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ABSTRACT

The theory behind Uniformly Most Powerful (UMP) composite binary hypothesis

testing is mature and well defined in centralized detection where all observations are

directly accessible at one central node. However, within the area of decentralized

detection, UMP tests have not been researched, even though tests of this nature have

properties that are highly desirable. The purpose of this research is to extend the

UMP concept into decentralized detection, which we define as UMP decentralized

detection (UMP-DD). First, the standard parallel decentralized detection model with

conditionally independent observations will be explored. This section will introduce

theorems and corollaries that define when UMP-DD exists and provide counterin-

tuitive examples where UMP-DD tests do not exist. Second, we explore UMP-DD

for directed single-rooted trees of bounded height. We will show that a binary relay

tree achieves a Type II error probability exponent that is equivalent to the parallel

structure even if all the observations are not identically distributed. We then show

that the optimal configuration can also achieve UMP-DD performance, while the

tandem configuration does not achieve UMP-DD performance. Finally, we relax the

assumption of conditional independence and show under specific constraints that both

the parallel and binary relay tree configurations can still be UMP-DD. Throughout,

examples will be provided that tie this theoretical work together with current research

in fields such as Cognitive Radio.
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CHAPTER 1

INTRODUCTION

Statistical inference is a field of study that attempts to optimally determine or esti-

mate a state of nature based on observations regarding that state. When the number

of states is finite, we refer to this as a detection problem or possibly hypothesis testing.

When the number of states is infinite, we refer to this as an estimation problem.

Both problems assume some knowledge of the states of nature, the uncertainty of the

environment, and typically define these statistically.

The traditional detection problem occurs when all the observations are available

at a single decision point and will be referred to as centralized detection. A key

attribute of centralized detection is that the decision procedure is only applied once

for a given set of observations at the single decision point. When the observations

are quantized and the final detection decision is based on these quantized values,

then this is commonly known as decentralized detection or in some cases distributed

detection.

Unlike centralized detection, a key attribute of decentralized detection is that

the decision making typically occurs at multiple locations and multiple layers, where

these so called local decisions are fused at a central fusion node (e.g., fusion center,

root of the tree) to arrive at the final decision. The multitude of decision locations

and layers introduces coupling among the various decision processes and greatly
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increases complexity regarding the system design and optimization. As a result,

many well established theories in centralized detection cannot be directly applied to

decentralized detection.

The analysis and theory of centralized detection is well established, with [2–5]

representing a small subset of possible references. At the same time, when the

observations regarding the state of nature are statistically independent, the analysis

and theory for distributed detection is well researched with an introduction available

in [6]. However, there remain gaps in the decentralized detection theory, with areas

that are relatively unexplored. One such gap is in the area of Uniformly Most Powerful

(UMP) tests and will be our focus throughout this work.

1.1 Motivation

Within the general field of statistical inference, the largest branch of study is deciding

between two states of nature and is referred to as binary hypothesis testing. An

important application of binary hypothesis testing is radar, where one transmits an

electromagnetic pulse and if a target is present, expects to see a reflected return

signal. However, the return signal is corrupted by noise, false reflections, and other

disturbances, providing an uncertain observation of the state of nature. This example

provides three key points that will be important in the sequel. First, if a target is

present, the reflected signal has an unknown strength that can be assumed to be

greater than zero. This is referred to as a composite parameter. Second, when the

target is absent (i.e., no reflected signal), there is still noise and other disturbances

impeding the decision process. Finally, the target’s true presence or absence is outside

the control of the detection process and predominantly studied statistically.
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The importance of radar detection drove early researchers to study the three

conditions listed above and determine optimal methods relative to a set of constraints

for detecting targets. One intuitive method is to maximize the probability of detecting

the target when present, subject to a constraint on how often the target is classified as

being present when the true state of nature is that it is absent. While these concepts

will be formalized later, there are cases where the detection probability subject to the

previous constraint is maximized for any value of the composite parameter. These

tests are classified as UMP tests and are supported by a well established theory [2–5].

However, in decentralized detection, the concept of UMP tests is almost completely

missing from both literature and research beyond our prior work [7–9].

The goal of this research is to introduce UMP detection into the decentralized

detection arena. We endeavor to establish a theoretical framework for when a decen-

tralized system based on a certain network topology and a set of sufficient conditions is

UMP, and establish justification for why other network topologies are never UMP. We

also introduce the acronym UMP-DD, which stand for UMP decentralized detection

and will be used henceforth to help distinguish this effort from centralized UMP

theory.

1.2 Hypothesis Testing Background and Notation

Before exploring UMP-DD in detail, we provide a brief background on the theory

of hypothesis testing and the notation to be used throughout. This is by no means

a thorough treatment of the subject, with the interested reader referred to [2] as a

starting point. The following sections will establish notation, introduce the binary

hypothesis testing model, define what composite parameters are, introduce Neyman-
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Pearson statistics, and provide a rigorous definition of UMP.

1.2.1 Notation

We define (Ω,Fσ) as a measurable space, with Ω representing an observation set, Fσ

the sigma-algebra generated by Ω endowed with a σ−finite measure [3, 10, 11]. There

are probability measures, Pj, associated with each hypothesis, Hj, where j = 0, 1 in

the binary case. The measure µ is selected so it dominates all Pj (i.e., Pj � µ, ∀j)

and the densities are defined as pj , dPj/dµ, ∀j. When (Ω,Fσ) is a discrete observation

space, the pj is a probability mass function (pmf) and is a probability density function

(pdf) on a continuous observation space. We will use the term density to imply

pmf or pdf, similar to [3]. Then, for any A ∈ Fσ, the Pj (A) =
´
A
pjdµ. Suppose

A is a measurable function of some random variable X, then Pj (A) =
´
A
pjdµ =

´
A
pj (x)µ (dx), where we use the latter notation. Equivalence of the measures Pj

and Pk occurs when both are absolutely continuous relative to one another (i.e.,

Pj � Pk and Pk � Pj) and will be denoted as Pj ≡ Pk, j 6= k.

Boldface capital letters (e.g., X, U) are used to denote vectors of random variables

and boldface lowercase letters to denote a particular realization of the random vector.

The expectation operator relative to Pj is denoted at Ej and the distribution of a

random variable X under Hj is PXj . All vectors are column vectors and will be

represented in row format as (x, y, z) or [x, y, z]T , where T is the standard transpose

operator. All logarithms will be base e, unless explicitly defined otherwise and

0 log 0/p := 0, ∀p.
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Table 1.1: Hypothesis Testing Statistics

Conditional Symbol(s) DescriptionProbability

P1 (U0 = 0) PM , β Type II Error Probability
Miss Probability

P1 (U0 = 1) PD
Detection Probability
Power of the Test

P0 (U0 = 1) PF , α
Type I Error Probability

False Alarm Rate, or Size of the Test

1.2.2 Binary Hypothesis Testing

Let H0 and H1 represent two states of nature or hypotheses on a measurable space

(Ω,Fσ, µ) with X the noisy observation of this state. Then, an appropriate model is

H0 :X ∼ P0 (Target Absent),

H1 :X ∼ P1 (Target Present). (1.1)

Let U0 ∈ {0, 1} represent the final inference regarding H0 versus H1. Then, the

Type I error probability is defined as P0 (U0 = 1) and the Type II error probability as

P1 (U0 = 0). Table 1.1 defines all conditional probabilities, a set of notations, and the

related terminology typical in hypothesis testing. Note that P0 (U0 = 0) is a correct

decision implicitly defined as 1− P0 (U0 = 1).

Within this statistical framework, the goal is to minimize the probability of error,

which is a function of the Type I and Type II error probabilities. When the a priori

probabilities for H0 and H1 are known, then Bayesian statistics form the optimal

decision rule by minimizing a weighted cost function of both error probabilities (e.g.,

Bayes’ risk) over all decision rules and is many times referred to as the Bayes’ rule for

testing H0 versus H1 [3]. However, when the a priori probabilities are unknown, then
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another decision rule is required, such as that used under Neyman-Pearson hypothesis

testing.

1.2.3 Neyman-Pearson Criterion

When the a priori probabilities of H0 and H1 are unknown, then the weighted cost

function based on the Type I and Type II error probabilities is indeterminate and the

optimal Bayesian statistics approach cannot be applied. An alternative approach is

to minimize P1 (U0 = 0) subject to a constraint P0 (U0 = 1) ≤ α for some α ∈ (0, 1)

and is known as Neyman-Pearson hypothesis testing or Neyman-Pearson statistics.

Specifically, let γ be a decision rule for deciding between H0 and H1, where γ is a

typically a function of some observations set, say X (i.e., γ (x)). Then, P0 (U0 = 1)

and P1 (U0 = 0) are a function of γ and the Neyman-Pearson criterion can be written

as

min
γ
P1 (U0 = 0 : γ) subject to P0 (U0 = 1 : γ) ≤ α.

Next, let X be the observations at a fusion node and define the likelihood-ratio

test (LRT) as

l (x) = dPX1
dPX0

(x) =
dPX

1 /dµ
dPX

0 /dµ
(x) = pX1 (x)

pX0 (x) , (1.2)

where pXj (x) , j = 0, 1 are the associated densities, dPX
1

dPX
0

is the Radon-Nikodym

derivative of PX1 with respect to PX0 , when PX1 � PX0 . Then, by the Neyman-Pearson

Lemma

γ (x) =



1, if l (x) > η,

ν, if l (x) = η,

0, if l (x) < η

(1.3)
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is the most powerful test of size α for a threshold η, where η > 0 and ν, a random-

ization factor with ν ∈ [0, 1], are chosen such that P0 (U0 = 1 : γ) = α. This last

condition defines a critical region, C, where C ={x : γ (x) = 1, ∀x ∈ Ω}, and is said

to have size α. Then, the false-alarm probability as a function of γ (x) is

PF (γ (x)) = P0 (U0 = 1 : γ) =
ˆ
C(γ)

p0 (x)µ (dx)

and the detection probability is

PD (γ (x)) = P1 (U0 = 1 : γ) =
ˆ
C(γ)

p1 (x)µ (dx) .

Each of these concepts will be fundamental in the sequel.

1.2.4 Uniformly Most Powerful Defined

Suppose that our observations vector X is composed of the true signal level, θ, and

noise, W . There are two general classifications with respect to θ. When θ = θ̇

for a single θ̇ ∈ Ω under one of the hypotheses, then this is referred to as a simple

hypothesis. However, when θ ∈ Θj under Hj, j = 1, 2 with Θj ⊆ Ω, then this is

said to be a composite hypothesis with a composite parameter. Here Θj is a family

of possible signal levels and may be uncountable with Θ0 ∪ Θ1 = Ω. We require

that µ (Θ0 ∩Θ1) = 0 (i.e., intersection exists only on a measure zero set), thus we

can assume without loss of generality, the Θj are disjoint (i.e., Θ0 ∩ Θ1 = ∅) and

Θ0 tΘ1 = Ω, where t represents a disjoint union.

Suppose θ is a composite parameter under both hypotheses and consider the

Neyman-Pearson test of (1.3). As such, PX0 , PX1 , and γ all become functions of these
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unknown signal levels. Thus, the Neyman-Pearson Lemma becomes

γ (x;θ) =



1, if dPX
1

dPX
0

(x;θ) > η,

ν, if dPX
1

dPX
0

(x;θ) = η,

0, if dPX
1

dPX
0

(x;θ) < η.

(1.4)

Generally, η and ν are functions of the unknown composite parameter θ. Thus the

optimal decision rule γ is also a function of the composite parameter and we are

unable to select a single decision rule to meet the Type I error probability constraint

α, ∀θ. In other words, the decision rule becomes a function of the unknown parameter

to be detected.

There are, however, some special situations where a solution to the challenging

problem of composite binary hypothesis testing exists. One such solution is when the

composite test is UMP. Specifically, a UMP test is defined as follows [5].

Definition 1.1. The critical region C is a uniformly most powerful critical region of

size α, testing the simple hypothesis H0 against an alternative composite hypothesis

H1, if the set C is a best critical region of size α for testing H0 against each simple

hypothesis in H1. A test defined by this critical region C is called a Uniformly

Most Powerful (UMP) test, with significance level α, for testing the simple (possibly

composite) hypothesis H0 against the alternative composite hypothesis H1.

This definition uses the fact that α , supθ∈Θ0 P
X
0 (x : x ∈ C), which indicates

the following two tests are equivalent

H0 :θ ≤ θ̇ versus H1 : θ > θ̇

H0 :θ = θ̇ versus H1 : θ > θ̇
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for some θ̇ ∈ Ω.

Because the threshold η and the randomization parameter ν can be selected

independent of θ, the UMP tests are highly desirable, even though they do not

always exist. Therefore, it is of both practical and theoretical importance to study

hypotheses testing problems to determine whether an UMP exists or not.

1.3 Uniformly Most Powerful Decentralized Detection

Uniformly Most Powerful tests in the centralized case are essentially determined using

the single LRT of (1.2) or possibly the logarithm LRT (LLRT)

L (x;θ) = log dP
X
1

dPX0
(x;θ) = log p

X
1 (x;θ)
pX0 (x;θ)

H1
≷
H0

η, (1.5)

where H1 is selected with probability ν if L (x;θ) = η. This will be discussed in detail

in Section 2.2. Contrast this with the decentralized detection problem consisting of

n total nodes, where each node is capable of making a local decision, and one node

performs both data fusion and the final inference. Now the number of decision rules

can be as high as n, with some or potentially all of the rules statistically coupled,

which will be expanded on in Section 2.2 and Section 2.3.

Clearly, the decision complexity for decentralized versus centralized detection

has significantly increased. In fact, it is known that many decentralized detection

problems are non-deterministic polynomial time hard (NP-hard) [12], because the

decision rules are generally coupled. This complexity explains to some extent the

reason why UMP-DD as a field of research has not been introduced into the literature

beyond our publication [7–9] to the best of our knowledge.
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1.4 Single-Rooted Tree

This work will focus on directed single-root trees of bounded height. They are directed

in the sense that messaging flows from the leaves to a single-root f responsible for

making the final inference. And they are bounded height in the sense that the

number of arcs along a branch connecting any leaf to f is finite. The restriction to

bounded height trees is made because unbounded trees are known to have a detection

performance that is inferior, decaying sub exponentially [13], a point which will be

expanded on in Chapter 3.

Using notation similar to [14], let Tn = (Vn, An) denote a directed single-root

tree. Here Vn is the set of vertices or nodes having cardinality n (i.e., |Vn| = n)

and An are the arcs or directed edges of the tree. The fusion center responsible for

the final inference is at the root of the tree and will be denoted as f . There are

n − 1 remaining nodes that perform local sensing and/or local data fusion, where

only summary information is forwarded along branches towards the root. The height

of the tree is the largest number of arcs, connecting any leaf in Tn to the root. Trees

where all leaves have the same height are known as h−uniform and will play a key

role in our study.

Any node performing local data fusion based on predecessor information will be

denoted as vi, where i is an index variable. A predecessor of node vi is defined as any

node having a directed path from itself to vi. Here we denoteMi as the set containing

all predecessors nodes to vi, withM0 as a reserved set for the predecessors of f . Nodes

that only perform sensing will be called sensors or leaves and will be denoted by s.

Nodes that summarize their predecessor messages and perform no sensing will be
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called relay nodes or relays 1. Any network consisting of sensors and relays will

be referred to as a relay network. Nodes that augment their predecessor messages

with their own local observation will be called tandem or serial nodes. Any network

consisting of just sensors and tandem nodes will be called a tandem configuration or

network. These networks appear in Figure 1.1, and include the special case parallel

network that occurs when all n− 1 nodes are sensors (i.e., h = 1).

We now make the observation model for the Directed Single-Rooted Trees specific.

That is, each sensor s and tandem node vi observes a random variableX in some set X ,

having a marginal distribution PX
j under hypothesis j. All decisions are quantized to

1-bit for which we elaborate all cases. Each s ∈ Vn makes a binary decision Us via a de-

cision rule γs, such that Us = γs (X), where γs : X → {0, 1}. Node vi makes a decision

Ui using a decision rule γi, such that Ui = γi (X, {Us : s ∈Mi}
⋃ {Uv : v ∈Mi}), in-

cluding possibly its own observation X for a tandem node, where γi : X ×{0, 1}|Mi| →

{0, 1}. The decision rule γ0 at f maps {0, 1}|M0| → {0, 1} to generate the final decision

Uo.

1.5 Outline

Within this work, we endeavor to meet the challenge presented at the end of Section

1.1. We study the UMP-DD problem using a directed single-rooted tree of bounded

height using three different observation models. Chapter 2 investigates the parallel

configuration of Figure 1.1c consisting of n − 1 sensors and no relay or tandem

1Technically, a relay can perform sensing as long as the relay treats its local sensing as an
independent sensor. We choose to use the historical decentralized detection definition of relay [14],
which simplifies notation and has no impact on the bounded height asymptotic performance (i.e.,
n→∞). However, in the non-asymptotic regime, improved detection performance may be possible
when treating each relays local sensing as an independent sensor.
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nodes. This model is commonly known as the parallel or star configuration where

all leaves send a summary of their local observation directly to the fusion node f .

The observations at each s are conditionally independent, when conditioned on the

composite parameter under each hypothesis.

Chapter 3 studies single-rooted trees where leaves pass their summary information

based on conditionally independent observations via non-leaf nodes towards the fusion

node f . Two topologies will be investigated, with the first being a relay tree, where

vi are relay nodes ∀i. The second topology is the tandem network, where vi nodes

augment the summary information from their predecessors with their own observation

X.

Chapter 4 extends the results of Chapter 2 and Chapter 3 by allowing conditionally

dependent observation models. The general conditionally dependent problem is a

non-deterministic polynomial time complete (NP-complete) problem [12], with some

special cases that offer a polynomial time solution and within this subset there exists

categories of tests that are UMP-DD.
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CHAPTER 2

CONDITIONALLY INDEPENDENT UMP-DD

2.1 Introduction

The majority of decentralized detection research is based on the assumption that the

local sensor observations are conditionally independent. The dominant reason for this

assumption is that the general problem is known to be NP-complete [12], where the

majority of the problems are NP-hard. That is, when the sensors are conditionally

dependent, the optimal local sensor decision and global fusion rules are coupled and

the form of the optimal local sensor decision rules is often unknown [1, 15]. As such,

this chapter will focus solely on the conditionally independent observations model

with composite parameters. This is a constraint that will be relaxed in Chapter 4.

Assumption 2.1. The sensor observations are conditionally independent given the

composite parameter under each hypothesis.

Given the conditionally independent observation assumption, the decentralized

detection research is rich with numerous studies on optimal sensor rules and the

corresponding fusion rule. The interested reader can refer to [6, 16, 17] and references

therein for an in-depth treatment.
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2.1.1 Prior Research

The UMP-DD concept that will follow is intimately connected to the selection of

optimal local sensor decision rules and data fusion rules. This selection process

has a long research history, starting with conditionally independent and identically

distributed observations of deterministic signals. Tsitsiklis [18] showed that when each

sensor’s observations are conditionally independent and identically distributed (i.i.d.),

identical likelihood ratio tests (i.e., equal quantizer thresholds) are asymptotically

optimal when the fusion rule is also optimized. This study, however, did not address

fixed fusion rules nor UMP tests where the hypotheses testing problem is composite

versus simple.

The study of optimal sensor decision rules with a fixed fusion rule is more challeng-

ing relative to the asymptotic analysis with an optimized fusion rule. Under a fixed

fusion rule, Irving and Tsitsiklis showed that for two sensors having conditionally i.i.d.

Gaussian observations given a respective hypothesis that equal quantizers are optimal

[19]. Warren and Willett extended this result by analyzing the multi-sensor model

with conditionally i.i.d. observations under densities that are not sufficiently “peaky”

[20]. There they showed equal quantizer thresholds to be optimal with the And

and Or fusion rule for simple binary hypothesis testing (e.g., a deterministic signal).

Certainly, the assumption of conditionally i.i.d. observations is highly restrictive,

as it assumes each sensor receives the same noise corrupted deterministic signal.

In fact, most practical problems in decentralized detection assume differing signal

levels across sensors, with cooperative spectrum sensing in the cognitive radio field

providing relevant examples (see [21, 22] and references therein). Additionally, Warren

and Willett also showed that equal sensor thresholds were at least locally optimal for
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the general counting (also known as k out of N) fusion rule with i.i.d. observations.

The counting fusion rule sums all local decisions, Us, and compares the result to a

threshold to decide H1 versus H0.

Within decentralized detection, UMP-DD tests do exist, but the terminology

classifying them as such is void. As described previously, this is partially due to

the complexity of decentralized detection and the mathematics required to analyze

the performance of fusion rules. Hence, the UMP-DD tests explored in this chapter

are fundamentally linked with the concept of LRTs and equal quantizer thresholds at

every sensor in a decentralized detection system (cf. (1.2) and (1.5)).

2.1.2 Chapter Goals

This chapter will address the decentralized composite binary hypothesis testing prob-

lem given its importance to the field of decentralized detection including applications

to cognitive radio. Of interest will be composite signals that are actually random

across the sensors, as is typically the case for mobile devices (e.g., mobile primary

and secondary users in cognitive radio). Not only is the random composite signal

model no longer i.i.d., it is not even conditionally independent given a hypothesis,

as each sensors observation is dependent on the random unknown signal. Given

certain sufficient conditions regarding the random composite signal and conditionally

independent observations, we will introduce the theory of UMP-DD testing. This

UMP-DD theory readily supports the fixed but unknown composite signal model and

it is straight forward to realize the results of both Irving and Tsitsiklis, and also

Warren and Willett with deterministic signals as special cases. Similar to the works

mentioned previously and in Section 1.4, we assume 1-bit quantized local decisions

and a fixed fusion rule. The UMP-DD theory that will be introduced relies on the
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generalized log-concave efforts of Prékopa [23, 24] and to some extent the log-concave

probability work by Bergstrom and Bagnoli [25].

In Section 2.2, we review the Karlin-Rubin Theorem, which is a fundamental

method in determining centralized UMP tests. We then show that application of

Karlin-Rubin to the parallel configuration is insufficient for determining UMP-DD.

2.2 Parallel Decentralized Detection and Karlin-Rubin

A standard method used to determine the existence of centralized UMP composite

tests is the Karlin-Rubin Theorem as described directly in [26] and indirectly in [2, 5].

Theorem 2.2. (Karlin-Rubin) Consider testing testing H0 :θ ≤ θ′ versus H1 :θ >

θ′. Suppose T (x) is a sufficient statistic for the likelihood ratio, γs (x), with l (x)

monotone in T (x). That is for any θ1 < θ2 that dPX
1

dPX
0

(x;θ) is a monotone function

of T (x). Then, for any η′, the test that rejects H0 if and only if T (x)>η′ is a UMP

level α test, where α = P0 (T (x) > η′).

The factorization theorem of Neyman defines the sufficiency of a statistic [2,

5]. Specifically, the statistic is sufficient if the density pj (x;θ) can be factored as

gθ (T (x))h (x), where h (x) does not depend upon θ. The Gaussian distribution

with a shifted mean (i.e., Xs ∼ N (θ, 1)) has T (x) = ∑S
s=1 xs as a minimally sufficient

statistic for S observations in centralized detection. Similarly, the energy detection

model with Xs ∼ N (0, θ) has a minimally sufficient statistic T (x) = ∑S
s=1 x

2
s. The

Karlin-Rubin Theorem, through a sufficient statistic, can be applied to a wide array of

problems in centralized detection. However, we gave a counter example in an earlier

study [7] that implied Karlin-Rubin cannot be applied directly to decentralized detec-
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Figure 2.1: Parallel Configuration / 1-Uniform Directed Single-Rooted Tree

tion. Here, we will offer a proof to this implication after introducing the decentralized

detection model to be studied.

Consider a 1-uniform directed single-rooted tree with n − 1 leaves and a single

fusion node at the root f . This configuration is depicted in Figure 2.1 and as defined

previously will be referred to as a parallel configuration. Here, only the leaves are

sensors. As described in Section 1.4, each s observes a conditionally independent

random variableXs ∈ X having a marginal distribution PXs
j under hypothesis j = 0, 1

and makes a decision Us = γs (Xs), where γs : X → {0, 1} (i.e., binary decision). The

decision rule γ0 at f maps {0, 1}m0 → {0, 1} to generate the final decision Uo.

Within the parallel decentralized detection framework with conditionally inde-

pendent observations given θ and Hj, one might attempt to apply the Karlin-Rubin

Theorem at f and again at each local sensor to define a UMP-DD. However, such an

extension is insufficient, even when testing H0 : θ = θ′ versus H1 : θ > θ′, when each

sensors’ LRT is monotone in a test statistic Ts (Xs) for all s ∈ Vn and the fusion rule
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is monotone. Given the importance of this claim, these terms are made specific as

follows:

Condition 2.3. The fusion node f employs a monotone fusion rule such that the

probability of deciding H1 is a monotonic function of U = {Us}n−1
s=1 and Pj(U0 =

1|Us = 1, θ) ≥ Pj(U0 = 1|Us = 0, θ) for all θ and s,

and

Condition 2.4. The local likelihood ratio, ls(Xs) = pXs1 (xs;θ)
pXs0 (xs;θ′)

, is monotone in Ts (X).

The earlier claim that Karlin-Rubin is insufficient for UMP-DD is unfortunate

and is counterintuitive on the surface. We now provide a proof by contradiction,

justifying the claim and then give a concrete counter example based on two sensors

with conditionally i.i.d. observations and Laplace Noise in Section 2.5.

Proof. Clearly, each sensor has a local UMP level αs test by Karlin-Rubin, since the

local LRT is monotone in Ts (Xs) ∀s ∈ Vn. As the fusion rule is monotone and

the observations conditionally independent given θ and Hj, then sensor-by-sensor

optimization is at least locally optimal [15]. Hence, the optimal local sensor decision

rule, γs (Ts (Xs)) , is a LRT against a threshold ηs. The selection of ηs is a function

of αs and can be arbitrarily selected in theory as long as the global α constraint is

realized at f . This implies that the optimal test is achieved with an arbitrary selection

of each ηs. This contradicts the optimality of equal quantizers with deterministic

signals in [19, 20], a subset of the composite case. Even constraining the quantizers to

be equal is insufficient, as highlighted by the counter example in Section 2.5 previously

mentioned. Thus, a simple extension of the Karlin-Rubin Theorem is not sufficient

for UMP-DD.
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2.3 Uniformly Most Powerful Decentralized Detection

This section will define a set of sufficient conditions required to determine UMP-DD

and at the same time extend the research beyond the simple i.i.d. observation case.

We will require that the distributions be smooth log-concave functions, PXs|θ
0 ≡ P

Xs|θ
1 ,

and as such contain no point masses. Thus, the σ−finite measure µ can be taken to

be the natural Lebesgue Measure.

Assumption 2.5. The σ−finite measure µ is the Lebesgue Measure (i.e., for an

interval [a, b], µ ([a, b]) = |b− a|).

Notice that Assumption 2.5 does not preclude singularity distributions.

Suppose the goal is to testH0 :θ ≤ θ′ versusH1 :θ > θ′, where θ ∈ Θ0tΘ1 = Θ is

the true non-deterministic signal. Then, the unknown parameter θ induces a Hj →

θ → X → U → U0 Markov chain for the canonical parallel decentralized testing

system of Figure 2.1. Thus X is conditionally dependent given Hj, but conditionally

independent given θ assuming the θs ∀s are i.i.d., when conditioned on Hj. That is,

let θs follows an a priori distribution P θs
j (Dj) with P θs

j � µ, under hypothesis j,

where Dj is a single set of parameters defining the distribution (i.e., support, mean,

variance, ...) andDj is a collection of sets. Henceforth, it will be understood that P θs
j

implies P θs
j (Dj) for notational simplicity. The exponential distribution with mean

parameter τ , θs i.i.d.∼ Exp (τ) underH1 is an example of P θs
1 . This can be used to model

a large sensor network, where the target location is random within the network and

the signal level falls off exponentially under a standard exponential path loss model.

The zero mean Gaussian distribution with variance ϕ2
s, θs ∼ N (0, ϕ2

s), under H1, is

another example for P θs
1 . This last approach is appropriate for modeling multipath

fading in cognitive radio energy detection as studied in [27], which is based on the
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results in [28]. A more subtle example for P θs
j is the “fixed but unknown” case where

Pj (θs = θj) = 1 (i.e., singleton), where θj ∈ Θj is unknown.

After each P θs
j is defined, it is then possible to calculate an average conditional

density

pXj (Dj) =
n−1∏
s=1

ˆ
Θj
p
Xs|θs
j pθsj µ (dθs)

=
n−1∏
s=1

Eθs
j

[
p
Xs|θs
j

]
, (2.1)

where i = 0, 1. In other words, each pXsj (Dj) is conditionally i.i.d in an average sense

even though it is not strictly i.i.d., as the sensor observations differ via P θs
j .

Next, suppose the fusion node f applies the counting fusion rule, which is not

only monotone but also an optimal choice with equal quantizer thresholds with i.i.d.

observations [20]. The counting rule can be written as

Uo =


1, ∑n−1

s=1 Us ≥ κ,

0, ∑n−1
s=1 Us < κ,

(2.2)

which is a special case of the the so-called Chair-Varshney rule [29], and is sometimes

read as the k out of N fusion rule. The Or rule is defined as κ = 1 and the And rule

as κ = n− 1.

Before proceeding, it is important to define the term log-concave as it will be

critical to our analysis. Using the definition in [30]:

Definition 2.6. A function g : Rn → R is logarithmically concave (log-concave) if

g (x) > 0 ∀x ∈ domg and log g is concave or − log g is convex. Defining log 0 = −∞,

then g is log-concave if g (x) ≥ 0 and the newly extended log g is concave.
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At this stage, it is now possible to use (2.1) and define sufficient conditions for a

UMP-DD test. A key point regarding the following theorem is that the conditions are

not overly restrictive, as many problems in decentralized detection and cooperative

spectrum sensing meet these constraints.

Theorem 2.7. Let Ts (Xs) be a sufficient statistic for the conditionally indepen-

dent observations Xs having density pXs|θsj where pj (Ts (Xs|θs)) is log-concave with

respect to (w.r.t.) Ts (Xs) for j = 0, 1. Let each P θs
j be conditionally independent,

log-concave w.r.t. θs, and have a convex support for all s. If pj (Ts (Xs) ;Dj) =
´

Θj pj (Ts (Xs|θs)) pθsj µ (dθs) is a smooth function (continuous derivatives), then equal

quantizers, η1 = η2 = · · · = ηn−1 = η, are a UMP-DD test under the And or Or

fusion rules and 1-bit quantized local decisions.

The following Theorem by Prékopa will be used in the proof of Theorem 2.7. In

[24] with Theorem VI, Prékopa showed that when f (X,Y ), X ∈ Rn, Y ∈ Rm is

log-concave in Rn+m and with A, a convex subset of Rm, then

g (X) =
ˆ
A

f (X,Y ) dy (2.3)

is log-concave over all of Rn. Prékopa also presented an interesting corollary to this

theorem in that log-concavity is passed from functions to their integrals as expanded

upon in [25]. For example, consider the widely used Gaussian (normal) distribution,

which is smooth, log-concave, and has a convex support. Prékopa’s corollary implies

all the associated integrals over a convex set of the Gaussian pdf are also log-concave.

Thus, the Gaussian Cumulative Distribution Function (CDF), and the Gaussian

Complementary CDF (CCDF) or so-called Q-Function, are all log-concave. This

point is expanded in [25] for other log-concave densities.
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The proof of Theorem 2.7 is by construction providing an approach to study

UMP-DD, and is presented here instead of the appendix.

Proof. Let pj (Ts (Xs|θs)), pθsj be log-concave w.r.t. Ts (Xs) and θs respectively, and

the support for pθsj be convex on a subset of Θj for j = 0, 1. Since the product

of log-concave functions is log-concave, then pj (Ts (Xs|θs)) pθsj is log-concave. Thus,

pj (Ts (Xs) ,Dj) =
´

Θj pj (Ts (Xs|θs)) pθsj µ (dθs) is log-concave by Prékopa Theorem

VI. Note that most log-concave densities of interest have Θj as a connected subset of

R, which is both convex and concave.

The LRT l (x) is monotone in Ts (Xs) (cf. 2.4) and all densities are smooth; the

critical region Cs for deciding H1 is a connected interval [ηs,∞). Thus, the detection

probability under the And fusion rule is

P1 (U0 = 1) =
n−1∏
s=1

ˆ
Cs
p1 (Ts (Xs) ,D1) µ (dxs)

=
n−1∏
s=1

ˆ ∞
ηs

p1 (Ts (Xs) ,D1) µ (dxs)

=
n−1∏
s=1

ˆ ∞
0

p1 (Ts (Xs)− ηs,D1) µ (dxs) (2.4)

for each individual s, as p1 (Ts (Xs)− ηs,D1) is a log-concave function of (Ts(xs), ηs).

Hence, P1 (U0 = 1) is a log-concave function of ηs. Similarly, the Type I error

probability is log-concave in ηs with

P0 (U0 = 1) =
n−1∏
s=1

ˆ ∞
0

p0 (Ts (Xs)− ηs,D0) µ (dxs) . (2.5)

Therefore, convex minimization can be used to find the optimal η = {ηs}s∈Vn . With

Neyman-Pearson criterion (cf. 1.2.3), the optimization problem is
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min
η
P1 (U0 = 0) subject to P0 (U0 = 1) ≤ α, (2.6)

and is a standard convex minimization problem without equality constraints [30].

Thus, the method of Lagrange multipliers can be applied to optimize (2.6). Let

L (η, λ) be a Lagrange multiplier function with

L (η, λ) =
n−1∑
s=1
− logPF + λ

(
n−1∑
s=1
− log (1− PF ) +K

)
, (2.7)

where PD =
´∞
ηs
p1 (Ts (Xs) ,D1) µ (dxs), PF =

´∞
ηs
p0 (Ts (Xs) ,D0) µ (dxs), K =

log (1− α), and λ is a Lagrange multiplier. Setting ∂
∂ηs
L (η, λ) = 0 and simplifying

λ =p1 (Ts (ηs) ,D1)− p1 (Ts (∞) ,D1)
1− PXs

1 (ηs)

× PXs
0 (ηs)

p0 (Ts (ηs) ,D0)− p0 (Ts (∞) ,D0) , (2.8)

where the pj (Ts (∞) ,Dj) , j = 0, 1 in (2.8) are often zero for most log-concave

distributions of interest.1 With λ a fixed constant across all n− 1 sensors, η1 = η2 =

· · · = ηs = η is a solution to (2.6). To see this, consider the ratio of ∂
∂ηs
L (η, λ) to

∂
∂ηr
L (η, λ) for all r 6= s.

This solution can be verified as optimal using the Karush-Kuhn-Tucker (KKT)

conditions, which are necessary and sufficient when the objective functions are smooth

and convex [30]. With η∗ and λ∗ solutions to (2.7), the KKT conditions are

1As all distributions are smooth, the Lebesgue-Stieltjes and Reimann integrals are equivalent.
Thus, Leibniz’s rule for differentiation under the integral sign can be applied directly.
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primal: − log (1− PF (η∗)) + log (1− α) ≤ 0

dual:λ∗ ≥ 0

comp. slack.:λ∗ (− log (1− PF (η∗)) + log (1− α)) = 0

vanishing grad. :∇L (η∗, λ∗) = 0.

The log-concavity of the densities ensure λ∗ ≥ 0, PF ∈ [0, 1] and equals α ∈ (0, 1)

by the smooth function assumption meeting the complementary slackness constraint,

and the remaining two constraints follow by construction. The proof under Or fusion

is similar.

This result establishes a general framework to find and prove the existence of

UMP-DD tests and is applicable to a broad set of problems, including those tests

where the local sensor observations are not strictly i.i.d and deterministic. When

θs = θ ∈ Θ is a fixed but unknown signal (i.e., singleton point mass), then the

following corollary is applicable.

Corollary 2.8. When the signal level at each sensor is fixed, but unknown, such that

θs = θ ∈ Θ ∀ s ∈ Vn so pj (Ts (Xs|θs)) = pj (Ts (Xs) , θ) and pj (Ts (Xs) , θ) is smooth

log-concave with a convex support for j ∈ {0, 1}, then thresholds η1 = η2 = · · · =

ηn−1 = η are a UMP-DD test under the And or Or fusion rules and 1-bit quantized

local decisions..

The results of Warren and Willett [20] can be viewed as a special case of Corollary

2.8, where θ is deterministic. Clearly, when one of these conditions in Corollary 2.8

is absent, then UMP-DD is not guaranteed. This claim will be justified using the

Karlin-Rubin generalization counter example in Section 2.5 with i.i.d. Laplace noise.

We now address the more general k out of N fusion rule (cf. (2.2)).
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Remark 2.9. Under the k out of N fusion rule and using the conditions in Theorem

2.7, then η1 = η2 = · · · = ηn−1 = η are at least a local minimum or locally most

powerful decentralized detection (LMP-DD) test. A full proof for this remark is

similar to the proof of Theorem 2.7.

The LMP-DD designation implies that within an ε−ball of η1 = η2 = · · · =

ηn−1 = η for {ε : ε > 0, ε ∈ Rn−1} any other selection of the ηss will result in a

lower P1 (U0 = 1) for a given Neyman-Pearson size constraint α. Unfortunately, the

LMP-DD label cannot be replaced with the more restrictive UMP-DD designation

because both the P1 (U0 = 1) and P0 (U0 = 1) equations in (2.6) are a combinatorial

summation of probabilities that are not guaranteed convex under the k out of N

fusion rule, resulting in a non-convex optimization problem.

As the optimization is non-convex, then any solution to a Lagrange Optimization

problem similar to Theorem 2.7 can only be declared locally optimal (LMP-DD) and

not globally optimal (UMP-DD). However, we conjecture that this local optimum

(LMP-DD) is in fact the global optimum (UMP-DD) under the general k out of N

fusion rule, but a general proof supporting this conjecture remains an open research

topic in decentralized detection.

The case for two sensors with common observations in Gaussian noise is excep-

tional, with the following results representing a complete UMP-DD solution that also

supports randomization between the And and Or rules. Specifically, consider the k

out of N fusion rule with n = 3 having the observation model

H1 :Xs = θ +Ws

H0 :Xs = Ws,
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where Ws
iid∼ N (0, 1) follows a standard normal noise distribution and θ > 0. Then,

not only is η1 = η2 = η the optimal local sensor quantizer under And and Or fusion,

they are are also optimal using randomization of k = 1 and k = 2 fusion. Specifically,

the randomized fusion model is

Pj(U0 = 1) =



1, U1 = U2 = 1

υ, U1 = 1 or U2 = 1

0, U1 = U2 = 0

, (2.9)

where υ ∈ [0, 1] is a randomization constant randomly selecting U0 = 1 with proba-

bility υ when either U1 = 1 or U2 = 1.

Theorem 2.10. A two-sensor system, where both sensors observe the same fixed but

unknown signal, θ > 0, in zero mean i.i.d. Gaussian noise with 1-bit quantized local

decisions and randomization between And and Or fusion has a UMP-DD with local

quantizer thresholds η1 = η2 = η.

The proof is given in Appendix A, highlighting the complexity of extensions

beyond n = 3. However, this result does generalize the And, υ = 0, and Or, υ = 1,

fusion results presented in [19].

2.4 UMP-DD in Decentralized Energy Detection

We now apply the results of the previous section to a collection of problems of

considerable importance in decentralized detection. This includes cognitive radio

models, with and without multipath fading, focused on energy detection observation

models.
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Consider a typical cognitive radio decentralized detection observation model.

H1 :, Xs = θs +Ws

H0 :, Xs = Ws,
(2.10)

where θs is the signal and Ws is the noise received by the nth cognitive radio.

This model has been studied using energy detection, 1-bit quantized local decisions,

and a fixed fusion rule (see [22, 28] and references therein). The choice of energy

detection for cooperative spectrum sensing is common as it is simple, robust, and has

relatively competitive detection performance. Optimal energy detection depends on

an appropriate selection of the local decision rules and the fusion rule. Most authors

assume equal quantizer thresholds and a majority rule form of the k out of N fusion

rule. This is done without offering proof or justification as to the validity of this

assumption [31–33]. Here, we offer a justification and show that energy detection

with multipath fading can be UMP-DD and that the common assumption of equal

quantizer thresholds is at least LMP-DD.

We consider observation distributions similar to that in [22] and [28]. Let θs ∼

N (0, ϕ2
s) where the variance ϕ2

s is proportional to the signal energy at the sth sensor

having zero mean Gaussian noise, ws iid∼ N (0, σ2). Then, a minimal sufficient statistic

is

Ys = 1
σ2

D∑
d=1
|Xs|2 ∀s ∈ Vn,

where D is determined from the time-bandwidth product [34] (Note that ys is Ts (Xs)

in Theorem 2.7). Then, the test statistic, Ys, follows the following distributions (i.e.,

pj (Ts (Xs|θs))) under each hypothesis (cf. [3, Sec. III.B])



29

Ys ∼


Gamma

(
D
2 ,

1
2

)
= χ2

D, H0,

Gamma
(
D
2 ,

1
2(1+ςs)

)
, H1,

(2.11)

where the sth sensor Signal-to-Noise Ratio (SNR) is ςs = ϕ2
s/σ

2, χ2
D is the cen-

tral chi-square distribution with D degrees of freedom, and Gamma (a, b) = p (x)

= ba

Γ(a)x
a−1e−bx U (x) is a Gamma pdf with Γ (a) the gamma function evaluated

at a and U (x) the unit step function. When the SNR at each sensor is equal,

ςs = ς ∀s (i.e., ϕ2
s = ϕ2), or the SNR follows a log-concave distribution, as can be the

case for multipath fading, then these are UMP-DD problems. This follows because

Gamma
(
D
2 , ·

)
is a smooth log-concave function for D ≥ 2 [25]. When ϕ2

s = ϕ2 ∀s,

the Type I and Type II error probabilities at each sensor are [28]

P0 (Us = 1) =
Γ
(
D
2 ,

η
2

)
Γ
(
D
2

) (2.12)

P1 (Us = 0) = 1−
Γ
(
D
2 ,

η
2(1+ς)

)
Γ
(
D
2

) (2.13)

for all s, where Γ (·, ·) is the upper incomplete gamma function. As described in

the proof of Theorem 2.7 using Prékopas corollary, these are expected to both be

log-concave [25] and for η ≥ 0 is a smooth function of η. Thus, spectrum energy

detection with fixed but unknown observations and no fading can be UMP-DD and

is at least LMP-DD under counting fusion.

Next, we extend these results to the fading channel. Suppose that θs follows a

Nakagami fading model with E [ς] = ς̄ ∀s. The density for the Nakagami channel

received power follows a gamma distribution
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pNak (ς) = 1
Γ (m)

(
m

ς̄

)m
υm−1
n exp

(
−m
ς̄
ςs

)
, ς ≥ 0, (2.14)

where m is the Nakagami parameter and ς̄ is the average SNR. Note that pNak (ς)

is pθs1 in Theorem 2.7. With m = 1, then (2.14) describes Rayleigh fading, so it is a

subset of the Nakagami analysis. Therefore, both fading models follow log-concave

distribution[25]. Since both densities in (2.11) and the density in (2.14) are log-

concave, then the average detection probability is also log-concave.

Therefore, cognitive radio spectrum energy detection with Nakagami fading can be

UMP-DD and is at least LMP-DD with equal quantizer thresholds and the counting

fusion rule. This result justifies using equal quantizer thresholds in decentralized

detection problems, including cognitive radio cooperative spectrum sensing with hard

decisions.

2.5 UMP-DD Families and Counter Examples

Before summarizing this chapter’s results, we highlight a variety of decentralized

detection problems that explore the breadth and depth of the theory presented,

beyond spectrum sensing in cognitive radio. We typically define the noise, ws, in

(2.10) as Gaussian, but include other log-concave noise distributions meeting the

constraints of Theorem 2.7 and Corollary 2.8 for generality.

Starting at the base, Corollary 2.8 provides sufficient conditions for UMP-DD

when the observations are i.i.d. (i.e., θs = θ ∀s). The first application of this corollary

in decentralized binary hypothesis testing with composite parameters is that of an

i.i.d. shift in a fixed but unknown signal level. As discussed in the introduction,

this is an extension to the results of Warren and Willett [20]. This model family is
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highlighted in the first three rows of Table 2.1 and includes the log-concave generalized

Gaussian distribution (GGD) noise variant, where the GGD distribution is defined as

p (x;µ, q, r) = r
2qΓ(1/r)e

−(|x−µ|/q)r , Γ (·) is the gamma function, and r is restricted to the

even integers to ensure the distribution is smooth. The second model family is energy

detection with conditionally i.i.d observations. This is a simplified energy detection

model with rather idealized wireless signals, as discussed in the previous section.

This model family appears in the sixth row of Table 2.1. Again, the assumption of

conditionally i.i.d. observations with no multipath fading is overly restrictive and

leads us to the following more important result.

Theorem 2.7 provides sufficient conditions for UMP-DD when the signal levels

are independently distributed, but not identical (i.e., θs ∼ pθsj , j = 0, 1). As with

the previous paragraph, the first application of Theorem 2.7 is to those problems

concerned with a shift in signal level between hypotheses. Consider the problem of

detecting the presence or absence of a randomly positioned target in a set of sensors,

where the target emits a weak signal level that follows an inverse exponential path loss

model. Then, a model for the signal level at each sensor is the exponential distribution

having mean τ with θs ∼ Exp (τ). As the exponential distribution is log-concave, then

this is a UMP-DD test. The idea is easily extended to other smooth log-concave signal

level distributions and this model family appears in the fourth and fifth row of Table

2.1, where the Logistic distribution is p (x;µ, q) = e
− (x−µ)

q

q

(
1+e−

(x−µ)
q

)2 and is similar to

the Gaussian distribution with heavier tails. The second family of models studies

an independent increase in received signal energy as described previously for energy

detection with multipath fading. This model family appears in the final row of Table

2.1.
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Table 2.1: UMP-DD Examples

Signal Model Noise Comment

θs = θ ∈ Θ Ws
iid∼ N (0, 1) Corollary 2.8 and [20]

θs = θ ∈ Θ Ws
iid∼ Logistic (0, 1) Normalized Logistic Noise

θs = θ ∈ Θ Ws
iid∼ GGD(0, 1, r)

Generalized Gaussian
Noise (r ≥ 2 Even )

θs
iid∼ Exp (τ) Ws

iid∼ N (0, 1)
Exponential Signal

Decay
θs

iid∼ Exp (τ) Ws
iid∼ Logistic (0, 1) Logistic Noise

θs
iid∼ N (0, ϕ2) Ws

iid∼ N (0, 1) Energy Detection

θs ∼ N (0, ϕ2
s)

Ws
iid∼ N (0, 1)

Energy Detection
log-concave Fading Multipath Fading

It is intuitively pleasing that equal quantizer thresholds are optimal for some

cases. However, when the conditions of Theorem 2.7 or Corollary 2.8 are not met,

then intuition can lead to a sub-optimal solution. The following counter example

shows how intuition can fail and why the Karlin-Rubin Theorem cannot be directly

extended to decentralized detection. Consider an i.i.d. observation model where the

signal follows a Laplace distribution. Then, the test is no longer UMP-DD, because

the Laplace pdf is not a smooth function.

Specifically, set n = 3 with θ1 = θ2 = 1, and the noise, ws, following a zero mean

i.i.d. Laplace distribution, such that

pW (w|µ, b) = 1
2be

− |w−µ|
b , (2.15)

with mean µ = 0 and width parameter b = 0.75. We now consider the Receiver
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Figure 2.2: ROC Curves with Laplace Noise

Operating Characteristic (ROC) curves, which will show that asymmetric quantizer

thresholds have better performance for some test sizes α. These results appear

graphically in Figure 2.2 for η1 = η2, η1 6= η2, and θ1 = θ2 = 1, where the

latter η2 is set such that the second sensor generates a constant detection rate of

99.9% for all η1. These data clearly indicate that better detection performance for

some false alarm rates can be achieved using asymmetric quantizer thresholds when

0.28 < P0 (U0 = 1) < 0.80. Thus, the UMP-DD does not exist for a fixed θ = 1 with

And fusion, so it clearly does not exist for all θ.

2.6 Summary

This chapter introduced UMP binary hypothesis testing with composite parameters

into decentralized detection theory. This UMP-DD theory includes the introduction

of a theorem that provided sufficient condition for UMP-DD when the sensor observa-

tions are randomly distributed and conditionally dependent given the hypothesis, but
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conditionally independent given the unknown composite parameters. A corollary pro-

vides the required sufficient conditions when the parameters are fixed but unknown.

The traditional deterministic signaling model explored by previous authors can be

considered a special case of this fixed but unknown UMP-DD problem. In addition,

we showed that centralized UMP theory is insufficient for determining UMP-DD,

including extensions of the Karlin-Rubin Theorem to decentralized detection.

The results introduced were dependent on either And or Or data fusion, but it

was shown that the more generalized Counting fusion rule (k out of N) is at least

LMP-DD, with a proof of UMP-DD an open research topic. Nevertheless, a complete

UMP-DD solution was shown to exist for the two-sensor case, where a randomized

fusion rule is allowed and the noise is zero mean i.i.d. Gaussian. For this case,

randomization of the k out of N fusion rule remains UMP-DD with equal quantizers

and fixed but unknown signals. These methods were then used to justify the selection

of equal quantizer thresholds in a multitude of inference regimes, including spectrum

sensing in cognitive radio using energy detection methods under realistic channel

models such as Nakagami or Rayleigh fading.

This work established a new class of decentralized detection problems and in doing

so significantly advanced decentralized detection research. It provides justification for

selection of equal quantizer thresholds in complex decentralized testing systems that

suffer multipath fading and non-Gaussian noise. It also showed that when there exist

observation models that violate at least one of the sufficient conditions offered, then

equal quantizer thresholds are not always optimal.
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CHAPTER 3

RELAY NETWORKS, TANDEM CONFIGURATIONS,

AND UMP-DD

3.1 Introduction

This chapter considers both UMP-DD and asymptotic detection performance for the

case when the height of the single-rooted tree is greater than unity (h > 1) . A benefit

of configurations with h > 1 is that local sensor decisions can be aggregated and

summarized along the branches towards the root (cf. Section 1.4) with a significant

reduction in energy consumption possible. This is because the average physical

distance between nodes is reduced, resulting in lower transmission power requirements

to achieve equivalent detection performance with non-ideal communication channels.

A drawback of this approach is that summarizing the aggregated local decisions

results in lost information relative to centralized detection and parallel decentralized

detection systems. Intuitively, it is expected that this loss in information always

results in an inferior detection performance, but the question is “Does intuition match

reality?” This is a question that we study and answer for relay networks relative to

the parallel network of Figure 1.1.

Similar to Chapter 2, we make the following assumption:
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Assumption 3.1. The sensor observations are conditionally independent given the

composite parameter under each hypothesis.

Using this assumption, we will show that the Type II error exponent for a relay net-

work can be equivalent to that of a parallel configuration under the Neyman-Pearson

framework and certain other conditions. These conditions include 1-bit quantization

and the ability to group sensors into sub-classes where sensor observations within a

class are conditionally i.i.d. in an average sense and at least conditionally independent

across classes. We then progress to our ultimate goal and study whether either the

relay or tandem network are UMP-DD, where the tandem configuration appears in

Figure 1.1b.

A directed tree network having UMP-DD performance and a Type II error prob-

ability that decays exponentially at the same rate as the parallel configuration has

many advantages. This includes a potential for lower transmit energy consumption,

as the physical distance between nodes can be reduced. At the same time, a lower

transmit power requirement implies a reduction in interference energy, which is ben-

eficial, for example, to collaborative spectrum sensing in cognitive radio. There,

local information is typically transmitted to a fusion node in order to make an

aggregate decision regarding the primary users’ activity. A challenge with this model

is that local decision transmission must not impact the primary user operation,

where underlay networks offer one solution (see [35] for a discussion on underlay

networks). Certainly a directed tree with with low transmission power over directed

(beamformed) links offers one such underlay solution.
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3.1.1 Prior Research

Our study is limited to bounded height tree networks using asymptotic methods to

compare performance. The parallel configuration discussed in Chapter 2 is one such

configuration, where all the leaves are sensors and the root is the fusion center. The

parallel configuration and its analysis with Bayesian and Neyman-Pearson criterion

is well researched, including the study of the non-ideal channel [6, 14, 15, 18, 36–41]

and references therein. Additionally, it is known that when the communication

channel is ideal with conditionally independent observations at the leaves, the parallel

configuration error probability decays exponentially [13, 18].

The first bounded height tree network we study is the relay network. This

network consists of relay nodes that perform no local sensing when summarizing their

predecessor information, as they forward that summary to the next node on the way

to the root. It is known that a bounded height directed relay tree with conditionally

i.i.d. observation has a Type II error probability that decays exponentially and is

equivalent to that of the parallel configuration under the Neyman-Pearson criterion

subject to some mild constraints [14]. The critical constraint is that the leaves (e.g.,

sensors) dominate the network as n increases or |Sn|
n
→ 1 where Sn = {s : s ∈ Vn}.

Again, Vn is the set of all nodes in the tree.

Under the Bayesian criterion, the bounded height relay tree is known to have an

error exponent that is inferior to the parallel configuration [39]. It is also known that

when the height of the tree grows without bound, the unbounded relay tree has a

Type II error probability exponent that again is inferior to the parallel configuration

[14], with error probability bounds presented in [42] for a balanced binary relay

tree. Thus, we limit this study to the parallel configuration and bounded height
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relay trees with binary decisions under the Neyman-Pearson criterion because the

remaining configurations listed have an error exponent that is inferior to the parallel

configuration.

The tandem network, where non-leaf nodes augment the summary information

from their predecessors with their own observations has been studied in [39] and

[43–47] under both the Bayesian and Neyman-Pearson frameworks, respectively. In

both cases, the Type II error probability was shown to decay sub-exponentially and,

under some conditions, does not decay to zero, even as the n → ∞. One sufficient

condition for the Type II error probability to decay to zero under the Neyman-Pearson

framework is that the ROC curve have infinite initial slope and zero final slope [45].

3.1.2 Chapter Goals

The initial contribution is establishing a set of sufficient conditions for when a bounded

height relay tree and the parallel configuration achieve equivalent error exponents with

conditionally independent, but not identical observations. These conditions include

a large number of sensors, 1-bit quantization, and the ability to group the sensors

into N finite classes. The class terminology we use is similar to that mentioned in

[48]. Here, a class is defined as a collection of sensors that apply equivalent decision

rules and the local observations are conditionally independent. Notice that this work

is differentiated relative to the conditionally i.i.d. study in [14], as we only require

conditionally independent sensor observations between classes. We do not study the

tandem configuration error exponent under class notation, as the conditionally i.i.d.

sensor observation case has already been shown to decay sub-exponentially [39, 45].

Under the Neyman-Pearson framework, we ensure the Type I error probability

does not exceed a defined threshold and minimize the error exponent
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g = lim sup
n→∞

1
n

log βn,

where βn is the fusion center Type II error probability and n represents the total

number of nodes including f . Similar to the notation in [49], the error exponents are

negative numbers, with the magnitude of |g| referred to as the rate of decay of the

Type II error probability.

After establishing sufficient conditions for a class-based relay network to achieve

an equivalent error exponent to the parallel configuration in Section 3.3.1, we provide

a moderately complex example in Section 3.3.4. This is done to highlight one method

to study these complex relay trees since they typically do not have closed form

solutions, even with 1-bit quantization. This technique can be used to study the

impact on transmission power for a relay network with non-ideal communication

channels operating below the asymptotic regime, for example.

The results of Section 3.3 and in [14] are then coupled with the results of Chapter

2 to show that the relay tree can be UMP-DD in Section 3.4. Similarly, we show in

Section 3.5 that the tandem network is not UMP-DD. This claim is developed at the

atom level for tandem configuration analysis, where an atom is a single leaf with a

single tandem node, as depicted later in Figure 3.1d.

3.2 General Relay and Tandem Network Formulation

Using similar notation as Tay et al. in [14], we consider a binary decentralized

detection problem with n − 1 leaves and relays, and a fusion center denoted as

f . As we introduced in Section 1.2, there are two probability measures P0 and P1

associated with hypotheses H0 and H1, respectively, on an observation space (Ω,Fσ).
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Throughout this chapter, we assume

Assumption 3.2. P0 and P1 are absolutely continuous relative to one another, thus

they are equivalent (P0 ≡ P1).

There are N different classes of observation models, where sensor observations

are conditionally i.i.d. within a class and at least conditionally independent across

classes given a hypothesis Hj j = 0, 1. Each sensor s within the kth class observes a

random variable Xs ∈ Xk for k = 1, 2, . . . , N . The random variable Xs has a marginal

distribution PXs
j conditioned on hypothesis Hj, j = 0, 1.

3.2.1 Tree Networks

As described in Section 1.4, we consider a directed tree network Tn = (Vn, An) with

all arcs pointing from the leaves towards the root, f , and n total nodes represented

as Vn. The leaves of Tn are sensors that use 1-bit quantization and transmit their

message to the next node along a single directed arc. Relay nodes only perform a

relay operation, while Tandem nodes augment the received messages with their own

local observation, which is denoted by the random variable X ∈ Ω.

The height of Tn is the length of the longest path in terms of arcs traveled from

a leaf to the root and will be represented by h. Trees where each leaf has the same

height are known as h−uniform. Tay et al. in [14] showed that by using a “height

uniformization procedure” that an upper bound on the error exponent for h−uniform

relay trees readily translates to an upper bound on general relay trees of height

h. Thus, we will focus our analysis on h-uniform trees, realizing that the same

“uniformization procedure” can be applied at a class level, which allows conclusions

made for h−uniform trees to be applied to non-uniform trees.



41

As the tandem network in our study is limited to the atom, the following notation

will only apply to relay networks. Let Ck denote the set of all conditionally i.i.d.

sensors in the kth class. Let Ṽk denote the collection of all relay nodes, vi, associated

with the kth class. The Ṽk notation eliminates the notational complexity associated

with multiple sub-indexes required to define a relays location (e.g., class and height) in

the tree. The Type I error probability for UMP-DD analysis in Section 3.4, however,

does require a relationship to height and will be denoted by h′. Specifically, h′ is the

number of directed arcs traveled from f to a certain level of relay nodes in a relay

tree along a given branch. For example, h′ = 0 is f , h′ = 1 is the relay level directly

preceding f , and h′ = hB − 1 are the relays with only sensors as their predecessors

along branch B with h = max {hB : B ∈ An}. This class relay network is depicted

in Figure 3.1a, with an exploded view for the kth class in Figure 3.1b for an arbitrary

h = 3 uniform relay tree.

We now augment the notation from Section 1.4 to support classes. Each s ∈

Ck makes a binary decision Us via a LRT γks , such that Us = γks (Xs), where γks :

Xi → {0, 1}. Node vi then makes a decision Ui, again using a LRT γi, such that

Ui = γi ({Us : s ∈Mi}) for h′ = h− 1 or Ui = γi ({Uv : vi ∈Mi}), otherwise, where

γi : {0, 1}|Mi| → {0, 1}. The relay tree decision rule γ0 at f maps {0, 1}|M0| → {0, 1}

to generate Uo. Any directed relay tree of height h (not necessarily uniform) meeting

the preceding constraints will be referred to as a h binary relay tree (hBRT). When

the same tree is h−uniform, the tree will be denoted as a h−uniform binary relay

tree (hUBRT). The parallel configuration is duplicated for convenience in Figure 3.1c

and has a fusion rule γ0 that is unchanged under class notation, mapping {0, 1}n−1 →

{0, 1}.
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3.3 Relay Network Performance Analysis

This section studies the asymptotic detection performance between the hUBRT and

the parallel configuration using a decentralized detection Neyman-Pearson framework

where all sensor observation are conditionally independent, but not necessarily con-

ditionally i.i.d.

3.3.1 Neyman-Pearson Hypothesis Testing

Under the Neyman-Pearson framework, the Type I error probability is constrained

as P0 (U0 = 1) ≤ α for some α ∈ (0, 1). The goal is to minimize the Type II error

probability P1 (U0 = 0) across all binary hypothesis testing strategies that meet the

Type I constraint. Let β∗R be the infimum of P1 (U0 = 0) over all admissible hUBRT

strategies and similarly for β∗P associated with the parallel structure. The Type II

error exponents for each Tn are defined by

g∗R = lim sup
n→∞

1
n

log β∗R,

for a bounded height tree where limn→∞
N
n

= 0 and

g∗P = lim sup
n→∞

1
n

log β∗P .

We desire to show that g∗R = g∗P and will do so as follows. First, g∗P ≤ g∗R for all

test strategies with an equivalent number of nodes. To see this, let ΓR be the set

of all binary relay tree test strategies and ΓP the set for all parallel test strategies.

Clearly, ΓR ⊂ ΓP , which implies g∗P ≤ g∗R. Second, since g∗P ≤ g∗R, it is sufficient to

show that if there exists a strategy βR with gR = g∗P , then the optimal strategy β∗R
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must also result in g∗P = g∗R. We will use the Kullback-Leibler divergence (KLD) to

prove this second step. The KLD between two probability measures is

D (P ||Q) = EP

[
log dP

dQ

]
, (3.1)

where EP is the expectation relative to P , P ≡ Q, and dP/dQ is the Radon-Nikodym

derivative [10].

3.3.2 hBRT and the Parallel Configuration Error Exponent

The error exponents for both the hBRT and parallel configurations are now studied

under the Neyman-Pearson framework. The key result is the following Lemma.

Lemma 3.3. Consider a hBRT consisting of N classes of sensors with i.i.d. obser-

vations within a class and independent observations across classes. Then, g∗P = g∗R

when the Type I error probability is α ∈ (0, 1), Sn
n
→ 1, and the total number of nodes

are equal between the hBRT and parallel configurations.

Proof. Without loss of generality, the relay tree error probability exponent study can

be limited to the special case 2UBRT (2-uniform Binary Relay Tree) configuration.

To see this, consider that each class is equivalent to the conditionally i.i.d. bounded

height h-uniform analysis presented in [14], when Sn
n
→ 1 where Sn = {s : s ∈ Vn}

as defined previously. Additionally, a quick analysis of the hUBRT configuration in

Figure 3.1b using Ui = 0 iff ∑vj∈Mi
Uj = 0 (cf. (2.2) with κ = 1) shows that this must

be the case for a bounded height tree with the Ṽk constraint on decision aggregation.

Let the 2UBRT fusion rule decide H0 if and only if ∑N
i=1 Ui = 0 and the vi be

ordered with the classes (i.e., i = k). Then, for this special case
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gR = lim sup
n→∞

1
n

logP1 ({Ui = 0 : i = 1, 2, . . . N})

=
N∑
i=1

lim sup
n→∞

1
mi

logP1 (Ui = 0) , (3.2)

where mi = |Mi| and each mi increases proportionally with n−N
N

.

Suppose that the Type I and Type II error probabilities for all sensors within Ck

are ak and bk, respectively. Then, the KLD at vk associated with P1 (Ui = 0) is

D (P vi
0 ||P vi

1 ) = mk

(
ak log

(
ak
b′k

)
+ a′k log

(
a′k
bk

))
, (3.3)

where a′k = 1− ak, b′k = 1− bk, and mi = mk since i , k. Equations (3.2) and (3.3)

imply

gR = −
N∑
k=1

(
ak log

(
ak
b′k

)
+ a′k log

(
a′k
bk

))
. (3.4)

We now consider the parallel configuration using a similar analysis with ak, bk,

and mk defined as before ∀s ∈ Ck. After straightforward but tedious calculations,

the KLD at the root f is

D
(
P f

0 ||P
f
1

)
=

N∑
k=1

(
ak log

(
ak
b′k

)
+ a′k log

(
a′k
bk

))
. (3.5)

The proof of (3.5) is given in Appendix B. As the Type II error probability decays

exponentially within the parallel configuration, we have g∗P = −D
(
P f

0 ||P
f
1

)
where f

represents the root [13]. Thus, g∗P = gR, which implies g∗P = g∗R as desired for the

hUBRT configuration.

The Tay et al. results in [14] on “height uniformization” and the upper bound on

the general tree error exponent can be applied to each Ṽi and its predecessor leafs.

The desired g∗P = g∗R for the hBRT configuration follows.
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The following corollary follows directly from the proof of Lemma 3.3.

Corollary 3.4. Consider a hUBRT with N classes of sensors with i.i.d. observations

within a class and independent observations across classes. Then, g∗P = g∗R when the

Type I error probability is α ∈ (0, 1), Sn
n
→ 1, and the total number of nodes are equal

between the hUBRT and parallel configurations.

3.3.3 Sensor Decision and Node Fusion Rules

Achieving these optimal error exponents in practice is not necessarily straightfor-

ward. Within the hBRT configuration, the Type I error must be properly distributed

across classes, the class fusion rule defined, and the sensor threshold for each class

determined. We now shift our focus to address these challenges.

The LLRT at each sensor s ∈ Vn, based solely on its conditionally independent

observation Xs is

Ls (x) = log dP
Xs
1

dPXs
0

(x) = log p
Xs
1 (x)
pXs0 (x)

(3.6)

for x ∈ X = ⋃N
k=1Xk. Since Xs is i.i.d. for all s ∈ Ck, the Ls (x) is compared to

a common threshold ηk deciding H1 if Ls (x) > ηk, H0 if Ls (x) < ηk, and possibly

randomizing if Ls (x) = ηk.

Similarly, let U k = {Us}s∈Ck be the decisions received at node vi ∀s ∈ Ck under

both P0 and P1. Then, the optimal decision fusion at node vi is also a LLRT

Lvi (u) = log dP
vi
1

dP vi
0

(
uk
)

= log
pvi1
(
uk
)

pvi0 (uk) , (3.7)

which is compared to a threshold κi to decide H1 versus H0. The optimal LLRT at

node vi can be shown to be equivalent to the so-called counting rule (i.e., ∑s∈Ck Us ≷
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κi), where κi is a non-negative integer, since ∀s ∈ Ck, Us = γks (Xs) is an i.i.d. binary

random variable. Let αk be the required Type I error probability for Ck to obtain

the global α Type I constraint. Then, κi is selected to obtain αk, which may require

randomization between adjacent integer thresholds.

The optimal parallel configuration fusion rule is also a LLRT similar to that in

Equation (3.7), but now with Un =
{
U k

}N
k=1

, the set containing the local decisions

∀s ∈ Vn. The LLRT at f is

Lf,n (u) = log dP
f
1

dP f
0

(un) = log p
f
1 (un)
pf0 (un)

(3.8)

and is compared to a threshold τ ∈ R to decide H1 versus H0. The optimal LLRT at f

is the Chair-Varshney (C-V) rule ∑N
k=1

∑
s∈Ck Us log

[
b′k
ak

a′k
bk

]
≷ τ −∑N

k=1mk log bk
a′
k

= τ ′

[6]. Essentially, this fusion rule compares the weighted sum of all the ones received

at f against a threshold τ ′, deciding H1 if the sum is greater than τ ′, H0 if it is less,

and when equal may require randomization to meet α.

3.3.4 Numerical Example

The goal of this numerical example is to establish techniques that can be used to study

(3.7) and (3.8). We will show that these techniques achieve the optimal Type II error

exponent and in doing so establish one method to study the detection performance

and transmission power requirements when the wireless links are not ideal. Certainly

by Corollary 3.4, we know g∗P = g∗R for all appropriately defined hBRTs. Furthermore,

we know that gR (cf. (3.4)) achieves g∗R, so any selection of N , α, ak, bk will suffice and

the study can be limited to a single non-trivial example. We set h = 2 (i.e., 2UBRT),

N = 5, α = 0.1, a = [0.20, 0.65, 0.45, 0.15, 0.50]T , and b = [0.7, 0.2, 0.4, 0.7, 0.3]T ,
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where a = [a1, . . . aN ] and similarly for b.

Notice that the decision rule for (3.8) is a weighted sum of independent Bernoulli

random variables. Let this weighted sum at f be represented by Y = ∑N
k=1

∑
s∈Ck wkUs,

where wk = log
[
b′k
ak

a′k
bk

]
. Equivalently, Y can be defined as a weighted sum of indepen-

dent Binomial random variables with parameters mi and ak or bk. Then, the densities

P f
0 (y) and P f

1 (y) do not have a general closed form solution.1 However, when n is

sufficiently large (i.e., mk large) with 0 < ak < 1 − bk ∀k, the parallel configuration

distributions at f are approximately Gaussian

H0 : Y ∼ N
(

N∑
k=1

wkmkak,
N∑
k=1

w2
kmkak · a′k

)
, (3.9)

and similarly for P f
1 (y) replacing ak, a′k with b′k, bk, respectively by the DeMoivre-

Laplace Theorem [50].

Fortunately, the distributions at each fusion node vi are well defined for the

2UBRT configuration. Specifically, P vi
0 (yi) is Binomial with parameters mk and ak,

where Yk = ∑
s∈Ck Us and P

vi
1 (yi) is similar. However, determining the threshold κi

requires αk. One method of determining αk is to set αj = αk ∀j, k ∈ {1, 2, . . . , N}

using

αk = 1− (1− α)1/N . (3.10)

Since 3.4 places no constraint on αk beyond the global α requirement, we expect to

still achieve the Optimal Type II error exponent. The following numerical example

supports this claim.

Within Figure 3.2, we plot the magnitude of the normalized logarithm of the Type

1Henceforth we assume the σ−finite measure µ is the Lebesgue measure when the random variable
is continuous and the counting measure when discrete.
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Figure 3.2: 2UBRT Asymptotic Performance Analysis: N = 5, with α = 0.1, h = 2,
a = [0.20, 0.65, 0.45, 0.15, 0.50]T , b = [0.7, 0.2, 0.4, 0.7, 0.3]T

II error probability,
∣∣∣ 1
n

log β
∣∣∣, versus n for both the parallel and 2UBRT configurations

using the methods described in this subsection (cf. (3.9)-(3.10)). When n is large, the

Type II error probability at relay vi is modeled with a Gaussian approximation similar

to (3.9) with Mills ratio used to bound the complementary cumulative distribution

function (CCDF) for numerical simulation purposes. The specifics for calculating the

Type II error probability when n is large is given in Appendix C. The asymptotic

convergence point, |g∗P |, is depicted as a horizontal line in Figure 3.2 for reference.

Figure 3.2 supports three main conclusions. First, the Type II error probability

decays at the same exponential rate for the 2UBRT and parallel configurations as

expected. Second, βP ≤ βh as expected, where βP is the Type II error probability

for the parallel configuration and βh the Type II error probability for the hBRT

configuration. Finally, when aj 6= ak ∀j, k and bj 6= bk ∀j, k, then the inequality

becomes strict in the non-asymptotic regime βP < βh.
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3.4 Relay Networks and UMP-DD

Given that hBRT configurations have an equivalent error exponent to the parallel

configuration when the conditions of Lemma 3.4 are met, we would not like to

understand if UMP-DD can also be achieved under the same set of constraints. The

following study builds upon the UMP-DD results of Chapter 2 and in particular

Theorem 2.7, as related to a composite parameter θk ∈ Θk associated with class Ck

and α ∈ (0, 1), which is a constraint on the size of the test.

3.4.1 Achieving UMP-DD in a hBRT Configuration

Suppose T ks (Xs) is a sufficient statistic for the class Ck sensor LRT in (3.6), but with

densities pXs|θkj , j = 0, 1. Further, let pj
(
T ks (Xs|θk)

)
be log-concave w.r.t. T ks (Xs) for

j = 0, 1 and ∀k. Let each P θk
j be conditionally independent, log-concave w.r.t. θk, and

have a convex support for all s. When pj
(
T ks (Xs) ;Dj

)
=
´

Θk
pj
(
T ks (Xs|θk)

)
pθkj µ (dθk)

is a smooth function (continuous derivatives), then by Theorem 2.7 equal quantizers,

ηk1 = ηk2 = · · · = ηk|{s : s∈Ck}| = ηk are a UMP-DD test at the level h′ = hB − 1 under

the And or Or fusion rules.

Lemma 3.5. If all relays at level h′ = hB−1 in a hBRT configuration are UMP-DD

given the conditions in the preceding paragraph (i.e., per Theorem 2.7), then a hBRT

configuration is UMP-DD.

Proof. Without loss of generality, we can assume the tree is h-Uniform, which is

only made to simplify the notation of the subsequent Markov Chain. Suppose all

relays at level h′ = h − 1 are UMP-DD, where hB = h ∀B ∈ An by assumption.

Next, notice that Hj → θ → Xs → Us → U i (h′ = h− 1) → · · · → U i (h′ = 1) →

Un (h′ = 0)→ U0 forms a Markov Chain. Then, by the properties of a Markov Chain,
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any states following the state that is UMP-DD are also UMP-DD. Thus, the hUBRT

configuration is UMP-DD.

Similar to Remark 2.9, when the relays at level h′ = hB − 1 are LMP-DD using

the more generic counting fusion rule (cf. 3.7), then the hBRT configuration is also

at least LMP-DD.

3.4.2 Achieving hBRT UMP-DD and Asymptotically Optimal Perfor-

mance

When the hBRT configuration is UMP-DD, it is also desirable to achieve an error

exponent that is equivalent to the parallel configuration (i.e., g∗R = g∗P ). This goal

can be realized by applying an approach similar to that applied in Section 3.3.1 to

show the hBRT configuration error exponent, g∗R is equivalent to g∗P .

Suppose the fusion rule at f and each relay node decides Ui = 0 iff ∑vj∈Mi
Uj = 0

(cf. (2.2) with κ = 1). Then, g∗R = g∗P occurs if an appropriate size can be realized

at each h′ through the tree. Let αi (h′) be the Type I error probability constraint

for relay vi with α0 (h′ = 0) , α, where αi is a function of h′. Then, αi (h′) can be

defined recursively as

αi (h′) = 1− (1− αj (h′ − 1))
1
|Mi| ∀ {vi : vi is at height h′ ≤ hB} , (3.11)

where vj is the successor relay node ∀vi ∈Mj, similar to (3.10).

The proceeding formulation does achieve the desired result of asymptotically

optimal UMP-DD hBRT performance. This is a rather non-intuitive result, as the

fusion rules and the determination of each αi (h′) are seemingly arbitrary. Notice that

one benefit of such an approach is that the system is relatively insensitive to changes
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in the statistics at the leaf level (i.e., non-stationary). With that said, application of

the optimal fusion rules (cf. (3.7)) for relays at h′ < hB − 1 and another selection

method of each αi (h′) may result in improved detection performance outside the

asymptotic regime. However, any improvements realized come at the cost of making

the system more sensitive to changing statistics at the leaf level.

With the UMP-DD designation, the hBRT configuration has all the advantages

discussed in Chapter 2. This includes support for composite parameters where the

observation models given H1 are no longer conditionally independent. It supports

a multitude of noise models (cf. Table 2.1), multipath fading environments, and,

perhaps most importantly, the ability for sensors having different locations, technol-

ogy, or interference to be readily modeled via the class hierarchy. It also allows a

reduction in network energy usage, as the relay network tends to reduce the average

transmission power required.

3.5 Tandem Networks and UMP-DD

This section highlights that tandem networks are not UMP-DD as the optimal deci-

sion at any node vi is a function of the composite parameter θ. Consider the tandem

network atom presented in Figure 3.1d. The LRT for the atom is (cf. (1.2) and (3.6))

l (x, us) = p
X,Us|θ
1 (x, us)
p
X,Us|θ
0 (x, us)

, (3.12)

where the relay vis observation is X and the decision of s is Us. As Us is a binary

random variable,
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l (x, us) = p
X|θ
1 (x) (p1 (Us = 1 | θ) δ [us − 1] + p1 (Us = 0 | θ) δ [us])
p
X|θ
0 (x) (p0 (Us = 1 | θ) δ [us − 1] + p0 (Us = 0 | θ) δ [us])

,

= p
X|θ
1 (x) (b′δ [us − 1] + bδ [us])
p
X|θ
0 (x) (aδ [us − 1] + a′δ [us])

where δ [x] = 1 iff x = 0 and equals zero otherwise. Now consider the case Us = 1

and Us = 0 separately. First Us = 1

l (x, us) �Us=1 = p
X|θ
1 (x) p1 (Us = 1 | θ)
p
X|θ
0 (x) p0 (Us = 1 | θ)

,

= l (x) p1 (Us = 1 | θ)
p0 (Us = 1 | θ) ≷ τ, (3.13)

and Us = 0

l (x, us) �Us=0 = l (x) p1 (Us = 0 | θ)
p0 (Us = 0 | θ) ≷ τ, (3.14)

where � is the function restriction operator. Now the relays LRT, l (x) in both (3.13)

and (3.14) can be expressed as

l (x) �Us=1 ≷ τ
p0 (Us = 1 | θ)
p1 (Us = 1 | θ) = τ1

l (x) �Us=0 ≷ τ
p0 (Us = 0 | θ)
p1 (Us = 0 | θ) = τ0.

Thus, the optimal LRT l (x) has two thresholds selected based on us and both are a

function of the sensors Type I and Type II error probabilities. Then for any non-trivial

distribution PXs
j , j = 0, 1 and a sensor test of size αs ∈ (0, 1) the numerator and

denominator of τ1 and τ0 remain a function of the composite parameter under both

hypotheses. Hence, the tandem atom is not UMP-DD, which implies that a general
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tandem network composed of multiple atoms is also not UMP-DD.

3.6 Summary

This chapter studied the detection performance for binary tree structures of bounded

uniform height under the Neyman-Pearson framework with different classes of sen-

sors. We extended the work of prior authors, using sensor observations that are

conditionally i.i.d. in an average sense within a given class and at least conditionally

independent across classes. This model was named a hBRT configuration and was

shown to achieve an equivalent error exponent to the optimal parallel configuration.

That is, the Type II error probability decayed at the same exponential rate with the

number of nodes between the two configurations.

We showed that the asymptotically optimal hBRT configuration can also be

UMP-DD. In doing so, we extended current research beyond the conditionally i.i.d.

case, providing model support for observation models that are more closely aligned

to problems of interest in decentralized detection. Included are models with com-

posite parameters, where that parameter can differ as a function of location, sensing

technology, and by random effects such as multipath fading channels.

Finally, unlike the hBRT relay network, we discussed that the tandem networks

Type II error probability decays sub-exponentially and showed that the tandem

network is not UMP-DD. The reason for this was that the quantizers for each tandem

node are a function of the prior nodes probabilities under both H0 and H1 and at

least one of those probabilities will be a function of the composite parameter.
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CHAPTER 4

CONDITIONALLY DEPENDENT DECENTRALIZED

DETECTION AND UMP-DD

4.1 Introduction

The prior two chapters concluded that for a single rooted tree of bounded height, the

parallel and relay networks under 1-bit quantization can achieve UMP-DD. However,

those conclusions and supporting derivations were based on the assumption of con-

ditionally independent observations (cf. 2.1 and 3.1). This is an assumption that is

overly restricted for most problems in decentralized detection, particularly wireless

networks [48]. Examples of such observation models include sensors that are subject

to a common interference, a jamming signal, or observations with correlated noise

(e.g., correlated log-normal shadowing [51]).

This chapter will focus exclusively on both the parallel and hBRT configurations

discussed in Chapters 2 and 3, and will exclude the tandem configuration, since it

does not achieve UMP-DD performance, even with conditionally i.i.d. observations.

We will establish a set of sufficient conditions for both the parallel and hBRT config-

uration to establish UMP-DD, but now with conditionally dependent observation.

Assumption 4.1. The sensor observations are conditionally dependent given the

composite parameter under each hypothesis.
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Certainly a directed tree network having UMP-DD performance with conditionally

dependent observations is advantageous in practice. Intuitively, one expects that as

the physical separation between sensors diminishes, the probability that local wire-

less sensor observations become conditionally dependent and identically distributed

increases. Thus, it is desirable to develop a conditionally dependent UMP-DD theory

that allows sensors in close proximity to be grouped, and support the case where the

observation model across groups is different (e.g., geographically dispersed groups).

4.1.1 Prior Research

It is know that while the general decentralized detection problem is NP-complete, a

majority of the conditionally dependent problems are NP-hard [12]. NP-hard in the

sense that the form of the optimal decision rules at the leaves is often unknown, many

time coupled between leafs, and may be coupled with fusion rules throughout the tree

[1, 15]. Unlike the conditionally independent model, the application of a LRT at the

leaves, even for seemingly straightforward hypothesis testing problems may not be

optimal (see [52, 53] and references therein).

An interesting treatment of binary hypothesis testing with two sensors (n = 3)

observing a shift in mean, θi i = 1, 2, with noise that has a standard bivariate Gaussian

distribution with correlations parameter ρ appears in [1] and is an extension of [54].

Even for this relatively simple two sensor model, determining the optimal decision

rules is complex. In some regions, the optimal decision rules are single threshold

quantizers, in other regions multi-level quantizers, and undefined for the remaining

regions, where the regional separation is a function of ρ and the mean shift values θ1

and θ2. The authors in [1] denote these regions respectively as “Good,” “Bad,” and

“Ugly,” with Figure 4.1 indicating the signal plane relationship to ρ, θ1, and θ2 for the
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Figure 4.1: The Good, Bad, and Ugly Regions [1]

two sensors. The bounding equation in both [1] and [54] is (θ1 − ρθ2) (θ2 − ρθ1) ≥ 0,

where the joint constraint equations θ2 ≥ ρθ1 and θ1 ≥ ρθ2 follow directly.

A hierarchical approach for modeling conditionally dependent observations was

introduced in [15]. Here, a hidden random variable was introduced in a manner that

allows each sensor’s observation to be conditionally independent given the hidden

variable, but remain conditionally dependent given Hj, j = 0, 1. This approach is

relatively intuitive and allows the exploration of a larger class of decentralized detec-

tion problems with conditionally dependent observations under both the Bayesian

and Neyman-Pearson framework. Additionally, it is straightforward to establish

the bounding equation for the “Good” region in Figure 4.1 under the hierarchical

framework.
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4.1.2 Chapter Goals

This chapter will show that under certain sufficient conditions the bounded height

relay tree discussed in Chapters 2 and 3 with conditionally dependent observations

can be UMP-DD. These sufficient conditions will be established using the hierarchical

conditional independence (HCI) model under the Neyman-Pearson framework [7], but

applied to N different classes of observations within a tree configuration. The obser-

vations within a single class are conditionally dependent with a known dependency

and may be either conditionally dependent or independent between classes. Similar

to the prior chapters, we assume 1-bit quantized local decisions throughout the tree.

Section 4.2 will review the HCI model and establish the tools that will be used

to define the UMP-DD sufficient conditions. Section 4.3 then applies these tools

to the parallel configuration (h = 1) and introduces the main contribution of this

section, which defines a set of sufficient conditions to achieve UMP-DD performance

with conditionally dependent observations. These results are then applied to example

parallel configurations where the observation models are correlated Gaussian noise.

The HCI model is then applied to relay networks in Section 4.4, leveraging the results

of Section 4.3. Again, a set of sufficient conditions are required for the more general

hBRT configuration to achieve UMP-DD performance.

4.2 The Hierarchical Conditional Independence Model

The HCI model for decentralized detection can be represented in terms of a Markov

Chain. The parallel configuration has a conditionally dependent Markov Chain Hj →

X → U s → U0, where the joint density pXj cannot be factored as ∏s∈Vn p
Xs
j . The

HCI model introduces a hidden random variable, say Y , into the Markov Chain as
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Hj → Y → X → U s → U0, such that pX|Y=y
j = ∏

s∈Vn p
Xs|y
j . Thus, Y induces a

conditional independence on the sensor observations.

Theorem 1 in [15] indicates that when X is a continuous random variable, similar

to our UMP-DD requirements in Chapter 2, and Y is a scalar random variable,

then a single quantizer threshold for each sensor is optimal, subject to the following

conditions:

1. The fusion center employs a monotone fusion rule: such that the probability of

deciding 1 is a monotonic function of Us, such that Pj(U0 = 1|Us = 1, Y = y) ≥

Pj(U0 = 1|Us = 0, Y = y) ∀ y and j = 0, 1;

2. The LRT l (y) = pY1 (y)
pY0 (y) is a non-decreasing function of y with P Y

1 � P Y
0 ;

3. The LRT l (xs, x′s; y) = p
Xs|y
1 (xs)
p
Xs|y
0 (x′s)

is also a non-decreasing function of y ∀xs > x′s

with PXs|y
1 � P

Xs|y
0 .

We now use the HCI model to study the composite binary hypothesis testing problem.

4.3 Parallel Configuration, Dependent Observations, and UMP-

DD

This section studies the parallel configuration UMP-DD problem of Chapter 2, de-

picted in Figure 1.1c, but now with dependent observations. Again we will require

that the distributions be smooth log-concave functions and as such contain no point

masses. Thus, the σ−finite measure µ can be taken to be the Lebesgue measure.

Assumption 4.2. The σ−finite measure µ is the Lebesgue Measure.

Suppose under the HCI model, the hidden variable Y with distribution P Y
j is a

function of a composite parameter θ ∈ Θ0 tΘ1 having distribution P θ
j with P θ

j <�<µ.
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Figure 4.2: Parallel Configuration via the Hierarchical Conditional Independence
(HCI) Model

The goal is to test H0: θ ≤ θ′ versus H1: θ > θ′ under the Neyman-Pearson framework.

A difference to Chapter 2 is that θ is a scalar, since Y is a scalar random variable, so

θs is simplified to θ.

Suppose Y is selected so the Markov chain Hj → Y → X → U → U0 meets the

HCI model constraint of Section 4.2, with X conditionally dependent given Hj, but

conditionally independent given Y . The parallel configuration using the HCI model

is depicted in Figure 4.2. Similar to Chapter 2, the a priori distribution P θ
j is defined

by a set of parameters Dj (i.e., support, mean, variance, ...), where the dependence

on Dj is implied, henceforth.

Next, suppose the FC applies the counting fusion rule

Uo =


1, ∑n−1

s=1 Us ≥ κ,

0, ∑n−1
s=1 Us < κ,

(4.1)

which is monotone in Us per Condition 1.
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Let

Pj (U s = us) =
ˆ
Y

∏
s∈Vn

P
Xs|y
j (Us = us) pYj (y)µ (dy)

= EY
j

 ∏
s∈Vn

P
Xs|y
j (Us = us)

 ,

where us ∈ {0, 1}. Suppose Ts (Xs|y) is a sufficient statistic for deciding PXs|y
j (Us = us),

with Cs the critical region for sensor s deciding H1. Consider the And fusion rule,

then Pj (U0 = 1) = Pj
(
U s = 1T

)
, where 1T is a vector of all ones. Then,

Pj (U0 = 1) = EY
j

 ∏
s∈Vn

ˆ
Cs
pj (Ts (Xs|y))µ (dx)

 . (4.2)

Similar to Theorem 2.7 for the conditionally independent case, we have the fol-

lowing for the conditionally dependent case under the HCI model.

Theorem 4.3. Let Ts (Xs|y) be a sufficient statistic for the conditionally independent

observations Xs having density pXs|Yj where pj (Ts (Xs|y)) is log-concave w.r.t. Ts (Xs)

for j = 0, 1 and l (xs, x′s; y) is nondecreasing in y ∀xs > x′s (cf. 3). Let p
Y (θ)
j (y) be log-

concave w.r.t. y, have a convex support with θ a constant, and l (y) is nondecreasing

in y (cf. 2). If EY
j

[∏
s∈Vn
´
Cs pj (Ts (Xs|y))µ (dx)

]
is a smooth function (continuous

derivatives), then equal quantizers, η1 = η2 = · · · = ηn−1 = η, are a UMP-DD

test under the And or Or fusion rules (cf. 1) with identical distributed conditionally

dependent observations, and 1-bit quantized local decisions.

Proof. Let l (xs, x′s; y) be nondecreasing in y ∀xs > x′s, and l (y) nondecreasing in y

per HCI constraints 2 and 3. Let the fusion rule be the And rule per HCI constraint
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1. Then there exist single threshold 1-bit quantizers at each sensor that are optimal

(cf. Theorem 1 in [15]). Thus, the critical region, Cs, in 4.2 is equivalent to [ηs,∞)

and

Pj (U0 = 1) = EY
j

 ∏
s∈Vn

ˆ ∞
ηs

pj (Ts (Xs|y))µ (dx)
 ,

and similarly for Pj (U0 = 0) with the interval (−∞, ηs).

Let pj (Ts (Xs|y)), pY (θ)
j (y) be log-concave w.r.t. Ts (Xs) and y respectively, and

the support for pY (θ)
j (y) be convex with θ ∈ Θj a constant for j = 0, 1. Then,

EY
j

[∏
s∈Vn
´∞
ηs
pj (Ts (Xs|y))µ (dx)

]
is log-concave w.r.t. ηs (cf. the proof of Theorem

2.7). Then, if EY
j

[∏
s∈Vn
´∞
ηs
pj (Ts (Xs|y))µ (dx)

]
is also smooth, equal quantizer

thresholds are optimal where the remainder of the proof follows from that of Theorem

2.7.

Next, consider the general counting rule (e.g., k out of N), which is a monotone

fusion rule per HCI constraint 1. Under the same conditions as Theorem 4.3, the

conditionally dependent problem can also be LMP-DD per Remark 2.9. We now

explore the results of this section via an illustrative example.

4.3.1 Detection with Composite Parameters under Correlated Gaussian

Noises

The selection of local decision rules for the general decentralized binary hypothesis

testing problem with composite parameters under correlated Gaussian noise does not

admit a closed form solution. To see this, consider Figure 4.1 and note that for

even two sensors, it is not possible to ensure operations within any particular region,

“Good,” “Bad,” or “Ugly.” However, the case where each sensors observation is based

on the same composite parameter is exceptional.
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That is, when θs = θ ∀s, the operating region is guaranteed to be within the

“Good” region for all ρ ∈ [0, 1] with two sensors [1, 15, 52]. Suppose Θ0 = {0},

Θ1 = {θ : θ > 0}, which implies θ′ = 0. Here we set Θ0 to be a singleton, but

Θ0 = {θ : θ ≤ 0} is also possible (cf. 1.1). Notice that for the two sensor case, either

formulation for Θ0 ensures the observation space excludes the “Ugly” region.

Let the observations at each sensor be PXs|θ
j ∼ N

(
θ · 1T ,ΣX

)
, j = 0, 1, where

1T = [1, 1, . . . , 1]T consisting of n− 1 rows. When ΣX has the following structure

ΣX =



1 ρ · · · ρ

ρ 1 · · · ρ

... ... . . . ...

ρ ρ · · · 1



where ρ ∈ [0, 1] and, without loss of generality, the variance down the diagonal

has been normalized to one by scaling Xs appropriately. This structure admits a

possible decomposition of Xs = θY + Ws ∀s ∈ Vn where Ws ∼ N (0, 1− ρ) and

P Y
j ∼ N (j, ρ) , j = 0, 1, with a slight abuse of notation using j as the mean. This

formulation with the counting fusion rule satisfies HCI constraints 1-3 and a single

quantizer test for each s is optimal [15]. We will use a simple two-sensor example

to indicate how the remaining conditions required by Theorem 4.3 are met, which

implies the problem is UMP-DD or at least LMP-DD using (4.1).

Suppose PX|θj ∼ N (θ, θ, 1, 1, ρ), j = 0, 1. This is the standard shifted mean

problem in correlated Gaussian noise, W , with a traditional formulation of
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H1 (θ > 0) : Xs = θ +Ws, (4.3)

H0 (θ = 0) : Xs =Ws,

with n = 3 and Ws ∼ N (0, 0, 1, 1, ρ) the standard bivariate Gaussian distribution

with ρ ∈ [0, 1].

The optimal local decision rule, γs ∀s, is a 1-bit quantizer with a graphical

representation of this decomposition, depicted in Figure 4.2 by setting n = 3.

Suppose the And fusion rule is applied for a given ρ, then Pj (U0 = 1) in (4.2) is

Pj (U0 = 1) =
ˆ ∞
−∞

Q

(
η1 − y√

1− ρ

)
Q

(
η2 − y√

1− ρ

)
pYj (y)µ (dy) ,

where Q (x) is the standard Gaussian CCDF and ∏n−1
i=1 Q

(
ηi−y√

1−ρ

)
follows from the

conditional independence of Us|Y = y. As such, Pj (U0 = 1) is smooth log-concave

for j = 0, 1 since Q (·) and pYj are both smooth log-concave. Notice that extensions for

n > 3 follow similarly. Thus, by Theorem 4.3, the two sensor composite parameter

detection problem with correlated identically distributed Gaussian observations is

UMP-DD. The case with Or fusion is similar using all zeros versus an all ones

approach (i.e., Pj (U0 = 0)).

The results of this section are explicitly based on the requirement of identical

composite parameters across all sensors (i.e., θs = θ ∀s ∈ Vn). While this model is

applicable to some specific problems in decentralized detection, a better model is one

that allows the composite parameter to vary across the sensors, even if the variation

is at a class level. This will be the focus of the next section.
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4.4 Relay Networks, Dependent Observations, and UMP-

DD

This section studies the UMP-DD problem for the relay networks of Chapter 3,

depicted in Figure 3.1a with dependent observations. Similar to the prior section, we

will require that the distributions be smooth log-concave functions and the σ−finite

measure µ is the Lebesgue measure (c.f. 4.2).

Suppose under the HCI model, a hidden variable Yk can be determined for each

class Ck, where the observations within the kth class are conditionally dependent with

a composite parameter θs = θk ∀s ∈ Ck. Here, the font Ck is used to differentiate from

the conditionally i.i.d. class definition, Ck, used in Chapter 3. Let the distribution

P Yk
j (θk) be a function of the composite parameter θk ∈ Θ0,k t Θ1,k = Θk, where θk

follows probability distribution P θk
j with P θk

j <�<µ. Within this section, the observa-

tions between classes are allowed to be either conditionally dependent or independent

as we are not concerned with the asymptotic performance.

Again, the goal is to test H0: θ ≤ θ′ versus H1: θ > θ′ under the Neyman-Pearson

framework, with θk a scalar function of θ for a given class. By way of example, θ might

represent the transmitted power and θk the received signal power by a collection of

sensors that are physically close to one another.

Suppose Yk is selected so the Markov chain Hj → Y →X → Ũ → U0 meets the

HCI model constraint of Section 4.2 at a class level, with X conditionally dependent

given Hj, but conditionally independent ∀s ∈ Ck given Yk. For clarity, Y is {Yk}Nk=1,

the segregation by class is implied throughout the Markov chain, and Ũ represents

the sequence of local decisions from s to f along the respective branches.

The relay network under the HCI model is depicted in Figure 4.3. Again, we
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focus on the hBRT configuration, with Ṽk used to abstract the relay structure within

a class, as stated in Chapter 3. The set of predecessor nodes to relay vi is denoted

by Mi, h′ is the number of directed arcs traveled from f to a certain level of relay

nodes along a given branch, and h′ = hB − 1 are the relays with only sensors as their

predecessors along branch B with h = max {hB : B ∈ An}.

4.4.1 Achieving UMP-DD with Dependent Observations in a hBRT Con-

figuration

We now consider a hBRT configuration with conditionally dependent observations

supporting an HCI model at the class level. The same methods used to establish

Theorem 4.3 for the parallel configuration can then be applied within a given class,

say Ck, with a common composite parameter θk ∈ Θk ∀s ∈ Ck. Under the Neyman-

Pearson framework with test size α ∈ (0, 1) at the system level, we have the following

Corollary to Theorem 4.3.

Corollary 4.4. Let T ks (Xs|yk) be a sufficient statistic for the conditionally indepen-

dent observations Xs having density pXs|Ykj where pj
(
T ks (Xs|yk)

)
is log-concave w.r.t.

T ks (Xs) for j = 0, 1, and l (xs, x′s; yk) is nondecreasing in yk ∀xs > x′s (cf. HCI 3).

Let pYk(θk)
j (yk) be log-concave w.r.t. yk, have a convex support with θ a constant, and

l (yk) is nondecreasing in yk (cf. HCI 2). If EYk
j

[∏
s∈Ck
´
Ccs
pj
(
T ks (Xs|yk)

)
µ (dx)

]
is a smooth function (continuous derivatives), then equal quantizers, ηk1 = ηk2 =

· · · = ηk|{s : s∈Ck}| = ηk, are a UMP-DD test at the level h′ = hB − 1 under the And

or Or fusion rules (cf. HCI 1) with identical distributed conditionally dependent

observations, and 1-bit quantized local decisions.



68

When all relays at level h′ = hB − 1 achieve UMP-DD performance, then the

hBRT configuration in its entirety is also UMP-DD.

Theorem 4.5. If all relays at level h′ = hB−1 in a hBRT configuration are UMP-DD

per Corollary 4.4, then a hBRT configuration is UMP-DD.

The proof is similar to that of Lemma 3.5 and relies on the properties of the Markov

Chain Hj → Y → X → Ũ → U0. Specifically, let Ũ =UhB−1 → UhB−2 → · · · →

U 1. Then, when the decisions UhB−1 are each UMP-DD for each class, the remaining

decisions are also UMP-DD. Notice that because of the Markov Chain properties,

only the relays at level h′ = hB − 1 are required to use the And or Or fusion rule.

Each subsequent relay can use the optimal counting fusion rule (cf. 3.7) when data

aggregation up the tree is constrained within a Ṽk. Finally, it is straightforward to

show that when the relays at level h′ = hB − 1 are LMP-DD using the more generic

counting fusion rule (cf. 3.7), then the hBRT configuration is also at least LMP-DD.

4.5 Summary

This chapter studied the detection performance for bounded height binary tree struc-

tures under the Neyman-Pearson framework with different classes of sensors. We

applied the HCI model to study problems with conditionally dependent observations

that resulted in UMP-DD. The HCI model required that each sensor observe the same

composite parameter for the parallel configuration. This is a constraint that is overly

restrictive for most decentralized detection problems of interest.

We then showed that by using the class formulation presented in Chapter 3, it was

possible to have a UMP-DD system with a multitude of composite parameters allowed.

The only constraint on the class definition is that the composite parameter be common
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across all sensors within the class. Finally, we described how this model supports

the critical challenge of correlated log-normal shadowing prevalent in decentralized

wireless networks.
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CHAPTER 5

CONCLUSIONS

The objective of this work has been to introduce UMP into the decentralized detection

theory, focusing on directed single-rooted trees of bounded height. The first chapter

reviewed UMP binary hypothesis testing from the centralized detection theory per-

spective and introduced the notation used across the remaining chapters regarding

directed single-rooted trees. This first chapter also provided the motivation regarding

the results of Chapter 2 and their associated significance.

Chapter 2 introduced Theorem 2.7 that defined sufficient conditions for when

the classical parallel configuration is able to achieve UMP-DD performance. These

conditions include: conditionally independent sensor observations given a random

composite parameter following an a priori known distribution, and a fixed And or

Or fusion rule at the fusion center. Corollary 2.8 associated with Theorem 2.7 then

established sufficient conditions for UMP-DD when the composite parameters are

fixed but unknown. These methods were then applied to a multitude of inference

models, including spectrum sensing in cognitive radio using energy detection methods

under various channel models such as Nakagami or Rayleigh fading.

The results of Chapter 2 were then extended to the more general counting fu-

sion rule with the UMP-DD designation replaced with the less restrictive LMP-DD

identifier. However, we conjectured that the counting fusion rule remains UMP-DD,
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including randomization between adjacent thresholds. This conjecture was supported

by the two-sensor model with a generalized fusion rule. There, we showed that

all forms of the counting rule, including randomization between thresholds was in

fact UMP-DD in all cases. We also showed that the Karlin-Rubin Theorem used in

centralized detection theory was insufficient to determine if a single-rooted tree was

UMP-DD, even with conditionally independent observations.

Chapter 3 studied the detection performance for binary tree structures of bounded

uniform height under the Neyman-Pearson framework with different classes of sensors.

We extended the work of prior authors who assumed i.i.d. observations by introducing

observation classes, where sensor observations within a class are conditionally i.i.d.

in an average sense, but only need to be independent across classes. This model was

named a hBRT configuration and was shown to have a Type II error probability that

decays exponentially at the same rate as the parallel configuration with the same

number of nodes.

We also showed in Chapter 3 that the asymptotically optimal hBRT configuration

can also be UMP-DD, extending current research based on the conditionally i.i.d. case

to support more general conditionally independent models. We discussed that these

results support typical decentralized detection models having composite parameters,

where that parameter can differ as a function of location, sensing technology, and

suffer random perturbations such as multipath or log-normal fading channels.

Chapter 3 then concluded with a study of the tandem network. There, we dis-

cussed that the tandem networks Type II error probability decays sub-exponentially

and showed that the tandem network can not be UMP-DD, unlike the hBRT con-

figuration. The reason for this was that the quantizers for each tandem node are a

function of the prior nodes inference probabilities under both H0 and H1, and at least
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one of those probabilities is a function of the composite parameter itself.

Chapter 4 relaxed the assumption of conditional independence found in Chapters 2

and 3. Using the described HCI model, we showed that with conditionally dependent

observations the parallel configuration resulted in UMP-DD under some very specific

conditions. Specifically, each sensor was required to observe the same composite

parameter, and that the conditionally dependent observation model also met the

requirements defined by the described HCI model.

Within Chapter 4, we discussed that identical observations in a decentralized

detection system were an overly restrictive assumption. Under this premise, we then

showed that by using the class formulation presented in Chapter 3, it was possible

to have a UMP-DD system under certain constraints. These constraints allowed the

composite parameter to vary across classes, but required it to be equivalent for all

sensors within the class. This model supported sensors that were physically close

with identically distributed, but conditionally dependent observations as is the case

with conditionally dependent interference or correlated noise.

5.1 Some Open Research Topics

While this effort introduced UMP into decentralized detection, there remains a num-

ber of open problems to be considered:

1. As we discussed in Chapter 2, the general counting fusion rule in the parallel

configuration with conditionally independent observations in an average sense

resulted in a LMP-DD designation. We conjecture that the counting rule (k out

of N) is actually UMP-DD, but the proof to this conjecture remains an open

research topic. It is likely that randomization between consecutive thresholds
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is also UMP-DD, similar to what we showed in Theorem 2.10 for two sensors

with Gaussian noise.

2. The relay network with conditionally dependent observations in Chapter 4

did not explore the asymptotic performance as was done in Chapter 3. An

open question is if it is possible to achieve UMP-DD performance and an error

exponent that decays exponentially fast. If it does decay exponentially, then is

the rate of decay similar to that of the parallel configuration?

3. The conditionally dependent observation examples in Chapter 4 resulting in

UMP-DD were shifted mean in correlated Gaussian noise. These results might

be extended to conditionally dependent log-normal shadowing models if pos-

sible, with detection performance compared to the various detection methods

proposed in [51, 55–58] as the numbers of sensors increases for cognitive radio

applications. Notice that the asymptotic regime is explicitly covered in [55],

where the Type II error probability bounded away from zero with correlated

log-normal shadowing. Questions include: How does each proposed method

perform asymptotically, with and without resource normalization as defined in

[48]?; Does the Type II error probability for the hBRT configuration asymptot-

ically converge to any of the proposed methods in [51, 55–58]?; If not, what is

the difference in the performance?
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APPENDIX A

TWO SENSOR RANDOMIZATION OF AND / OR

FUSION

Proof of Theorem 2.10

The generalized detection probability is

P1 (U0 = 1) = P1 (U1 = U2 = 1)

+ υ (P1 (U1 = 1, U2 = 0) + P1 (U1 = 0, U2 = 1)) . (A.1)

Under i.i.d. unit variance Gaussian noise the detection probability is

P1 (U0 = 1) = Q (η1 − θ)Q (η2 − θ) +

υ (Q (η1 − θ)Q (θ − η2) +Q (θ − η1)Q (η2 − θ)) , (A.2)

where Q (·) is the standard Normal complementary distribution function. Similarly,

the false alarm probability is

P0 (U0 = 1) = Q (η1)Q (η2) + υ (Q (η1)Q (−η2) +Q (−η1)Q (η2)) . (A.3)

With the goal to maximize P1 (U0 = 1) while meeting a P0 (U0 = 1) ≤ α, we use a

Lagrangian maximization method. Taking the partial derivative w.r.t. η1 results in
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∂P1 (U0 = 1)
∂η1

= λ
∂P0 (U0 = 1)

∂η1
, (A.4)

which can be written as

∂P1(U0=1)/∂η1

∂P0(U0=1)/∂η1
= λ =

∂P1(U0=1)/∂η2

∂P0(U0=1)/∂η2
, (A.5)

where the last equality follows trivially. Evaluating the partial derivatives results in

∂P1 (U0 = 1)
∂η1

=− φ (η1 − θ)Q (η2 − θ)

−υφ (η1 − θ)Q (θ − η2) + υφ (θ − η1)Q (η2 − θ) (A.6)

∂P0 (U0 = 1)
∂η1

= −φ (η1)Q (η2)− υφ (η1)Q (−η2) + υφ (−η1)Q (η2) . (A.7)

Substituting (A.6) and (A.7) into (A.5)

∂P1(U0=1)/∂η1

∂P0(U0=1)/∂η1
= φ (η1 − θ)

φ (η1)

× Q (η2 − θ) + υQ (θ − η2)− υQ (η2 − θ)
Q (η2) + υQ (−η2)− υQ (η2) . (A.8)

Thus
∂P1(U0=1)/∂η1

∂P0(U0=1)/∂η1
= eη1θe−

1
2 θ

2
((1− υ)Q (η2 − θ) + υQ (θ − η2)

(1− υ)Q (η2) + υQ (−η2)

)
, (A.9)

and similarly for η2 with φ (x) = φ (−x). Setting ∂P1(U0=1)/∂η1
∂P0(U0=1)/∂η1

= ∂P1(U0=1)/∂η2
∂P0(U0=1)/∂η2

and

canceling common terms results in

e−η2θ
((1− 2υ)Q (η2 − θ) + υ

(1− 2υ)Q (η2) + υ

)
=

e−η1θ
((1− 2υ)Q (η1 − θ) + υ

(1− 2υ)Q (η1) + υ

)
, (A.10)
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where the equality holds trivially if η1 = η2.

Next, we prove that η1 = η2 is indeed the only solution of (A.10). First, this claim

holds trivially for the case when υ = 1
2 . When υ 6= 1

2 , let ψ = υ
1−2υ and consider the

function

f (η) = e−ηθ
(
Q (η − θ) + ψ

Q (η) + ψ

)
. (A.11)

Then, the optimality of η1 = η2 can be established if f (η) is monotone. This is

equivalent to ln (f (η)) monotone, where ln (·) is the natural log operator.

ln (f (η)) =−ηθ + ln (Q (η − θ) + ψ)

− ln (Q (η) + ψ) .
(A.12)

Evaluating the partial derivative

∂ ln (f (η))
∂η

=−θ − φ (η − θ)
Q (η − θ) + ψ

+ φ (η)
Q (η) + ψ

.

(A.13)

Let g (θ) = ∂ ln(f(η))
∂η

. Note that g (0) = 0 and is the maximum value if g′ (θ) ≤ 0,

∀θ ≥ 0 since g′ (θ) is continuous, which implies ln (f (η)) is decreasing. Evaluating

g′ (θ), we have

g′ (θ) = −1−
∂
[

φ(n−θ)
Q(η−θ)+ψ

]
∂θ

. (A.14)

Setting t = η − θ and expanding the partial derivative

g′ (θ) = −1− t · φ (t) (Q (t) + ψ)− [φ (t)]2

[Q (t) + ψ]2
, (A.15)

or equivalently
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g′ (θ) = − (Q (t))2 −Q (t) (tφ (t) + 2ψ)
[Q (t) + ψ]2

+ [φ (t)]2 − tφ (t)ψ − ψ2

[Q (t) + ψ]2
. (A.16)

The roots of the numerator are

Q (t) = −t±
√

(t2 + 4)
2 φ (t)− ψ. (A.17)

Thus

g′ (θ) =
−
(
Q (t)−

(
−t+
√

(t2+4)
2 φ (t)− ψ

))
[Q (t) + ψ]2

×

(
Q (t)−

(
−t−
√

(t2+4)
2 φ (t)− ψ

))
[Q (t) + ψ]2

. (A.18)

Since υ ∈ [0, 1] it is straightforward to show ψ ∈ (−∞,−1) ∪ [0,∞). First, consider

the case ψ ≥ 0. Then, g′ (θ) ≤ 0 ∀t as Q (t) > −t+
√

(t2+4)
2 φ (t) ∀t ∈ (−∞,∞) from

Birnbaum’s inequality [59]. Note, the inequality still holds for t < 0, but is not tight.

Next, consider the case ψ < 0 (i.e., ψ ∈ (−∞,−1)). Then, Q (t)+ψ ≤ Q (t)−1 =

−Q (−t) ∀ψ < 0. We desire Q (t) + ψ ≤ −t−
√

(t2+4)
2 φ (t) to ensure both numer-

ator terms in (A.18) are negative so g′ (θ) ≤ 0. This is the same as −Q (−t) ≤
−t−
√

(t2+4)
2 φ (t). Setting t′ = −t, we have −Q (t′) ≤

t′−
√

((−t′)2+4)
2 φ (−t′) or equiva-

lently Q (t′) > −t′+
√

(t′2+4)
2 φ (t′), which again holds for all t′ as desired.

Therefore g′(θ) ≤ 0 for all θ. Hence, f (η) is a monotone decreasing function of η

since ∂ ln(f(η))
∂η

= g(θ) < 0, ∀θ > 0. Thus, f(η1) = f(η2) if and only if η1 = η2.

�
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APPENDIX B

PROOF OF G∗P = GR BY INDUCTION ON N

Let all s ∈ Ck have Type I error probability ak, Type II error probability bk, k = i

for the 2UBRT configuration, and mi increases proportionally with n−N
N

. Order all

sensors from the N classes as (s1, s2, . . . , sn−1) for a given n, where the nth component

is the root node f . Without loss of generality, let |Ck| = 1 ∀k. If this is not the

case, simply increase N until the condition is met, complete the proof, then remove

repeated D (P vi
0 ||P vi

1 ) values because they do not change the parallel configuration

error exponent. We now evaluate the induction hypothesis g∗P = −∑N
i=1D (P vi

0 ||P vi
1 )

using g∗P = E0

[
log dP f1

dP f0

(
uN
)]
, where Un = {Us}s∈Vn .

(Base Case) Suppose N = 2 as N = 1 holds trivially. Then, g∗P = a′1a
′
2 log b1b2

a′1a
′
2
+

a′1a2 log b1b′2
a′1a2

+ a1a
′
2 log b′1b2

a1a′2
+a1a2 log b′1b

′
2

a1a2
. Simplifying by focusing on the coefficients

a1 and a′1, we have
(
a1 log b′1

a1
+ a′1 log b1

a′1

)
(a′2 + a2) = D (P v1

0 ||P v1
1 ). For use in the

induction step, define (a′2 + a2) as the non-essential coefficients as they sum one. The

coefficient pair a2, and a′2 follow similarly with non-essential coefficients (a′1 + a1).

Thus g∗P = −∑2
i=1D (P vi

0 ||P vi
1 ).

(Induction Step) Let N+ = N + 1, and S = ∑
s∈Vn Us. Let Q0 be the set of

cardinality one associated with g∗P = E0

[
log dP f1

dP f0

(
uN
)]

when P0 (S = 0), Q1 the set

terms with cardinality N+ associated with P0 (S = 1), Q2 the set of cardinality
(
N+

2

)
when P0 (S = 2), and so on until QN+ when P0 (S = N+) with cardinality

(
N+

N+

)
= 1,
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where
(
n
k

)
is the standard Combinatorics “n choose k”. Let Q = ⋃N+

i=1Qi and notice

that the |Q| = 2N+ . Factor out a desired a′k log bk
a′
k

+ ak log b′k
ak
. Case 1: Suppose

k 6= N+. Then, there are 2N non-essential coefficients. Because of symmetry, for

every non-essential coefficient containing an aN+ , there is an equivalent non-essential

coefficient differing only by a′N+ . Use a′N+ = 1 − aN+ to cancel / eliminate the aN+

component from all non-essential coefficients. After canceling, the 2N−1 remaining

non-essential coefficients are equivalent to the factoring step for the Nth iteration

and sum to one by the induction hypothesis. Case 2 with i = N+ follows similarly,

but using another term, say a1, for the cancel step.

Therefore, g∗P = −∑N
i=1D (P vi

0 ||P vi
1 ) as desired.

While somewhat abstract, an application of the induction step to a particular N+,

say N+ = 4, is straightforward but tedious, including application of the cancel step.

�
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APPENDIX C

ASYMPTOTIC NUMERICAL CALCULATION METHOD

FOR βP AND βR

This section details the method used to determine the asymptotic Type II error

probability for both the hBRT and parallel configuration. We first explore the hUBRT

configuration and calculate the expected error exponent indirectly, then determine it

directly.

Here, we desire to calculate the the KLD (cf. (3.1)) for class k with Gaussian

densities pk ∼ N (mkak,m
2
kaka

′
k) and qk ∼ N (mkb

′
k,m

2
kb
′
kbk). When the difference

between the means ak and b′k is small, then EPk
[
log pk

qk

]
≈ 1

2I (pk) (mkb
′
k −mkak)2

from Lemma 4.1.3 in [60], where I (pk) is the Fisher Information of pk. Similar to

Lemma 4.1.1 [60], EQk
[
log qk

pk

]
≈ 1

2I (qk) (pk − qk)2, with EPk
[
log pk

qk

]
≈ EQk

[
log qk

pk

]
as I (pk) ≈ I (qk). The I (qk) in class k under H1 is 1

m2
k
b′
k
bk
. Thus, the KLD for class

k is approximately

D (Pk||Qk) ≈
1
2

(b′k − ak)
2

bk · b′k
,

since the mk terms cancel, as expected. Summing across each class results in

D (P ||Q) ≈
N∑
k=1

1
2

(b′k − ak)
2

bk · b′k
(C.1)

as the fusion node f . As (C.1) is an indirect method of determining the KLD at f
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for the hUBRT configuration, the error exponent can also be calculated directly with

equivalent results.

Let ηk be the sensor threshold in class k for deciding H0 versus H1 from (3.6),

with the size αk selected via (3.10). Then, under the Gaussian approximation (cf.

(3.9)) for a single class Q
(
ηk−mkak√
mkaka

′
k

)
= αk. Thus,

ηk = mkak +
√
mkaka′kQ

−1 (αk) , (C.2)

with

βkR = Q

−mkbk −
(
mkak +

√
mkaka′kQ

−1 (αk)
)

√
mkbk · b′k

 , (C.3)

where βkR is the 2UBRT Type II error probability in class k, and applying 1−Q (x) =

Q (−x). Consider log(βkR)
mk

with the well-known inequalityQ (x) < 1
x

1√
2π exp (−x2/2) , ∀x >

0. Then,

log
(
βkR
)

mk

<− 1
mk

log

−mkbk −
(
mkak +

√
mkaka′kQ

−1 (αk)
)

√
mkbk · b′k


− 1

2mk

log (2π)

− 1
2mk

−mk (bk − ak)−
√
mkaka′kQ

−1 (αk)√
mkbk · b′k

2

. (C.4)

Evaluating the asymptotic behavior, we take the limmk→∞
log(βkR)
mk

. The first and

second terms in (C.4) converge to zero and after simplification on the third term, the

inequality reduces to

lim
mk→∞

log
(
βkR
)

mk

< −1
2

(b′k − ak)
2

bk · b′k
.
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Similarly,

lim
mk→∞

log
(
βkR
)

mk

> −1
2

(b′k − ak)
2

bk · b′k

under the inequality Q (x) > x
1+x2

1√
2πe
− 1

2x
2 ∀x > 0. Thus,

lim
mk→∞

log
(
βkR
)

mk

= −1
2

(b′k − ak)
2

bk · b′k
= −gkR (C.5)

for class k, where gkR is the hUBRT Type II error probability exponent. Summing

across classes, the hUBRT error exponent under the Gaussian approximation is

gGR =
N∑
k=1

1
2

(b′k − ak)
2

bk · b′k
, (C.6)

where it is assumed eachmk increases equally with n as n→∞ and the superscript G

represents the Gaussian approximation model. Notice that gGR is equivalent to (C.1).

The hUBRT normalization factor for the relay network is then D(P f0 ||P f1 )
gGR

, where

the numerator is the Binomial KLD (cf. (3.5)). The correction factor is then applied

to the numerical simulation results using (C.4) for n small and the third term in (C.4)

when n is large to generate the hUBRT data in Figure 3.2. These data are replicated

in Figure C.1, but with the 2UBRT βR calculated using a binomial random variable

in class k up to numerical limits. Figure C.1a includes the Gaussian normalization

factor of D(P f0 ||P f1 )
gGR

, with the normalization factor removed for Figure C.1b. These data

indicate that the Gaussian approximation performs well with as little as 30 sensors

in each class and that normalization is required for the Gaussian approximation to

match the true binomial model in the non-asymptotic regime.

Determining the correction factor for the parallel configuration based on the fusion

rule in (3.8) (e.g., Optimal C-V fusion rule) is straightforward for the case when both
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(a) 2UBRT with Gaussian Normalization
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(b) 2UBRT with No Gaussian Normalization

Figure C.1: 2UBRT Normalization Comparison: N = 5, with α = 0.1, h = 2,
a = [0.20, 0.65, 0.45, 0.15, 0.50]T , b = [0.7, 0.2, 0.4, 0.7, 0.3]T
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bk and ak differ across all classes. Under the the Gaussian approximations for a

weighted sum of binomial random variable in (3.9), the Gaussian KLD is calculated

using

DG
(
P f

0 ||P
f
1

)
=

(µf − µd)2 + σ2
f − σ2

d

2σ2
d

+ 1
2 log σ

2
d

σ2
f

, (C.7)

where µf = ∑N
k=1wkmkak, σ2

f = ∑N
k=1w

2
kmkaka

′
k, µd = ∑N

k=1wkmkb
′
k,

σ2
d = ∑N

k=1w
2
kmkb

′
kbk, and the superscript G implies the parallel configuration under

the Gaussian approximation.

The correction factor for the parallel configuration is then the ratio of the two

KLDs or D(P f0 ||P f1 )
DG(P f0 ||P f1 ) . This factor was applied to normalize the numerical calculations,

resulting in the parallel configuration data presented in Figure 3.2, where an appro-

priate form for the third term in (C.4) is used for n large. However, when the ak and

bk terms are common across all classes, then (C.7) must be replaced with (C.6) to

determine the correction factor, as the parallel configuration fusion rule is equivalent

to the class fusion rule in this particular numerical simulation case. Similarly, with

a mix model where groups of class have common ak and bk terms, the hybrid model

must be used with an appropriate mix of both (C.6) and (C.7).


