by evaluating equation 4.4 for 10,000 parameter pairs 

around the global minimum and then computing the root mean square error (RMS) for 

those pairs.  The subset of paired solutions that fit the data within a 5% noise level define 

the solution.  We report errors for the following solution pairs: α,ρ; α,Q; and α,d. While 

this method does provide an easily-visualized estimate of uncertainty, note that the 

solution space is multi-dimensional and thus the 2-dimensional uncertainty calculations 

do not entirely constrain the solution space.  

Field Site 

Bench Glacier is a temperate glacier located near Valdez, Alaska, in the coastal 

Chugach mountain range (Figure 4.1). The glacier’s convenient location and moderate 

slope (<10°) have made it a conducive field site for multiple campaigns (e.g., Bradford et 

al., 2013; Brown et al., 2009; Harper et al., 2010; Fudge et al., 2008; MacGregor et al., 

2005; Mikesell et al., 2012; Nolan and Echelmeyer, 1999; Riihimaki et al., 2005).  Bench 
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Glacier is approximately 7-8 km long and 1 km wide. (Anderson et al., 2004; Bradford et 

al., 2009; MacGregor et al., 2005). Ice thickness ranges from 150 – 185 m (Brown et al., 

2009; Riihimaki et al., 2005). 

Mafic and ultramafic rocks are the major components of the geology of the 

Chugach Mountains (Burns et al., 1991).  The bedrock of Bench Glacier is part of the 

Valdez Group (MacGregor et al., 2005). This lithology is characterized by meta-

greywacke, which is dominated by quartz and feldspars (Winkler et al., 1980). 

Representative seismic attributes for this bedrock include α = 5400 – 6300 m s-1, ρ = 2.68 

– 2.71 kg m-3, and Q = 200 - 1500 (Fowler, 1990; Press, 1966). P-wave velocities 

reported for Bench Glacier range from 3630 to 3780 m s-1 (Bradford et al., 2013; 

Mikesell et al., 2012).  The ice velocity show weak, azimuthal anisotropy due to an 

extensive crevasse system (Bradford et al., 2013). Mikesell et al. (2013) report mean ice 

Q = 42 ± 28 from Rayleigh waves at a central frequency (f0) of 45 Hz. We assume bulk 

glacier density to be 917 kg m-3 (Petrenko and Whitworth, 1999). 

Climate records at Thompson Pass, approximately 10 km north of the glacier, 

indicate a mean annual air temperature (MAAT) of -2.2° C and a mean air 

temperature(MAT) of +6.2° C from May through September (Brown et al., 2009).  (Refer 

to Brown et al. (2009) for a more detailed summary of climatic data.) Extensive borehole 

data show that the entire glacier is near the pressure melting point (PMP).  Water may 

remain unfrozen throughout the glacier except perhaps near the surface during cold 

weather (Brown et al., 2009). Bradford et al. (2013) report bulk volumetric water content 

< 1%.   
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Previous seismic surveys have uncovered the possible presence of a discontinuous 

basal layer beneath Bench Glacier. A 2D seismic profile collected in 2007 highlights the 

presence of a layer that thins in the cross-glacier direction (Figure 4.2c). The reflection 

profile demonstrates an additional reflection separating from the bed arrival starting at 

common depth point (CDP) 80. This layer pinches out around CDP 150 indicating the 

presence of a discontinuous or thinning basal layer. Previous researchers have 

conjectured that the glacier may be hard-bedded or have possible discontinuous sediment 

present at the bed ranging from 1 -2 m thick (Fudge et al., 2009; MacGregor et al., 2005).  

It is also possible that there is a layer of debris-rich basal ice similar to other glaciers in 

this region (Hart, 1995). With that in mind, we apply the FWI to a discrete set of data co-

located with the 2D survey to determine what this basal layer could be. 

Data Collection 

We conducted a seismic survey in summer 2007 using an 8 kg manual 

jackhammer source in a 10 x 10 m shot grid over a 300 x 300 m surface area (Figure 4.1). 

The resulting 3D P-wave seismic reflection profile had a checkerboard receiver pattern 

(40 Hz vertical geophones) in 4, 5x5m grids.  The nominal CMP bin size is 2.5m, and 

CMP fold in our area of interest ranges from about 50 to 70 (Figure 4.1).  Maximum 

offset was 384 m. The lack of snow or firn cover at the glacier surface during the data 

collection period allowed for effective source coupling but also caused some receiver 

coupling problems as receiver locations melted out of the ice over the course of a day of 

data collection and had to be reset.   
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Figure 4.1: a) Bench Glacier, Alaska showing location of 3D seismic survey (white 
box) and surface seismic monitoring station locations (+) where Mikesell et al. 
(2012) report surface ice velocities and Q values; 20 m contour lines show bed 
elevation.  Black line intersecting 3D survey area is location of 2D seismic profile 
shown in Figure 4.2c. b) 3D survey map with grey-scale fold density (lighter shade 
indicates higher fold) showing trace locations for inversion within the box in area of 
highest fold; x and y directions marked on plot correspond to those in Figures 4.5 
and 4.6 with x0,y0 at lower left corner of inversion box. * indicates source locations 
and arrows point to white boxes enclosing receiver locations. 
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Figure 4.2: Data from Bench Glacier, Alaska: a) and b) show 2 representative 
supergathers with binned offsets as discussed in text.  For viewing purposes these 
data have automatic gain applied with a 50 ms sliding window. c) Time-migrated 2D 
seismic profile across the survey area (solid line in Figure 4.2a and b). Note change 
in reflection characteristics across the length of the bed: arrows on left point to the 
peaks of two reflection events that converge across the glacier to the point marked 
by third arrow. At ice velocity, the maximum peak-to-peak distance closest to our 
survey is 8 m, or about 55%λ. Black line underscores region of seismic profile 
corresponding to inversion traces. 

Data Processing 

Basic processing steps include killing unusable traces caused by receiver melt-out 

or other problems, muting the Rayleigh wave, employing elevation statics, as well as 

a)

c)

b)
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applying a bandpass filter (50-100-400-600 Hz) and a geometric spreading correction (t1). 

Following Bradford et al. (2013), in the area of greatest fold we created 3D supergathers 

by combining 3 x 3 groups of binned CMPs.  Nominal bin size was 7.5 m2 and thus 

reflections in any given supergather represent a possible subsurface area of 

approximately 56 m2.  To further reduce noise, after NMO velocity analysis we combined 

and stacked offsets in 5 m increments for offsets less than 80 m.  Constraining offsets to 

this range limits stretch effects in NMO processing and reduces problems associated with 

the azimuthal anisotropy known to exist in this glacier ice. Figure 4.2 shows 

representative supergathers. 

Testing 

A key step to implementing any full-waveform inversion algorithm is accurately 

characterizing the effective source wavelet.  With that in mind, we begin by delineating 

steps to recover the effective source parameters from the direct arrivals in the seismic 

data collected at Bench Glacier.  Next we use that source function within the reflectivity 

model to generate synthetic models simulating four different basal conditions that could 

generate the reflection event seen in Figure 4.2c. One model is a control simulating 

glacier ice overlying bedrock. The other three model a thin layer of basal sediment, a thin 

layer of basal water, and a basal layer of debris-rich ice. We subsequently test the 

inversion algorithm on recovering the model parameters. Finally, we implement the 

inversion algorithm on the field data collected at Bench Glacier to quantify its basal 

properties. 
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Source Recovery 

Before we can test the inversion algorithm on either synthetic or field seismic 

data, we must accurately recover the source parameters.  We use the direct arrivals from 

the seismic data set to derive the effective source parameters as follows. Visual 

examination of the data and comparison with results from Mikesell et al. (2013) reveals 

that the direct P-wave arrivals are well separated from the Rayleigh wave after about 50 

m of offset.  Therefore, we select offsets ranging from 50 to 75 m from which to extract 

the source wavelet characteristics. After basic processing steps as listed above, we apply 

a linear moveout (LMO) correction at an average velocity of 3640 m s-1. Although lower 

than the bulk ice velocity, this velocity proved effective at flattening the direct arrivals.  

Surface velocity could be lower than bulk velocity due to a higher fracture concentration 

of crevasses and other heterogeneities near the surface.  Finally, we stacked all traces 

within each offset bin to produce a single representative trace containing the direct P-

wave arrival for a given offset (Figure 4.3).   

After correcting for spherical divergence, we invert for seismic Q using a version 

of the primary gradient-based search algorithm.  In this case, the objective function ϕ 

minimizes the differences between the five traces after back-propagation and attenuation 

(Q) correction as follows: 

Ë � 	∑ �4�T − [î ⊂ "|�T ∉ î]ò�>óTô$        (4.8) 

where P is a matrix of 5 column vectors each composed of one back-propagated and 

attenuation-corrected waveform Pi, i denotes a column of P, and j denotes the row-wise 

sum of the matrix R formed from P. We calculate the back-propagated and attenuation-
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corrected waveform Pi for each of the 5 source wavelets (Si) using the Fourier transform 

of the direct arrivals shown in Figure 4.3: 

�T � õõ�� T̈�Sw|zöê B |zGöê÷        (4.9) 

Thus, this technique inverts for the seismic attenuation factor by using equation 4.9 to 

minimize equation 4.8 with respect to Q.  We calculate the solution uncertainty for the 

single inversion parameter as those Q values having RMS error ≤ 5%. 

Source Results 

The source parameter inversion returns Q = 26 ± 6.  The result is within the range 

for Bench Glacier surface Q values calculated by Mikesell et al. (2013) but 40% lower 

than their average value. However, their survey is located slightly up-glacier from our 

data collection region (Figure 4.1).  In addition, Mikesell et al. (2013) used low-

frequency Rayleigh waves rather than the higher-frequency P-wave direct arrivals and 

thus the representative volume of their Q measurement include deeper ice than the 

surface waves.  Surface ice Q (Qice) should be lower than bulk Qice since attenuation is 

likely to be greater near the surface due to scattering caused by surface topography and 

air filled crevasses.  Furthermore, ice Q is known to vary widely in response to ice 

conditions and temperature:  i.e. Gusmeroli et al. (2010) report a range for Qice from 6 – 

175 for temperate ice. With these considerations defending the reasonableness of our 

inversion Q result, we apply this Q to all 5 traces after spherical divergence correction, 

take the mean, and input the resulting spectrum as the source spectrum for the 1D 

reflectivity model (Figure 4.3).  
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Figure 4.3: a) Seismic record for stacked traces binned between 55 and 75 m 
offset; straight solid line underscores direct arrivals and arrow points to Rayleigh 
waves; b) extracted source wavelet spectrum. 

Synthetic Testing 

Models 

We use the 1D reflectivity model to produce four synthetic seismic traces which 

serve as a basis for inversion testing.  We add 5% random Gaussian noise to each model 

before inversion. The models simulate 4 different basal conditions that could contribute 

to the reflection event observed in Figure 4.2: 1) glacier ice overlying bedrock; 2) a thin 

layer of sediment between the ice and bedrock; 3) a thin layer of water at the bed of the 

glacier; and 4) an underlying layer of frozen unconsolidated glacier debris.  Model 1 acts 

as a control where layer 2 thickness was set to 0 and thus the model reflection comes 

from the layer 1/layer 3 boundary. Table 4.2 gives parameters used in model testing 

based on representative literature values from several sources including Booth et al. 

(2013), Johansen et al. (2003), Mikesell et al. (2012), Smith (2007), and Press (1966). 

Layer 2 α, Q, ρ, and d are the user-defined inversion parameters.  We also input the 

overburden thickness l as an inversion parameter. We derive uncertainties from parameter 
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pairs as described in the inversion methods.  Finally, we test Model 2 for 6 different layer 

thicknesses in order to demonstrate inversion robustness.  

Table 4.2: Model parameters:  Model 1 simulates a hard bed; Model 2 simulates 
a thin layer of basal till; Model 3 simulates water at the bed of the glacier; Model 4 
simulates a basal ice layer. Layers 1 and 3 are the same for all models. Note that d is 
also given as %λ. 

Model Layer # and Fill � (m s-1) ø (kg m-3) Q d (m) 

 1, ice 3690 917 50 165 

1 2, NA NA NA NA 0 (NA) 

2 2, saturated till 2000 2100 256 2.0 (25%λ) 

3 2, water 1500 1000 1000 1.0 (17%λ) 

4 2, basal ice 4000 2000 200 4.0 (25%λ) 

 3, bedrock 5400 2700 500 100 

Parameter Sensitivity Testing: Sediment Layer Thickness 

In order to test the sensitivity of the inversion algorithm to sedimentary layer 

thickness, we generate 6 additional models with sediment thickness (dsed) from 0.2 m 

(1/40λ) to 4 m (½λ) thick.  Following Bradford and Babcock (2014b), for this test we 

hold other parameters constant having values as shown in Table 4.3 and define dsed as the 

sole inversion parameter.  We estimate 1D solution uncertainty as described for source Q 

inversion uncertainty estimates previously. 

Synthetic Results 

Model 1 

Although we generated the model with d2 = 0 m, as with the other models we 

inverted for layer 2 properties as if a thin layer were present. The inversion algorithm 
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returned d = 0.05 ± 0.05 m, layer α = 2400 ± 800 m s-1, Q = 1 ± 1, and ρ = 2200 ± 700 kg 

m-3 (Table 4.3).  While solution α and ρ fall near acceptable values for glacial sediment 

(Table 4.1), the solution d is negligible when compared to the wavelength (d = 1/200λ at 

α = 2500 m s-1). This solution d is likely the result of the inversion algorithm fitting some 

of the noise in the trace. Thus, this inversion test provides confirmation that the algorithm 

performs well in the model case simulating no thin layer present at the bed.  

For this model, examination of parameter pairs did not produce any meaningful 

assessment of solution uncertainty. This problem could arise when parameter coupling is 

too complicated to be resolved with 2D solution appraisal. Therefore, here we estimated 

solution uncertainty from the subset of the 1000 inversion iterations where ϕLM was 

within 5% of ϕGM. This method for estimating solution uncertainty gives reasonable 

constraints on the inversion solution for this model (Table 4.3). 

Models 2, 3 and 4 

Inversion results for thin-layer parameters are within 5% of the true values for the 

remaining models with the exception of solution d for Model 3 and of solution Q (Table 

4.3).  Error in solution d for Model 3 is 10%, while all solution Q values appear 

unreasonable.  Estimated solution uncertainty for both α and ρ is large in some cases, 

with estimated coefficient of variations (cv) ranging from 5% to a high of 25% for Model 

4 (Table 4.3). On the other hand, uncertainty estimates for model Q are unreasonably low 

(cv < 3%).  This cv is likely not a reliable representation of Q uncertainty especially given 

the fact that Q results are well outside model parameters. 
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Parameter Sensitivity Testing 

Figure 4.4 shows model traces and bounded solutions for 6 different test cases of 

sediment thickness.  Table 4.4 reports associated uncertainties and cv for each result. The 

inversion performs remarkably well even when dsed = 1/40λ, and all inversion solutions 

are within 5% of the true value.  In all cases, the inversion solution underestimates layer 

thickness. Estimated uncertainty increases (cvmax > 50%) as dsed decreases from the 

Model A through Model F.   

Summary of Model Results 

The inversion solution for layer parameters except Q during synthetic testing was 

within 5% of true values for the four models with the exception of the erroneously low 

value for Model 3 d.  In the control model example, solution d is extremely small ( ≤ .05 

m), and it is obvious that in reality layer 2 is negligible (Table 4.3).  For Models 2, 3, and 

4, other than solution Q the estimated parameter uncertainties encompass the true model 

values.  Associated uncertainties for several layer properties were high, notably in the 

case of ρ and α for Model 1 (cv ≌ 30%) and Model 4 (cv ≌ 25%).  This result highlights 

the problem of non-uniqueness inherent in effective implementation of FWI. However, 

since the solution space is 4-dimensional, absolute estimation of uncertainty requires 4-

dimensional analysis of the solution space, which we have not attempted.  

The relative uncertainties associated with the results for α and ρ are twice that of 

corresponding uncertainties reported with previous use of this inversion algorithm 

(Babcock and Bradford, 2014b).  However, those results were taken from radar data.  In 

radar data, with certain assumptions, contrasts in permittivity provide reflectivity 

response.  In our model, there are two primary reflectivity parameters (ρ, α) instead of 
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one.  The coupled nature of this problem exacerbates the difficulty of solution non-

uniqueness and thereby likely causes the large uncertainties that we report here. 

On the other hand, solution Q is inaccurate for all model testing. For Models 2 

and 3, solution Q is over 200% of the true Q and associated uncertainties for Q are 

unreasonably low.  For Model 4, solution Q is 15% of the true value. Thus the model 

testing demonstrates that the inversion algorithm is not sensitive to layer Q for these 

layers and thicknesses and that reasonable constraints on Q values for the bounded 

inversion may be necessary in order to produce physically meaningful inversion results. 

Holding Q fixed during the inversion may prove a better option since using fewer 

inversion parameters will increase inversion speed. Additional model Q testing could 

possibly provide more comprehension concerning the implications of paired solution 

non-uniqueness. Overall, the preceding model results contribute to user comprehension 

both of the functionality and also of the limitations inherent in this FWI algorithm. Thus 

we can reasonably expect that this inversion algorithm can recover the basal properties of 

a glacier in the presence of a thin layer. 

Table 4.3: Thin layer parameters for model testing and the inversion mean for 
Layer 2 parameters calculated from all results for ϕGM.  Uncertainties reported for 
Q and d are estimated from α, Q and α, d pairs respectively, with the exception of 
Model 1 as noted in the text. 

a) Model 1 (control) 

Parameter True 
Value Solution Bounds 

g (m s-1) NA 2400 ± 800 1000 - 5400 2 (kg m-3) NA 2200 ± 700 900 - 2700 

Q NA 1 ± 1 1 - 500 

d (m) 0 0.05 ± 0.05 0 - 5 
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b) Model 2 (sediment) 

Parameter 
True 
Value Solution Bounds 

g (m s-1) 2000 2100 ± 300 1000 - 5400 

2 (kg m-3) 2100 2000 ± 100 900 - 2700 

Q 256 500 ± 10 1 - 500 

d (m) 2.0 2.1 ± 0.3 0 - 5 

 
c) Model 3 (water) 

Parameter True 
Values Solution Bounds 

g (m s-1) 1500 1400 ± 100 1000 - 5400 2 (kg m-3) 1000 1000 ± 100 900 - 2700 

Q 1000 2500 ± 200 1-2500 

d (m) 1.0 0.9 ± 0.1 0 – 5 

 
d) Model 4 (basal ice layer) 

Parameter True 
Values 

Solution Bounds 

g (m s-1) 4000 4000 ± 1000 1000 - 5400 2 (kg m-3) 2000 2100 ± 500 900 - 2700 

Q 200 30 ± 1 1-500 

d (m) 4.0 4 ± 1 0 – 20 
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Figure 4.4: Results for parameter sensitivity testing with Model 2: a) shows the 6 
models with increasing layer thickness from left to right.  Dashed line is model with 
5% added Gaussian noise, and thin solid line indicates inversion solution. All traces 
are normalized by the maximum source amplitude. b) Inversion solution for dsed 
versus true model d and estimated solution uncertainties.  Uncertainties for lower 
layer thicknesses are 25 times greater than the uncertainty associated with thickest 
layer which is not evident in plot (see Table 4.4). 
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Table 4.4: Results for parameter sensitivity testing for 6 models with increasing 
dsed; the coefficient of variation (cv), which is the standard deviation divided by the 
mean, describes the relative uncertainties. Uncertainty associated with smallest 
value for dsed  is over  25 times greater than for the thickest layer tested.  These 
results demonstrate the robustness of the inversion but also the caution needed in 
interpreting very thin layer results. 

Model A B C D E F 

dtrue (m) 0.2 0.5 1.0 2.0 3.0 4.0 

dsed (m) 0.19 ± 0.1 0.49 ± 0.1 
0.97 ± 
0.12 

1.99 ± .07 3.0 ± 0.07 
3.98 ± 
0.08 

cv 52.6% 20.4% 12% 3.5% 2.3% 2% 

 

Data Testing 

After basic processing steps, we select 25 supergather formations in the area of 

greatest fold (Figure 4.2). Based on bin size, geometry, and estimating the size of the 

Fresnel zone, these traces cover about 62 x 62 m, or approximately 4000 m2 which is 

about 0.05% of the total glacial area.  In this small area, the basal geometry is relatively 

flat and we can reliably perform NMO velocity analysis. We limit incidence angles to 

those below 15° so that the normal incidence assumption is valid and to minimize effects 

associated with azimuthal anisoptropy. After NMO correction using α = 3690 m s-1, we 

stack the traces within each supergather. The result is a single trace per supergather 

formation simulating a zero-offset seismic reflection event (Figure 4.5).  We implement 

the inversion on each of the 25 traces after target windowing around the basal reflection 

event following Babcock and Bradford (2014b).   

User-defined inversion parameters are α, ρ, d, and overburden Q (Qice). We invert 

for Qice instead of layer Q for three reasons: 1) the impact of Qice on wavelet attenuation 

is greater than that of layer Q since the wave’s travel path in the ice is over 300 m as 
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compared to an estimated maximum thin-layer travel path of 4 m (Fudge et al., 2009); 

and 2) effective Qice is not well-known as robust estimates for Qice on Bench Glacier are 

surface-derived measurements and do not reflect bulk Qice over the ice volume which our 

inversion traces sample; and 3) model testing demonstrated inversion insensitivity to thin 

layer Q.  Overburden thickness also functions as an inversion parameter.  We use the 

source spectrum derived from the direct arrivals for the source in the 1D reflectivity 

model as described previously (Figure 4.3). 

Data Results 

Mean results for the inversion parameters over the whole inversion area (box, 

Figure 4.1) are α = 4000 ± 700 m s-1, ρ = 1900 ± 200 kg m-3, d = 6 ± 1.5 m, and Qice = 68 

±  21 (Table 4.5). We refer to these values as the total solution. For visualization 

purposes, Figure 4.5 shows 5 traces and the corresponding inversion solutions.  Total 

ranges for the 25 inversion solutions are 3200 – 4700 m s-1 for α, 1700 – 2400 kg m-3 for 

ρ, 2 – 9 m for d, and 50 – 100 for Qice (Table 4.5, Figure 4.6).  Out of the 25 solutions, 

three have d < 5 m and two have d > 7 m, and the remaining solution d fall within 5 – 7 

m.  Similarly, if we exclude 2 solutions having  ρ ≌ 2400 kg m-3, the total range of 

solutions for ρ becomes 1700 – 2100 kg m-3.  Excepting 2 high and low values noted in 

Table 4.5, solution α ranges from 3500 – 4200 m s-1. The range of solutions for Qice 

exhibit more variability than the other 3 parameters with up to 100% variations in Qice 

depending on trace location (Figure 4.6). We calculate the paired parameter uncertainties 

as described previously for the 4 parameters for 5 of the 23 solutions. The total 

uncertainty for the mean solutions reported in Table 4.5 results from the average cv for 

each variable from those 5 paired solution uncertainties applied to the mean of the 
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solutions. Figure 4.7 shows the complicated nature of the paired uncertainties, especially 

for solution Q.   

 

Figure 4.5: 5 representative supergather traces (solid line) and the inversion 
solution (dashed line) taken from approximately y = 4 m and x positions across the 
lower portion of the inversion box shown in Figure 4.1b.  Horizontal solid lines 
define the target window for each trace and all traces are normalized by the 
maximum source amplitude. Target window choice depends on user discretion and 
is an essential consideration in the inversion process. 
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Table 4.5: Solution range and total mean solution with estimated uncertainty 
and inversion bounds for 25 supergather traces. Solution range is given without 
high and low outliers as discussed in text; values for those outliers are in 
parentheses. 

Parameter Total Solution Solution Range Inversion Bounds 

g (m s-1) 4000 ± 700 
3500 – 4200 
(3200, 4700) 

1200 – 5400 

2  (kg/m3) 1900 ± 200 
1700 – 2100 

(2400)* 
1000 - 2700 

Qice 68 ± 21 50 - 100 26 – 100 

d (m) 6 ± 1.5 
5 – 7 

(2**,8.5, 9) 
0 - 20 

* 2 solutions had 2 ≌ 2400 kg/m3 

** 3 solutions had d ≌ 2 m 

 

a) b)

c) d)
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Figure 4.6: Solutions for 25 supergathers for a) layer d (m); b) α (m s-1); c) ρ (kg 
m3); and d) overburden Q (Qice); note scales for each plot, where x,y positions are 
relative to inversion box shown in Figure 4.2 starting at lower left corner.  Mean 
estimated uncertainties are not shown but reported in Table 4.5. Each box 
represents the inversion solution for the appropriate variable from one stacked 
supergather as described in text. 

 

Figure 4.7: Demonstration of paired parameter solution uncertainty plots for 1 
reference inversion solution for a) α (m s-1) vs ρ (kg m3); b) α vs Qice; and c) α vs d 
(m). Darker colors correspond to lower uncertainties and scale is relative to each 
parameter pair. White line encloses solutions from the parameter pair with RMS ≤ 
5%, and triangle marks the inversion solution.  In general other uncertainty plots 
show similar characteristics. Here α, Qice pairs (c) demonstrates the possibilities of 
multiple local minima with the concurrent difficult ies such a situation poses for ill-
constrained FWI problems. 
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Discussion 

The total inversion solution for α (4000 ± 700 m s-1) is within published ranges 

for debris-rich basal ice layers (BIL) or frozen sediments layers (e.g. 2300 - 5700 m s-1) 

(Table 4.1 and Figure 4.6) (Johansen et al., 2003; McGinnis et al., 1973). The total 

slowness or velocity inverse(s, s m-1) of the composite material is approximately the sum 

of the fraction f of each component times the slowness (Hauck et al., 2011): 

ù\úû � ùTüT ! ù7ü7 ! ùäüä ! ùÌüÌ       (4.10) 

where the subscripts BIL, i, r, a, and w denote basal ice layer, bulk ice, rock, air, and 

water respectively.  We assume that the water content of the BIL is negligible since 

Bradford et al. (2013) determined the volumetric water content of Bench Glacier in our 

survey area to be <1%.  We further assume that there is no void space in the BIL, i.e.	üä = 

0.  With these two simplifications, equation 4.10 reduces to a two-component mixing 

equation for slowness: 

ù\úû � ùTüT ! ù7ü7.         (4.11) 

where üT � 1 − ü7 .  We can simplify and solve equation 4.11 for the rock fraction as 

follows: 

ü7 � 	 �ýþ�W�w�vW�w .          (4.12) 

The corresponding slowness ù\úû = 2.5 x 10-4 s m-1 to the mean inversion velocity 

yields a rock fraction of 30%.  Excluding outliers, the highest seismic velocity from the 

inversion is 4200 m s-1 (Table 4.5). This velocity corresponds a to rock fraction of 43%. 

Equation 4.12 fails where reported layer seismic velocities are less than ice velocity (αice) 

(i.e., layer slowness ù\úû	> ùT).  Solution α for two of the twenty-five inversion traces 

were below αice.   
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However, equation 4.12 does not take into account the geometry or distribution of 

the rock inclusions.  Another source of error is our assumption that there is no free water 

in the BIL.  Harper et al. (2010) show that water-filled basal crevasses are present on 

Bench Glacier.  These observations combined with the timing of the data collection 

(August) suggest that water in liquid form is present throughout the glacier crevasse 

system. It is possible that BIL volumetric water content is as high as 2.5% (Bradford et 

al., 2009).   Using the 3-phase approximation to equation 4.10 with üÌ= 2.5% and fi = 

70%, the BIL bulk seismic velocity may be as low as 3700 m s-1 (Figure 4.6). This value 

is well within the uncertainty of the mean solution (Table 4.5). 

The total inversion solution for ρ is 1900 ± 200 kg m-3 with the solution ranging 

from 1700 – 2000 kg m-3 excluding 1 outlier (Table 4.5). We use a common mixing 

equation to interpret these results with respect to rock fraction for the two phase system 

(Nolan and Echelmeyer, 1999):  

2\úû � ü727 ! �1 − ü7�2T.        (4.13) 

Solving for ü7, the resulting rock fractions for the inversion results range from 40 

– 65%.  These values are within published ranges for debris-concentrations of debris-rich 

BIL layers (30 – 59%) (Hart, 1995; Hart and Waller, 1999).  In addition, the robustness 

of the inversion solution is corroborated by the consistency of the rock fraction results 

from analysis of both α and ρ. Combined interpretation of the analysis for inversion 

solutions for α and ρ suggests that there is indeed a thin layer of debris-rich basal ice 

present below the glacier at this location. Given the range of solution ρ, this BIL likely 

has relatively high concentrations of debris (40 -65%).  An alternative interpretation 

could be the presence of basal layers of saturated, frozen sediments with high-porosity. 
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However, such layers are not likely to form beneath a temperate glacier such as this one. 

The 2D seismic profile previously collected at our survey location corroborates our 

findings (Figure 4.2).  Based on peak to peak time difference between arrivals of the 

thinning basal layer observed in the stacked data, the thickness of this layer nearest our 

survey area is approximately 8 m.  The inversion result for d (6 ± 1.5 m) corresponds 

roughly to the center of the section where visual examination shows the basal layer is 

thinning out.   

Next we interpret our results for overburden Q (Q = 68 ± 21).  Overall the 

inversion solution for Qice falls well within reported literature values (e.g., Gusmeroli et 

al., 2010). Furthermore, our surface wave inversion, the model inversion results, and the 

bulk Qice inversion results all demonstrated that the inversion algorithm is not sensitive to 

Q for these high Q values.  To test that observation, we reran the inversion for the entire 

set of 25 traces with Qice fixed and equal to the inversion mean solution (Qice = 68).  The 

resulting mean inversion solutions deviated less than 5% from the solutions in Table 4.5 

and the average run time was half the run time when including Qice as an inversion 

parameter.  Thus we conclude that fixing Qice to a reasonable value based on some 

knowledge of overburden conditions has minimal impact on inversion accuracy and may 

prove a reasonable approach especially given the complicated nature of Q solution, which 

may trap the inversion in discrete local minima (Figure 4.7). 

Finally, it is important to note that target window length is an inversion input 

based on user discretion. Babcock and Bradford (2014b) noted that a shorter window 

length may provide a more accurate inversion result than a longer one.  Thus we attempt 

to define window length so as to include the entire reflection event but exclude noise 
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(Figure 4.5).  Target window remains based on practitioner judgment; future work should 

include a more robust assessment of ideal target window.  

Conclusions 

We applied a full-waveform inversion algorithm to synthetic seismic data and to 

field data taken from Bench Glacier, Alaska, in an effort to quantify thin layer parameters 

for basal layers.  The inversion implements a gradient-based search algorithm in 

conjunction with a 1D vertical incidence reflectivity model. The direct arrivals in the 

field data set provide an estimate of the effective source spectrum for the reflectivity 

model. During synthetic testing on 4 models with 5% added random Gaussian noise, the 

inversion recovered thin-layer parameters within 10% of true model values.  

Additionally, we tested the inversion on 6 different cases of dsed from 1/40λ to ½λ.  

Inversion results for dsed were within 5% of true model values.  Finally, the FWI 

algorithm recovers mean α = 4000 ± 700 m s-1, ρ = 1900 ± 200 kg m-3, and d = 6 ± 1.5 m 

using a subset of field data collected during a glacier seismic survey.  We interpret these 

results to be indications of the presence of a debris-rich basal ice layer at the sample 

locations.  

Future work includes quantification of inversion sensitivity to seismic Q, 

investigation of the effects of window length on solution robustness, and implementation 

on additional data sets.  Judicious implementation of this algorithm could quantify 

properties of thin layers under glaciers and ice sheets. Such accurate quantification of 

basal parameters will aid interpretation and modeling of glacier and ice sheet dynamics in 

response to climate change. 
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CHAPTER FIVE: ELECTRICAL ANISOTROPY IN SEA ICE AND A DUAL-

POLARIZATION RADAR SYSTEM TO MITIGATE THE EFFECTS OF 

PREFERENTIAL ATTENUATION IN IMAGING SEA ICE 

Abstract 

Preferential alignment in the physical structure of the sea ice crystal matrix results 

in anisotropy in the electrical properties of the bulk sea ice. Analysis of a 1D reflectivity 

model and field data demonstrates that sea ice electrical anisotropy can impede ice 

profiling using ground penetrating radar (GPR) reflection methodology via preferential 

attenuation due to polarization effects. Depending on polarization, preferential 

attenuation due to anisotropy effects can reduce or eliminate ice bottom reflections.  To 

facilitate reliable ice profiling, we describe a dual-polarization configuration of a 

commercial GPR system for ice monitoring. The dual-polarization system reliably 

images the sea ice/water interface even in the presence of well-developed conductivity 

anisotropy.  Additionally, by combining data from both polarizations, our system 

provides information about the horizontal direction of the ice matrix alignment, which 

may indicate the direction of dominant current flow.  

Introduction 

Sea ice is well-known to be anisotropic both with respect to its mechanical, 

physical, and electrical properties (Campbell and Orange, 1974; Kovacs and Morey, 

1979; Timco and Weeks, 2010). Even first-year sea ice is an “anisotropic, stratified, 
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strongly absorbing, inhomogeneous dielectric” with electrical and physical properties 

dependent on temperature, salinity, age, and crystal structure (Kovacs and Morey, 1978).  

Both the permittivity and conductivity structures of sea ice are anisotropic. In particular, 

the anisotropy in the conductivity structure of sea ice has ramifications for effective 

implementation of ground penetrating radar (GPR) to image the sea ice bottom.   

The driving mechanism for sea ice conductivity is the salinity (Nakawo, 1981).  

As ice forms from sea water, growing ice crystals extrude salt. This salt may be expelled 

from the bottom of the growing ice sheet.  Some extruded salt becomes trapped within 

the ice sheet and subsequently concentrated in brine pockets and channels. In general, 

these brine pockets are probably ellipsoidal or cylindrical (Figure 5.1) (Jones et al., 2010; 

Kovacs and Morey, 1986; Morey et al., 1984).  Nevertheless, the volume fraction, size, 

shape, and connectivity of the brine inclusions vary over several orders of magnitude 

depending on environmental factors (Buchanan et al., 2011; Jones et al., 2010).  The 

concentration of the brine within the inclusions depends largely on the rate of ice growth 

for early- or mid-season ice.  Ice growth rates, in turn, depend on temperature and on the 

age of the ice (Jones et al., 2010).  

The bulk effective conductivity of the ice sheet is a factor of the brine 

concentration and of the orientation of the brine inclusions. This orientation depends on 

the microstructure of the ice, which is generally either granular or columnar (Timco and 

Weeks, 2010). Granular ice has no preferential orientation and is usually isotropic. The 

conductivity of columnar ice, on the other hand, can be strongly anisotropic due to the 

preferential shape and orientation of the ice columns.  
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In the case of anisotropic columnar sea ice, elongated vertical columnar crystals 

extend throughout the ice sheet.  The columns enclose brine pockets oriented 

perpendicularly to the c-axes of the crystals (Figure 5.1) (Kovacs et al., 1987). This 

vertically-oriented matrix of crystals and brine inclusions can additionally align in the 

horizontal direction in response to dominant ocean currents (Figure 5.1) (Campbell and 

Orange, 1974; Golden and Ackley, 1981; Kovacs and Morey, 1986; Tucker, 1984). The 

net result is that the conductivity (σsi) and permittivity (ԑsi) of the sea ice varies with 

azimuth. The magnitude of the azimuthal variation is a factor of ice temperature, volume 

of brine, the brine temperature and salinity, the properties of the ice crystals, and the 

shape of the brine inclusions.  

In order to understand the implications of this anisotropy for imaging sea ice 

using radar in the GPR frequency range (10 MHz to 1 GHz), we begin by examining the 

relevant electrical properties of sea ice with respect to polarization.  Then we discuss a 

data example that highlights the polarization-dependent response.  Finally, we present a 

commercial radar system set-up that mitigates the effects of the sea ice anisotropy and 

allows us to reliably detect the ice bottom even when the ice is strongly anisotropic.  Data 

collected at two field sites demonstrate the system’s ability to reliably image the sea 

ice/water interface regardless of the preferential direction of the anisotropy. 
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Figure 5.1: Sea ice crystals in columnar ice having a) oriented brine pockets with 
varying shape and size within randomly-oriented columnar ice crystal matrix and b) 
possible orientation of the columnar ice matrix in response to dominant currents 
(following Kovacs et al., 1987). 

Sea Ice Electrical Anisotropy 

Radar wave propagation in sea ice depends on both ԑsi and σsi. Since sea ice is 

strongly anisotropic, we treat the problem as two separate cases corresponding to the 

electromagnetic (EM) plane wave, E, polarized in the parallel (�∥) or perpendicular (�t) 

direction with respect to the dominant orientation of brine inclusions.  Many commercial 

radar antennas are approximately horizontal dipoles and emit a linearly polarized E field. 

By choosing the appropriate coordinate system, we can write the two cases with respect 

to that orientation as follows (Morey et al., 1984): 
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∇>�∥ − μ43�T∥ ?�∥?@ − μ4:�T∥ ?G�∥?@G � �∥        (5.1) 

∇>�t − μ4σ�Tt ?�s?@ − μ4:�Tt ?G�s?@G � �t        (5.2) 

where � is the source of � due to radar excitation, and ԑsi and σsi are polarization-

dependent.  (Since sea ice is nonmagnetic, we take µ to be constant and equal to the 

magnetic permeability of free space, µ0.)  Any case of E polarized at an intermediate 

orientation with respect to the dominant direction of the anisotropy may be decomposed 

into these two cases.  

Taylor’s (1965) mixing formulas provide the effective permittivity of the sea ice 

if the brine pockets are parallel to the introduced field (:�T∥∗ ) or if they are perpendicular 

(:�Tt∗ ), given the complex permittivities of the brine and the pure ice crystals (:ã∗ and :T∗, 
respectively) and the volume fraction of the brine (ʋb). These formulas require some 

additional assumptions about the shape and size of the brine pockets, namely that the 

long axes of the ellipsoidal pockets are small relative to the wavelength of the signal in 

the sea ice and that ʋb << 1. These conditions are likely satisfied in cold sea ice (Jones et 

al., 2010). With these assumptions, we can calculate the complex-valued permittivities 

for the two-component system as follows (Morey et al., 1984): 

 :�T∥∗ � :T∗ ! ʋã�:ã∗ − :T∗�                (5.3) 

and 

:�Tt∗ � Cw∗C�∗C�∗Bʋ��Cw∗WC�∗ �           (5.4) 
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Inspection of these two equations reveals the need to calculate the complex-

valued :ã∗, :T∗, and ʋã. The Debye (1929) formula provides the basis for computing 

complex-valued :ã∗ (Stogryn, 1971) and :T∗ (Buchanan et al., 2011) as follows:   

 :T∗ � ԑTÎ ! ԑw&WԑwÑ$BTXÒw            (5.5) 

:ã∗ � ԑãÎ ! ԑ�&Wԑ�Ñ$BTXÒ� ! b A�XԑÐ          (5.6) 

using the dominant relaxation time of the specific material (τ); the low frequency (ε0) and 

high frequency (ԑÎ) permittivity limits of the given material; the conductivity of the 

brine (3ã); the 	permittivity of free space (ԑÊ); and i = √−1.   

At radar frequencies, :T∗ is essentially frequency- and temperature-independent 

(:T∗ ≌ �3.14 ! 0.002b�ԑÊ) (Golden, 1995; Kovacs and Morey, 1986).  On the other hand, 

:ã∗ depends strongly both on temperature and on frequency (Golden, 1995). Stogryn 

(1971) provides equations to calculate τ, ԑÎ, and ε0 for brine as a function of temperature 

(T).  Brine conductivity (σb) also depends on T. Morey et al. (1984) discuss calculations 

of σb and the concurrent assumptions in detail.  

Finally, estimating :�T∥∗  and :�Tt∗ 	also requires calculating ʋã and :½∗ . We follow 

the formulas provided by Frankenstein and Garner (1967) to compute ʋã as a function of 

temperature (T, °C) and the bulk salinity of the ice (�̈T�.  At radar frequencies, the 

effective permittivity (ԑef) is approximately equal to the real part of ԑ*  (Bradford, 2007; 

Knight and Endres, 2005). The differences between ԑef in the parallel and perpendicular 

polarizations (ԑ6Ç∥ and ԑ6Çt, respectively) is less than 17% for cold sea ice. The 

imaginary components of :�T∥∗ 	and :�Tt∗  (:�T∥©©  and :�Tt©© , respectively) contribute to the 
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cumulative effective conductivity of the sea ice in the parallel (36Ç∥) or perpendicular 

(36Çt) polarization (Knight and Endres, 2005):  

36Ç∥ � 3ÉÊ !d:�T∥©©              (5.7) 

36Çt � 3ÉÊ ! d:�Tt©©               (5.8) 

Following a modified Archie’s law (Morey et al., 1984), 3ÉÊ	is a function of ʋb 

and 3ã(Kovacs and Morey, 1986):  

3ÉÊ � 3ãʋã½            (5.9) 

where m depends on polarization. Combining equations 5.3 through 5.9, we 

proceed as follows:  

36Ç∥ 	� �0.5 ! .02��3ã,>óʋã$.óó + dIm�:T∗ + ʋã�:ã∗ − :T∗��      (5.10) 

36Çt = �0.5 + 0.02��3ã,>óʋã$.
ó +dIm�:T∗ + 2ʋã �C�∗ <C�∗WCw∗=C�∗ BC�∗ �     (5.11) 

The final result is that the net effective conductivity of the ice parallel to the 

preferential horizontal direction of the brine channels can be up to 2.5 times higher than 

the effective conductivity perpendicular to the channels, depending on temperature 

(Figure 5.2).   

Both :6Ç and 36Ç contribute to the attenuation, αsi, of the radar wave in sea ice: 

g�T = dh%C�à> �Q1 + � A�àC�àX�> − 1� .                                                   (5.12) 
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We substitute the appropriate variables corresponding to each polarization to 

calculate g�Tt and g�T∥ (Figure 5.2).  The attenuation exponent increases with increasing 

36Ç, and so g�T∥ is greater than g�Tt.  Thus the radar wave experiences preferential 

attenuation when aligned with the brine structure of the ice. The differences between g�Tt 

and g�T∥ are large at all temperatures ranging from -22°C (g�T∥ ≌ 10g�Tt) to -2°C (g�T∥ ≌ 

28g�Tt) (Figure 5.2).    

Finally, we use a 1D reflectivity model to model the polarization-dependent 

reflection of the radar wave from the sea ice/water interface (Bradford et al., 2010). The 

model results show that preferential polarization of the EM signal can reduce and even 

eradicate the ice bottom reflection event (Figure 5.2).  Multiple published results 

corroborate the model predictions. For example, Kovacs and Morey(1978) experienced a 

complete absence of any measurable reflected signal from the ice bottom and attributed it 

to preferential attenuation. Similarly, Campbell and Orange (1974) monitored 

preferentially-extinguished ice bottom reflection events with changing azimuth.  Nyland 

(2004) observed preferential attenuation of radar reflection amplitudes on sea ice in 

Alaska and warned that errors in ice velocity may result from difference between ԑef in 

the two polarizations. 

Data Example: Testing at CRREL 

Materials and  Methods 

Site 

We collected an example data set over a saline ice sheet grown in a control 

facility at the U. S. Army Cold Regions Research and Engineering Lab (CRREL) in New 
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Hampshire in 2011. The testing at CRREL was part of an ongoing campaign to verify the 

radar’s ability to detect spilled oil in and under sea ice.  For all CRREL testing, CRREL 

personnel grew a saline ice sheet in an outdoor concrete basin 18.25 m long by 6.7 m 

wide by 2 m deep. A refrigeration unit above the tank maintained the air temperature over 

the ice sheet at -15 °C during ice growth. We adjusted initial water salinity such that the 

final water salinity after ice growth would mimic sea water, approximately 32-34 parts 

per thousand (ppt). Surface ice temperatures during testing were -10 to -15° C.  We 

collected data before and after a simulated oil spill event during the training exercise. 

Acquisition 

We collected data using Sensors and Software PulseEkko Pro 1 GHz shielded 

antennas. We processed and analyzed the data without foreknowledge of anisotropy 

structure, ice depth, or oil location. Basic processing steps included a dewow filter, time-

zero correction, amplitude spreading corrections (t1), background subtraction, and muting 

the first arrivals. Where applicable, we converted from time to depth using an 

approximate sea ice velocity of 0.15 m/ns. 

Results 

These data show a marked decrease in reflection amplitude from the sea ice 

bottom depending on polarization. The most likely cause of the missing reflection from 

the data in the cross-tank direction (Figure 5.2) is exponential decay due to attenuation of 

the radar energy polarized in alignment with the conductivity structure of the sea ice. 

This result shows that unintentional survey alignment with the preferential axis of the 

conductivity structure of sea ice can obscure or eliminate reflection response from the ice 
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bottom.  In such cases, data analysis would not reliably reveal the ice/water interface. 

With that in mind, we present a system to reliably image the ice bottom even in the 

presence of strong anisotropy and regardless of the anisotropy direction. 

 

Figure 5.2: Demonstration of the modeled and real effects of sea ice anisotropy on 
radar data using 500 MHz central frequency, n=0.07, and parallel (solid) or 
perpendicular (dashed) polarizations: a) effective conductivity versus temperature; ��	∥ is more than 2 times ��	t at all ice temperatures above -17 °C.  b) calculated 
attenuation exponent α for each polarization; for sea ice at -2° C,	��	∥is more than 2 
times greater than ��	t. c) 1D reflectivity model of ice bottom reflection with ice 
thickness 0.85 m (reflection at 12 ns). The left plot uses Archie’s law exponent 
m=1.75 for antenna polarization perpendicular to primary crystal orientation; plot 
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on right uses m=1.5 for parallel polarization; in this case reflection strength from 
ice/oil/water interface is reduced by a factor of 85. d) 1 GHz pulsed radar data 
collected at CRREL in both polarizations. The almost-complete disappearance of 
the ice/oil  interface and the ice-water interface in the cross-tank direction 
(rectangle) is likely a result of attenuation due to conductivity anisotropy. 

Field System for Anisotropy Mitigation 

Dual-Polarization Confirmation 

We implement a new dual-polarization GPR system using 4 500-MHz Sensors 

and Software PulseEkko Pro shielded antennas.  For this system, we orient one source-

receiver pair in-line (parallel) with the survey direction and the other perpendicular 

(cross-line) to the survey direction.  The system collects data alternately from the 

orthogonally-polarized antenna pairs across the length of the survey with spatial 

positioning controlled via odometer wheel (Figure 5.3). Data sets are collected 

simultaneously by the system, so the only difference between the parallel and 

perpendicular data sets is polarization direction.  Since the antennas are orthogonally 

polarized, regardless of the preferential direction of the anisotropy structure at least one 

of the antenna-receiver pair should experience minimal attenuation and successfully 

image the sea ice bottom. 
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Figure 5.3: Dual-polarization system: 500 MHz antenna-receiver pairs oriented 
parallel and perpendicular to survey direction, as shown by orientation of odometer 
wheel travel. 

We acquired data using the dual-polarization system at Prudhoe Bay, Alaska over 

natural sea ice in 2008. During the Prudhoe Bay testing, the clean mid-winter sea ice was 

approximately 1.5 m thick. Data for temperature and salinity of the ice at Prudhoe are 

limited, and no boreholes were drilled during the data collection to verify ice depth.  In 

2012, we tested the 500 MHz dual-polarization system in conjunction with training 

conducted by Alaska Clean Seas at CRREL for oil spill responders and relevant 

environmental agencies.  The staff at CREEL grew the ice sheet as described in the 

previous section. Ice thickness was approximately 0.4 m, and we collected data after the 

simulated oil spill event during the training exercise. 

For all tests using the dual-polarization system, we did not preplan survey 

direction with respect to any anticipated anisotropic response in the ice.  We processed 

and analyzed the data without foreknowledge of ice depth or oil location, using the same 

processing steps as above. Additionally, using the dual-polarization data, we combined 
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the orthogonally-polarized data sets into one complete profile by vector sum. In using the 

vector sum to combine the data, we assume that the differences in travel time due to 

polarization are insignificant. We also assume that the reflection amplitude from the 

parallell-polarized phase (u∥) is negligible. Contrary to Nyland’s (2004) observation, in 

our data we see less than 0.1 ns differences in arrival times between the two polarizations 

and using the vector sum to combine the data proves reasonable.  The small difference in 

arrival times validates our assumptions about u∥. 
Another advantage of the dual-polarization approach is the ability to determine 

the dominant direction and the relative strength of the anisotropy.  After basic processing 

steps, we evaluate the maximum reflection strength of ice/water reflection event for both 

polarizations (ut and u∥) averaged in 1 m increments across the length of the survey.  

Then, we compute the angle in degrees (�) between two vectors with respect to the 

direction of travel, assuming u∥ � 0: 

� � tanW$ ��a	��s���a	��∥�          (5.13) 

Finally, we calculate the relative strength of the anisotropy as max	�ut� max	�u∥�⁄ .  This 

technique gives the anisotropy vectors with respect to direction of travel and with respect 

to the maximum reflection strength in a given survey. 

Results 

In the Prudhoe Bay data, the radar antenna pair polarized perpendicular to the 

survey direction clearly profiles the ice/water interface located at about 1.5 m, but the 

ice/water interface is almost completely absent from data collected with polarization in-

line with direction of travel. We interpret this directionally-dependent attentuation as a 
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result of preferential alignment with the anisotropic ice structure.  However, using our 

system, the vector sum provides the most complete profile of the bottom of the ice 

(Figure 5.4). 

The data collected at CRREL in 2012 also demonstrate differences in reflection 

strength between the two orthogonal antenna polarizations (Figure 5.5). In this case, both 

data sets profile the reflection associated with the ice bottom at approximately 0.40 m, 

including topographic highs at 4 and 10 m. However, the in-line polarization reflection 

strength is weaker at almost all locations. The most likely cause is preferential attenuation 

due to anisotropy.  In these data, the effects of the preferential attenuation on the ice 

bottom reflection event are evident both in the clean and oil-contaminated areas. 

Finally, we plot an example showing relative direction and strength of the 

anisotropy for the Prudhoe Bay data (Figure 5.4d).  Since previous work correlates the 

direction of dominant crystal alignment with current, knowing the direction of anisotropy 

has important implications for application such as oil spill response in Arctic conditions. 

For example, the dominant current direction can indicate in which direction spilled oil is 

likely to migrate underneath an ice sheet. In a spill response effort, this additional 

knowledge can aid spill responders in efforts to track and monitor the spilled oil.   
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Figure 5.4: Data collected over sea ice at Prudhoe Bay, Alaska using the dual-
polarization system: a) in line with survey direction, b) perpendicular to survey 
direction, and c) vector sum of a) and b). The combined information from both 
polarizations provides the most complete image of the sea ice/ water interface. d) 
Solid arrows denote relative direction and relative strength of anisotropy with 
respect to the survey direction (dashed arrow) and relative to the unit circle.  Two 
equally valid solutions exist (±180°). 

d)



147 

 

 

Figure 5.5: Radar data collect over a saline ice sheet at CRREL at 0.1 m 
increments a) in line with survey direction, b) perpendicular to survey direction, 
and c) vector sum of a) and b); d) shows relative reflection strength across 
corresponding to a (dashed line), b (solid line), and c (bold line) with very high 
amplitudes corresponding to oil locations under the ice at about 4-5 m (traces 40-50) 
and 9-11 m (trace 90-110). 
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Conclusions 

Preferential alignment of the sea ice physical structure during ice growth results in 

anisotropy in the physical and electrical properties of sea ice.  We decompose EM wave 

propagation in sea ice into two cases:  1) the EM wave polarized parallel to the 

conductivity structure of the ice (�∥), and 2) the EM wave polarized perpendicular to the 

conductivity structure (�t). Higher σef in the parallel direction can attenuate the radar 

wave travel to the extent that the ice bottom reflection is completely extinguished. A data 

example demonstrates the need for a GPR system capable of robustly imaging the 

ice/water interface regardless of anisotropy direction. 

We configured a commercial radar system to provide simultaneous acquisition 

with antenna pairs polarized in line with and perpendicular to survey direction.  Our 

approach allows for proper treatment of conductivity anisotropy and minimizes problems 

with interpretation of the sea ice/water interface.  Data processing and interpretation 

show that this system is effective for imaging the ice/water interface regardless of 

dominant crystal alignment.  Our system has applications for monitoring sea ice 

thickness; detecting contaminants such as oil in and under sea ice; and monitoring the 

movement of contaminants under an ice sheet. Collecting data using the dual-polarization 

system has proven rapid and reliable at two field sites, and interpretations of ice depth 

have corresponded well with field data where available.  With minimal training, 

personnel could use the system to monitor ice thickness under Arctic conditions, and 

thereby reduce hazard exposure to personnel as compared to traditional methods of ice 

monitoring such as core drilling.     
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CONCLUSIONS 

The targeted full-waveform inversion algorithm was able to recover layer 

properties to within 10% for both the seismic and radar reflection models with the 

exception of conductivity for the radar case and seismic quality factor in the seismic case.  

In the radar laboratory and field examples, inverted thin-layer properties were within 

15% of measured or estimated values.  In addition, for two of the radar examples the 

inversion algorithm performed robustly even when solving for properties of two separate 

layers.  In the seismic case, it is impossible to quantitatively assess the accuracy of the 

inversion results using the field data since seismic properties for the basal ice layer 

underneath Bench Glacier are unknown.  Furthermore, seismic properties of frozen earth 

materials have a broad range in values depending on porosity, water saturation, sorting, 

overburden, and other factors (see Chapter 4 for examples).   Nevertheless, I 

demonstrated that the inversion results are within reported literature ranges for basal ice 

layers.   

It is interesting to note that in both the seismic and radar cases, the inversion 

algorithm does not appear to be particularly sensitive to thin-layer attenuation parameters.  

For example, in Chapter 3, I showed that inversion solutions for σ deviated up to 5 orders 

of magnitude from the true model values.  In Chapter 5, testing revealed that the 

inversion solution for modeled thin-layer Q was up to 200% greater than the input model 

value.  For the radar case, if the low-loss criteria holds, changes in permittivity dominate 
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reflectivity responses.  For seismic data, if Q is large the second term in equation 4.3 goes 

towards zero and the effect of Q on the reflection coefficient is small. For example, if Q 

is greater than 100, the resulting contribution to the reflection coefficient may be less 

than 1% depending of course on frequency.  Then, the primary contribution of Q or σ is 

to attenuate the traveling wave by SWoZ where x is the distance traveled in the layer. For 

radar-wave travel α = αt (equation 1.43), and α = 
X>_ç in the seismic case (equation 4.6).  

Obviously, as the layer thickness decreases, the attenuation also decreases, in this case 

exponentially.  Then in the thin- and ultra-thin layer cases I tested, the inversion may not 

be sensitive to layer σ or Q since it contributes little either to the attenuation or to the 

reflectivity response. An exception would be in the case either of high σ or low Q: if the 

low-loss criteria is invalid or the layer thickness approaches the skin depth, then 

attenuation due to Q or σ may become significant even in the thin-layer case. Then the 

inversion algorithm may provide more reliable estimations for the two parameters if layer 

thickness were increased or at higher values of σ and Q.  Future testing of the inversion 

algorithm should include model testing to retrieve layer σ and Q at higher, rather than 

lower, layer thicknesses, and subsequent testing on field data. 

Finally, the user must recognize that the inversion algorithm depends on many 

assumptions and simplifications and any of these can easily be violated with subsequent 

detrimental consequences on inversion performance.  For example, one assumption 

inherent within the 1D reflectivity model is that the subsurface can be represented by a 

stack of homogeneous, isotropic, layered materials.  The subsurface is neither 

homogeneous nor isotropic.  Violations of these assumptions lead to problems and 

inaccuracies not just within the inversion algorithm accuracy but even within the data 
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itself.  For example, in Chapter 5, I demonstrated that in the face of strong anisotropy 

within the conductivity structure of a subsurface material, standard radar reflection 

methods may fail to provide reliable subsurface imaging.  Thus, the presence of 

anisotropy not only violates the assumptions of the reflectivity model but also can 

invalidate data collection methods.  In either of those cases, it is obvious that the 

inversion will fail to generate reliable results.  Thus, I demonstrated the efficacy of a 

dual-polarization radar system for robust collection of radar data even in the case of 

pronounced subsurface anisotropy.  By using this system to collect data over sea ice in 

the event of a contamination event such as an oil spill, subsequent use of those data 

within the inversion algorithm would be much more likely to succeed at retrieving oil 

locations and thicknesses reliably.   

This targeted full-waveform inversion and the dual-polarization radar system have 

potential widespread use for environmental monitoring and environmental remediation.  

The dual-polarization system provides a reliable method to image the water-ice interface 

rapidly and over long distances.  Potential applications include sea-ice surveys to provide 

ground-truth data for satellite sea ice measurements. With the increase of remote sensing 

and modeling based on remote measurements, researchers and practitioners alike sorely 

need such reliable ground verification of satellite data.  In addition, personnel who 

monitor sea ice depth for hazard mitigation assessment in remote operating areas could 

use this system to do it more quickly, safely, and reliably than current borehole methods. 

In the event of a spill, as mentioned previously, remediation workers could use the dual-

polarization system in conjunction with the inversion algorithm to best delineate priority 

response areas. 
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As I demonstrated, practitioners can also implement my inversion algorithm on 

glacier seismic data in order to define basal conditions.  Such applications will enhance 

environmental monitoring and modeling efforts. Specifically, glacier dynamics are tied to 

glacier movement and even to global climate change, and glacier dynamics depend in 

part on basal conditions (Chapter 4). Thus using the inversion algorithm to quantitatively 

define basal conditions is another innovative application of my research. However, as 

demonstrated in Chapters 2 and 3, I feel the real strength of the inversion algorithm lies 

in retrieving thin-layer properties where those layers are the result of environmental 

contamination.  The inversion has demonstrated remarkable reliability (< 15% error) in 

retrieving contaminant permittivity and thickness using both model and field data for two 

different types of contaminants: LNAPLs and DNAPLs.   

Additional model testing in Chapter 2 indicated that the inversion may perform 

well even at layer thicknesses as low as 0.4%λ, although in the presence of noise this 

limit is likely to be higher. Thus, future work should include application of this inversion 

algorithm on additional field data sets.  Careful choice of data sets should allow for 

inversion testing on both thicker and thinner contaminant layers as well as additional 

types of contaminant.  Testing the algorithm on a contaminant with relatively high 

conductivity (> 0.05 S m-1, see Figure 2.3) would be particularly beneficial in the 

ongoing effort to carefully and quantitatively define the inversion strength and 

weaknesses.  

Furthermore, additional work on the algorithm itself should attempt to automate 

the windowing of the reflection event.  Currently, this process involves manually picking 

the target window trace by trace. The need for manual picking limits the number of traces 



153 

 

the inversion can process in any given time.  Automating the event windowing would 

allow more rapid processing of large data sets at contaminated sites.  One such large data 

set is the Wurtsmith AFB contaminated site, which I discussed in Chapter 3.  Future work 

should include testing an automated version of my algorithm on those data or another 

similar data set with lower levels of noise.   

In conclusion, this body of work provides a new targeted full-waveform inversion 

for quantifying thin-layer parameters as well as a new method of collecting reliable radar 

data where the subsurface may be highly anisotropic.  Here I demonstrated the inversion 

robustness on both radar and seismic data.  Eventual field implementation could provide 

rapid and robust subsurface characterization of thin-layers over larger areas than point 

source measurements.  Thus it may be particularly beneficial to environmental 

monitoring and remediation efforts.  
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Abstract 

Scientific information offers unique contributions to public policy decisions for 

land management and resource use.  Unfortunately, various barriers hinder transfer of 

science to decision makers. Boundary organizations play a prominent role among 

constructs designed to bridge these gaps between science and policy.  Here we examine 

the role of boundary organizations and segregate boundary organization theory into 

boundary organizations, boundary objects, and boundary-spanning individuals.  A case 

study conducted within a university setting provides additional information about these 

constructs and the processes and barriers operating between scientists and decision 

makers. We conclude that the classification of “boundary objects” may include non-

traditional boundary objects such as buildings. 

Problem Statement 

Science strives to produce unique, verifiable, accurate information about the 

natural world and its systems. Thus science can be a vital component of the decision 

making process for most public policymaking relevant to public lands use and sustainable 

management of natural resources. However, what or who defines “science” is itself a 

contentious issue.  Decision makers must address this definition in an effort to promote 

stakeholder confidence and to promote minimally-biased and repeatable scientific 

conclusions. 

Properly understood, science is often able to provide unique information about 

current resource status and expected future outcomes (Lackey, 2007).  For example, 

scientists can use various methodologies to test a hypothesis and make conclusions about 
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reactive changes in populations within a forest ecosystem due to mining activities.  

Decision makers could consider such information within the context of a public policy 

decision concerning mining permits.  Similar examples abound within almost all 

decisions that impact natural resources, the foundation for sustaining human life on this 

planet.  

Admittedly, there exist a plethora of factors besides science that decision makers 

weigh when determining public policy. Decision making for resource management 

involves balancing competing interests and stakeholder demands.  Economics, social 

norms, public values, ecological repercussions, and related externalities are but a few 

examples. These systems are legally and morally imperative in the decision making 

process. These non-scientific factors often drive national and global resource 

management decisions and may take precedence over the pertinent science.  Both legal 

concerns and public demands may override scientific inputs given the importance of our 

legal and political system.  

Ultimately, however, science necessarily holds a preeminent place within 

resource decision making, as follows. The fundamental basis underlying decisions for 

public land allocation and natural resource management is the natural system.  Within the 

current natural resource planning and management structure within the United States, 

science often serves as the preeminent source of knowledge about these natural systems. 

Thus science is intricately connected to such decisions, and decision makers involved in 

this arena often make concerted efforts to incorporate scientific results.  Additionally, 

today’s environmental regulations require inputs from scientific information. What bias, 
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or priority, decision makers should give to information in resource allocation decisions 

depends on the plethora of other factors that drive our planet and our lives. 

Realizing this relationship, if society commits to including science within the 

decision making process (through, for example, legislation) for management of public 

lands and resources, science and decision makers must be connected to facilitate 

knowledge transfer in both direction. Linking science to decision making presents a 

challenge to all participants.  This paper examines two specific processes in forging these 

links. First, we must explicitly define science so stakeholders recognize it as relevant and 

essential to public policy decisions.  Then, we must facilitate transfer of useable, useful 

knowledge from the realm of science to the realm of policy via organizations, useful 

objects, or personal relationships.   How decision makers incorporate this knowledge 

within the decision making process is outside the scope of this paper. 

Mediation of the transfers between realms of science and public policy is the 

subject of a wide body of literature.  After discussing definitions of science, we examine 

a subset of that literature on mediation related to boundary organization theory and its 

role in the decision making process (i.e., Cash et al., 2002; Parker and Crona, 2012; Carr 

and Wilkinson, 2005; others).  As part of this research, we conducted a case study among 

scientists and related policy personnel within a university setting. We use this example 

and others to discuss potential changes to current boundary organizational theory and 

subsequent implementation within decision frameworks for public land and resource 

management. 
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The first step: what’s in a name? 

What is science? The catch-all use of the word has become increasingly common 

in the public domain.  However, to promote science as an integral part of the decision 

making process, citizens, scientists, and policy makers must share a common, narrow, 

and valid definition of science. Scientists rely on this definition to defend the validity of 

their results. Decision makers use it to separate and evaluate the scientific component of a 

problem from other factors. The definition also boosts perceptions of legitimacy among 

citizens and other stakeholders (Cash et al., 2002; Lackey, 2007).  

Strictly defining science can legitimize its role in decision making while still 

upholding the validity of other factors.  Strictly defining science distinguishes science 

from other inputs to the decision-making process and allows decision makers to evaluate 

sources of uncertainty.  Both of these factors aid in maintaining public confidence in the 

decision making process and in the validity of science.  However, even outside the public 

domain, philosophical and scientific literature presents an incredibly wide array of 

definitions of science.  These definitions tend to fall into one of four categories:  

hypothesis-driven; inductive; procedural; and constructed.  Below, we sift through these 

definitions and present a well-rounded, utilitarian definition for use within public policy 

and by scientists alike. 

What’s in a name: the classical scientific method 

Hypothesis-driven science is that which we first learn about as children, 

memorizing the steps of the scientific method from theory to hypothesis to 

experimentation to observation and conclusion (Nature Methods, 2009). With this 

definition, hypothesis-driven science is a specific, well-defined process as opposed to a 
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collection of truths which decision makers could use as trump cards (Freemuth, 2011). 

The foundations for this definition go back hundreds of years to great philosophers such 

as Descartes in the 17th century. The classical scientific method incorporates deductive 

reasoning, leading “from Ideas to Data” via controlled experimentation (Benjamin, 1949; 

Kell and Oliver, 2004).  Experimental results then confirm or reject the original 

hypothesis.  

In this strict definition, science exclusively begins with hypothesis formulation 

and continues with hypothesis testing (Nature Methods, 2009).  Thus the hypothesis-

driven definition of science excludes many categories of inquiry into the natural world. 

For example, it excludes “pseudoscience,” data pattern recognition, or scientific claims 

which are not testable, falsifiable, or reproducible (Wong and Hodson, 2010).  Note that 

excluding these other inputs from the definition of science does not necessarily exclude 

them from the decision making process. 

This exclusive definition promotes long-term public trust as hypothesis-driven 

research reduces bias and promotes falsifiability and verifiability of scientific results, an 

important trait of scientific inquiry. First, a formally-stated hypothesis is open to 

falsifiability by another researcher following the scientific method. Second, verifiability 

follows from the rigorous nature of the experimental phase of hypothesis-driven science: 

the same experimental steps should produce with the same results thereby verifying the 

conclusions (Wong and Hodson, 2010). However, researchers and decision makers must 

recognize that hypothesis testing cannot eliminate the “invisible hand,” that is, an unseen 

preference for a particular choice (Lackey, 2007). Hypotheses-driven research is still 

susceptible to biases introduced by normative (pre-chosen) hypotheses (Boumil and 
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Berman, 2010; Lackey, 2007). Normative hypotheses inherently contain bias as they 

reflect preference instead of fact, by including connotative language such as “alter,”  

“degrade,” or “healthy” (Lackey, 2007). Reducing the use of normative hypotheses can 

aid the overall reliability of the hypothesis-driven scientific method.  

Classical physical, chemical, and biological experimental science follows the 

scientific method and lends itself well towards applications in resource or land 

management. In a decision about open-water oil field locations and lease sales, policy 

makers might incorporate scientific results delineating expected environmental 

repercussions of potential oil spills. For example, hypothesis-driven research has shown 

that exposing fish embryos to crude oil can cause genetic damage and mortality (Carls et 

al., 1999).  Such research might influence decision makers when considering oil drilling 

and exploration within known spawning grounds.  As another example, Coates (2005) 

used the scientific method to show that crops can grow in waste water from mine tailings, 

providing a use for mine waste and a potential for mine remediation.  Scientifically-

validated remediation techniques for mine tailings may allow land use planners more 

leeway for mining permits. 

The inductive approach  

The direction of the classical scientific method is from Ideas to Data, that is, 

deductive reasoning. On the other hand, Kell and Oliver (2004) define inductive science 

as movement “from Data to Ideas.” This definition is data driven. “Data mining,” 

statistical inference, generalization from specific cases, mapping (e.g. epidemiological 

studies), and other similar observations derived from data (such as field observations) 

subsequently provide conclusions via detailed analysis. Thus, the inductive definition of 
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science is broader than hypothesis testing, and includes reasoning from example.  

Deductive science and inductive science are not always mutually exclusive but may 

continuously support and inform one another, ideally via iterative cycling – Data to Ideas 

to Hypothesis and back to Data via experimental testing and verification (Kell and Oliver, 

2004).  It is important to recognize that this cycle does not always proceed in that order, 

but rather the emphasis is on iterative cycling between deductive and inductive reasoning. 

Although not as explicitly-stated or formalized, the roots grounding this definition 

of science may run nearly as deep as those of the scientific method. The most famous 

example of data providing an idea for investigation is the famous, unverified story about 

Newton and the apple fall (Krull and Kulikov, 2006).  James Clerk Maxwell, another one 

of the greatest physicists in human history, made key advances in optics which resulted 

from his observations about color mixing from spinning tops.  As far as we know, 

Maxwell wasn’t hypothesis testing or designing an experiment when he made these 

breakthroughs; he was curiously observing and exploring the wealth of data in the world 

around him (Goldman, 1983).  

Inductively-driven science has increasingly prospered in the last century as 

powerful computers and instrumentation progress allow scientists to exploit previously-

untapped sources of data, such as large-scale ocean temperature monitoring. Monumental 

increases in the speed of data examination and processing allow rapid, through 

examinations for pattern and ideas.  Therefore, using this somewhat broader definition for 

science may aid decision makers as inductive results are often more plentiful than 

hypothesis-driven research. 
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Unfortunately, using a broader definition also has disadvantages.  For one, 

inductive scientific results may have higher rates of incorrect correlations than 

hypothesis-driven science, since correlations are more readily found in data inductively, 

e.g. via data mining, than they are to prove via hypothesis testing (Nature Methods, 

2009).  Inductive science does not always allow for falsifiability or repeatability.  If the 

scientific result is inductive only, without experimentation, then there is no way to repeat 

results. A scientist could simply examine the same data but cannot truly test the 

conclusion without a hypothesis.  Surveys of scientists show that they recognize these 

problems with inductive science, and most uphold the standard of experimental methods 

over non-experimental ones (Wong and Hodson, 2010).  In general then, inductive 

science coupled with hypothesis-driven research is a stronger foundation for scientific 

conclusions than inductive methods alone. 

Epidemiological studies, famous in scientific circles since John Snow and his 

London map of cholera (which disclosed that local beer drinkers were mysteriously 

immune), are an example of data-drive science (Goldstein, 2012).  The basis of 

epidemiology is data collection for mapping, tracking, categorizing, and analyzing human 

or animal diseases.  In fact, the hypothesis-driven science may begin at the end of the 

epidemiological study, with the formulation of a hypothesis about the cause of the 

specific disease. This iteration exemplifies the link between deductive and inductive 

reasoning.  

Climate science is inductive reasoning applied to observations about the earth’s 

temperature, weather patterns, and circulations (IPCC, 2007; Lucarini, 2002). Although 

founded on massive amounts of global data but is not provable via “application of the 
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usual scientific validation criteria” (Lucarini, 2002). Climate data show a relationship 

between atmospheric temperature and atmospheric concentrations of certain gases, the 

“greenhouse gases.” This link provides a good example of some weaknesses of inductive 

science. To rigorously verify the correlation on a global scale is simply impossible.  

Climate science, then, is not falsifiable in the traditional sense. Nor is there anything 

repeatable about the data set of global temperatures and climatic conditions.   

Decision makers are increasingly attuned to the economic and social 

consequences of climate change.  Nonetheless, other stakeholders continually question 

the underlying science due to its inductive rather than deductive nature, the uncertainties 

involved, and its lack of verifiability or falsifiability. Decision makers might bolster long-

term public confidence by publicly addressing these uncertainties and differentiating 

between the inductive and deductive definitions of science when discussing climate 

science, and, indeed, any inductive scientific results. Of course, public acceptance of 

policy solutions to climate change may prove to be even more difficult that public 

acceptance of the science behind the decision making.  

Although inductive science does have inherent flaws, we cannot discount it. 

Brilliant minds have produced a wealth of knowledge using inductive methods. Thus in 

moving from a strict hypothesis-driven approach to inductive science, decision makers 

have more breadth of results upon which to draw.  Additionally, since many informed 

citizens probably view our examples and inductive science as “real” science, legitimacy 

of the decision-making process is upheld when using this definition.  

  



174 

 

Science as a process 

A third group of definitions group interrelated scientific and institutional 

processes together (van Dijk, 2011; Kell and Oliver, 2004).  The American Physical 

Society defined science as a “disciplined quest to understand nature in all its aspects” 

(Macilwain, 1998). Carr and Wilkinson (2005) define sciences as a “special learning 

process.”  These definitions broaden science beyond inductive or hypothesis-driven 

methodologies. Some examples of scientific processes include journal publication, public 

presentations, collaborations, and peer review. These scientific processes are not always 

directly tied to the deductive or inductive methods of investigation but have gained 

acceptance both within and outside the scientific realm as being “science” (van Dijk, 

2011; Wong and Hodson, 2010).   

Including these example by defining science as a process poses several problems 

for decision makers. Whereas the hypothesis and inductive definitions provided a tool to 

easily distinguish scientific from non-scientific pursuits, defining science as a “quest” or 

a “special process” blurs that line. That blurring causes increased uncertainty and 

increased susceptibility to error. Also, the vagueness of the process definition precludes 

falsifiability.  Decision makers suffer as a result when “science” loses credibility and 

legitimacy in the public eye and incorporating science into resource management 

becomes increasingly difficult (Cash et al., 2002). Furthermore, defining science as 

simply being special process does not innately distinguish it from any other realm of 

human investigation, and leaves the door open for normative science (Lackey, 2007).   

As an example, consider scientific modeling. Modeling is a specific scientific 

process, yet it is not necessarily restricted by the scientific method or by data-driven 
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inductive reasoning.  Modeling fits more clearly with the “quest” or “process” definition 

since creating models to portray natural phenomenon is obviously a “disciplined quest to 

understand nature.” Modeling efforts do not usually meet the criteria of science being 

verifiable and reproducible. Known scientific laws or equations may govern model 

algorithms, but algorithms are generally predictive in nature and therefore not falsifiable 

in the present time.  Nor is modeling reproducible – successive tests of a modeling 

algorithm with slightly different inputs can produce enormous variations in response, e.g. 

the well-known “Butterfly Effect” (Palmer, 2008).  Decision makers often include 

models in the “scientific” component of their decision but by doing may sacrifice 

legitimacy. 

Science as “truth” 

The broadest definition of science is science as a “social and cultural 

construction” (van Dijk, 2011), whereby “science…is whatever scientists do” (Nature 

Methods, 2009). Gottfried and Wilson (1997) describe science as “a communal belief 

system.” This definition approaches the idea of “science as truth” instead of science as a 

rigorous process (Freemuth, 2011).  Such social or cultural definitions inherently include 

normative science, and accept that “social, cultural, economic, political, and ethical 

forces determine the priorities” for science (Wong and Hodson, 2010). Scientists may 

personally and professionally embrace this definition of science and the idea of science as 

truth.   

The negative connotations of this definition imply that popular opinion on a 

natural or environmental topic can substitute for hypothesis-driven science, or that 

science can be a “trump” card in the policy arena by superseding other decision-making 
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factors (Freemuth, 2011).  An additional negative result may be that scientists confuse 

their personal values with science and the introduction of bias and normative hypotheses 

into scientific inquiry (Lackey, 2007). 

Allowing culturally-based science equal footing within the decision making 

framework may also escalate uncertainty beyond acceptable bounds for decision makers. 

For one thing, culturally-defined science is neither falsifiable nor verifiable, and thus also 

problematic for estimating associated uncertainties. Science based on social or cultural 

beliefs may also be non-relevant to decision makers or incorrect so often as to be useless 

for them, given the goal of sustainable management of public lands and natural resources.  

Unproven scientific ideas can become social or cultural norms even though they 

are simply theoretical in nature.  Examples include the Standard Model of Particle 

Physics, quantum chromodynamics, and, dare we say, climate change (Gottfried and 

Wilson, 1997).  Many such theories are not inherently relevant to decision making 

processes for sustainable land and resource use; on the other hand, climate science has 

significant implications for these decisions. Since global climate change as a scientific 

concept has become a social and cultural norm rather than a scientific result, the public 

associates climate science with social upheaval and erroneous results. These problems 

have limited the successful application of climate science for decision makers in resource 

management.  

On the positive side, a cultural definition of science affords local or indigenous 

knowledge equal footing with more traditionally-accepted scientific approaches.  In fact, 

local knowledge, where available, is imperative for land management decisions, as 

indigenous groups often recognize natural phenomena that formal researchers may 
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overlook (Affolderbach et al., 2012). To alleviate confusion, decision makers should 

recognize indigenous knowledge as a relevant and necessary factor but take care to 

distinguish it from the scientific factor.  This tactic would uphold a more-narrow 

definition of science (with the commensurate advantages) whilst still preserving local 

knowledge or science within the decision-making framework. 

Given this continuum of definitions, which provides the most efficacy for public 

policy decisions related to resource management and land use planning?  A hypothesis-

driven definition is the most classical, “pure” definition of science, but the classical 

scientific method may be too exclusive and eliminate too many relevant scientific results.  

Defining science as a social construct or as institutional processes is too inclusive and 

fallible for many stakeholders to accept. 

Using the middle ground, an inductive or iterative-inductive definition of science, 

bridges the gap between these two definitions.  Inductive methodology provides 

reasonably firm footing for decision makers and is likely to promote credibility and 

legitimacy among stakeholders. Inductive scientific results that are subsequently tested 

using the hypothesis-driven approach provide the strongest foundation for decision 

makers.  Such science would meet the criteria of verifiability and falsifiability, minimize 

uncertainty and normative science, and promote public trust.  Thus we define science 

either as conclusions obtained and verified through conscientious, bias-minimizing 

application of the scientific method or  as information obtained or recognized from data 

and then verified via the scientific method. With this idea in mind, the rest of this paper 

considers “science” or scientific “knowledge” as information about the natural world 

obtained through some combination of inductive reasoning and hypothesis testing. 
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Building Bridges Between Science and Policy 

Having explicitly defined science, and accepting that science has a valid, 

necessary contribute to decision making for land and resource management, we face 

another problem: how to facilitate the ready transfer of knowledge from science to 

decision makers.  A wide body of literature analyzes numerous methods for this transfer.  

Boundary organization theory is one such method. This concept was developed at the end 

of the twentieth century through the work of Gieryn (1995), Guston (1999, 2001), and 

others and has since been broadly applied to decision making theory (e.g. Carlile, 2002; 

Jacobs et al., 2005; Sapsed and Salter, 2004).   

Boundary organization theory promotes the idea that the boundary between 

scientists and decision makers can be overcome through organizational constructs.  

Properly constructed organizations can bridge this boundary and thereby facilitate the use 

of scientific knowledge within the policy regime (Cash et al., 2002; Cutts et al., 2011; 

Guston, 2001; Franks, 2010; Michaels, 2009; Miller, 2001).   The “boundary” between 

science and decision makers may be comprehensional, perceptual, social, cultural, 

conceptual, or organizational (Carr and Wilkinson, 2005; Cash et al., 2002; Michaels, 

2009).   

Boundary organization scholars embrace the fluidity of the boundaries between 

science and policy. The lines between science, policy, and other interests such as industry 

often blur , and multiple diverse stakeholders groups often become vested in boundary 

organizations (Parker and Crona, 2012; Affolderbach et al., 2012; Safford and Norman, 

2011).  Although capturing the resulting complexity within a comprehensive framework 
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may be impossible, continued efforts to mediate between science and policy aid difficult 

science-based decisions for environmental resource management. 

In the broadest sense, a boundary organization connects “knowledge to action” 

(Cash et al., 2002). Carr and Wilkinson (2005) define a boundary organization as a 

“forum” where multiple participants intermingle and multiple knowledge systems 

interact.  Miller (2001) refers to social constructs that “mediate between the institutions 

of science and the institutions of policy.”  Guston (2001) says “boundary organizations 

are formal organizations designed to exist at the interface of research and policy 

organizations and facilitate communication and collaboration between them.” In general, 

then, boundary organizations convey scientific knowledge to decision makers as part of a 

dynamic, iterative, interactive process among invested participants.   

Boundary organizations translate and transfer knowledge from scientist to 

decision makers iteratively, build and maintain long-term relationships among 

participants, and mediate between scientists and decisions makers (Cash et al., 2002; 

Franks, 2010; Miller, 2001; O’Mahony and Bechky, 2008; Pietri et al., 2011).  Successful 

boundary organizations maintain salience, relevance, and legitimacy of information flows 

across the boundary (Cash et al., 2002; Cutts et al., 2011; Pietri et al., 2011). Note that the 

relationship building process is crucial to boundary organization function, and indeed 

may exist outside a formal organization (Smith and Kelly, 2003; Franks, 2010).  Without 

functional and interactive personal relationships between participants, trust and 

credibility will suffer, and resulting decisions will be shunned by the collaborating groups 

(Cash et al., 2002). Finally, boundary organizations serve to mediate between conflicting 

values throughout the decision making process. 
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While building relationships, mediating collaborative work, and moving 

knowledge across the boundary, boundary organizations also simultaneously operate to 

maintain boundaries (Cash, 2001; Franks, 2010; Guston, 1999).  Maintaining boundaries 

allows participants to retain credibility with their own stakeholders. Scientists must 

maintain status and credibility within their discipline to foster credibility outside it. 

Decision makers need to maintain credibility with their constituents in order to promote 

positive public opinion, especially in the heated realm of public land debates (Cash, 

2001; O’Mahony and Bechky, 2008).  These separate credibilities contribute to the 

efficacy of decisions based on the credibility of the boundary organization as a whole 

(Pietri et al., 2011).  

Boundary Organization Examples 

The Decision Center for a Desert City (DCDC) is a classic example of a boundary 

organization in resource management.  The National Science Foundation (NSF) explicitly 

created the DCDC via a grant to a public university with the purpose of bridging the gap 

between science and policy for water resource management in the desert Southwest 

(Parker and Crona, 2012; White et al., 2008). Stakeholders in the DCDC included the 

university, scientists, decision makers, and the NSF (Cash et al., 2002; Parker and Crona, 

2012). Similarly, and also funded by the NSF, Sustainability of semi-Arid Hydrology and 

Riparian Areas (SAHRA) is a boundary organization that produces “science to help 

communities manage their water resources in a sustainable manner” (SAHRA, 2001).  

Agriculture Extension (AgEx) –type constructs are another boundary organization 

example, where farmers hold the role of decision makers responsible for their land 

management. AgEx offices mediate between scientists and farmers, disseminate scientific 
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information to the general public, and interact with other decision makers (Carr and 

Wilkinson, 2005; Cash, 2001; Franks, 2010).  The scope of AgEx organizations 

emphasizes the multi-dimensional aspect of boundary organization theory (Cash, 2001).  

Resulting changes in farmer practices due to AgEx efforts have improved resource 

management, for example by reducing superfluous fertilizer use or enhancing water 

management strategies (Babcock and Silvertooth, 2012; Cash, 2001).  

Although these boundary organizations meet with some success, they are often 

unable to attain credibility, salience, and relevance and therefore often fail as a construct 

for knowledge transfers and implementation (Cash et al., 2002).  For example, in spite of 

being expressly created to fill the role of a boundary organization, the DCDC suffered 

from constraints imposed by its funding organization and its institutional framework 

(Parker and Crona, 2012).  These constraints limited flexibility and resulted in a 

perceived gap in legitimacy and salience (Parker and Crona, 2012).  As a result it lost 

credibility with its stakeholders. SAHRA suffered similar setbacks due to communication 

problems, scientific ambiguity, and organizational structure (Eden, 2011).   

AgEx organizations also struggle to maintain credibility, legitimacy, and salience 

as boundary organizations (Cash, 2001).  Problems with maintaining legitimacy 

frequently arise when scientists presume that laboratory results are transparently 

transferable to field. Salience may suffer as farmers often remain convinced that 

scientists do not understand the difficulties of making a livelihood off the land.  

Credibility is impaired due the divide between the farmer’s field and the laboratory: “16 

hours in a laboratory differs from…16 hours on a horse” (Carr and Wilkinson, 2005).  
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Common use of scientific jargon by scientists only exacerbates the problems (Pietri et al., 

2011).  

These examples reveal some of the difficulties boundary organizations face in 

their struggle for effectiveness. Other examples abound (Affolderbach et al., 2012; 

Agrawala et al., 2001; Cutts et al., 2011; Franks, 2010; White et al., 2008; others). 

Nonetheless, regardless of the difficulties resource and public lands managers need 

timely, productive, and relevant science (Lackey, 2007; Pietri et al., 2011; Smith and 

Kelly, 2003).  The boundary-spanning individual provides another mechanism that may 

defray these problems and encourage these knowledge transfers. 

Boundary-Spanning Individuals 

The boundary-spanning individual stands in the gap between the two realms of 

science and policy.  He must maintain credibility in both worlds in order to accomplish 

the objectives of a boundary construct. This individual fulfills the relationship role of the 

boundary organization, and subsequently he can use these relationship bridges to mediate 

between the groups while transferring and translating knowledge. 

 In fact, previous work indicates that boundary organizations offer the most value 

in the decision making process when a specific individual acts to fill the role of mediator 

and knowledge broker (Cutts et al., 2011; Parker and Crona, 2012; Michaels, 2009). For 

example, Parker and Crona (2012) noted that the DCDC enjoyed success only after 

employment of a specific person who personally maintained credibility with researchers 

and policy makers. The relationships between farmers and scientists in AgEx 

organizations are another example. AgEx offices may fail completely at effecting 

knowledge implementation unless one scientist shoulders the role of mediator or takes 
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personal responsibility for making his research salient, legitimate, and credible to farmers 

(Cash et al., 2002).   

The role of boundary-spanning requires a unique and dedicated individual, 

sometimes at personal expense. Time spent with the boundary organization detracts from 

availability to one’s primary group and therefore from promotions or similar benefits, i.e., 

incentives are misaligned (Brownson et al., 2006). As a scientist, straddling the divide 

between science and policy may compromise objectivity, real or perceived (Brownson et 

al., 2006). Credibility may suffer if decision makers or social groups view a passionate 

boundary-spanning scientist as biased.  These problems are exacerbated in issues about 

public lands and resource management due to the inherent uncertainty of the applicable 

science and the contentious nature of these issues. However, the realm of public policy 

for land use and resource management is desperately in need of independently-motivated 

individuals with the knowledge and skills to mediate the boundary.  Both groups stand to 

gain by minimizing these difficulties or providing incentives to collaboration.  

Although we leave further analysis of the role and efficacy of boundary spanning 

individuals and of principal agent theory to the reader, it is important to note that 

boundary-spanning individuals can act outside formal boundary organizations.  A 

scientist or decision maker may choose to build personal relationships across the 

boundary, regardless of the existence of a boundary construct.  However, often a 

boundary-spanning individuals lack the impetus to resolve large-scale resource 

management issues while acting independently from a boundary organization.  Thus 

often a boundary organization must act as a forum to promote the efficacy of boundary-

spanning individuals.  
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Boundary Objects 

Boundary organizations may act as forums to promote specific objects conducive 

to the roles of scientists and decision makers. Such boundary objects can mediate the 

transfer of science to decision makers (Cutts et al., 2011; Star and Griesemer, 1989; Zeiss 

and Greonewegen, 1989). Star and Griesemer (1989) provide the consummate definition: 

“scientific objects which inhabit several worlds (…) and satisfy the informational 

requirements of each of them.”  Henderson (1991) notes that these objects can mean “one 

thing to some group members who use them and something else to other members.”  The 

value of these objects lies in their flexibility for different stakeholders to use them in 

different ways as needed.   

Boundary objects have the potential to enhance the functioning of a boundary 

organization. Effective boundary objects promote boundary organization goals by 

establishing “a shared syntax or language, … a concrete means for individuals to specific 

and learn about their differences and dependencies” (Carlile, 2002).  If credible with 

stakeholders, these objects can translate and transfer knowledge while maintaining 

credibility, legitimacy, and salience on both sides of the boundary (Cash et al., 2002; Star 

and Griesemer, 1989). As with the boundary organization itself, achieving credibility for 

a boundary object often requires negotiation amongst participants.  Boundary objects 

minimize bias and maximize credibility by allowing stakeholders to trade information 

and negotiate while maintaining their status within their respective groups (Sapsed and 

Salter, 2004).   

Boundary objects can be literal objects, e.g. maps, Geographic Information 

Systems (GIS), brochures, or buildings; or symbolic objects, e.g. the internet or climate 
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models (Zeiss and Groenewegen, 1989; Carlile, 2002). A scientific journal can act as a 

boundary object by allowing decision makers to access research results applicable to a 

specific land use or resource question. Scientists and decision makers can use internet 

GIS platforms to input or interpret relevant information (Carlile, 2002; Sapsed and Salter, 

2004).  In either case, boundary organization stakeholders have to accept the boundary 

object as legitimate and be willing to participate in its development.  Without these 

actions, a boundary object’s utility will suffer or fail. Thus boundary objects tend to be 

more effective when concurrent user interaction facilitates comprehension and 

relationship-building (Zeiss and Groenewegen, 1989).  For example, internet sites may 

provide a “repository” boundary object where scientists and decision makers can access 

knowledge while using forums to interact and build relationship, comprehension, and 

salience (Cutts et al., 2011).  

With such interactions around a boundary object, decision makers can prompt 

scientists to produce science that relevant to specific questions surrounding a land use 

decision.  These interactions also promote scientific results which themselves meet the 

objectives of salience and legitimacy (Cash et al., 2002; Cutts et al., 2011).  In this 

scenario, the boundary object sustains the organizational goals of knowledge transfer and 

translation, relationship building, and mediation.  The boundary object fulfills these 

objectives between personal actors while importing additional benefits, such as neutrality, 

into the science-decision making loop.  Thus boundary object may be a bridge for 

personal relationship building while facilitating boundary maintenance.  
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A Case Study: The Environmental Research Building at Boise State University 

With the goal of understanding barriers and bridges between science and policy 

participants within the context of boundary organization theory, we surveyed faculty and 

students from several different departments in one specifically designed building at a 

research university.  The case study aims to interrogate three main topics, as follows: 1) 

how relevant scientist and academics view the relationships between science and public 

land resource management in the United States; 2) the public research university’s 

efficacy as a boundary organization; 2) boundary object utility. Finally, we extrapolate 

these answers to a broader forum including other universities and non-university 

affiliated decision makers. 

 Previous literature has examined the public university’s role as a boundary 

organization or as an agency to house boundary organizations, both as concerns 

boundaries between departments  within the university and boundaries between 

university agencies and the larger community (e.g. Parker and Crona, 2012; Tuunainen, 

2005; White et al., 2008).  The university can theoretically fulfill the boundary 

organizational role in either scenario. On the one hand, the university acts as an umbrella 

whereby participants from differing disciplines, i.e. academic departments, can explore 

cross-disciplinary issues for knowledge translation and transfer while building 

relationships.  “Can” is the operative word in this sentence, and this case study 

investigates the efficacy of that role and reasons for its fulfillment or lack thereof.  On the 

other hand, a university may act as a passive construct, housing different disciplines 

without attempting to pollinate cross-disciplinary interactions.   We suspect that the 

decision of a public university to shoulder the role of a boundary organization is an 
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institutional corollary to a scientist’s personal decision to become involved with public 

policy, and the same for the inverse. (It is important to recognize that these personal (for 

a scientist) or institutional (for a university) decisions are impacted to no small extent by 

a growing movement to promote inter-disciplinary work.  For example, the NSF often 

solicits inter-disciplinary grants, and the commensurate funding is powerful incentive.) 

This university houses the Department of Geosciences and the Departments of 

Political Science, Public Administration and Public Policy, Community and Regional 

Planning, and Civil Engineering within the Environmental Research Building (ERB) on 

campus (see Figure A.1). (This paper refers to “policy” faculty or personnel as members 

of any of the latter three departments.)  The policy faculty at Boise State have notable 

expertise in public lands use, environmental planning, and resource management, among 

other topics. The Department of Geosciences has experts in environmental science, 

contaminant transport and remediation, fire management research, hydrology, space-

based remote sensing, and additional subjects.  These areas of expertise are 

complementary, and one can envision a regional land use planner consulting similar 

scientists and reviewing similar scientific results when faces with land management 

decisions. In addition, faculty within the political, administration, and planning 

departments are integral to informing decision makers in the state of Idaho and 

throughout the West. 

Completed in 2011, the university goals for the ERB are to “encourage and 

support interdisciplinary collaboration,” “forge synergies,” and  to “enhance research 

aimed at the pressing issues of the West, including the environment, energy, 

transportation, water, land use, and community planning.”  Supporting interdisciplinary 
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collaborations requires fostering participation between stakeholders across departmental 

lines and necessarily requires transferring information between the academics in them.  

Without this information transfer, and additional relationship building and mediation 

between departments, interdisciplinary collaboration would fail and the germane research 

topics would flounder.  Thus these explicit goals voluntarily enshrined the institution 

with the boundary organization role as pertains to the science and policy departments 

within the ERB.  

 

Figure A.1: The Environmental Research Building at Boise State University, 
Boise, Idaho 

Considering the university’s goals for interdisciplinary collaboration and its 

assumed role as a boundary organization commensurate with those goals, we now add 
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another category of literal object to those that may be considered boundary objects (Sec 

3.2).  We hypothesize that the ERB was created, in part, to act as a boundary object.   

We now examine this potential role of the ERB in conjunction with the discussion 

and definitions presented in Section 3.2. Considering the Star and Griesemer (1989) 

definition, the ERB houses both the science and policy departments and does satisfy “the 

needs of both,” in that all departments separately use the building for their own needs, 

e.g. for classroom instruction, for research, for faculty meetings, and for office space.  

Yet the building is not a “scientific object which inhabits several worlds” but instead 

several worlds inhabit this object. In this sense, it is perhaps counterintuitive to consider a 

building as a boundary object when most of the literature about such roles encompasses 

(generally small) objects used by different worlds, where here we consider a large object 

that the worlds themselves inhabit. Nevertheless, the ERB is maintained by a boundary 

organization with goals commensurate with the role of a boundary object and we 

consider its potential role as such.  

Boundary objects also act to transfer knowledge across the boundary (Cash et al., 

2002; Star and Griesemer, 1989).  We hypothesize that the ERB acts to transfer 

knowledge across the boundary between the science and policy departments.  For 

example, both groups have posters, flyers, brochures, and monitors displaying 

information specific to their own discipline distributed throughout the building.  We 

hypothesize that these exhibits, which are part of the ERB, transfer knowledge between 

the two groups we have delineated, which is a function common to all boundary 

constructs.  We liken this role of the ERB to a boundary organization journal containing 

multiple articles – each poster and brochure within the ERB acts to translate and transfer 
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knowledge in a corollary to individual articles or diagrams within a brochure or 

publication.  Yet, the role of the ERB within the boundary organization (the university) 

creates the ERB’s potential role as a boundary object,  housing these departments and 

exhibits in such a manner as to foster collaboration between the disciplines. 

The building also “provides a basis for negotiation” (Sapsed and Salter, 2004) in 

common forums and meeting spaces where parties can trade information and act across 

interdepartmental boundaries.  Carlile (2002) promotes that boundary objects allow 

stakeholders to learn about their similarities, differences, and interdependencies, while 

promoting organizational goals.  The ERB is promoting an organizational goal of cross-

disciplinary collaboration by its existence.  The case study results provide a basis for 

assessment of the building’s success in that promotion and for addressing the preceding, 

principal part of Carlile’s definition.  

Methods 

We conducted an email survey of 141 student and faculty members of the 

Departments of the Department of Geosciences and the Departments of Political Science, 

Public Administration and Public Policy, and Community and Regional Planning.  We 

did not survey the Civil Engineering (CE) personnel in order to focus on the scientists 

and policy members in the building, although we recognize that CE does inform policy 

decisions for resource management. 

The primary objectives of the survey were twofold:  1) to investigate 

interdisciplinary boundaries or bridges as evidenced by personal opinions on the 

definition of science and on the role of science and scientists in decision making for 
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public lands and resource management; and 2) to assess the role of the university and the 

ERB as boundary constructs.   

The survey included 19 questions that asked for numerical answers, for opinions, 

or for definitions.  Survey protocols ensured anonymity in accordance with ethical codes 

of conduct for research on human subjects. Respondents had the option to email 

responses or to submit anonymous hard copies to the administrative staff.  We collected 

surveys over a period four weeks.   

We received 48 completed surveys and 7 responses declining the survey directly.  

Response rates were highest in the Department of Geosciences, with 42% of students and 

55% of faculty responding.  Thirty-three percent of policy faculty responded, and only 

16% of policy-associated graduate students. The significantly higher response rates from 

the geosciences participants are likely a consequence of the survey being conducted by a 

member of the Department of Geosciences.  Future surveys could avoid this bias by 

conducting the survey anonymously. 

Since the case study necessarily involves non-probability sampling problem, 

extrapolation of results to the general population is problematic.  However, our approach 

is suitable given that a primary goal is to understand the social interactions and cultural 

constraints which may impinge upon cross-boundary research and synergies (Rosner, 

2011).  The survey protocol minimized response bias by choosing non-normative 

language and allowing responders to submit any answers instead of using list-based 

responses. 
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Results and Analysis 

The survey asked a series of questions calling for opinion-type responses on the 

definition of science and the role of science in decision making.  It also asked for a list of 

items that decision makers should consider “in a public policy decision about land use 

management…or resource management.”  We designed these questions around our first 

goal of assessing barriers or commonalities between the thought processes and value 

ideals of the two groups (the science and policy departments) as evidenced by personal 

opinions on the definition of science and on the role of science and scientists in decision 

making for public lands and resource management.   

We grouped the definitions of science corresponding to the 4 formal definitions 

they most nearly represented: hypothesis-driven, inductive-iterative, institutional 

processes, or cultural construct.  Commensurate with our efforts to avoid response bias, 

we did not mention any of these terms or definitions in the questions but simply asked the 

responders to define science in any way they choose fit.   Nevertheless, most responses 

actually did incorporate keywords from our definitions, such as “scientific method” and 

“inductive reasoning.”  We analyzed responses that did not include keywords to interpret 

the general sense of the definition. We assessed ambiguous responses in an independent 

iterative manner, classifying each response, recording the classification, and then after 

each classification shuffling response orders and reassessing, to avoid interpreter bias 

contamination.    

Final grouping of responses on the definition of science encompassed all four 

definitions: 45% percent of definitions were hypothesis-driven, 30% were inductive, and 
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20% were procedural. Only one answer was deemed suitably broad as to fall into the 

social and cultural definition of science:  

“the study of science and technology studies also overlaps with the arts and 

humanities and philosophy. So, in my world view science is pretty much all 

encompassing. Setting artificial and narrow disciplinary boundaries around what 

science is (and does) only serves to limit our capacity for collaboration.” 

The responses highlight one particular difference between the two groups.  One 

might reasonably expect scientists to endorse a more rigorous definition of science than 

policy members.  Indeed, the scientist group was responsible for 80% of the definitions 

grouped as hypothesis-driven. Overall, the distribution of definitions also highlights the 

lack of a single, accepted, common definition among all participants, both scientists and 

decision makers.  This deficiency is a critical problem that both scientist and policy 

makers should strive to remedy.  A standardized definition of science common to all 

stakeholders will foster credibility and should be a priority, but it will be difficult to 

achieve we are sure. 

The survey queried respondents about factors for land and resource management 

decisions, and again sought to avoid response bias by minimizing normative language 

and allowing for written answers.   Thirty-three percent of students and faculty members 

emphasized that decision making involves a “weighting” of factors and trade-off analysis.  

Both scientist and policy constituents cited the uncertainty inherent scientific results as a 

complicating factor for decision makers (see   
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Table A.1). Sixty percent of responses from both groups stated that relevant 

scientific results should be included “where possible” and “as appropriate.”  Responses 

underscored a need to balance the scientific component with other factors involved in the 

decisions.  Here we see a bridge between groups and not a gap – both embrace the need 

for balance and demonstrate knowledge of the multiplicity of entwined factors that 

decision makers face. 

It is interesting to note that approximately 25% of responses both from the science 

and the policy groups expressed deference to the role of public opinion as a factor in the 

decision making process, delineating the primacy of the public opinion factor as essential 

to upholding our democratic system of government.  In stark contrast, one answer 

explicitly stated “though public opinion and public values are often taken into account in 

policymaking, I generally do not think they should be.” 

When asked to list specific factors which decision makers should incorporate, 

respondents overall listed between 0 and 10 items (see Table A.2). Policy faculty tended 

to list more factors than scientists as demonstrated in the statistic shown in Table A.2. 

One policy faculty listed ten factors in his response, the largest number of responses of 

anyone in the survey.  These statistics again highlight differences between the groups. 

The partition in number of responses embodies the expected expertise of each group: the 

policy faculty contains members with expertise in decision making as related to public 

land use and resource management while the geosciences department specialty is, 

obviously, science.   
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Table A.1: Selection of responses concerning incorporation of science into 
decision making which address the uncertainty in the decision making process 

Respondent Response 

Geosciences 
faculty 

One should never consider a single factor as being supreme. All 
factors should be considered in concert. No factor should trump all 
others. 

Policy Faculty 
There is no one most important factor and trying to identify one is 
futile and frustrating. 

Policy Faculty 
There are always uncertainties, trade-offs, and unanticipated side 
effects in these kinds of decisions. 

Geosciences 
faculty 

This is an impossible question to answer. 

Geosciences 
Student 

It is impossible to keep everybody happy. 

Policy Student 
Trying to find a middle ground or decision that brings as many people 
together as possible is the most important factor in public policy 
decisions. 

Geosciences 
faculty 

When policy decisions fall in the context of science, scientific results 
should be considered.  However…absolute truths are not deliverable 
under the scientific method.   

 

Nevertheless, the cohesion within both groups concerning the need for science in 

decision making was underscored throughout these responses. That observation 

combined with the plethora of responses to this question demonstrates the complexity of 

the issues surrounding management and use of natural resources and public lands, as well 

as the complexity of thought processes with which both scientists and decision makers 

consider such important scientific and regulatory questions.  Many values compete for 

dominance, all of which contain some uncertainties. Decision makers face a daunting task 

to balance the factors involved while upholding our democratic system of government.  
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Table A.2: Number of items mentioned per person for "other sources of 
information that decision makers should consider,” rounded to nearest whole 
number; note the policy faculty median and standard deviation (S). 

Group Scientist Policy 

Subset Faculty Student Faculty Student 

Median 3 3 5 3 

S 1 2 2 2 

 

Two subsequent questions investigated opinions concerning the role of individual 

scientists within public policy. Opinions were mixed and, again, often reverted to the 

default “it depends,” as exemplified in this response: 

“It is really up to each individual scientist to judge for herself or himself if it's 

appropriate for them to be involved, and whether or not they feel comfortable in 

the public arena.  Nothing should compel a scientist to be involved in 

policymaking.” 

Over 50% of responses indicated that if scientists choose not to contribute via 

specific research programs or dedicated boundary crossing, they should still participate as 

citizens.  Citizen responsibility is especially vital given that over 25% of survey 

participants listed public opinion among the most important factors in a decision.  

Participation by citizen scientists can augment the intelligence and core competency 

contained within the body of public opinion. Intelligent and knowledgeable citizen 

opinion will allow decision makers to publicly rely on well-defined scientific 

conclusions.  Such reliance can produce land management plans and resource use plans 

which are sustainable in the long-term.  Since over 30% of respondents listed 
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sustainability as an essential goal for public policy decisions on resource issues, having 

scientists participate in their scientist role or the citizen role is equally important. 

We observe that whether in a citizen or scientist role, individuals may act to 

translate and transfer results in the role of boundary-spanning individual.  These 

functions can occur both between scientists and policy participants in the ERB and 

between scientists or policy members and the general public. These survey results reveal 

differences between the groups and a possible opportunity for science and policy 

participants to choose to become a boundary-spanning individual within the boundary 

object (ERB) and the larger boundary organization (the university). This position could 

be realized in a plethora of different ways, such as a university-defined and funded 

construct or a personal decision to dedicate time to inter-disciplinary work. 

The previous questions disclose thought pattern convergences and divergences 

between groups. The results also indicate the need for collaboration, but the literature 

demonstrates that many factors erode collaborative efforts. Here we analyze the 

components of the boundary itself within this university setting, as demonstrated by 

survey responses to a question about “barriers to interactions between the Geosciences 

and Public Policy departments.”    
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Table A.3 shows responses listed by specific barrier, number of times mentioned, 

and group of the responder who listed it.   
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Table A.3: Barriers listed by faculty in the ERB to interactions; note that 
respondents could list any number of items. 

Barrier     Frequency     Group Listing It 
Time 5 gf,pf*  
Culture 5 gf,pf 
Poor understanding of applications 5 gf 
Location in building 2 gf,pf 
Well-articulated problems 2 gf,pf 
Incentive 2 pf 
No common overlap 2 pf 
No group seminars 1 gf 
No group social activities 1 gf 
Poor understanding of decision methods 1 gf 
Narrow research focus 1 gf 
None 1 gf 
Tenure requirements 1 pf 

*gf=geosciences faculty; pf= policy faculty 

Time, culture, and a poor understanding of applications across the departments 

were among the most common responses.  Time constraints are universal and obviously 

act as a barrier to the effective action of boundary constructs both internally and 

externally to the university setting.  In fact, time constraints on real-world decision 

makers are  more stringent than those on university personnel.  These limits prevent a 

deeper investigation of the pertinent science and hinder the development of personal 

relationships (Parker and Crona, 2012).  Similar arguments apply to the cultural divide 

between the groups. While the cultural divide in a university setting is moderated by the 

commonality of the university experience, such a cultural bridge does not normally exist 

for decision makers and scientists.  In this case, even the action of the university and the 

subsequent use of the ERB seem to have left significant barriers in place between the 

groups, as evidenced by the survey responses (Table A.3). 
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The response of “poor understanding of applications” perhaps uniquely captures 

why boundary organization theory has  traction for science and decision maker 

interactions outside the university setting.  Decision makers struggle to find access to 

relevant scientific research, while scientists may not recognize the applicability of their 

research or area of expertise to policy makers (Cash et al., 2002). Crossing those gaps 

means forming bridges, whether by boundary organizations, boundary objects, or 

boundary-spanning individuals.  Educating scientists about the needs of decision makers 

is an important first step.  Simultaneously, decision makers need to gain understanding 

about scientific methodology, available research tools, and potential sources of 

knowledge. 

Geographical location within the building was listed twice as a problem hindering 

interactions between departments.  Once again, this problem is likely more problematic to 

real-world decision makers than to ERB personnel. In the case of the ERB, personnel 

from the scientist and policy departments are scattered across several floors.  In a real-

world scenario, scientists and decision makers are likely scattered across a city or even 

across the country. On the other hand, respondents noted in-building location as an 

obstacle to intradepartmental interactions, citing barriers to departmental coherency as 

problematic for research development.  This situation presents a conundrum for both the 

ERB’s effectiveness and for real-world organizations.  Policy-scientist interactions may 

be enhanced by co-located offices, but this arrangement may hinder colleague and peer 

relationship building, especially for early-career decision makers. The conundrum reveals 

the need for an individual who can move freely between the two groups to enhance cross-

boundary transfer while maintaining individual group cohesiveness. It is interesting to 
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note that this two-fold role also mirrors the role of a boundary organization to bridge and 

maintain boundaries. 

In order to more fully understand the role of the ERB as a boundary object, the 

final questions solicited information about changes in interactions across departments 

before and after the move to the ERB.  If the ERB is effective as a boundary object, after 

a year and a half housed together in the building interdepartmental interactions and 

collaborations should have increased.  However, less than 10% of responses showed 

changes in the number or patterns of interactions occurring either among students or 

faculty, and the survey revealed no significant change in patterns of collaboration. And 

perhaps this stasis is not startling.  In the words of one responder:  

“Quite frankly, the idea that you could put people from very different research 

areas together in a single building and expect intense, sustained collaboration to 

magically occur is folly.” 

Where personnel interactions have changed, the change is largely a function of 

convenience, e.g. chats in the elevator or greetings in the break-room. Regardless if the 

building plan is promoting increases in formal collaborations, theses casual encounters 

are worthwhile in their own right. Casual encounters can be the seeds of a relationship 

and a future boundary-spanning individual. 

Conclusions and Recommendations 

Specific comments in the survey, as discussed in the preceding section, reveal the 

ERB is indeed acting as a small scale example of a boundary object to transfer 

knowledge through the availability of brochures, literature, and posters.  Through these 

devices, the ERB acts to promote awareness of activities and research occurring in the 
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building. Once again, we use the analogy of articles within a journal published by a 

boundary organization: the ERB is the analog to the journal and the specific objects 

within the ERB are analogous to the enclosed journal articles.   

The ERB shines as an example of a boundary object providing a “basis for 

negotiation,” as discussed by Sapsed and Salter (2004).  The ERB provides a physical, 

literal basis for negotiation in the form of common space, common meeting rooms, and, 

for some, commonly-shared thought patterns, ideals, and values among its inhabitants.  

The boundary organization, the university, further promotes the boundary object role for 

the building through the organizational statements, posters, and exhibits throughout the 

building.  Thus the organization is using the building to bridge boundaries between the 

departments that inhabit it, fulfilling the organizational goal of promoting the research 

structure and proliferation of the university.  Such action and reaction within the ERB 

and the university fulfills the objective of the boundary object in promoting 

“organizational goals” (Carlile, 2002). Survey comments indicate that the ERB is having 

some success as mediating between the two groups and raising awareness of the 

possibilities for productive interdisciplinary research.  Thus, these results demonstrate 

that the ERB is helping its inhabitants learn about their “similarities, differences, and 

interdependencies” (Carlile, 2002).   

Nevertheless, there is still evidence of the boundaries between groups and the 

failure of the ERB to be a total success as a boundary object. This failure is evident in 

survey responses which indicated that many scientists don’t know much about the policy 

group:  “I don’t know who they are or what they do.  It isn’t obvious how they can really 

benefit any of my projects, but I have to confess that this is largely ignorance. ” Policy 
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faculty said “I see the activity in the labs but don’t understand what they are doing.”  

Thus the ERB may be transferring knowledge but failing to translate it.  

We fully recognize that our sample size is extremely limited, as this survey 

represents a small percentage of university scientists and public policy 

personnel.  Nevertheless, the prevalence of responses commenting on the role of public 

opinion, democratic processes, and citizen scientists allows us to draw some conclusions 

and suggestions relevant on a broader scale.   

First, public opinion is an essential input for land use decisions in our democratic 

system. If public opinion is to have a major or even overriding influence on decisions 

about management of natural resourced and public lands, then public education is 

essential. As one respondent noted, public policies for land use and resource use should 

be founded on “knowledgeable input from our citizens, though we must somehow figure 

out the complexity of what knowledgeable means.” Some people within Boise State 

University and many other universities do help the university act as boundary 

organizations for this particular barrier and adopt the responsibility to educate the public 

and to foster “knowledgeable” citizens 

Universities also directly educate future scientists and future decision makers as 

well as the public. At least 5 different responses in this case study indicated the 

importance of having citizens who are concurrently educated.  For example, one response 

stated that people are needed “in decision making and public policy that have a scientific 

background” and that “development of interdisciplinary programs across science and 

policy would be very beneficial.” Scientists and decision makers thusly educated would 

understand the processes, the cultures, and the roles that lie on both sides of the 
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boundary.  They would be able to interpret and convey knowledge across the boundary in 

either direction and act as boundary-spanners.  In any case, before such a person can 

choose to rise up and stand in the gap, he must have the knowledge base that affords him 

the opportunity to do so.   

The public university, acting as a boundary organization, can build those 

foundations within the student body by fostering interactions between them.  These 

efforts to promote student education and interactions are likely to have more impact than 

similar attempts among faculty, for several reasons. In general, students are at a more 

social time in their lives. They experience fewer time constraints from family and other 

outside commitments.  Academically, they are more flexible and more likely to attempt 

new thought processes or explore new points of views.  Students are not yet set on a 

career path are more likely to act outside the cultural boundaries of their discipline.  Thus 

it is likely that boundary organization efforts to promote collaborations among student 

may give rise to a boundary-spanning individual or at the least may provide a solid basis 

for relationships between scientists and decision makers.    

This study allows universities who strive to act as boundary organization and 

promote inter-disciplinary cross-pollination the opportunity to understand some of the 

constraints and difficulties of their roles and of the roles of their boundary objects.  In this 

case study, the ERB acted as a boundary object within the university setting to transfer 

knowledge and mediate personal interactions. These interactions are the foundation for 

future relationships and the formation of boundary-spanning individuals.  Thus we can 

see the critical ties and feedback between boundary organizations, boundary objects, and 

boundary-spanning individuals. 
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The choice for scientists to develop themselves as a boundary-spanning individual 

is a personal one.  On the other hand, by their very nature decisions for public lands and 

resource management require an understanding of science, scientific processes, and 

assessments of uncertainty. With that in mind, we recommend that public universities, in 

their role as boundary organizations, set up a Certificate in Science for Management 

program targeted towards decision makers and especially towards those who are active in 

public lands and resource management.  Although some managers do have scientific 

backgrounds, this certificate would provide a foundation for those who do not. Young 

career decision makers involved in public lands or resource management could complete 

this certificate as part of their professional development. Recommended course work 

would include natural sciences, a course in statistics, and a course in scientific ethics.  

Such a program would enhance boundary-spanning outside the university setting by give 

young decision makers a solid foundation for the science involved in their decisions. 

Final Remarks 

This paper began with defining science.  Our definition of science is narrow 

enough to maintain the rigor of scientific results but broad enough to include data 

analysis techniques made possible by today’s technology. This science also embraces and 

delineates uncertainty in results. Such a definition promotes public credibility and 

legitimacy in the scientific component of policy decisions for lands management and 

resource use. This credibility and legitimacy encourages decision makers to consider the 

science slice of the decision-making pie. Thus decision makers can promote 

scientifically-based decisions for sustainable management of resource and lands. 
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In regards to boundary organization theory, this case study presents a potential 

example of a boundary object that outside the realm of traditional boundary objects by 

proposing that a building can act effectively as a boundary object. We recognize that the 

study is limited in scope, but hope that the results provide a basis for growth of the theory 

underlying boundary organizations and boundary objects as well as continued discussion 

on the role of the public university as a boundary organization.  Furthermore, these 

results have some extension outside the university setting – real-world scientists and 

decision makers face some of the same barriers as the personnel who participated in this 

study, including time and geography.  With that in mind, future work will investigate 

potential non-traditional boundary objects outside the university setting. 
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