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ABSTRACT

     Industry best practices for estimating viscoelastic soil properties employ either cross 

hole seismic surveys, or ex-situ laboratory testing. The former method can be costly, 

and its area of investigation limited to a few meters. The latter method samples only a 

tiny volume from the research area, and requires that samples be disturbed from their 

native condition. We investigated an alternative method that uses Love wave inversion 

to estimate layer geometry, shear modulus, and soil viscosity. We derived a method for 

determining the complex velocity of Love wave modes in horizontally layered 

viscoelastic media, and used the method to investigate the behavior and propagation of 

the Love wave fundamental mode and first three overtones in one, two, and three 

layered media. We studied the evolution of Love wave modes with increasing 

frequency, and found that roots representing the complex velocities of Love wave 

modes evolve in pairs, with one root originating from along the real axis, and the other 

root originating from along the imaginary axis. In all cases studied, we observed that 

only one root from each pair was expressed as a propagating wave.

The simultaneous propagation of multiple Love wave modes poses a challenge to

their separation and analysis. We developed a technique for separating Love wave

modes and used the information thus obtained to produce dispersion and attenuation

relationships. We characterized the technique, and demonstrated its viability using

synthetic data.

Using these dispersion and attenuation relationships, we used the Gauss-Newton

inversion method to deduce best-fit layer property models. We investigated the

method’s sensitivity to constraints on model properties, and to the types of data
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used in inversion.

For a single-layer soil model, we found that the method gives reasonable estimates

of layer thickness, shear modulus, and viscosity. For two and three-layer systems, we

found it necessary to constrain layer thickness in order to obtain consistent estimates

of shear modulus and velocity. We thus conclude that the Love wave method is best

used for extending estimates obtained using crosshole or downhole information as a

control.

In some cases, we found it difficult to ascertain, a-priori, which of the modes from

each pair was manifested in the data. When the wrong root is chosen, the model

may converge to erroneous soil property estimates. We recommend that future work

be directed at developing techniques for ensuring that the correct root is used in the

inversion model. So long as the correct root is used, Love wave inversion offers a

viable in-situ method for estimating viscoelastic soil properties.
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CHAPTER 1:

BACKGROUND AND HISTORICAL CONTEXT

Both the instrumentation and the theoretical apparatus for studying seismic waves

evolved rapidly during the last two decades of the nineteenth century, and scien-

tists were putting the devices to use exploring Earth’s deep structure. By the nine-

teen twenties, it was widely recognized that Earth consisted of a solid inner core,

surrounded by a liquid core, wrapped in a mantle, and covered with a thin outer

crust. That the destructive power of earthquakes was primarily due to waves travel-

ing through, and interacting with, this thin crustal layer was also generally accepted

(Fowler, 2005).

Cogent explanations for the visible manifestations of an earthquake’s destructive

power were more problematic: A structure might be demolished, while a nearby

structure might suffer little or no damage at all. By the late nineteen fifties, structural

and geotechnical engineers had concluded that a structure’s behavior in an earthquake

could best be understood in terms of a resonant system, consisting of the structure

and ground to which that structure is attached. Modern building codes reflect this

understanding by requiring that critical structures be designed to withstand lateral

loads caused by the resonant behavior of the earth-structure system.

Shear wave velocity is an important predictor of dynamic soil response, and the

shear wave properties of the upper 30 meters of soil are used to predict the fre-

quency spectrum and amplitude that a structure could expect to experience during

an earthquake (ICC, 2000). Traditionally, measurements for these computations have
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been made using cross-borehole experiments as described in ASTM-D-4428 (1996).

This method allows in-situ testing to determine shear wave velocities, but because it

requires three or more bore holes, it can be expensive (Michaels, 1998).

In recent years, Spectral Analysis of Surface Waves (SASW) and Multi Channel

Spectral Analysis of Surface Waves (MASW) have been promoted as economical al-

ternatives to cross-borehole methods. SASW inverts Rayleigh wave dispersion curves

to obtain a one dimensional profile of shear wave velocity versus depth. The MASW

method extends SASW to two or three dimensions (Xia et al., 1999). The use of

Rayleigh waves, which effect both vertical and horizontal surface displacements, per-

mits the use of relatively inexpensive vertical component geophones, which are in com-

mon use by geotechnical engineering companies; however, as noted earlier, Rayleigh

waves are produced by the interaction of both compressional and shear waves, so shear

wave velocity estimates can be biased by erroneous compressional velocity estimates.

A second important factor determining a site’s earthquake response is internal fric-

tion, caused by intra-frame or fluid-frame interactions. Although an obvious source

of attenuation, it is less obvious that internal friction will effect a shear wave veloc-

ity increase. Unlike shear wave velocity, which is typically studied in-situ, frictional

effects are normally measured in a laboratory setting using a resonant column appa-

ratus such as that described in ASTM-D-4015 (1996). Shear velocity and attenuation

measurements thus obtained are usually interpreted using a modified Kelvin-Voigt

viscoelastic model. Unfortunately, resonant column methods are limited to small soil

samples that have been disturbed, and it is nearly impossible to conduct resonant

column tests at the same conditions of stress and moisture experienced under field

conditions, so laboratory results may not predict the actual behavior of soils, in-situ.
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The advent of inexpensive horizontal-component geophones has made collection

and inversion of shear wave data economically viable. In the present work, we will

develop a novel method for estimating viscoelastic soil properties in-situ. Because

Love wave velocity and attenuation are functions only of viscoelastic shear proper-

ties, Love wave inversion avoids the pitfalls that might result when erroneous com-

pressional properties are included in Rayleigh wave inversion schemes such as SASW

and MASW.

1.1 Evolution of the Love Wave Analytical Model

Love waves result from interactions of horizontally polarized shear waves, within a

zone of low velocity material, near Earth’s surface. Unlike Rayleigh waves, which

arise from the interaction of vertically polarized shear waves with dilational waves at

Earth’s surface, Love wave behavior depends solely on material shear properties.

Poisson (1830) derived general equations for wave propagation in elastic media,

and demonstrated that within a homogeneous, isotropic solid body, there exist two

distinct propagation modes. Dilational wave propagation is parallel to particle mo-

tion, and its velocity is given by the relationship α =
√

λ+2µ
ρ

. Shear wave propagation

is perpendicular to the direction of particle motion, and its velocity is given by the

relationship β =
√

µ
ρ
. Thus, dilational wave propagation is necessarily faster than

shear wave propagation, and by the mid-19th century, the monikers primary (P)

and secondary (S) were being used describe the order in which these waves manifest

themselves in seismic instrumentation (Stokes, 1849).

Seismometers capable of detecting and recording wave patterns made their debut

in 1889, and seismograms obtained from actual earthquakes followed a characteristic
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pattern: A weak preliminary tremor followed by a main shock. The causes of this

pattern were the subject of scientific scrutiny through the first decades of the 20th

century. Early on, it was believed that the preliminary tremor and main shock cor-

responded, respectively, to P and S waves; however, this simple description was soon

abandoned (Love, 1911). Although seismologists were in general agreement that the

earliest signals corresponded with the arrival of P waves at Earth’s surface, neither

the magnitudes nor the behavior of subsequent arrivals were consistent with S waves.

A potential explanation was given by Lord Rayleigh. In 1885, Rayleigh predicted

the existence of surface waves, and described a means by which they could be gen-

erated through the interaction of P waves and vertically polarized S waves with the

surface of an elastic body (Rayleigh, 1887). He demonstrated that these waves would

travel somewhat more slowly than S-waves, and that unlike body waves, which decay

directly with the distance from the source, Rayleigh’s eponymous waves decay with

the square root of distance. Thus, at long distances, Rayleigh waves could be much

stronger than body waves. Rayleigh also predicted that these waves would manifest

themselves through elliptical particle motion at the surface, providing a theoretical

underpinning for some of the late motions observed in seismograms.

Rayleigh’s theory was dependent on an earlier work by Lamb (1882), and Rayleigh

himself noted that it was possible to derive his predictions using formulae derived

in Lamb’s paper on elliptical waves in elastic spheres. In his discussion, Rayleigh

disputed Lamb’s assertion that only positive real values of the bulk modulus and

Poisson’s ratio yield stable solutions to his wave equations. Asserting that the only

necessary conditions for stability are that shear modulus, µ, and bulk modulus, λ+ 2
3
µ,

be non-negative, Rayleigh provided theoretical counterexamples demonstrating that
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bulk modulus could be as small as zero, and that Poisson’s ratio could be as small as

negative one.

Rayleigh discussed the mathematical possibility of complex solutions to the wave

equations, but dismissed such solutions as lacking physical interpretation. In the

present work, we will discuss a framework wherein complex solutions of wave equations

not only have physical meaning, but utility, as well.

In 1900, Oldham published a system for seismic interpretation that associated

events in the preliminary tremor with P and S body waves, and those in the main

shock with Rayleigh waves (Oldham, 1900). Oldham’s interpretation of the prelimi-

nary tremor was consistent with seismic data, and generally well received; however,

the notion that the main shock consisted of Rayleigh waves was more controversial.

Although velocities and magnitudes were consistent with those predicted for Rayleigh

waves, other aspects of their behavior were not. For example, Rayleigh waves were

predicted to operate in two dimensions, with the vertical component of motion larger

than the horizontal component by a factor of between 1.5 and 2, yet the earlier por-

tions of the main shock often exhibited little or no vertical motion. Furthermore,

these early portions often exhibited substantial horizontal movement perpendicular

to the direction of wave propagation (Love, 1911).

Between 1903 and 1904, Lamb developed a source theory that offered a partial

explanation for the lack of vertical motion in the main shock (Lamb, 1903, 1904).

Lamb investigated wave propagation for a single impulse, and posited that more

complicated signals could be explained by superposition. Lamb’s source theory did

not satisfactorily explain the lateral motion observed in seismic records. Furthermore,

Lamb’s theory did not predict the high periodicity associated with these motions, and
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although he suggested that such periodicity could be explained by periodicity of the

source, he was unable to explain the mechanism by which this might occur.

In 1911, A.E.H. Love published an essay entitled, Some Problems of Geodynamics,

which won Cambridge University’s 1911 Adams prize. Love’s book tackles problems as

diverse as isostacy, gravity anomalies, and ocean tides. In Chapter 11, after reviewing

the theories of Rayleigh, Lamb, and Oldham, he proposed a mechanism to explain

the lateral seismic motions that had vexed the Geosciences since the first accurate

seismometers had become available.

Love proposed that a superficial layer of relatively slow material over a faster

half space might act as a wave guide for horizontally polarized transverse waves (SH

waves). Love demonstrated that such a system would be dispersive: Low frequency

waves would travel more quickly than high frequency waves. Accordingly, the inter-

action between Earth’s crust and the mantle could sort a relatively short burst of

seismic energy, such as is produced by an earthquake, into a long train of periodic,

large amplitude, lateral waves similar to those observed in the seismic record. In

his essay, Love also developed a theory of Rayleigh wave propagation in layered me-

dia, but he did not extend the method to the propagation of Love waves in layered

media. In Chapter 3, our development of Love wave relationships will begin in a

manner reminiscent of Love’s own work; however, our treatment will diverge so that

we can extend it to layered media with viscoelastic properties. We will also derive

relationships that will allow us to account for the effects of geometric spreading.

We can visualize Love waves as horizontally polarized waves that are trapped in

a half space, producing different modes via constructive interference. When layer

velocity, β1, is less than half-space velocity, β2, it is possible for a wave impinging
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ε

Figure 1.1: (l) Refraction nomenclature. θi is the incidence angle, and θr may rep-
resent either the angle of refraction or reflection, depending on whether the wave
is refracted into the half-space (pre-critical) or reflected back into the layer (post-
critical). Both angles are measured from the vertical. (r) Waves impinging on the
interface at low grazing angles (θi > θc) reflect back into the layer with with a phase
delay, ε.
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θi

θi

P

RQ

Wave front

β1

C

Figure 1.2: Relationship between shear wave velocity and apparent surface wave
velocity, C. The wave front is moving at an angle θi and velocity β1. In the time it
takes a point, P , on the wavefront to move to a point, R, on the surface, the surface
expression of the wave front will have moved from point Q to point R. QR is greater
than PR, so the apparent velocity, C, is greater than β1. Thus, surface wave phase
velocity, C, is greater than or equal to β1.

the interface from above to be reflected back into the layer. According to Snell’s law

(Stein and Wysession, 2003), a shear wave traveling across the interface between a

layer and a half-space will refract at an angle that depends on the incidence angle,

θi, and on β1 and β2. Beyond a certain critical angle, the wave will reflect back into

the original layer. The critical angle, θc, is found using Snell’s law:

sinθc = sin
(π

2

) β1

β2

=
β1

β2

(1.1)

Incidence angle also affects measured wave velocity. A wave traveling horizon-

tally would have an apparent velocity equal to shear wave velocity; however, a wave

impinging on Earth’s surface with an incidence angle, θi, would exhibit an apparent
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phase velocity equal to:

CL =
β1

sinθi
(1.2)

To an observer on Earth’s surface, a wave traveling upward and perpendicular to

the surface, would appear to have an infinite velocity. If a wave’s incidence angle at

the half-space boundary is less than θc, its energy will propagate into the half-space

and be lost, and the wave will be unsustainable. This places an upper limit on the

apparent velocity of Love wave propagation. Substituting Equation 1.1 into Equation

1.2, we see that maximum possible apparent Love wave velocity is β2, thus placing

upper and lower bounds on possible Love wave phase velocities: β1 < CL < β2.

Below the critical angle, a significant fraction of incident energy is transmitted

downward into the half-space and lost. Although it is possible for the energy reflected

back into the layer to interfere constructively and form leaky modes, these typically

decay so quickly that they won’t be of concern to us in the present work. The

inquisitive reader is referred to Section 7.6 of Aki and Richards (2009).

At post-critical angles, all of the energy incident upon the interface is reflected

back into the layer; however, its phase is delayed by an angle, ε, that depends on

the incidence angle and material properties of both layers. To understand the cause

of this phase shift, recall that the apparent velocity of a post-critical wave on the

layer side of the interface will be less than wave velocity in the half-space, β2. This

asymmetry induces a stress field in the half-space side that acts as a sort of wave.

This evanescent wave decays quickly, and extends only a short distance into the half

space, but its effect is to increase the effective path length of the wave–As if the

wave were reflecting from a plane below the interface, thus causing a phase shift in
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evanescent wave

β1

Layer
Half Space
β2

Apparent wave velocity
β1<C<β2

ε

Figure 1.3: Phase shift in a post-critical wave. The apparent phase velocity, C, of a
post-critical wave impinging on the interface will be less than half-space velocity, β2,
and greater than layer velocity, β1. This mis-match causes a shallow stress field and
and evanescent wave in the top of the half space that induces a phase delay, ε. The
effect is as if the interface were moved to the bottom of the evanescent wave. The
evanescent wave depth is greater for longer wavelengths (after Heaton (2005)).
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the reflected wave. Thus, a Love wave can properly be thought of as the product of

constructive interference resulting from the interaction of a reflected wave with the

evanescent wave.

The phase shift effect is also evident in the reflection coefficient of a post-critical

wave, which is a complex number with a modulus of unity. The phase delay, ε, is

the same for all frequencies; however, because wavelength is a function of frequency,

the effect is to create a thicker evanescent wave in the half-space. In effect, longer

wavelengths see a thicker layer than is seen by shorter wavelengths. This unequal

treatment contributes to the dispersive behavior of Love waves: Love wave velocity,

CL, is frequency dependent, with the apparent surface velocities of low frequency

waves greater than those of high frequency waves. The reader seeking a more rigorous

treatment of evanescent waves and post-critical phase shift is referred to Section 2.6

of Stein and Wysession (2003).

Like a guitar string, a Love wave system can resonate at a fundamental mode and a

number of overtones; however, the interpretation of each system’s fundamental mode

and overtones is different. For a guitar string, the fundamental mode produces the

single lowest frequency which can form a standing wave, and each overtone represents

an integral multiple of the fundamental frequency. By contrast, an elastic layer over

a half space can resonate at any frequency. As noted above, phase shift depends on

incidence angle, so it is always possible to find at least one post-critical angle for

which a given frequency can resonate. Of course, as noted in (1.2), each incidence

angle is associated with a unique apparent velocity between β1 and β2, so a mode can

be described by an infinite set of unique frequency-velocity pairs.

For a single elastic layer over a half-space, the fundamental mode exists for all
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frequencies, from zero to infinity, with low frequencies propagating at velocities near

the half-space velocity, β2, and high frequencies propagating at velocities closer to the

layer velocity, β1. Throughout this text, we will refer to the lowest mode (n = 0) as

the fundamental mode, and subsequent modes as the first overtone (n = 1), second

overtone (n = 2), etc. Unlike the fundamental mode, the first overtone only exists at

frequencies above a cut-off frequency, fcn. For an elastic layer over a half-space, the

apparent velocity at fcn is equal to β2. The cut-off frequency is given by (adapted

from Stein and Wysession (2003)):

fcn =
nβ1

2h1

√
1− β2

1

β2
2

(1.3)

In Chapter 4, we will explore the dispersive relationships for each mode. Because

these relationships are dependent on material properties, Love wave dispersion curves

can provide information about layer properties. In Chapters 5 and 6, we will develop

methods for determining layer structure and material properties using Love wave

dispersion and attenuation curves.

Ernst Meissner (1921) first proposed a general model for elastic Love wave propa-

gation in heterogeneous media. Aichi (1922) proposed a general solution using Bessel’s

functions, and extended the method to layered media. Bateman (1928) offered a for-

mulation and solution that differed somewhat from that of either Meissner or Aichi.

Further work by Gutenberg, Jeffreys, and Stoneley was focused on correlating ob-

served Love wave dispersion with a two-layer model of Earth’s crust (Stoneley, 1948).

Interest in surface waves was rekindled during the late 1940s when Dobrin (1951)

and other researchers used surface and Airy waves generated by the Bikini atomic

test to derive a partial model of ocean sediments and crustal rock in the vicinity of
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the explosion. Thomson (1950) published a matrix formulation of the elastic surface

wave problem that could be applied either to Love or Rayleigh waves. Haskell (1953)

modified Thomson’s method and showed that it could generate Rayleigh wave disper-

sion curves that compared favorably to those obtained from actual earthquake data.

Although he derived a treatment for Love waves, he did not compare it to actual

data. After developing a method for analyzing the dispersion curves obtained from

Love waves, Takahashi (1955a) extended it to Rayleigh waves (Takahashi, 1955b).

The preceding models assume Earth materials to be purely elastic. Elastic Waves

in Layered Media (Ewing et al., 1957), a popular text that focused primarily on

determination of the layering structure of Earth’s crust, devoted a scant three pages

to the Voigt model of internal friction; however, by the early 1960s, research on

constitutive models incorporating friction was burgeoning.

1.2 Constitutive Soil and Rock Models

In the following discussions, we will make use of lumped parameter models to explain

soil behavior. Lumped parameter models represent constitutive behavior using a

system of elements such as springs, masses, dashpots, and frictional dampers. It

is important to recognize that individual lumped parameter systems, such as are

illustrated on the left side of Figures 1.5, 1.6, and 1.7 can only represent temporal

behavior at a single point in space.
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1.2.1 Coulombic Soil Damping Models

In 1773, Charles Augustin de Coulomb returned to Paris from a posting as a military

engineer on the Island of Martinique. While on Martinique, Coulomb developed

a theory of soil mechanics based on the theory of friction developed by Guillaume

Amontons (1699). In short, Amontons’ three laws stated that frictional force was

proportional to the applied normal force, that it was independent of contact area,

and that frictional force is independent of sliding velocity. Coulomb’s work eventually

earned him the sobriquet, Father of Soil Mechanics, but at the time, Amontons’

theories were controversial, so although Coulomb’s theory of soil mechanics was widely

read (Coulomb, 1773), many believed its reliance on Amontons’ tribology to be a

critical flaw. The theory of contact friction in soils began with controversy and, and

as we will see, that is still the case more than two centuries later.

Not surprisingly, Coulomb’s next major work began with a lengthy section that

used the results of his own detailed experiments to explain and defend Amontons’

theory (Coulomb, 1781). This paper won a major prize from the French Academy

of Sciences, and Coulomb’s defense of Amonton’s theory was so successful, that the

theory is now usually referred to as the Coulombic theory of friction.

It was the second of Amontons’ laws that caused the most controversy. Amontons,

believed friction to be due to very small scale interactions between surface asparities:

Frictional force, he believed, was the result of little bumps sliding over each other;

however, Desagulier’s work showed that highly polished objects often exhibited fric-

tional coefficients that were greater than those for less highly polished objects made

from the same material, and Desagulier concluded that frictional forces were due to

adhesion. Although Desagulier generally agreed with Amontons’ frictional theory, he
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Figure 1.4: (l) After displacement, a purely Coulombic system (1 ) will not return
to its original state. (r) After displacement, a purely elastic system returns to its
original state along the path taken to its displaced configuration. Common elastic
modeling elements include linear (2 ), bi-linear elastic (3 ), and non-linear (4 ) models.

never could completely reconcile it with his own observations.

It was Musschenbroek (1762) who pointed out that if friction were due to adhesion,

then frictional forces would be a function of area. By Coulomb’s day, this criticism

was taken very seriously. Noting that des Camus (1722) and Desaguliers (1719) had

observed the frictional retardation of moving objects to be less than that of objects at

rest, Coulomb developed the concepts of static and sliding friction. Under Coulomb’s

model, static friction is due, primarily, to adhesion, and sliding friction is due to a

different mechanism. Under this reformulation of Amontons’ third law, the coefficient

of sliding friction is independent of sliding velocity.

Coulomb’s work in soil mechanics was primarily concerned with the design of stat-

ically determinate structures such as moats and embankments, and his constitutive

soil models included no elastic term. A purely Coulombic system does not return to

its original form after displacement (Figure 1.4l). Modeling clay is a material that

could be described using a Coulombic term: After deformation, modeling clay does

not return to its original configuration.
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Figure 1.5: (l) Coulombic damping model. (r) When a unidirectional force, F (t),
is applied to the system, it follows the force-displacement relationship indicated by
paths 1 and 2. When F (t) is a periodic force, it follows hysteretic loop of paths 2, 3,
4, 5, and 6, and then repeats.

A purely elastic system tends to return to its original configuration without dissi-

pating any energy. On a force-displacement plot, a purely elastic system follows the

same path to and from its displaced configuration (figure 1.4r). Since a purely elastic

system contains no mechanism for dissipating energy, once perturbed, it will vibrate

indefinitely around its original configuration. No completely elastic systems exist in

the macroscopic world: When struck, a bell may ring for a very long time, but it will

eventually dissipate energy, and stop ringing (Lai et al., 1993).

There are two obvious ways to include an elastic term in a Coulombic friction

model. In the Coulombic damping model, elastic and Coulombic elements are in

parallel. In the elasto-plastic model, they are situated in series (Morrison, 2002).

In an idealized Coulombic damping system (Figure 1.5), spring displacement (ue)

and displacement of the Coulombic friction element (uc) are both equal to the dis-

placement of the mass (um). If we apply an external force, F (t) to the mass, no dis-

placement occurs until the external force equals the frictional force of the Coulombic

element (Gc), after which both the spring and dashpot exert a force on the element.

This behavior, dubbed stiction by tribologists, is represented by a Heaviside step



17

fe = -Geue H(Gc-|Geue|)
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Figure 1.6: (l) Elasto-plastic system: Elastic and Coulombic elements in series. (r)
When a unidirectional force, F (t), is applied to the system, it follows the force-
displacement relationship indicated by paths 1 and 2. When F (t) is a periodic force,
it follows the hysteretic loop of paths 2, 3, 4, 5, and 6, and then repeats the cycle.

function H(|F (t)| − Gc). Once in motion, the frictional element exerts a constant

force, Gc, opposite the direction of motion, and the elastic spring exerts a force that

is equal to the relative displacement of the spring times the spring (Hooke’s) con-

stant, Ge. A signum function, sgn(u̇), ensures that the frictional term acts opposite

the direction of motion (Figure 1.5). A physical analogue to this system might be a

sponge, which, if deformed, will return to its original shape, albeit with a loss in the

mechanical energy of the system.

If driven by an oscillating driving force, F (t), the force-displacement curve will

assume the shape shown in Figure 1.5r. The area bounded by this curve is called a

hysteresis loop, and it represents the energy lost by the system during each oscillatory

cycle. When the maximum displacement amplitude is umax, the total hysteresis energy

will just be the area inside the parallelogram (EH = 4umaxGc). If the driving force is

removed, the system will oscillate, but its amplitude will decay with time.

For an idealized elasto-plastic system, the forces acting on the mass and spring are

both equal to the frictional force of the Coulombic element (Figure 1.6); however, the
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displacement of each element will be different (Iwan, 1961). The spring deforms to a

maximum displacement equal to ue = sgn(u̇c)Gc/Ge before the Coulombic element

begins sliding, and the force on the spring, mass, and Coulombic element will all

equal Gc. If driven by an oscillating force, the force-displacement curve will assume

the shape shown in Figure 1.6r. If the driving force is removed from a serially damped

system, the system will oscillate and decay until fm < Gc. After that point, decay will

be zero for an ideal system. The elasto-plastic constitutive model is widely employed

by geotechnical engineers (Desai and Christian, 1977).

An important characteristic of any frictional model is its dependence on loading.

Under the original Amontons-Coulomb theory, Gc is a linear function of normal force.

For soils, this translates into a dependency on effective stress, which, itself, is a

function of depth, soil density, and pore water pressure (Das, 2011). Recall that

elasto-plastic behavior remains elastic until the total force on the system exceeds Gc:

For a soil exhibiting elasto-plastic behavior, we expect depth to increase the force

necessary to induce Coulombic behavior. On the other hand, once this threshold

has been reached, and particles begin moving against each other, we would expect

the effects of damping to be enhanced with depth. In practice, although we see a

delayed onset of Coulombic behavior at depth, this is not as pronounced as Amontons-

Coulomb theory, alone, would predict (Ishihara, 1996).

The main appeal of the Coulombic damping and elasto-plastic models is their

conceptual simplicity. It is easy to see how the microscopic action of individual

soil particles scraping against each other could be extended to macroscopic scales.

Unfortunately, real soils often deviate significantly from this behavior (Ishihara, 1996):

In the elasto-plastic model, soils can be permanently deformed, and deformation
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that can alter material properties (Morrison, 2002). Perhaps more importantly, a

fundamental assumption of Amontons-Coulomb theory is that the contact surfaces

be dry: In the real world, soil particles tend to be wet. Even in the vadose zone,

most soil particles are coated with a thin water film (Fetter, 2001). Depending on

film thickness, contact velocity, and contact surface geometry, this film can either act

as a viscous lubricant, or as a hydrodynamic bearing surface (Burr, 1995).

Probably the largest obstacle to adoption of models with Coulombic elements is

their computational difficulty. Mathematical models of Coulombic elements tend to

be highly non-linear, and they are not generally amenable to closed-form analytical

solution (Iwan, 1961). Even after the wide spread availability of digital comput-

ers, calculations involving Coulombic elements remain computationally expensive. A

common solution is to approximate Coulombic elements using visco-elastic elements.

1.2.2 Viscoelastic Models

In his Principia Philosophiae, Renée Descartes proposed that the orbital motion of

the Sun was due to a sort of fluid vortex (Descartes, 1644). Seeking to disprove this

view, Isaac Newton conducted numerous experiments on fluid behavior, and in the

process established several important principles of fluid dynamics (Newton, 1687).

Indeed, a large portion of the second volume of Newton’s Principia is devoted to the

topic of fluid behavior. Of particular interest to us, he formulated his eponymous

law of viscosity, which states that the shear force transmitted between two objects in

a fluid will be proportional to fluid viscosity, inversely proportional to the distance

between the two objects, and proportional to the relative velocity of the two objects.

William Thomson (Lord Kelvin) proposed that viscosity could explain oscillatory
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Figure 1.7: (l) Kelvin-Voigt viscoelastic model. (r) When subject to an oscillating
driving force, F(t), the force-displacement curve of a Kelvin-Voigt system describes a
Lissajous curve.

damping and creep behavior that he observed in metal wires (Thomson, 1865). Thom-

son’s viscoelastic model was a simple one-dimensional model similar to that shown in

Figure 1.7. While working to explain the elastic behavior of crystalline solids, Voigt

(1889) proposed a comprehensive viscoelastic model that is now generally referred to

as either the Kelvin-Voigt model, or the Voigt model.

The Kelvin-Voigt (KV) model consists of an elastic element and a viscous element

in parallel. The viscous term is characterized by the product of a viscosity factor, Gv

and a velocity, u̇, so that:

Fm = −Geu−Gv
du

dt
= m

d2u

dt2
(1.4)

Rearranging Equation (1.4), and equating it in terms of a driving force, F (t):

d2u

dt2
+
Gv

m

du

dt
+
Ge

m
u = F (t) (1.5)

which is a second order non-homogeneous linear differential equation. Solution for

the homogeneous (harmonic) left-hand side can be found in any book on differential
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equations, e.g. Asmar (2000). For an underdamped system (discussed in Chapter 2),

the solution is:

u = e−Dt (C1cos(ωdt) + C2sin(ωdt)) (1.6)

where:

ωd =

√
G2
v

4m2
+ ω2

0 (1.7)

D =
Gv

2m
(1.8)

where D is a damping factor, ωd is the resonant frequency of the damped system,

and ω0 is the resonant frequency of the corresponding undamped system, i.e. Gv = 0.

We will devote much of Chapter 2 to derivation of a viscoelastic soil model and wave

equation analogous to Equation 1.6, but for now, we will consider some consequences

of the Kelvin Voigt model of a lumped parameter system.

First, we note that the exponential term in (1.6) is a damping factor that depends

on the ratio Gv/(2m). Second, we note that the resonant frequency of a damped

system will always be higher than the resonant frequency of the corresponding un-

damped system. This second, somewhat counterintuitive, result and its implications

for wave propagation will be discussed extensively in the following chapters.

The Kelvin-Voigt model accurately describes a variety of time-dependent behav-

iors observed in engineering materials (Equation 1.8) and it is a basic model for rep-

resenting fatigue and creep behavior in metals and polymers (Stephens et al., 2000).

It has also seen widespread use as a soil model by geotechnical engineers (Ishihara,
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Figure 1.8: (l) When subject to a constant force, F, displacement of a Kelvin-Voigt
system will approach, asymptotically, F/Ge. (r) When subject to a rapid displace-
ment, the force on the mass will decrease, asymptotically, to zero. Materials Scientists
refer to this behavior as creep.

1996), although competing models abound.

Much of the Kelvin-Voigt model’s appeal is its amenability to treatment by analyt-

ical methods (Michaels, 1998), and it is possible to reformulate other models in terms

of a Kelvin-Voigt model. For example, it is common practice to expres the Coulombic

damping model in terms of a Kelvin-Voigt model that disperses the same hysteretic

energy per cycle. As stated earlier, the total hysteretic energy lost by a single Coulom-

bically damped cycle is Ec = 4Gcumax. The energy dissipated in a single viscoelastic

cycle, found by integrating one cycle of the ellipse in 1.7, is Eve = πGvωu
2
max. Under

an equivalent hysteretic energy formulation, we could impress the viscoelastic model

into service as a Coulombic damping model by making the viscosity factor a function

of frequency and displacement amplitude (Equation 1.9).

Gveq(ω, d) = 4Gc/(πωumax) (1.9)

where Gveq is the equivalent viscosity. This is common practice when using visco-

elastic formulations of cyclic fatigue in engineering materials, e.g. the Coffin-Manson
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Figure 1.9: Maxwell viscoelastic model.

model (Stephens et al., 2000). We will discuss a variant of this technique that is

in common use by practitioners reducing data from resonant column experiments.

Arslan and Sihayi (2006) have outlined a generalized technique for incorporating

non-linear behavior into KV constitutive models.

Of course, it is also possible to arrange the viscous and elastic elements in a

series (Figure 1.9). This model was originally formulated by James Clerk Maxwell

(1866) while developing a constitutive model for gas behavior, but it has gained

widespread use as a rheological model for fluids and for solids that exhibit low-shear

strain dependent behavior.

An interesting consequence of the Maxwell model is its prediction that at suffi-

ciently high frequencies, fluids might be able to transmit shear waves. Indeed, Han

et al. (2005) have demonstrated the ability of heavy, high viscosity oils to transmit

shear waves at frequencies in the 100s of KHz to MHz range.

Maurice Biot developed a theory of wave propagation in porous media that ac-

counted for interactions between the fluid and frame. At low frequencies, Biot pro-

posed that fluid-frame interactions could be treated as oscillating Poiseuille flow (Biot,

1956a). Poiseuille flow is the sort of fluid flow that occurs when viscous liquids move

through relatively long tubes at relatively low velocities, and oscillating Poisueille
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Figure 1.10: Assemblage of Kelvin-Voigt-Maxwell-Biot (KVMB) systems (after
Michaels (2006a))

flow is one of the few transient cases for which a closed-form analytical solution ex-

ists. As envisioned by Biot, the fluid and frame act as coupled oscillating systems.

An interesting consequence of Biot theory is the prediction that there exist two types

of P-waves: One that exists primarily in the frame, but that is slowed somewhat

by its interaction with the fluid, and another that exists primarily in the fluid, but

that is sped-up somewhat by its interaction with the frame. Biot noted that at high

frequencies, the assumptions of Poiseuille flow break-down, and published a second

paper treating high frequency wave transmission (Biot, 1956b). Biot theory is ap-

pealing because it is derived from fundamental mechanical principles. Unfortunately,

as noted by Michaels (1998), implementation of Biot theory can be computationally

cumbersome.

Models combining various lumped parameter elements abound. For example,

Michaels (2006b) has proposed a lumped parameter model that combines the Maxwell

and Kelvin-Voigt models in a manner that emulates the fluid-frame coupling proposed

by Biot: The Kelvin-Voigt-Maxwell-Biot (KVMB) model.
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1.3 Testing Methods

We will briefly review two standardized methods for estimating viscoelastic soil pa-

rameters: The resonant column test, which is described in ASTM-D-4015 (1996),

Standard Test Methods for Modulus and Damping of Soils by the Resonant-Column

Method, and the crosshole method, which is described in ASTM-D-4428 (1996), Stan-

dard Test Methods for Crosshole Seismic Testing. We will also discuss in-situ tests

that have been proposed as alternatives to these standardized methods.

1.3.1 The Resonant Column Test

Imagine suspending a dumb bell shaped object using a wire. After permitting the wire

to relax, the dumb bell could be rotated slightly, and then released. The elasticity

of the wire would exert a torque on the dumb bell, causing it to oscillate about the

axis of the wire. Using the period of oscillation, inertial moment of the dumb bell,

and dimensions of the wire, it is possible to calculate the shear modulus of the wire

material, and by observing the decay rate of its oscillations, it is possible to determine

its viscosity. This instrument, called a torsional balance oscillator, was originally

developed by Coulomb in the late 18th century. Working from his laboratory at

the University of Tokyo’s Earthquake Research Institute, Kumizi Iida made several

improvements to the device that allowed him to make precise measurements of the

shear modulus and viscosity of earth materials such as quartz and sandstone (Iida,

1935). The natural frequency of thicker speciments will generally be much greater

than those of wire, so Iida added an electrical torsion motor and optical detector

that allowed him to drive the system at much higher frequencies. He could determine

the natural frequency of the system from the frequency that produced the maximum
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Figure 1.11: Resonant Column Apparatus used by Ishimoto and Iida (1937).
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response in his optical detector. In a collaboration, Ishimoto and Iida (1936) modified

the device so that it could be used to determine the resonant frequency of soil samples

and other unconsolidated media (Figure 1.11).

The resulting resonant column device consisted of an iron disk (base), on which

was affixed a cellophane tube containing the soil sample (sample tube). Atop the

soil sat another iron disk that compressed the soil sample into the tube (weight).

The iron base was oscillated by means of an oscillating magnet. Iidra improved

his resonant column device several times. Initially, oscillation of the weight was

monitored mechanically, but in later versions, oscillation was monitored using a light

and mirror. An advantage of the latter apparatus was that it could be used with

moving photographic film to record transient signals. The device could also include

an axial excitation mechanism and sensor, so that dilational properties could be

measured, as well.

Iidra would vary the excitation frequency until he either obtained a maxima or

a null point, calculate the dilational or shear wave velocity necessary for resonance,

and then use the velocities so obtained to estimate Young’s modulus, shear modulus,

Poisson’s ratio, and Lame’s parameters. By turning-off the instrument, and monitor-

ing its transient response, he could calculate both normal and shear viscosity values.

Iida’s last paper using a resonant column device, On the Elastic Properties of Soil,

Particularly in relation to its Water Content, was published in September 1940 (Iida,

1940)

Interest in the resonant column method resumed in the United States, with re-

searchers such as Shannon, Yamane, Dietrich, Hall, Richart, and Hardin publishing

many papers on the method and results obtained from it in the 1950s and 1960s
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(Richart et al., 1970). Most instruments followed the general pattern set by Iidra;

however, researchers often changed the methods for exciting the sample or measur-

ing sample response. In most cases, the column was either excited or its response

monitored using some sort of magnetic inductor. Such instruments are called free-

free instruments, because both their base and weighted top are free (Figure 1.12).

A second variant, with a fixed base and free top, was developed by Hall (Hall and

Richart, 1963). In 1981, the American Society for the Testing of Materials adopted a

standardized test using the free-free instrument, ASTM-D-4015 (1996). The method

has been updated twice since that date.

In practice, a specimen is prepared, weighed, and its physical dimensions mea-

sured. The resonant frequency is determined, and then machine power is cut-off.

Vibrational decay is measured, and then the operator uses uses a series of calcula-

tions, curves, or a Fortran program, to determine modulii and the damping ratio,

defined as:

DR =
ηω

2µ
(1.10)

where η is soil viscosity, ω is angular frequency is radians per second, and µ is the

shear modulus. Note that we have altered ASTM’s symbology to be consistent with

that used throughout the rest of this paper.

One of the most frequent criticisms of ASTM-D-4015 involves Equation 1.10. An

influential early practitioner of the resonant column method in the U.S. was Bobby

O. Hardin of the University of Kentucky. His paper, The nature of damping in

sands, included a thorough treatment of the mathematics and calculations necessary

to implement the resonant column method (Hardin, 1965). Using experiments based
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Figure 1.12: Resonant Column Apparatus (excerpted from ASTM-D-4015 (92)).

on dry Ottawa sands, he concluded that soil viscosity varies inversely with frequency,

such that ηω/G is a constant. This is, essentially, Equation (1.10). The 2 in the

denominator of Equation (1.10) aligns the definition of damping ratio with that of a

related quantity called the damping capacity. Hardin seems to have been surprised

by this finding, and emphasized that this result was for dry sands only, and that this

assumption probably only holds near the measurement frequency.

Rearranging Equation 1.10, we arrive at the surprising result that for a given

soil sample, its viscosity is inversely proportional to the frequency at which the res-

onant column test was conducted: η = 2G(DR)/ω. This very odd result, a material

property that is dependent on test conditions, seems to belie a problem with the

ASTM-D-4015 methodology.

In response to Hardin’s article, Weissmann (1965) suggested that Hardin’s fre-

quency dependent viscosity actually indicates that Hardin used the wrong model.
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Indeed, the requirement that the product of viscosity and frequency be constant is

exactly what we would expect of a Coulombic damping model. In any event, it is diffi-

cult to reconcile a constant ηω/G with the static viscosity values that were published

for the same materials in Hardin’s paper.

We should note that a resonant column instrument is a very crude device for

determining frequency-material property relationships. For a given material, we are

limited to the column’s resonant frequency and its overtones. Hardin indicated that

he used the fundamental and first two overtones to arrive at his conclusion, but

he didn’t actually publish any of the frequencies that he used; instead, he published

normalized frequencies without giving the normalization factor. In another discussion,

about confining pressure relationships, he gave a frequency of ω = 1290 rad/s, which

is about 205 Hz. Given this frequency, his first and second overtones would have

been about 610 Hz and 1025 Hz, respectively. In a discussion of one of Hardin’s

earlier papers (Hardin and Richart, 1963), Rao (1964) asked whether, given Hardin’s

caveat about the limited frequency range over which the constant ηω/G assumption

is valid, measurements taken at frequencies that are two or more orders of magnitude

greater than what might be expected in an earthquake are really worthwhile.

Data obtained by Ishimoto and Iida data showed an overwhelming dependence of

soil viscosity on moisture conditions, with high moisture content soils (approx 50%)

exhibiting viscosities nearly two orders of magnitude less than their dry counterparts.

Furthermore, they found that this relationship held across dozens of soil types (Ishi-

moto and Iida, 1936). By using columns of several different heights, they were able to

take measurements at approximately a dozen different fundamental mode frequencies,

and concluded that the relationship between frequency and measured viscosity was
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much flatter for dry samples than for moist samples–This is consistent with the idea

that a Coulombic model might be appropriate for dry soils.

Other criticisms have been leveled at the resonant column apparatus, itself. H.D.

McNiven and C.B. Brown suggested that some of the resonant behavior being ob-

served might be due to tube waves (McNiven and Brown, 1963). Viscosity measure-

ments typically are made by switching off the power to the device; however, Wang

et al. (2003) demonstrated that it could take several seconds for the magnetic field

used by the inductor to collapse, and that during that time, the system would create

a counter-emf that could explain some or all of the frequency-dependent viscosity

effect. In other words, it is quite likely that the amplitude decay measurements used

to determine damping ratio are at least partially due to the resonant column device,

itself.

A final criticism could be leveled at nearly any laboratory test: It is difficult to

know whether or not a laboratory sample is behaving as it would in-situ. Ishimoto

and Iida (1936 and 1937), collected soil samples in a carefully designed sampling jar.

After making a resonant column with a sample, they would disturb the same soil

sample, and repack it into the same sampling jar. They determined that repacking

the sample usually effected a 2x to 10x decrease in viscosity.

1.3.2 In-Situ Methods

The preferred in-situ method for determining elastic material properties is the seismic

crosshole test ASTM-D-4428 (1996). Because it is an in-situ test, it avoids many of

the potential problems of laboratory testing. Soils are measured under field condi-

tions, and aside from the material immediately adjacent to the boreholes, the soil is
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Figure 1.13: Preferred borehole configuration for crosshole testing (excerpted from
ASTM-D-4428(91)).
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undisturbed. In practice, three boreholes are drilled along a line at 3 m intervals, tak-

ing care to disturb soils adjacent to each borehole as little as possible (Figure 1.13).

Each hole is carefully cased and grouted. A seismic source is lowered into one of the

outside holes, and receivers lowered into the two remaining holes so that all three are

at the same height below the datum. The seismic source is triggered, and the signal

recorded at each of the receivers. The process is repeated for several different heights

using both p and s-wave sources. The data for each height and source is analyzed by

using the difference in arrival times at the two receivers to determine the wave veloc-

ity at each level. Using either assumed or measured soil densities, material properties

such as shear modulus, Young’s modulus, and Poisson’s ratio can be determined.

Although not specified by ASTM-D-4428, it should be possible to determine at-

tenuation coefficients provided that each receiver’s response characteristics are suffi-

ciently well characterized.

The crosshole test’s main disadvantage is cost, and because the preferred spacing

for the boreholes is relatively close (3 m), multiple test locations might be necessary

to survey an entire area of interest. ASTM-D-4428 provides a two hole method that

can reduce costs somewhat; however, it would not generally be possible to extract

attenuation information without at least three boreholes. Also, as was pointed out by

Michaels (1998), the crosshole method is susceptible to the wave guide effect, which

could cause elastic waves to experience dispersion, which would be easily confused for

attenuation.

Robertson et al. (1985) have integrated a small rugged shear wave seismometer

into a standard cone penetrometer, and demonstrated its ability obtain a shear-wave

profile of up to 40 meters depth. They have called this the Seismic Cone Penetrometer
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Figure 1.14: Seismic Cone Penetrometer Test (SCPT) developed by Robertson et
al. (l) Cone penetrometer equipped with a rugged shear-wave seismometer. (c) Field
test set-up. (r) Typical velocity-depth profile. Illustrations excerpted from Robertson
et al. (1985).

Test (SCPT). The penetrometer is driven into the soil, and stopped at intervals so

that its seismometer can be used to measure a signal generated by a horizontal shear

wave source at the surface 1.14. The cone penetrometer test is less expensive than

crosshole testing, and it has the advantage of producing correlative data that can be

used to impute pore water pressure, median grain size (D50), relative density (Dr),

unconsolidated shear strength (cu), overconsolidation ratio (OCR), drained friction

angle (φ′), and bearing capacity factor (Nk) (Das, 2011). Although the authors did

not do so, there would seem to be no impediment to using SCPT data to estimate

damping coefficients. The main disadvantage of penetrometer tests is that the cone

can have difficulty negotiating large cobbles or gravels.

Michaels (1998) developed a joint inversion routine that he used to estimate shear

modulus and damping factors from downhole seismic data. As noted by the author,
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Figure 1.15: (l) Field set-up used by Michaels to obtain downhole data. (r) Typical
dispersion (top) and attenuation (bottom) curves obtained from Michaels’ Idaho field
tests. Illustrations excerpted from Michaels (1998).

there is no reason that this technique could not also be used with SCPT data. A

receiver is lowered down a borehole and used to measure a signal generated by a

horizontal shear wave source on the surface. The measured data is then inverted in a

manner that best fits both the dispersion and attenuation curves obtained from the

model (Michaels, 1998). These curves were obtained assuming a Kelvin-Voigt soil

model.

The downhole method is a better choice for gravely soils than the SCPT method,

and because it only uses one borehole, it is less costly than the crosshole method. It

is also probably less susceptible to the effects of layering (wave-guide formation).

1.3.3 Surface Wave Methods

Jones (1962) described methods for determining the thickness and modulii of roadway
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materials using Rayleigh waves. Although not central to his proposal, his development

included a discussion of the Voigt viscoelastic model, with methods for correcting data

for viscous attenuation. In 1981, J. Scott Heisey (1981), a graduate student at the

University of Texas at Austin, wrote a Master’s thesis entitled, Determination of in

situ shear wave velocities from spectral analysis of surface waves (Heisey, 1981). The

next year, he and his collaborators published an extensive report of the same title for

the Texas Department of Transportation, in which they detailed potential uses for the

method (Heisey et al., 1982). That same year, they published a paper entitled, Modulii

of pavement systems from spectral analysis of surface waves in ASCE’s Transportation

Research Record. Kenneth Stokoe II, one of Heisey’s collaborators, has since published

many papers on the Spectral Analysis of Surface Waves (SASW) technique.

Rayleigh waves propagating in homogeneous media are not dispersive. In other

words, velocity is not a function of frequency. As noted by Love (1911), Rayleigh

waves become dispersive when they propagate in layered media. High frequency

waves tend to penetrate to shallower depths and be less influenced by deep layers

than their low frequency kin. SASW takes advantage of this property of Rayleigh

waves in order to determine the layered structure beneath the surface. The SASW

method typically uses a source and two receivers located some distance away. Velocity

information is imputed from travel times between the two receivers and correlated

with frequency information to obtain dispersion relationships. Multichannel Analysis

of Surface Waves (MASW), a related method pioneered by Gabriels et al. (1987),

employs multiple channels in order obtain two or three dimensional depth profiles

of surface layers in an area. Several researchers, including Xia et al. (1999), have

promoted the MASW method as a shallow-surface exploration tool. Although often
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advertised as a stand-alone method, SASW and MASW are probably best used in

conjunction with techniques such as downhole, crosshole, or cone penetrometer tests.

An important motivator for the use of shear wave techniques has been the Uni-

form Building Code (ICBO, 1997) and its successor, the International Building Code

(ICC, 2000). In order to estimate a structure’s earthquake response, both codes re-

quire that the shear wave profile of the soils for any expensive or critical building

project be determined to a depth of at least 30 m. Averaged shear velocity values

then are used to impute earthquake site response and site amplification factors used

for structural lateral load calculations. A 5% soil damping factor is used in base cal-

culations; however, this may be adjusted depending on local soil conditions, or from

the results of resonant column tests such as ASTM-D-4015 (1996). There currently

is no requirement that damping ratio be imputed from in-situ tests; hence, there is

little impetus to use SASW and MASW to estimate soil damping factors.

A second deterrent to using SASW/MASW to determine soil damping factors is

the complexity of data inversion. Both methods use Rayleigh waves, which are de-

pendent on dilational as well as shear properties. An inversion scheme using Rayleigh

waves to determine shear properties would need to separate the effects of soil density,

shear modulus, shear viscosity, bulk modulus, and bulk viscosity.

Most attempts at inverting surface wave data obtained from earthquakes have

focused on purely elastic models. Pei (2007) has developed an interesting method that

jointly inverts data from Love and Rayleigh waves to determine elastic parameters.

The importance of soil damping is appreciated by the geophysical community, and

there have been many efforts to model regional earthquake behavior using viscoelas-

tic models. Most forward models employ finite difference methods. For example,
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Jemberie (2002) modeled Rayleigh wave behavior using a Voigt-type model, and then

used a least squares technique to determine the viscoelastic coefficients that best fit

earthquake seismic data. Olson et al. (2000) have used earthquake surface wave data

to refine a viscoelastic model that used data from borehole logs as a control. Ho-

Liu (1988) applied tomographic techniques to develop a viscoelastic model of crustal

blocks in California’s Imperial valley; however, this study focused on the horizontal,

rather than vertical structure of crustal blocks.

Chakravarthy (2008) has studied Love wave propagation in a single viscoelastic

layer over a half-space. The difference between Love wave behavior of a single vis-

coelastic layer and its purely elastic counterpart is striking. In Chapter 4, we will

extend the study of a single viscoelastic layer to multiple viscoelastic layers.

1.4 The Need for Accurate Viscoelastic Soil

Property Estimates

The method prescribed by the International Building Code is a variant of the base

shear force model: The structure is considered to be a stationary mass, under which,

the soil and foundation oscillate with displacement, u, velocity u̇, and acceleration

ü. For most calculations, the building is considered to be rigid, and the transverse

force, shear, and moment on a given member are calculated using Newton’s third law.

Thus, the acceleration at the structure’s base is a function of the soil geometry and

properties. We will illustrate soil response using an idealized lumped parameter soil

model with a single degree of freedom (SDOF) and a sinusoidal force F (t) acting at

its base (Figure 1.16).
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Figure 1.16: (l) Idealized viscoelastic soil model with a sinusoidal wave traveling
upwards to the surface. (r) Lumped parameterization of an idealized SDOF soil
model.

Recall Equation 1.5. Setting F (t) = sin(ωt) we obtain:

d2u

dt2
+
Gv

m

du

dt
+
Ge

m
u = sin(ωt) (1.11)

for which we define the magnification factor (MF) as the ratio of peak resonant

amplitude to that of an untuned system. We will also define the critical damping ratio

(DRc) for a lumped parameter SDOF system as the ratio of the damping coefficient

to the damping coefficient that would effect critical damping. We note that definition

differs from the ASTM definition used in resonant column testing (Equation 1.10). A

complete derivation is found in the appendices of Kramer (1996):

MF =
1√(

1− ω
ω0

)2

+
(

2DRcω
ω0

)2
(1.12)

As the forcing frequency, ω, approaches the undamped resonant frequency, ω0,
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Figure 1.17: Magnification factor versus frequency for an idealized viscoelastic system
with a natural resonance frequency of 1 Hz.

the magnification factor increases. Indeed, with no damping, it increases to infinity

(Figure 1.17). Not surprisingly, magnification factor decreases rapidly with increasing

damping ratio.

Idriss and Seed (1968) developed the SHAKE computer algorithm, which esti-

mates surface displacement, velocity, and acceleration for layered soils over an os-

cillating bedrock base. SHAKE has been immensely popular, and it has been the

progenitor of several generations of software designed to estimate surface motion. As

of this writing, SHAKE91 and SHAKE2000 are in common use. We should note that

the various iterations of SHAKE use a bilinear hysteretic model–A variant of the

Coulombic damping model. Nevertheless, the frequency dependence of magnification

factors obtained using SHAKE are similar to those obtained using the viscoelastic

model.

Recall that Ishimodo and Iida found that the damping properties of disturbed
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soils, as measured by resonant column tests, could be from one half to one tenth the

value obtained from an undisturbed sample of the same soil. It is possible that a soil

with a measured damping ratio of 0.5 could actually have a damping ratio of 0.05,

so instead of a magnification factor near unity, the true, in-situ value might actually

be closer to 10 (Figure 1.17). Even if it were possible to gather an undisturbed

soil sample, that soil sample would represent just one point in the area of interest.

Adjacent soils, or soils at different depths might be considerably different.

Crosshole and downhole tests avoid most of the pitfalls associated with laboratory

testing; however, they are expensive. The seismic cone penetrometer test is less expen-

sive, but can only be used with a limited range of soil types. Furthermore, crosshole,

downhole, and seismic cone penetrometer tests only provide a velocity-depth pro-

file for one point. MASW is a relatively inexpensive way to obtain vs30 information

over a fairly large area. Unfortunately, the complexity of Rayleigh waves has made

determination of viscoelastic properties using either SASW or MASW problematic.

Unlike Rayleigh waves, which result from the interactions of both shear and di-

lational waves, Love waves arise from the interactions of shear waves alone. In the

present work, we explore a method for inverting Love waves to obtain viscoelastic

properties.
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CHAPTER 2:

THE VISCOELASTIC SHEAR WAVE

EQUATION

In this chapter, we discuss our choice of the viscoelastic shear wave model, derive the

viscoelastic wave equation, and then show how the viscoelastic wave equation can be

transformed into a variant of the more common elastic wave equation. We will then

solve the viscoelastic wave equation for a homogeneous half-space.

2.1 Choosing a Constitutive Soil Model

An overarching consideration in our selection of a constitutive model is utility. As we

saw in Chapter 1, Coulombic damping models, viscoelastic models, and their many

variants all see common use, and there seems to be no consensus about which of

these best models soil behavior. For example, ASTM-D-4015 (1996) specifies the use

of a viscoelastic model that has been modified in such manner that it approximates

Coulombic damping. As we noted, such a model might be appropriate for dry sands,

but an unmodified viscoelastic would probably be more appropriate for moist or

saturated soils. Stoll (1985) conducted resonant column experiments using the same

Ottawa sands as Hardin. He found that dry sands exhibited the frequency indifference

reported by Hardin; however, he also found that moist and saturated sands and

inorganic silts exhibited the sort of frequency dependence that would be expected for

a viscoelastic model.
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Figure 2.1: (l) Elastic shear forces acting on a horizontal soil element with thickness
∆z and area A. (r) Viscous shear forces acting on the same element.

Most soils are damp; thus, the viscoelastic model seems more appropriate for most

geotechnical applications. Furthermore, as noted in Chapter 1, the viscoelastic model

can be used to approximate Coulombic behavior, so data obtained from the viscous

model can be readily converted for use with the Coulombic damping model or its

derivatives.

2.2 The Viscoelastic Equation of Motion

Consider a thin horizontal layer within a homogeneous, isotropic material with density

ρ and shear modulus, µ. The top and bottom surfaces of the layer are at depths z

and z + ∆z, respectively. Now suppose that a shear wave passes vertically through

the material, and that the wave’s particle motion is in the y-direction. We denote

the y-displacement of a particle from its initial position with the letter v. The stress
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on the surface of a layer is equal to the product of the shear modulus and the shear

strain at that depth. The total force acting on the layer is the sum of the forces

acting on the top and bottom faces (Figure 2.1(l)). In general, the forces at the top

and bottom faces of the layer act in opposite directions, so that the net elastic shear

force on the layer is given by:

Fye = Fye(z + ∆z)− Fye(z) = µA

(
∂v

∂zz+∆z

− ∂v

∂zz

)
(2.1)

We approximate the right-hand side of Equation 2.1 with a differential formula-

tion.

Fye ≈ µA
∂

∂z

(
∂v

∂z

)
∆z = µA

∂2v

∂z2
∆z (2.2)

The mass of the layer is m = ρA∆z. Applying Newton’s second law, and taking

the limit as ∆z approaches zero:

Fye = ρA∆z
∂2v

∂t2
= lim

∆z→0
µA

∂2v

∂z2
∆z (2.3)

Dividing both sides of Equation 2.2 by ρA∆z, we obtain the one dimensional shear

wave equation for a homogeneous, isotropic, linearly elastic material:

∂2v

∂t2
=
µ

ρ

∂2v

∂z2
(2.4)

Now consider a viscoelastic material. In addition to elastic stress, there is also a

rate dependent shear stress due to the viscous effects at each surface. From Newton’s

law of viscosity, the force on each surface equals the product of viscosity η, area, and

the velocity gradient at that surface. Thus, the net viscous shear force is:
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Fyv = Fyv(z + ∆z)− Fyv(z) = ηA

(
∂

∂z

∂v

∂tz+∆z

− ∂

∂z

∂v

∂tz

)
(2.5)

Using arguments similar to those for the purely elastic case, we obtain an equation

of motion for the viscous forces that is analogous to Equation 2.3:

Fyv = ρA∆z
∂2v

∂t2
= lim

∆z→0
ηA

∂2

∂z2

∂v

∂t
∆z (2.6)

The total force on the layer is Fy = Fye + Fyv. Adding these forces, applying

Newton’s second law, and dividing both sides by ρA∆z, we obtain the one dimensional

viscoelastic wave equation for a homogeneous, isotropic, linearly elastic, and linearly

viscous material:

∂2v

∂t2
=
µ

ρ

∂2v

∂z2
+
η

ρ

∂3v

∂z2∂t
(2.7)

We will solve (2.7) using the method of separation of variables (Asmar, 2000) by

letting v(z, t) = Zv(z)Tv(t). Thus separated, we obtain two differential equations:

∂2Zv
∂2
z

+ k∗2Xv = 0 (2.8)

∂2Tv
∂t2

+ k∗2
(
η

ρ

∂Tv
∂t

+
µ

ρ
Tv

)
= 0 (2.9)

for which k∗ is the complex eigenvalue used to separate the variables. The solutions

to Equations 2.8 and 2.9 are:
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Zv(z) = A1e
ik∗x + A2e

−ik∗z (2.10)

Tv(t) = B1e
iωt +B2e

−iωt (2.11)

where k∗ = kr + iki is called the complex wave number, and kr and ki are given by:

kr = ω

(
ρ
µ+

√
µ2 + η2ω2

2(µ2 + η2ω2)

)1/2

(2.12)

ki = ω

(
ρ
−µ+

√
µ2 + η2ω2

2(µ2 + η2ω2)

)1/2

(2.13)

2.2.1 An Alternative Formulation of the Viscoelastic Wave

Equation

The solutions of Equation 2.7 are harmonic, and of the form ei(ωt−k
∗x). Substituting

this into the third order term of (2.7) and differentiating with respect to time yields:

η

ρ

∂3v(z, t)

∂z2∂t

η

ρ

∂3ei(ωt−k
∗z)

∂z2∂t
= iω

η

ρ

∂2ei(ωt−k
∗z)

∂z2
= iω

η

ρ

∂2v(z, t)

∂z2
(2.14)

This suggests a method for transforming Equation 2.7 into a second order differ-

ential equation. Substituting the result from (2.14) into (2.7), we obtain:

∂2v

∂t2
=
µ

ρ

∂2v

∂z2
+
iωη

ρ

∂2v

∂z2
=
µ+ iωη

ρ

∂2v

∂z2
=
µ∗

ρ

∂2v

∂z2
(2.15)

where µ∗ = µ+ iωη is called the complex shear modulus. The complex shear modulus



47

permits us to express the viscoelastic wave equation as a variant of the complex wave

equation:

∂2v(x, z, t)

∂t2
=
µ∗

ρ
∇2v(x, z, t) (2.16)

2.2.2 Shear Wave Velocity and Wave Number Relationships

We denote the complex shear velocity as β∗ =
√

µ∗

ρ
. For shear waves, the complex

velocity is given by:

β∗ =

√
µ∗

ρ
=

√
µ+ iωη

ρ
= βr + iβi (2.17)

where:

βr =

(
µ+

√
µ2 + η2ω2

2ρ

) 1
2

(2.18)

βi =

(
−µ+

√
µ2 + η2ω2

2ρ

) 1
2

(2.19)

The shear wave phase velocity, βs, is:

βs =
β2
r + β2

i

βr
=

√
µ2

ρ2
+ ω2η2

ρ2(
µ+
√
µ2+ω2η2

2ρ

)1/2
= β

√
1 + ω2η2

µ21+

√
1+ω2η2

µ2

2

1/2
(2.20)

where β is the elastic shear wave velocity (β =
√
µ/ρ).

The complex wave number, k∗ is:
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k∗ = kr + iki =
ω

β∗
=

ω

(βr + iβi)

(βr − iβi)
(βr − iβi)

=
ωβr − iωβi
β2
r + β2

i

(2.21)

where:

kr =
ωβr

β2
r + β2

i

(2.22)

ki =
−ωβi
β2
r + β2

i

(2.23)

We define the shear wave attenuation coefficient, αs, to be the negative of ki:

αs = −ki (2.24)

2.2.3 Viscoelastic Damping

We define the shear wave loss tangent, ξs, to be the negative of the ratio of the

imaginary and real component of the complex wave number, k∗:

ξs =
−ki
kr

=
βi
βr

=

(
−µ+

√
µ2 + η2ω2

µ+
√
µ2 + η2ω2

) 1
2

=


√

1 + η2ω2

µ2
− 1√

1 + η2ω2

µ2
+ 1


1
2

(2.25)

When the loss tangent is zero, there is no decay, and the wave is said to be

undamped. When the loss tangent is between zero and unity, the wave has the shape

of an exponentially decaying sinusoid, and the wave is said to be underdamped.

As can be seen when ξ = 0.5 (Figure 2.2), underdamped materials may effect so
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Figure 2.2: Viscoelastic attenuation of a plane wave with different loss tangents.

much attenuation that signals may become unmeasurable a few wavelengths from the

source. When the loss tangent is equal to (critically damped) or greater than unity

(overdamped), sinusoidal motion is completely suppressed within one wavelength of

the source (Figure 2.2).

The loss tangent is analogous to the damping ratio (DR) used by geotechnical

engineers (Kramer (1996) or ASTM-D-4015 (1996)):

DR =
ωη

2µ
(2.26)
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There are, however, important differences between the loss tangent and damping

ratio. First, we note that the damping ratio is properly defined only for the temporal

decay of an oscillating system, while the loss tangent represents spatial decay as

a function of wave number or wavelength. Inspection of Equations 2.25 and 2.26

also reveals that for real values of η, µ, and ω, the loss tangent can only attain

values between zero and unity, while the damping ratio can assume any value greater

than or equal to zero. Thus, although it may be possible for a simple oscillator to

be overdamped, it isn’t possible for a simple shear wave to be overdamped. It is,

however, possible for a Love wave to be overdamped (Chapter 3).

2.3 The 2-D Viscoelastic Shear Equation for a

Homogeneous Medium

Consider a horizontally polarized shear wave propagating within a half-space. Particle

displacement, v, is in the y-direction, perpendicular to the direction of propagation.

We take z to be perpendicular to the plane of Earth’s surface, with the positive z-

axis in the downward direction (Figure 2.3). We rewrite Equation (2.16), the complex

shear equation, as:

∂2v(x, z, t)

∂t2
=
µ∗

ρ

(
∂2v(x, z, t

∂x2
+
∂2v(x, z, t)

∂z2

)
(2.27)

Equation 2.27 can be solved using the method of separation of variables. We begin

by separating the solution to Equation 2.27 into three independent function of x, z,

and t:
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Figure 2.3: Coordinate system used in the derivation of shear and Love wave equa-
tions.

v(x, z, t) = R(x)L(z)T (t) (2.28)

Substituting Equation 2.28 into Equation 2.27 and rearranging yields:

1

T (t)

∂2T (t)

∂t2
=
µ∗

ρ

(
1

R(x)

∂2R(x)

∂x2
+

1

L(z)

∂2L(z)

∂z2

)
(2.29)

Because T(t), R(x), and L(z) are independent functions, the only way for the left

and right-hand sides of (2.29) to be equal to each other is for each side to equal a

constant, which we will denote −ω2. Thus, Equation 2.29 can be decomposed into

two differential equations:
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1

T (t)

∂2T (t)

∂t2
= −ω2 (2.30)

1

R(x)

∂2R(x)

∂x2
+

1

L(z)

∂2L(z)

∂z2
=
−ω2

β∗2
(2.31)

Similarly, (2.31) can be decomposed into two independent differential equations:

µ

ρ

(
1

R(x)

∂2R(x)

∂x2

)
= −K∗2 (2.32)

1

L(z)

∂2L(z)

∂z2
= K∗2 − ω2

β∗2
(2.33)

where K∗ is the horizontal wave number.

The solutions to Equations 2.30, 2.32, and 2.33 are:

T (t) = a1e
−ωt + a2e

ωt

R(x) = b1e
−K∗x + b2e

K∗x (2.34)

L(z) = (sde
−νz + sue

νz)

where the eigenvalue ν =
√
K∗2 − ω2

β∗2 is the vertical wave number, and the coefficients

sd and su are coefficients for the down-going and up-going z-components of the wave,
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respectively.

For a wave moving in the positive x direction, a2 and b1 are zero. We set a1 =

b2 = 1 to obtain:

v(x, z, t) = L(z)R(x)T (t) =
(
sde
−νz + sue

νz
)
ei(K

∗x−ωt) (2.35)

By substituting K∗ = Kr + iKi into (2.35), we obtain:

v(x, z, t) = L(z)R(x)T (t) = L(z)eKixei(Krx−ωt) (2.36)

which describes damped oscillation propagating in the x direction. Thus, the imagi-

nary wave number component, Ki, is a spatial attenuation factor.
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CHAPTER 3:

LOVE WAVE PROPAGATION IN LAYERED

VISCOELASTIC MEDIA

3.1 Introduction

In Chapter 11 of his essay, Some Problems of Geodynamics, Love derived equations

for transverse waves in a single superficial layer over a half-space (Figure 3.1), and

demonstrated that such a system produces a series of laterally polarized, large ampli-

tude waves with well defined periodicity (Love, 1911). Love attributed this behavior

to the formation of standing waves in the superficial layer, and demonstrated that

efficient standing wave formation requires that S-wave velocity in the superficial layer

be less than that of the half space (β1
β2
< 1).

Chapter 7 of Aki and Richards (2009) is a general discussion of surface waves

in a vertically heterogeneous medium, and it includes models for Love and Rayleigh

waves in layered, as well as continuously varying elastic media. In this chapter, we

will extend their treatment to propagation in layered viscoelastic media, but confine

our derivation to the case of horizontally polarized shear waves (S-H waves) in a

vertically layered medium over a half-space.



55

Z0

Z1

Layer 1 ρ1 μ1 η1 h1=Z1-Z0

h2=∞ρ2 μ2 η2Half Space

Figure 3.1: Nomenclature and layer properties for a single layer over a half-space. ρj,
µj, and ηj are, respectively, the density, shear modulus, and viscosity of layer j.

3.2 The Shear Wave Equation for a Layered

Viscoelastic Medium over a Half-Space

In the previous section, we derived a relationship for particle displacement, v, in

a homogeneous viscoelastic medium. We would like to extend this treatment to a

horizontally layered medium. For layered media, density, shear modulus, and viscosity

are functions of depth (Figure 3.2). In our derivation for a single homogeneous layer,

we defined T (t) and R(x) in such a way that they are independent of depth; thus, we

need only derive a relationship for L(z) to extend our theory to layered media.

A layered structure represents a coupled system in which adjacent layers are con-

nected to each other. At each interface, we will impose a no-slip condition, such that

both the displacement and stress on each side of the interface must be equal. We will

find it convenient to define two new terms: A motion term, and a stress term. The



56

Z0

Z1

Layer 1 ρ1 μ1 η1 h1=Z1-Z0

ρn+1 μn+1 ηn+1 hn+1=∞

Layer 2 ρ2 μ2 η2 h2=Z2-Z1

Layer n ρn μn ηn hn=Zn-Zn-1

Z2

Zn

Zn-1

Half Space

Figure 3.2: Nomenclature and layer properties for a layered system over a half-space.
ρj, µj, and ηj are, respectively, the density, shear modulus, and viscosity of layer j.

motion term, lm,j(z) denotes the value of L(z) for layer j at depth z. The stress term

denotes the τz,y stress at the same location, and is given by:

ls,j(z) = µ
∂lm,j(z)

∂z
(3.1)

Applying Equation 3.1 to Equation 2.35, we see that stress within a homogeneous

layer is given by:

τz,y(z) = µ
∂v(x, z, t)

∂z
= µ∗ν

(
−sde−νz + sue

νz
)
ei(k

∗x−ωt) (3.2)

The motion and stress terms can be combined into a single motion-stress vector:

lj (z ) =

lm,j(z)

ls,j(z)

 (3.3)
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The no-slip condition assures that the displacement of two adjacent layers is the

same at each interface: Lj(z) = Lj+1(z), where j and j+1 are layer indices. Similarly,

the interfacial stress must also be equal. Expressed in terms of motion-stress vectors,

this is:

lj(z) = lj+1(z) (3.4)

In the following sections, we will develop a propagator matrix, P (za, zb) that will

represent the coupling relationship between any two arbitrary depths, za and zb:

l(za) = P (za, zb)l(zb) (3.5)

There is no stress at the free surface (z = 0); thus, we can impose the Dirichlet

boundary condition that τy,z = 0 at z = 0. We will use the subscript j to denote the

lower interface of layer j, so that the surface will be z0, the bottom of the first layer

will be z1, and so-on until the bottom of layer n, zn.

τy,z = µ
∂v

∂z
= µ

∂L(0)

∂z
= ls,1(0) = 0 (3.6)

For an n-layer system, a propagator representing the coupling between the free

surface and the bottom of the nth layer will be:

l(zn) = P (zn, z0)l(z0) (3.7)

Of course, zn also denotes the top of the half-space. At the boundary between the

nth layer and the half-space, a down-going wave is generated, but because the half-

space is theoretically infinite, there will be no corresponding wave traveling upward
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through the half-space to the interface, so our formulation of a propagator matrix for

the half-space will differ from that in the layered zone. We will denote the propagator

matrix for the half-space as P (z∞, zn), and the relationship between the motion-

stress vector at the surface and the up-going and down-going displacement amplitudes

in the half space as:

sd
su

 = P (z∞, zn)P (zn, z0)l(z0) (3.8)

For a single layer over a half-space, these two boundary conditions are sufficient.

Alternative solutions for a single elastic layer over a half space can be found in Section

7.1 of Aki and Richards (2009) and Section 5.3.2 of Kramer (1996).

3.2.1 Propagator Matrix for a Layered Medium–P (zn, z0)

Thomson (1950) developed a generalized matrix formulation for dilational and rota-

tional elastic waves in layered media. Haskell (1953) refined Thomson’s model and

used it to study Love and Rayleigh waves in Earth’s crust. Haskel demonstrated the

method’s utility by comparing two-layer Rayleigh wave models to data obtained from

North American earthquakes and rock slides; however, he neither attempted a formal

data inversion, nor did he extend his demonstration to Love waves.

The method developed by Thomson and Haskell assembled submatrices into a

single large matrix that could be solved by numerical integration; however, truncation

errors could cause the method to become unstable (Dunkin, 1965), and several authors

proposed modifications to ameliorate numerical errors (Rosenbaum, 1964). Knopoff

(1964) suggested an entirely new matrix formulation using the method of propagator
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matrices. First proposed by Volterra (1887) as a method for solving systems of coupled

linear differential equations, the propagator method provides a systematic procedure

for creating separate matrices for each layer, and then combining them into a single

matrix via matrix multiplication.

Gilbert and Backus (1966) collated the methods of Thomson, Haskell, Rosenbaum,

and Knopoff into a cogent procedure for obtaining a propagator matrix suitable for

trial-and-error solution by numerical integration. The method involved numerical

integration of the propagator matrix from a location deep in the half-space to the

top of the layer stack. The integration is repeated using different values of the Love

or Rayleigh wave number until the correct surface boundary conditions are obtained.

Aki and Richards (2009) outline a clever method for tying boundary conditions at

the surface to the surface that permits solution of the Gilbert and Backus propagator

matrix without numerical integration.

Chapter 7 of Aki and Richards (2009) is a general discussion of surface wave

propagation in heterogeneous media. Their methods are general, and include solutions

for both Love and Rayleigh waves in continuously changing, as well as layered media.

In the present treatment, we focus on Love waves in layered media, so it will be

possible to simplify both the derivation and the nomenclature. In their propagator

matrix solution, Aki and Richards employed the Sylvester-Lagrange formula. In our

derivation, we will follow the method used by Sadun (2001), since it uses matrix

methods that will be familiar to any reader with an elementary knowledge of linear

algebra.

We begin by rearranging and rewriting (2.33) in terms of lm,j and ls,j:
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∂2L(z)

∂z2
− L(z)

(
K∗2 − ω2

β∗2

)
= 0

∂

∂z

(
ls,j
µ∗

)
− lm,j

(
K∗2 − ω2

β∗2

)
= 0 (3.9)

We can now write (3.9) in terms of motion-stress vectors:

∂

∂z

lm,j
ls,j

 =

 0 1
µ∗(

K∗2 − ω2

β∗2

)
µ∗ 0


lm,j
ls,j

 (3.10)

Equation 3.10 could be integtrated, numerically, to find values of the motion-stress

vector, and thus, L(z). The method is outlined in Aki and Richards (2009) Section

7.2.1, as well as in texts on numerical integration like Desai and Christian (1977)

Section 17. It is an iterative method that assumes values for K∗, and then integrates

from a position deep in the half-space to the surface of the top layer. A value of K∗

is assumed to be correct when the value of the stress vector is zero at the surface.

The propagator matrix is an analytical method for determining the motion-stress

vector and L(z). We rewrite (3.10) in matrix form:

∂lj
∂z

= Alj (3.11)

For a single, homogeneous layer, a solution to this first order linear differential

equation is the propagor matrix (Sadun, 2001):

P (zj, zj−1) = e(zj−zj−1)A = ehjA (3.12)
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where hj is the thickness of layer j.

Chapter 5 of Sadun (2001) discusses the properties of the propagator matrix. A

most useful property is the ability to combine propagator matrices in a sort of chain:

P (zn, z0) = P (zn, zn−1)P (zn−1, zn−2)...P (z2, z1)P (z1, z0) (3.13)

Thus, a solution for an entire stack of layers can be found given P for each of its

constituent layers. A difficulty computing P arises when using Equation 3.12. The

exponent of a matrix is not generally defined in terms of elementary functions, and

direct computation requires the use of a matrix Taylor series. A simpler computation

is obtained by diagonalizing A (Sadun, 2001):

A = QΛQ−1 (3.14)

where Λ is a diagonal matrix of eigenvalues, and Q is a matrix of eigenvectors.

Sadun (2001) demonstrates that the exponent of a square diagonal matrix such

as Λ is:

eΛ =

eν1 0

0 eν2

 (3.15)

where ν1 and ν2 are the eigenvalues in Λ. A second useful result is that, for a

diagonalized matrix:

eQΛQ−1

= QeΛQ−1 (3.16)

We find the eigenvalue matrix of A:
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eΛ =

eν 0

0 e−ν

 (3.17)

Where ±ν are the eigenvalues of A, and

ν =

√
K∗2 − ω2

β∗2
(3.18)

The eigenvector matrix, Q and its inverse are:

Q =

 1 1

νµ∗ −νµ∗

 (3.19)

Q−1 =
1

2

1 1
νµ∗

1 − 1
νµ∗

 (3.20)

We can rewrite Equation (3.12) as:

P (zj+1, zj) = QehjΛQ−1 =

 cosh(νhj)
1
νµ∗

sinh(νhj)

νµ∗sinh(νhj) cosh(νhj)

 (3.21)

3.2.2 Propagator Matrices for a Half-Space and for an Arbi-

trary Depth–P (z∞, zn) and P (z, zn)

Because the half space is infinite, hn+1 =∞, applying Equation 3.21 results in infinite

values of all four matrix elements. Recall that our solution to Equation 3.11 resulted

in two sets of eigenvalues/eigenvectors that tacitly represent both up-going and down-

going waves, and as noted earlier, there are no up-going waves in the half-space. Thus,
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the positive eigenvalue in Equation 3.15 goes to zero, and in the half-space:

eΛ =

0 0

0 eν2

 (3.22)

The equation for a propagator element P (z, zn) at an arbitrary depth, z, in the

half-space can be derived in a manner analogous to our derivation of Equation 3.21:

P (z, zn) = Qehn+1ΛQ−1 =
1

2

 e−νhn+1 −1
νµ∗

e−νhn+1

−νµ∗e−νhn+1 e−νhn+1

 (3.23)

The boundary conditions at Earth’s surface are formulated in terms of a motion-

stress vector, while those in the half-space are formulated in terms of the upward and

downward propagation coefficients, sd and su. In order to reconcile the boundary

conditions at the surface with those in the half-space, we will rewrite Equations 2.35

and 3.2 as a motion-stress vector:

lj (z ) =

lm(zn)

ls(zn)

 =

 e−νzn eνzn

−νµ∗eνzn µ∗νeνzn


sd
su

 (3.24)

so that Equation 3.24 gives the motion-stress vector at the top of the half-space as a

function of the up-going and down-going displacement functions. Inverting this, we

obtain an equation for the upgoing and downgoing displacement functions in terms

of the motion-stress vector at the top of the half-space:

sd
su

 =
1

2

 eνzn − 1
νµ∗

eνzn

e−νzn 1
νµ∗

e−νzn


lm(zn)

ls(zn)

 = P (z∞, zn)l(zn) (3.25)
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Substituting for l(zn) using Equations (3.8) and (3.13):

sd
su

 = P (z∞, zn)
n∏
j=0

P (j + 1, j)l(z0) (3.26)

3.2.3 The Objective Function

Multiplying the propagator matrices in (3.26), and applying the boundary conditions

that the stress vector be zero at the surface, and that the upward displacement vector

vanish in the half-space:

sd
0

 =

B1,1 B1,2

B2,1 B2,2


lm(z0)

0

 (3.27)

Note that for Equation 3.27 to be true, it is necessary that B2,1 always equal zero.

Eigenvalues (ν) correspond to the values of ω, and K∗ for which B2,1 = 0. We will

refer to B2,1 as the objective function, and for a given set of layer and half-space

properties, our strategies for finding eigenvalues will be to search for values of K∗

that drive the objective function to zero.

u = 0

v(x, z, t) =
(
sde
−νz + sue

νz
)
ei(K

∗x−ωt) = L(z)ei(K
∗x−ωt) (3.28)

w = 0

For a single layer over a half-space, Equation 3.28 reduces to Equation 2.35.

As is generally the case for shear waves, normal stresses in the x, y, and z directions
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will be zero:

τx,x = τy,y = τz,z = 0 (3.29)

Shear stresses can be found by differentiating the displacement relationships of

(3.28), and multiplying by the shear modulus, µ:

τx,z = 0

τy,z = µ
dL(z)

dz
ei(K

∗x−ωt) (3.30)

τy,x = iK∗µL(z)ei(K
∗x−ωt)

3.2.4 Love Wave Velocity and Wave Number Relationships

Love wave velocity/wave number relationships are similar to those derived for shear

waves in Chapter 2. The complex Love Wave velocity is C∗ = Cr + iCi, where Cr

and Ci are the real and imaginary components, respectively. We can obtain the

complex wave number from frequency and complex wave velocity using the following

relationship:

K∗ =
ω

C∗
=

ω

(Cr + iCi)

(Cr − iCi)
(Cr − iCi)

=
ωCr − iωCi
C2
r + C2

i

(3.31)

so the real and imaginary components of the Love wave complex wave number are:
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Kr =
ωCr

C2
r + C2

i

(3.32)

Ki =
−ωCi
C2
r + C2

i

(3.33)

We will define the Love wave attenuation coefficient, αL to be the negative of Ki:

αL = −Ki (3.34)

The Love wave phase velocity can be found by inserting (3.32) into the relationship

between velocity, wave number, and frequency (Chakravarthy, 2008):

CL =
ω

Kr

=
C2
r + C2

i

Cr
(3.35)

We define the Love wave loss tangent, ξL::

ξL =
−Ki

Kr

=
Ci
Cr

(3.36)

We should note that, unlike the shear wave loss tangent, it is possible for the Love

wave loss tangent to exceed unity.

3.3 Geometric Dispersion

In order to separate the effects of material damping from attenuation due to geomet-

ric spreading, it will be necessary to adjust our model for the attenuation that occurs

when waves radiate from a finite source. To this point, our derivation has assumed
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Figure 3.3: Coordinate system used in the polar coordinate derivation of the shear
and Love wave equations.

plane waves of infinite lateral extent, and thus no geometric spreading. This is a rea-

sonable assumption when applied to small regions far from the source; however, most

near-surface geophysical investigation is conducted over regions that are relatively

large and in close proximity to the seismic source. In this section, we will rederive

Equation 2.35 in cylindrical coordinates. The result will be a type one, zero order

Bessel function, which can be reasonably approximated by dividing Equation 2.35 by

the square root of the radial distance from the source.

3.3.1 The Wave Equation in Cylindrical Coordinates

In Cartesian coordinates, the 3-D wave equation is:

∂2v(x, y, z, t)

∂t2
=
µ∗

ρ
∇2v(x, y, z, t) (3.37)
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In cylindrical coordinates, the particle displacement function becomes v(r, θ, z, t).

When r and θ are written as functions of x and y, this becomes: v(r(x, y), θ(x, y), z, t).

Consider a horizontally polarized shear wave propagating along Earth’s surface in

the r-direction. Particle displacement, v, is in the θ-direction, perpendicular to the

direction of propagation. As was the case in our Cartesian derivation, we take z

to be perpendicular to the plane of Earth’s surface, with the positive z axis in the

downward direction (Figure 3.3). Assuming displacement angles to be small, and v

to be symmetric about the source, we can neglect θ dependence: v(r(x, y), z, t).

The relationship between x, y, and r is:

r2 = x2 + y2 (3.38)

Single and double integration of Equation 3.38 with respect to x gives:

∂r

∂x
=

x

r
(3.39)

∂2r

∂x2
=

1

r

(
1−

(
∂r

∂x

)2
)

=
1

r

(
1−

(
x2

r2

)2
)

(3.40)

Similar relationships are obtained for y:

∂r

∂y
=

y

r
(3.41)

∂2r

∂y2
=

1

r

(
1−

(
∂r

∂y

)2
)

=
1

r

(
1−

(
y2

r2

)2
)

(3.42)

By the chain rule, partial derivatives of v(r(x,y),z,t) with respect to x and y are:
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∂2v(r(x, y), z, t)

∂x2
=
∂2r

∂x2

(
∂v

∂r

)
+

(
∂r

∂x

)2(
∂2v

∂r2

)
(3.43)

∂2v(r(x, y), z, t)

∂y2
=
∂2r

∂y2

(
∂v

∂r

)
+

(
∂r

∂y

)2(
∂2v

∂r2

)
(3.44)

Substituting these into the Cartesian wave equation (3.37), and simplifying using

Equations 3.38 through 3.42 gives us:

∂2v(r, θ, z, t)

∂t2
=
µ∗

ρ

(
1

r

∂

∂r

(
r
∂v

∂r

)
+
∂2v

∂z2

)
(3.45)

3.3.2 Solution to the Wave Equation in Cylindrical Coordi-

nates

Our approach to solving the wave equation in cylindrical coordinates will be analogous

to our approach for Cartesian coordinates. We begin again by separating the solution

to (3.45) into three independent functions of r, z, and t:

v(r, z, t) = L(z)S(r)T (t) (3.46)

Applying the method of separation of variables, we find that the cylindrical so-

lutions for L(z) and T (t) are the same as those for (2.33) and (2.30); however, we

obtain the following differential equation for S(r):

r2∂
2S(r)

∂r2
+ r

∂S(r)

∂r
+ k∗2r2S(r) = 0 (3.47)

This has the general form of a Bessel’s equation of order zero (Asmar, 2000). We
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can put it in standard form using a change of variables. Let s = k∗r, so that:

∂S(s)

∂r
=
∂s

∂r

∂S(s)

∂s
= k∗

∂S(s)

∂s
(3.48)

∂2S(s)

∂r2
=

(
∂s

∂r

)2
∂2S(s)

∂s2
= k∗2

∂2S(s)

∂s2
(3.49)

Substituting these into (3.47), dividing the entire equation by k∗2, and substituting

s = k∗r, we obtain:

s2∂
2S(s)

∂s2
+ s

∂S(s)

∂s
+ s2S(s) = 0 (3.50)

s = k∗r

for which the solution is a zero order Bessel function of the first type (Wylie and

Barrett, 1982):

S(s) = J0(s) = J0(k∗r) (3.51)

A complete solution to (3.45) is:

v(x, z, t) = L(z)S(r)T (t) =
(
sde
−νz + sue

νz
)
e−iωtJ0(k∗r) (3.52)

3.3.3 Correction for Geometric Spreading

Equation 3.52 is not amenable to signal-processing techniques in common use by

geoscientists and engineers, and we will find it convenient to devise a method for

approximating it using trigonometric functions.

The complex Bessel’s function on the right-hand side of (3.52) can be approxi-
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Figure 3.4: Bessel function and an approximation using Equation (3.54).

mated by J0(k∗r) ≈ ekirJ0(krr) (Cohen, 1908), so:

v(x, z, t) ≈
(
sde
−νz + sue

νz
)
e−iωtekirJ0(krr) (3.53)

At large values of kr, J0(kr) converges to the quotient of a cosine function and

the square root of kr (Wylie and Barrett, 1982), so Equation 3.53 can be rewritten:

v(x, z, t) ≈
(
sde
−νz + sue

νz
)
ekir

ei(kr−ωt+π/4)

√
kr

(3.54)

which suggests a data transformation based on the square root of radial distance

from the source. In fact, such transformations are commonly used to transform

surface wave data. Their justification typically involves the conservation of energy:

As a surface wave expands, its energy is distributed over an increasingly large annulus

whose volume is proportional to radius. Amplitude decreases with the square root

of energy density; thus, amplitude should decrease with the square root of radial

distance.
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Figure 3.5: Bessel function multiplied by
√
kx compared to cos(kx). Aside from dis-

tortion during the first cycle, the result of the
√
kx transformation is nearly sinusoidal.

(right) Detail of the first two cycles.

In Figure 3.4, we see that after the first complete wavelength, Equation 3.54

provides a remarkably good approximation to Equation 3.52.

At the end of the first cycle, the value obtained from the approximation is 3.9%

greater than that of the exact solution, and by the end of the second cycle, the

discrepancy has fallen to less than 0.1%, and it decreases by at least an order of

magnitude with each subsequent cycle. The transformed Bessel function lags the

cosine function by π
4

radian.

Published values of the damping ratio are typically between 1% and 10% per

cycle (Hardin, 1965), so transformed data obtained from Equation (3.5) should be a

satisfactory transformation, so long as all data used in analysis is obtained beyond

one or two wavelengths of the source.
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Figure 3.6: Equation 3.56 yields a numerical value equal to the number of points
enclosed by the arbitrary closed curve. In this case, I(z)=4.

3.3.4 Finding Solutions to the Love Wave Equation

Each eigenvenvalue of Equation 3.18, represents a Love wave normal mode. As we

will see in Chapter 4, the complex velocity associated with each normal mode is a

complicated function of frequency, soil properties, and layer structure. Finding a

normal mode is tantamount to finding the complex velocity for which the objective

function equals zero. Chakravarthy (2008) found roots of a single-layer model using

a point-by-point grid search, and subsequent path of steepest descent (PSD) method

to refine his complex velocity estimate. This is a reasonably robust method, but it

requires that a new grid search be conducted for each frequency increment, and for

each time that soil parameters are changed: For a multi-layer model, this can be a

computationally expensive approach.

Our method for finding and tracking normal modes will rely on the argument
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principle from the calculus of residues. The reader interested in more detail is referred

to texts on analysis or complex variables. We will rely on Ablowitz and Fokas (2003)

for the following discussion.

A function is said to be analytic at a point z0 on the complex plane if it is

differentiable at that point. It is said to be analytic in a region if it is differentiable

at every point over that region. Isolated, undifferentiable points in a region that is

otherwise analytic are called singularities. Of interest to the present discussion are

singularities that occur when the denominator of the function goes to zero, as occurs

at z0 for f(z) = 1
z−z0 .

Polynomial and exponential functions are analytic, as are functions created by

the sums or products of these functions, so the trigonometric and hyperbolic sine

and cosine functions are analytic, too. In fact, ratios of these functions are analytic

except at the singularities that result when a denominator becomes zero. Perusal of

the propagator matrices derived earlier in this chapter reveals that these are, indeed,

functions comprised of sums and products of exponential and hyperbolic functions.

Thus, the objective function, B2,1 is also analytic.

Love wave normal modes correspond to complex roots of the objective function.

That is, points where B2,1 equals zero. Thus, the reciprocal of the objective function,

1
B2,1

, will have singularities at each root. A consequence of this is the argument

principle, which states that for an analytic function, the following relation holds:

I(z) =
1

2πi

∮
C

f ′(z)

f(z)
dz = N − P (3.55)

where f(z) is meromorphic: That is, f(z) is well-behaved and analytic except at a

few singularities. N is the number of zeros enclosed within the contour C, and P is the
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Figure 3.7: By shrinking the top edge of a rectangular contour until the path integral
is equal to zero, we can determine the root’s imaginary coordinate. Repeating the
procedure with a vertical edge allows us to determine the root’s real coordinate.

number of poles. We should also note that an assumption of the argument principle

is that no poles or zeros can occur on the contour, C, itself. Since there are no poles

in the objective function, Equation 3.55 can be restated as:

I(z) =
1

2πi

∮
C

B′(z)

B(z)
dz = N (3.56)

Rather than calculating the objective function for every point in a region, we

can determine the number of roots by computing a path integral around the region

(Figure 3.6). If a region has only one root, we can determining its location by sys-

tematically collapsing the path integral: The point at which I(z) = 0 corresponds to

the coordinates of the root. This is illustrated in Figure 3.7
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CHAPTER 4:

LOVE WAVE MODES IN LAYERED

VISCOELASTIC SOILS

In Chapter 1, we described, qualitatively, Love wave behavior in a single elastic

layer over an elastic half space. In Chapter 3, we extended the theory of Love wave

propagation to multiple viscoelastic layers. In the present chapter, we will examine the

ramifications of layering and viscoelasticity, while paying particularly close attention

to the surface expression of these changes.

After examining elastic and viscoelastic systems consisting of a single layer over a

half-space, we will introduce a simple scaling heuristic that can be extended to multi-

layered systems. We will use this heuristic to develop multi-layered homologues of

single-layered systems, and then compare the behaviors of these systems.

4.1 Single Elastic Layer over a Half-Space

In Chapter 1, we noted that a necessary condition for Love wave propagation is the

existence of a relatively slow surface layer over a faster half-space. Above the critical

incidence angle, θc, Love waves result from constructive interference of waves trapped

within the layer. An interesting feature of the Love wave system is the formation

of an angle-dependent stress field at the top of the half-space. The evanescent wave

formed in this stress field induces a phase shift that causes different frequencies to see

different layer thicknesses, leading to the characteristic dispersive behavior of Love
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Figure 4.1: Soil properties used to model a single elastic layer over a half-space.

waves. For systems consisting of a single layer over a half-space, apparent Love wave

velocities are restricted to the range, β1 < CL < β2.

4.1.1 Love Wave Modes and Depth Dependent Behavior

When deriving Equations 2.35 and 2.36, we separated the displacement relationship

into three independent functions, v(x, z, t) = R(x)L(z)T (t), and introduced the vari-

ables ω and K∗, which link and constrain the behavior of these three functions so that

each value of angular frequency, ω, is associated with a particular value of horizontal

angular wave number, K∗. The vertical wave number, ν =
√
K∗2 − ω2

β∗2 , is a function

of both K∗ and ω, and it constrains the behavior of L(z). The function L(z) is pe-

riodic in the layer, so that valid solutions of Equation 2.35 exist at nπ increments of

its argument. Thus, it is possible for ω to be associated with more than one value of

K∗. The first (fundamental) mode occurs when n = 0, the second mode (first over-
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Figure 4.2: Motion stress vector displacement component for a single-elastic layer
over an elastic half-space. Each mode number corresponds to the number of phase
changes in the layer.
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tone), when n = 1, and so-on. For the system shown in figure 4.1, overtones appear

at approximately 10.33 Hz intervals (equation 1.3). Because its cut-off frequency is

effectively zero, the fundamental mode exists at all frequencies.

Near its cut-off frequency, a mode’s influence extends more deeply into the half-

space than it does at higher frequencies (Figure 4.2). This is especially true for the

fundamental mode, whose effects can extend many layer thicknesses into the half-

space. This zone represents the depth of the stress field, or evanescent wave, that

is responsible for the angle-dependent phase changes that occur when post-critical

waves impinge on the interface. As would be expected, the differences in stress field

depth result in a concomitantly greater phase delay for low frequencies than for high

frequencies.

For a purely elastic system, only real values of K∗ are possible. At low frequencies,

the fundamental mode is associated with small wave numbers and relatively large Love

wave velocities (Equation 3.33). As frequency increases, the fundamental mode’s Love

wave velocity decreases from a maximum near the half-space shear wave velocity, β2,

to a minimum near the layer shear wave velocity, β1. Overtones come into existence

at higher frequencies and velocities than the fundamental mode, but otherwise exhibit

similar behavior (figure 4.3).

Dispersion curves for the purely elastic system of Figure 4.1 are illustrated in

Figure 4.4. As expected, the low frequencies of each mode correspond to Love wave

velocities near CL = β2. CL decreases rapidly with increasing frequency before ap-

proaching the top-layer velocity, β1, asymptotically. At high frequencies, many modes

may be crowded into the region near β1, and discriminating between modes becomes

problematic.
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Figure 4.3: Elastic mode evolution with increasing frequency for a single-elastic layer
over a half-space (Figure 4.1). At 4 Hz, only the fundamental mode exists. At 13 Hz,
the fundamental mode has moved to approximately 110 m/s, and the first overtone
has just come into existence. Similarly, at 25 Hz, the second overtone has come into
existence, and the first overtone is visible at approximately 120 Hz; the fundamental
mode is barely visible near 100 Hz (β1). The process repeats at 35 Hz, when the
third overtone comes into existence.
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Figure 4.4: Dispersion curves of the fundamental mode and first three overtones for
a single elastic layer over a half-space (Figure 4.1).

4.1.2 Elastic Scaling Relationships

We rearrange Equation 1.3 to obtain a useful heuristic for scaling layered Love wave

systems:

fsc =
2fh1

√
1− β2

1

β2
2

β1

(4.1)

where fsc is the scaled frequency. Love (1911) alluded to scaling in his original paper,

and Aki and Richards (2009) made use of a similar scaling factor when describing the

behavior of a single layer over a half-space. Equation 4.1 gives exact results when layer

and half-space velocities are the same for both systems being scaled. For example,

we might wonder what would happen if the layer thickness of the system illustrated

in Figure 4.1 were increased from 5 m to 10 m. At 35 Hz, the scaled frequency of

the original system is fsc = 3.39. For the corresponding system with a 10 m layer,
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achieving the same scaled frequency requires that frequency be reduced by a factor

of two. At 17.5 Hz, the 10 meter layer system would have four roots at exactly the

same velocities displayed in the 35 Hz panel of Figure 4.3; however, the associated

frequencies, and frequencies of corresponding dispersion curves, would be halved.

When the ratio β1/β2 is the same for both systems, roots will appear at the same

relative velocities for systems with the same scaled frequency. For example, doubling

both the layer and half-space velocities in Figure 4.1 to 200 and 800 m/s, respectively,

and increasing layer thickness to 10 m results in a doubling of all root velocities: The

root at 360 m/s in the 35 Hz panel of Figure 4.3 will correspond to a root at 720

m/s in the 10 m layer model, and so-on. In this case, the phase velocities of roots in

the high velocity system are exactly twice those in the original system.

Scaling is only approximate when β1/β2 is not the same for both systems.

4.2 Evolution of Complex Modes with Viscosity

We should note that even for a purely elastic system, both real and imaginary roots are

evident (Figure 4.5). Each time that frequency increases beyond a cut-off frequency,

a real mode originates near the half-space velocity (β2), and then moves along the

real axis until approaching, asymptotically, layer velocity (β1). Simultaneously, a

companion mode appears along the real axis, and moves rapidly toward infinity. It is

difficult to impute a physical significance to these purely imaginary solutions with no

real velocity; however, as we will see, inclusion of a viscous term in our model induces

these purely imaginary roots to evolve into complex roots for which we can ascribe a

physical interpretation.

For a purely elastic model, solutions are symmetric about both the real and imag-
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Figure 4.5: Objective function at 25 Hz for a single elastic layer over a half-space
(Figure 4.1) showing all four quadrants of the complex plane. Note the faint roots
along the vertical (imaginary) axis.

inary axes. Adding viscosity changes this symmetry so that the first and third quad-

rant pair, and the second and fourth quadrant pair, remain symmetric about the

origin.

Importantly, under all conditions tested, no roots crossed quadrant boundaries,

and all roots either originated along the imaginary axis, or they originated at a point

near half-space velocity along the real axis. This is somewhat at odds with the three

root types described by Chakravarthy (2008). The Type III root he describes and

illustrates (Chakravarthy (2008), Figure 3.6) is, in reality, the system’s fundamental

mode, which originated along the real axis at 400 m/s.

We now alter our model by adding viscosity to the layer (Figure 4.8). An obvious

consequence of this addition is that Love waves will attenuate with time and distance;

however, a more subtle effect is an increase in the apparent stiffness, and hence layer

shear wave velocity. Qualitatively, this can be thought of as a consequence of the
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Figure 4.6: Effect of viscosity on complex velocity. In the purely elastic model (η =
0KPa − s), we see three modes along the real axis. As viscosity increases, the
second overtone (n=2) rotates clockwise, into the complex plane, until it disappears
beyond 400 m/s (real). Meanwhile, a corresponding overtone (n=2i) appears on
the imaginary axis, and rotates through the complex plane until approaching the
fundamental mode and first overtone.
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increased shear resistance that results from viscous forces within a material. We infer

from the frequency dependence of the viscous term in Equation 3.35 that the apparent

stiffness of a viscoelastic material will increase with frequency.

The general effect of inclusion of a small viscosity term is to add a small imagi-

nary component to the real velocity of lower order elastic Love wave modes; otherwise,

modes behave much as they do for the purely elastic case. At sufficiently high vis-

cosities, a very interesting phenomena occurs: A root with its origins on the real

axis may disappear, but be replaced by a corresponding root whose provenance is the

imaginary axis. We will refer to roots originating on the real axis as principal roots,

and designate them using real numbers (n=0, n=1, n=2, etc.). We will refer to roots

originating along the imaginary axis as companion roots, and designate them with

imaginary numbers (n=1i, n=2i, etc.).

The effect becomes more pronounced with increasing overtone number. In Figure

4.6, we can see this evolution take place: The fundamental mode and first overtone

behave analogously to their elastic counterparts, but the second and higher overtones

rotate to a velocity above the half-space velocity (β2) before disappearing.

This behavior can be explained in terms of viscous stiffening. Increasing viscosity

effects an increase in Love wave phase velocity. This causes the principal overtone’s

location to shift right (higher real velocity). When phase velocity exceeds that of

the half-space, we expect it to become an evanescent mode as described in Chapter

1. Similarly, viscous stiffening also causes the erstwhile imaginary companion root to

don a real component, and move rightward into the complex plane.

We should note that the fundamental mode (n=0) behaves somewhat differently.

Although the fundamental mode may experience substantial displacement, it never
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Figure 4.7: The loss tangent is greater than unity when Ci > Cr. We would not
expect the two companion roots (n=4i and n=5i) that are above the diagonal line to
be expressed as propagating waves.

completely disappears. This explains how a fundamental mode could have evolved

into Chakravarthy’s Type III root, as noted above.

As discussed in Section 3.3, no Love wave can be transmitted when the loss tan-

gent, ξL = Ci
Cr

, is greater than or equal to unity, suggesting that there will be no

measurable expression of a mode when its imaginary velocity component, Ci, exceeds

its real component, Cr: We would not expect a companion mode to manifest itself

until the real component of its complex velocity exceeds its imaginary component

(Figure 4.7). Thus, when the loss tangent of a root is greater than unity, it will not

be manifested as a propagating wave. For all cases studied, this occurs almost imme-

diately after the corresponding principal overtone has exceeded half-space velocity.

In no test did both a principal and its companion mode simultaneously exhibit a ξL

less than unity.

Despite their differing provenance, companion modes and their principal coun-

terparts share many important traits. Importantly, depth and frequency-dependent
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Figure 4.8: Soil properties used to model a single viscoelastic layer over a half-space.

behavior are similar: Each principal mode and its counterpart exhibit similar motion-

stress behavior with depth, and the same number of phase changes in the layer (Figure

4.2).

4.3 Single Viscoelastic Layer over a Half-Space

We now turn our attention to a single visoelastic layer over a half-space (Figure 4.8),

and note the effects of changing frequency. As we saw for the purely elastic case,

each mode comes into existence shortly after its cut-off frequency. Unlike the purely

elastic case, viscoelastic Love wave mode velocity includes both real and imaginary

components, so as frequency increases, Love wave modes appear to move in an arc

(Figure 4.9). The behavior is analogous to that obtained when viscosity was increased.

This is not surprising, since the viscous component of the complex shear modulus is

equal to the product of frequency and viscosity (µi = iωη).
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Figure 4.9: Viscoelastic mode evolution with increasing frequency for a single vis-
coelastic layer over a half-space (Figure 4.8). As frequency increases, both the funda-
mental mode (n=0) and first overtone (n=1) behave much like their elastic counter-
parts. Companion modes (n=0i and n=1i) appear, but move beyond the plotted area.
On the other hand, the second and third overtones (n=2 and n=3) rotate clockwise
and eventually disappear above 400 m/s, while their companion modes (n=2i and
n=3i) take their places.
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Figure 4.10: Dispersion curves for a single viscoelastic layer over a half-space (Figure
4.8). Companion mode behavior (n=2i, 3i) is only displayed in the region where loss
tangent is less than unity.

Overall, dispersion curves derived from the viscoelastic model (Figure 4.10) resem-

ble their purely elastic counterparts (Figure 4.4). Beyond the contumacious region

near the cut-off frequency, each curve is well behaved until the curves converge to the

shear wave phase velocity of the topmost layer (Equation 2.20).

Near its cut-off frequency, a companion mode exhibits a large attenuation coefi-

cient (Figure 4.11). High loss tangents imply that there will be no physical manifes-

tation of companion modes near the cut-off frequency (Figure 4.12). As frequency

increases, the attenuation coefficients and loss tangents of all modes asymptotically

approach that of the layer (Equations 2.23 and 2.25).

4.3.1 Effects of Half-Space Viscosity

We found that half-space viscosity has little, if any, effect on the behavior of a vis-

coelastic Love wave system. We examined the dispersion and attenuation curves of
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Figure 4.11: Attenuation as a function of frequency for a single viscoelastic layer over
a half-space (Figure 4.8). Companion mode behavior (n=2i, 3i) is only displayed in
the region where the loss tangent is less than unity.
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over a half-space Figure 4.8).
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layered models with β2 =400 m/s and β1 =140 m/s, 200 m/s, and 400 m/s, with and

without a viscosity term (η =288E3 Pa-s). In no instance did lower modes exhibit

observable differences in either phase velocity, CL, or attenuation, α. The differences

observed in higher modes (n=2, 3) were very small, and only in the non-linear re-

gion near the cut-off frequency. This is consistent with the findings of Chakravarthy

(2008).

Half-space viscosity also had little, if any, effect on the motion-stress vector. In-

deed, the imaginary components of the motion-stress vector are almost entirely absent

at all depths in a viscoelastic half-space.

The lack of sensitivity to half-space viscosity can be explained as follows. First,

Love waves are the result of shear waves trapped within the layer, and the only time

that the wave interacts with the half-space is when reflecting from it. Second, recall

that when developing boundary conditions for the half-space (Sub-section 3.3.2), we

expressly excluded the upward wave component, su, so no wave component from the

half-space enters the layer.

4.3.2 Viscoelastic Scaling Relationships

In Sub-section 4.1.2, we discussed elastic scaling relationships. By using the corre-

sponding complex velocities in Equation 4.1, these can be applied to a viscoelastic

system, as well. Because the effect of half-space viscosity on the system is negligible,

we need only substitute β∗1 for β1. Because β∗1 is a function of ωη (Equations 2.19

and 2.20), scaling requires a change in viscosity when frequency is changed.

When only the layer thickness is changed, scaling can be accomplished by apply-

ing Equation 4.1 to the corresponding elastic system (using β1), and then adjusting
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viscosity in inverse proportion to the frequency change (e.g., if frequency is doubled,

viscosity should be halved). For example, increasing layer thickness of the system

illustrated in Figure 4.8 from 5 m to 10 m, decreasing frequency from 35 Hz to 17.5

Hz, and increasing viscosity from 16,000 Pa-s to 32,000 Pa-s will result in complex

root velocities that are identical to those of the 35 Hz, 5 m, 16,000 Pa-s system shown

in the 35 Hz panel of Figure 4.9.

As was the case for the elastic system, the technique will also work when the ratio

of layer to half-space velocity is constant. In this case, the vector representing the

complex velocity of a root will be transformed by a scalar that is equal to the ratio of

elastic layer velocities. As was the case for the elastic system, the method yields only

approximate results when the ratio of layer to half-space velocity is not held constant.

4.4 Two Layers over a Half-Space

4.4.1 Two Elastic Layers over a Half-Space

In Section 1.1, we discussed Love wave propagation for a single layer over a half-space.

Apparent Love wave phase velocity, CL, is a function of layer velocity and incidence

angle (Equation 1.2). We obtain a relationship between the apparent love wave phase

velocity and the incidence angle at the half-space interface by combining this with

Snell’s Law (Figure 4.13):

CL =
β1

sinθ1

=
β1

β1sinθ2
β2

=
β2

sinθ2

(4.2)

At the critical incidence angle, sinθ2 = β2/β3, so the maximum possible Love

wave phase velocity is the half-space velocity, β3. By extension, we can show that
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Figure 4.13: (Left) Two layer ray path when the incidence angle at the half-space
interface is critical. (Right) When the incidence angle at the layer-one/layer-two
interface exceeds its critical angle, layer two takes the role of the half-space, and the
wave may propagate in a manner similar to that of a head-wave.

regardless of the number of layers, the maximum possible Love wave phase velocity

will be that of the half-space.

At low incidence angles, either of two possibilities may occur. It is possible for

the wave to be refracted, and then interact with the half-space, in which case, the

minimum velocity is still that of the surface layer. On the other hand, when the

incidence angle exceeds the critical angle at the layer-one/layer-two interface, the

Love wave may be conducted in a manner akin to a head-wave. For elastic layers,

this manner of propagation usually spans a finite range of frequencies, and results in a

temporary shelf in the dispersion curve, before the mode again heads asymptotically

toward the top-layer velocity. Thus, for elastic media, Love wave phase velocities are

bounded by the range: β1 < CL < βhs. When viscosity is added to the model, viscous

stiffening can greatly increase the range of frequencies over which the shelf occurs.
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Figure 4.14: Soil properties used to model two elastic layers over a half-space.

From Equation 4.1, we infer that the effect of increasing layer velocity is similar

to that of decreasing layer thickness. For a layered elastic model, substituting an

equivalent single layer thickness, h, for h1 in Equations (1.3), and (4.1) gives good

results:

h =
n∑
j=1

hj
β1

βj
(4.3)

The soil profile illustrated in Figure 4.14 has an equivalent layer thickness of 5 m,

so we can compare the frequency response obtained with this model to that of the

single-layered elastic model (Figure 4.1).

The soil model in Figure 4.14 is homologous to that of Figure 4.1. That is, the

two layers were scaled using Equation 4.3. For both models, cut-off frequencies are

the same; however, we can see that as frequency increases (Figure 4.15), modes from

the two-layer model do not move as quickly from the half-space velocity, β3, to the
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Figure 4.15: Mode evolution with frequency for the two elastic layer/half-space system
illustrated in Figure 4.14. Compared to the single-layer model, velocities do not
change as quickly (see Figure 4.3).

surface-layer velocity, β1. The effect is most pronounced for higher order overtones.

Examination of the dispersion curves (figure 4.17) suggests an explanation: When

frequency increases to the point that Love wave phase velocity, CL, is approximately

equal to the velocity of the second layer, the angle of incidence at the second layer

becomes equal to the critical angle, and virtually all of the wave’s energy is now

channeled by the wave-guide formed by the layer-one/layer-two interface. Layer two,

effectively, becomes a half-space.

Examination of the motion-stress vector (Figure 4.16) illustrates the effect. At
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Motion-stress vector displacement component for
two elastic layers over an elastic half-space.
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Figure 4.16: Motion-stress vector displacement component for two elastic layers over
a half-space (Figure 4.14). At low frequencies, the null points are distributed across
both layers; however, as frequency increases, the null points become confined to the
top layer.

low frequencies, the motion-stress vector is distributed across both layers, but as

frequency increases, the oscillating portion of the motion-stress vector moves entirely

into the top layer.

The effect of the intermediate wave guide acting as a new half-space is clearly

visible in dispersion curves. The dispersion curve for the fundamental mode shows a

pronounced thickening at its base, and higher order overtones show an obvious shelf

corresponding to the shear wave velocity of the intermediate layer.
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Figure 4.17: Dispersion curves for two elastic layers over an elastic half-space (Figure
4.14). Note the obvious shelves corresponding to the layer two shear wave velocity
(200 m/s).

4.4.2 Two Viscoelastic Layers over a Half-Space

Adding viscosity to our two layer model has little effect on the fundamental mode or

first overtone (Figure 4.18). As frequency increases, they move from the half-space

velocity to surface layer velocity, albeit at a slightly retarded pace (Figure 4.19). The

effect on the second and third overtones, however, is remarkable. Unlike the one-layer

model, for which the second and third overtones originated as companion modes from

the imaginary axis (n=2i, 3i), the second and third overtones of the two-layer model

originate as principal overtones from the real axis. Also, as a result of viscoelastic

stiffening, the range of frequencies over which the second and third overtones remain

above the layer two velocity is greatly extended (Figure 4.20): The shelves persist to

frequencies as high as 200 Hz.

We should pointout that a small increase in layer viscosities will effect the mode
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Z0 =0 m

Z2=7.5 m

ρ3=1800 kg/m3 μ3=288E6 Pa η3=0 Pa-s

h3=∞Half Space

Layer 1
μ1=16E6 Pa η1=16000 Pa-sρ1=1600 kg/m3

h1= 2.5 m

Layer 2
ρ2=1700 kg/m3 μ2=68E6 Pa η2=34000 Pa-s

Z1 =2.5 m

β1=100 m/s

β2=200 m/s

β3=400 m/s

h2= 5 m

Figure 4.18: Soil properties used to model two viscoelastic layers over a half-space.

swapping behavior that is evident in the single-layer model, while decreasing layer

viscosities will decrease the span of frequencies over which the shelf persists.

Attenuation coefficients for the two-layer viscoelastic model show an even more

marked departure from the behavior observed in the one-layer model. The most obvi-

ous difference is the transposition of mode order. At high frequencies, the attenuation

coefficient (and loss tangent) of the two lower order modes is approximately that com-

puted for the layer one shear wave (Equations 2.24 and 2.25). On the other hand,

the second and third overtones appear to converge to a value that is an amalgam of

the top two layer properties.

A graph of the loss tangent shows similar transposition and juxtaposition of modes.
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Figure 4.19: Viscoelastic mode evolution with increasing frequency for two viscoelastic
layers over a half-space (Figure 4.18). All of the modes displayed with real velocity
components between 100 and 400 m/s originated along the real axis.
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Figure 4.20: Dispersion curves for two viscoelastic layers over a half-space (Figure
4.18). Note that velocities of the second and third overtones never fall below layer 2
velocity (200 m/s).
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Figure 4.21: Attenuation as a function of frequency for two viscoelastic layers over
a half-space (Figure 4.18). Note the transposition of mode order with respect to the
single-layer viscoelastic model (Figure 4.11).
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Figure 4.22: Loss tangent as a function of frequency for two viscoelastic layers over
a half-space (Figure 4.18). As was the case for attenuation coefficients, mode order
is transposed with respect to that observed in the single-layer model (Figure 4.12).

Z0 =0 m

Z3=8.19 m

ρ4=1800 kg/m3 μ4=288E6 Pa η4=0 Pa-s

h4=∞Half Space

Layer 1
μ1=16E6 Pa η1=16000 Pa-sρ1=1600 kg/m3

h1= 2.73 m

Layer 2
ρ2=1700 kg/m3 μ2=68E6 Pa η2=34000 Pa-s

Z1 =2.73 m

Layer 3
ρ3=1700 kg/m3 μ3=153E6 Pa η3=51000 Pa-s

Z2 =5.46 m

h2= 2.73 m

h3= 2.73 m

β4=400 m/s
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Figure 4.23: Soil properties used to model three viscoelastic layers over a half-space.
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Figure 4.24: Love wave modes as a function of frequency for a three-layer elastic
system (Figure 4.23).

4.5 Three Layers over a Half-Space

Our three-layer model is homologous with the two and one layer models that we have

already discussed, so we expect modes to evolve at approximately the same cut-off

frequencies (Figure 4.24). As was the case for the two-layer model, all four modes

pictured originated as principal modes along the real axis.

For a three-layer model, we would expect to see shelves at 200 and 300 m/s. The

second and third overtones exhibit fairly obvious shelves corresponding to 200 m/s ;

however, nothing but a slight thickening at 300 m/s belies the existence of the high
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Figure 4.25: Dispersion curves for three elastic layers over a half-space (Figure 4.23).
Note the thickening relative to the one and two layer models.

velocity layer. Indeed, it is difficult to find any discernable difference between the

shapes of the fundamental modes displayed in two-layer and three-layer dispersion

curves.

Behavior of the three-layer viscoelastic system is similar to that of the two-layer

system, albeit with a slower progression of modes from half-space velocity to top-layer

velocity (figure 4.26).

As was the case for the two-layer viscoelastic model, the second and third over-

tones level out at approximately 200 m/s, although the third overtone exhibits a

pronounced shelf at around 340 m/s. The diminutive response at 300 m/s can prob-

ably be explained by the rapid frequency response that modes exhibit near their

cut-off frequencies: The 300 m/s shelf is overpowered by the rapid rate of change in

this region.

The attenuation curve scarcely differs from that of the two-layer model, suggesting
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Figure 4.26: Love wave modes as a function of frequency for a three layer viscoelastic
system (Figure 4.23). The first four modes all originated at a real velocity of approx-
imately 400 m/s. Those modes visible along the imaginary axis eventually depart the
plotted area.
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Figure 4.27: Dispersion curves three viscoelastic layers over a half-space (Figure 4.23).
Note the pronounced third overtone shelf at 340 m/s
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Figure 4.28: Attenuation as a function of frequency for three viscoelastic layers over
a half-space (Figure 4.23). Note the similarity to the two-layer model (Figure 4.11).
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Figure 4.29: Loss tangent as a function of frequency for three viscoelastic layers over
a half-space (Figure 4.23). Note the transposition of mode order with respect to the
single-layer viscoelastic model (Figure 4.12).

that very little information about viscosity in the bottom layer has found its way into

the curves. Likewise, the loss tangent curves are so similar to those of the two-layer

model that they could be mistaken for the same curves. Only the third overtone

differs markedly from its two-layer counterpart.

4.5.1 Some Observations on Higher Order Modes

Figure 4.30 illustrates the evolution of higher order modes for the three-layer viscoelas-

tic system described above. The fundamental mode and first three overtones are all

principal modes: They originate from along the real axis. The fourth principal mode

has been replaced by its companion from the imaginary axis (n=4i), and has traveled

in a relatively tight arc. Note, however, that although the second and third over-

tones languish on a shelf at around 200 m/s, we find the fourth overtone approaching

surface-layer velocity (100 m/s). Likewise, the fifth and sixth companion overtones
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Figure 4.30: Higher order Love wave modes as a function of frequency for a three-layer
viscoelastic system (Figure 4.23).
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(n=5i, n=6i) replace their principal counterparts in the lineup. Interestingly, the 6th

overtone (n=6i) does so quickly, while the fifth overtone (n=5i) takes a rather large

detour before settling-down at the 300 m/s shelf. Placement of subsequent modes is

even more haphazard.

After observing the first fifteen modes of the viscoelastic systems described in this

chapter (as well as others), we can make some general observations. In all cases, the

principal mode originated from the real axis at a velocity corresponding to that of the

half-space, and all subsequent overtones originated either from this spot, or from the

imaginary axis. The modes that made their way into the region where ξL < 1 followed

a definite pattern: The earliest modes originated from the real axis, but mode origin

would inevitably shift, permantly, to the imaginary axis. For high viscosity systems,

this could happen as early as the first overtone.



109

CHAPTER 5:

DATA COLLECTION AND REDUCTION

In the previous chapters, we discussed Love wave mode behavior as a function of

geometry, layer properties, and frequency. For each mode, this behavior was ex-

pressed using dispersion and attenuation curves. Field data, however, are collected in

the form of signals representing time domain waveforms obtained from measurement

devices such as geophones or seismometers. These signals are a function of more

than just layer geometry and material properties: They are also a function of the

source waveform, source-ground coupling, source-receiver geometry, receiver-ground

coupling, and receiver response. In the present chapter, our goal will be to extract

information that can be reduced into dispersion and attenuation curves.

The process of reducing Love wave data to dispersion curves is complicated by the

fact that more than one mode may operate at a given frequency. Aside from the very

lowest frequencies, at which only the fundamental mode operates, a signal’s frequency

response represents the sum of two or more modes. Separating the contributions of

multiple modes will require two data transformations: From time domain to frequency

domain, and then from spatial domain to wave number domain. We can then deduce

phase velocity from the resulting wave number-frequency (K-f) relationship.

Obtaining the amplitude information necessary to produce attenuation curves is a

more daunting task requiring that special attention be given to field data acquisition.

In this chapter, we will discuss methods for collecting field data, and then demonstrate

one of these techniques using synthetic Love wave data.
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It will be helpful to begin with a discussion of how a source waveform is partitioned

into disparate modes.

5.1 Partitioning Waveforms

Section 7.4 of Aki and Richards (2009) discusses techniques for producing synthetic

data using a Green’s function. For the current discussion, we will simplify and adapt

Aki and Richards’ Equation 7.143 by assuming that source and receiver height are

the same, and that the source produces shear waves that propagate along the source-

receiver axis. For an angular frequency, ω, the wave form will be:

v(r, t, z, ω) =
∑
n

lm(K∗, z, ω)

8cUI1

√
2

πK∗r
ei(K

∗r−ωt+π/4) (5.1)

I1 =
1

2

∫ ∞
0

ρ(z)l2mdz (5.2)

I2 =
1

2

∫ ∞
0

µ(z)l2mdz (5.3)

U =
I2

cI1

(5.4)

Rearranging Equation 5.4, we see that cUI1 = I2. Substituting this into the

denominator of (5.1), we obtain:

v(r, t, z, ω) =
∑
n

lm(K∗, z, ω)

8I2

√
2

πKrr
eKirei(Krr−ωt+π/4) (5.5)

Note the relationship between Equation 5.5 and Equation 3.54, which we derived
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Mode 4 Hz 13 Hz 25 Hz 35 Hz 45 Hz 80 Hz
0 1.00 4.41 3.10 2.59 2.27 1.46
1 n/a 0.19 3.40 2.75 2.37 1.77
2i n/a n/a 4.90 3.08 2.54 1.83
3i n/a n/a n/a 4.44 2.87 1.88

Table 5.1: Normalized amplitudes of the partition function for a single viscoelastic
layer over a half-space (Figure 4.8). Values have been divided by the 4 Hz fundamental
mode amplitude (6.36E-10).

to account for geometric spreading. We can create a synthetic wave form by summing

Equation 5.5 over all frequencies.

In Equations 5.1 and 5.5, I1, I2, and Kr are functions of mode (n) and frequency

(ω). We define a partition function,Γ(n, ω) as:

Γ(n, ω) =
1

8I2(n, ω)

√
2

πKr(n, ω)
(5.6)

Also recall that we we defined the Love wave attenuation coefficient as αL = −Ki,

so that (5.5) can be written as:

v(r, t, z, ω) =
∑
n

Γ(n, ω)lm(K∗, z, ω)
e−αLrei(Krr−ωt+π/4)

√
r

(5.7)

The partition function, Γ(n, ω), is proportional to the fraction of displacement

(v) that can be ascribed to a given mode-frequency combination. Recall the depth-

dependent behavior of the motion-stress vector (Figure 4.2): For a given mode, the

displacement vector in the half-space becomes less pronounced with increasing fre-

quency. The function I2 in the denominator of (5.6) provides a measure of the influ-

ence that the shear modulus of each layer has on the wave form. At low frequencies,

deep layers exert a stronger influence on I2 than they do at high frequencies. Given
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the Love wave requirement for a velocity structure that generally increases with depth,

we would expect I2 to be greater for low frequencies than for high frequencies. The

behavior of I2 is offset to some extent by the behavior of Kr, which varies directly

with frequency, and is inversely proportional to phase velocity. The general tendency

of Γ is to decrease with increasing frequency; however, the velocity dependence of Kr

complicates this behavior in the interval immediately after the cut-off frequency.

Table 5.1 demonstrates this behavior for each mode. Initially, a new mode will

be relatively weak; however, its strength increases to a maximum shortly before the

next mode makes its debut. Aside from the first few Hertz after its cut-off frequency,

each new overtone has approximately the same strength as its precedessors.

5.2 Practical Considerations

In this section, we discuss the criteria for planning a viscoelastic Love wave experi-

ment. As an example, we will use the geometry and properties from the three-layer

viscoelastic model discussed in Chapter 4 (Figure 4.23). We will assume the use of 10

Hz geophones; i.e., that the geophones are capable of accurately measuring signals

with frequencies as low as 10 Hz.

5.2.1 Depth vs. Wavelength

In Chapter 4, we discussed Love wave behavior as a function of depth. Near its cut-

off frequency, a given mode will be more strongly influenced by deep layers than is

the case at higher frequencies (Figure 4.2). Near its own cut-off frequency, a mode’s

velocity is close to that of the half-space; however, at that same frequency, a lower
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order mode’s phase velocity will approach the shear wave velocity of the upper layers

(Figure 4.4). The frequency scaling relationship of Equation 4.1 can be interpreted

as the number of half-wave lengths between the surface and the top of the half-

space. The fundamental mode (n=0) sees the top of the half-space when frequency

approaches zero Hz. Given that the lower frequency limit of economical, commercially

available geophones is in the 8 to 10 Hz range, it may be a better plan to use the

first or higher overtones to glean information about deeper layers. Another factor

militating against the use of the fundamental mode for peering into deep layers is its

relative insensitivity to layering. Compare, for example, the dispersion curves for a

single 5 meter elastic layer over a half-space (Figure 4.4) to the dispersion curves for

three elastic layers over a half-space (Figure 4.25): There is little difference between

the two fundamental mode dispersion curves; however, there is a marked difference

in the dispersion curves for higher modes, which display shelves near the shear wave

velocity of each layer.

We can rearrange Equation 4.1 to determine the lowest possible mode that could

be used to explore a given layer depth. Because this is a multilayer model, we will

use Equation 4.3 to estimate equivalent thickness, h. For the three-layer viscoelastic

model, all three layers are 2.73 m thick, and shear wave velocities are β1 = 100 m/s,

β2 = 200 m/s, and β3 = 300 m/s. h=5 m, and:

nmin = ceil

2fh
√

1− β2
1

β2
2

β1

 = ceil

2(5)(10)
√

1− 1002

4002

100

 = 1 (5.8)

suggesting that the first overtone will the lowest mode that will be completely visible

to our 10 Hz receivers.
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5.2.2 Temporal and Spatial Resolution and Aperture

In the introduction to this chapter, we suggested that our approach to separating Love

wave modes would require that spatial and temporal data be transformed to frequency

and wave number domain, and that the resulting K-f plot be used create dispersion

curves. Thus, when designing a Love wave field experiment, the data must span

the wave numbers and frequencies of interest to the investigator, and have sufficient

resolving power to enable the investigator to distinguish between the frequencies and

wave numbers of neighboring modes.

The temporal Nyquist criterion places an upper limit on the frequency that can

be resolved with a given sampling rate:

∆tnyq =
1

2fmax
=
π

ω
(5.9)

where ∆tnyq is the Nyquist sampling interval, and fmax is the highest frequency be-

ing measured. In practice, it is usually desirable to use sampling intervals that are

considerably less than dictated by the Nyquist criterion. For the present discussion,

we will use ∆t = 1/(5fmax) as an experimental design criterion. At the other end

of the frequency spectrum, resolving low frequencies requires that data be collected

over a duration comparable to a complete cycle of the lowest frequency of interest.

For the present discussion, we will use a duration equal to twice the low frequency

period as our design criteria. This duration, called the temporal aperture, is equal to

(nt − 1)∆t, so the minimum number of samples, nt, necessary to achieve a temporal

aperture twice the longest wavelength being studied is:
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Sources r01

∆r
receivers (geophones)

r02

Figure 5.1: Source and receiver lay-out. The distance between a source and the first
receiver, r0j, is called the offset distance. ∆r is the receiver spacing.

nt =
2

fmin∆t
+ 1 (5.10)

We denote the spatial wavelength of a signal using the Greek letter λ, so that the

spatial wave number, 1/λ, represents the number of complete oscillations in a unit

length. The spatial wavelength is related to the angular wave number, Kr by the

relationship:

Kr =
2π

λ
(5.11)

The angular wave number is expressed in terms of radians per unit length, while

frequency is expressed as cycles per unit time. To simplify the following discussion,

we will introduce a cyclic wave number, K = Kr/(2π), so that the Love wave phase

velocity is:

CL =
ω

Kr

= fλ =
f

K
(5.12)

(see also Equation 3.35).
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A spatial analogue to the temporal Nyquist criterion is:

∆r =
1

2K
=
λ

2
=
CL
2f

(5.13)

where ∆r is the spatial sampling interval (receiver spacing). As was the case with

∆t, it is usually desirable to use sampling intervals that are considerably smaller than

those dictated by the Nyquist criterion. We will use the following receiver spacing as

an experimental design criterion:

∆r =
1

5K
=
λ

5
=
CL
5f

(5.14)

Spatial aperture is analogous to temporal aperture, and is equal to (nr − 1)∆r.

In order to resolve long wavelengths, we would like to have a receiver line of sufficient

length (spatial aperture) to capture at least two wavelengths, so the minimum number

of receivers, nr, will be:

nr =
2

K∆r
+ 1 =

2CL
f∆r

+ 1 (5.15)

In our discussion of the three-layer model, we examined dispersion and attenuation

curves for frequencies as high as 120 Hz, which corresponds to a sampling interval

of 0.00167 s. Although we explored the behavior of the system at frequencies as low

as 4 Hz, our use of 10 Hz geophones obviates the need to design a data collection

scheme for frequencies lower than 10 Hz. The minimum number of time samples

(Equation 5.10) is 121. These sampling requirements are well within the capabilities

of off-the-shelf hardware.

Determining an economical receiver spacing interval becomes more problematic.
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lay-out Vel (m/s) Low Frequency Limit (Hz) High Frequency Limit (Hz)
low den 100 2.1 50
low den 400 8.4 200
hi den 100 12.6 300
hi den 400 50.4 300∗

Table 5.2: Frequency ranges for the low density (1 m receiver spacing) and high
density (0.167 m receiver spacing) lay-outs. ∗ The high density lay-out upper limit is
constrained by the temporal Nyquist frequency.

Receiver spacing corresponding to 120 Hz and 100 m/s is a very tight 0.167 m, and

the number of receivers necessary to measure a 400 m/s phase velocity at 10 Hz is

480. Given the cost of receivers, we would like to reduce this number. Inspection

of Figures 4.27 and 4.28 suggests that we could increase receiver spacing to 0.2 m,

which corresponds to a frequency of 60 Hz and velocity of 100 m/s, and still see the

important features of each curve, but this plan still requires 201 receivers.

More importantly, this exercise in fine tuning required such detailed a-priori knowl-

edge of layer geometry and material properties as to obviate the need for an investiga-

tion using Love waves. Realistically, collecting Love wave data may require more than

one receiver lay-out. In this chapter, we will assume two separate receiver lay-outs,

each using 96 receivers: A high density lay-out using 0.167 m spacing (6 receivers per

meter), and a low density lay-out using 1 m spacing. We will use these two lay-outs

in this chapter’s simulations.

Throughout this discussion, we have implicitly assumed a flat, horizontally ho-

mogeneous layer geometry. Although increasing aperture size improves resolution, it

also increases the risk that the survey area will include discontinuities or asperities

of sufficient magnitude to violate the assumption of horizontal homogeneity.
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5.2.3 Measuring Attenuation

The majority of seismic work done by geotechnical engineers or shallow-subsurface

researchers involves reflection and refraction seismology; thus, common equipment

and techniques are usually optimized for problems that involve purely elastic proper-

ties. In reflection or refraction seismology, arrival times, phase velocity, and dispersive

properties are important (Burger et al., 2006); however, the exact amplitude of any

particular signal is usually of less importance. We will find the derivation of disper-

sion curves from seismic data to be a relatively straight-forward process, but because

of source/receiver variability, we will find extracting attenuation information to be

more challenging.

As noted earlier, the signal recorded along a line of receivers is a function of much

more than just the properties of the intervening materials. More often than not, the

source used in geotechnical work is a hammer blow, which we hope will generate a

signal approximating a unit pulse–Or at least a sufficiently broadband pulse to capture

essential information from a few Love wave modes. In the field, the hammer may be

wielded by one or more human beings, and the blow-to-blow amplitude variation may

be considerable. If we were measuring a non-dispersive, monochromatic signal, we

might consider a source and receiver lay-out consisting of a single source and two

receivers (Figure 5.1). We could determine the attenuation coefficient using ∆r and

the amplitude at each receiver. So long as the measurement is taken using a single

hammer blow, this scheme avoids any problems associated with source variability.

On further reflection, however, we see that the signal recorded by each receiver is

a function of ground motion, receiver-ground coupling, and the receiver, itself. Only

ground motion is of interest to us, and to isolate the amplitude of ground motion from
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the variability of receiver-ground coupling and the inner workings of the receiver, we

might consider determining the attenuation coefficient by applying linear regression

to data obtained from a line of multiple receivers. Indeed, as we saw in the previous

subsection, such a line will be necessary if we are to have an aperture sufficient to

effect mode separation. We will refer to this sort of data collection scheme as a

single-source design.

In practice, receiver-to-receiver variability can be quite large relative to the at-

tenuation values being measured, and the number of receivers necessary to obtain an

accurate regression estimate using a single-source design could be prohibitive.

We could eliminate receiver-to-receiver variation, and minimize receiver-ground

coupling effects, by using a single receiver that is moved to carefully prepared locations

along the receiver line. Because this experimental design requires multiple hammer

blows, we will need to include a fixed reference receiver near the source. Amplitude

information from the reference receiver can be used to compensate for blow-to-blow

variation. We will refer to this scheme as a receiver walk-away design.

By reciprocity (Aki and Richards, 2009), it should be possible to walk-away the

source from a single, stationary receiver. As was the case for the receiver walk-away

design, each change of source position will be accompanied by a new, and unknown

source-ground coupling constant. Moving a reference receiver with the source may

allow us to compensate for blow-to-blow and source-ground coupling variability, but

moving the reference receiver also introduces variability from changes in the reference

receiver-ground coupling constant.

For the discussion in this and subsequent chapters, we will assume that data has

been gathered using a source walk-away design consisting of a fixed receiver line, and
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a source that is moved to different receiver offsets (Figure 5.1). In the next section,

we will see that this design is robust to receiver variability.

The reader can probably imagine other combinations of source and receiver walk-

away, and the proper choice of whether it is best to keep source or receiver fixed will

ultimately depend on equipment capability and local soil conditions.

5.2.4 Near Field Considerations

In Section 3.3, we derived the wave equation in cylindrical coordinates, and found

the exact solution to be a Bessel function. Most common geophysical data processing

techniques assume that the underlying wave forms are sinusoidal, and we found that

beyond about one wavelength, a transformation based on Equation 3.54 gives good

results.

A second near-field consideration concerns the need for the Love wave to be com-

pletely developed before it reaches the receiver array. As we discussed in the intro-

duction to Chapter 1, a Love wave results from the interaction between a reflecting

shear wave and the evanescent wave formed at the top of the half-space. It is thus

necessary that the shear wave be able to make one complete round trip from the sur-

face, to the half-space, and back to the surface. Assuming a velocity structure that

monotonically increases with depth, a source-receiver offset distance greater than or

equal to the depth of the top of the half-space should assure full Love wave field

development.

Thus, the minimum source-receiver offset should either be equal to one wavelength,

or to the depth to the top of the half-space, whichever is greater.
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5.3 Data Reduction

The continuous Fourier transformation of a periodic function, Θ, over a finite interval

can be expressed as (Snieder, 2004):

F (K, f) =

∫ L/2

−L/2
e−2πiKr

∫ T/2

−T/2
e2πiftΘ(r, t)dtdr (5.16)

where K = 1/λ, L and T are, respectively, spatial and temporal limits of integration,

and Θ(r, t) can be written as:

Θ(r, t) = Aei(K
∗r−ωt) (5.17)

where A is the signal amplitude. F (K, f) can be rewritten as F (K, f) = F (K)F (f),

where F (K) and F (f) are, respectively, spatial and temporal Fourier transforms.

Equation 5.16 can be rewritten as:

F (K, f) =

∫ L/2

−L/2
e−2πiKr

∫ T/2

−T/2
e2πiftAei(K

∗r−ωt)dtdr = AF (f)

∫ L/2

−L/2
ei(K

∗−2πK)dr

(5.18)

Recalling that the complex wave number K∗ = Kr + iKi, and that α = −Ki,

Equation 5.18 becomes:

F (K, f) = AF (f)

∫ L/2

−L/2
e−αrei(Kr−2πK)dr (5.19)

In practice, we will be using discrete, digital data, which we will process using a

discrete analogue of Equation 5.16. Denoting the discrete analogues of F (K, f) and

F (f) as F ′(K, f) and F ′(f), a discrete form of 5.19 can be written as:
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F ′(K, f) = AF ′(f)
n−1∑
j=0

e−α(r0+j∆r)ei(Kr−2πK)(r0+j∆r) (5.20)

where r0 and ∆r are, respectively, receiver offset and spacing (Figure 5.1). The right

side of Equation 5.20 can be rewritten:

F ′(K, f) = AF ′(f)e−αr0ei(Kr−2πK)r0

n−1∑
j=0

ei(Kr−2πK+iα)j∆r (5.21)

When applied to real data, the modulus of values obtained from Equation 5.21

will achieve local maxima when ω = 2πf and Kr = 2πK: We will find wave number-

frequency pairs corresponding to Love wave modes by looking for maxima on a K-f

plot of data obtained from the Fourier transformation of Equation 5.21.

Examination of the right-hand side of Equation 5.21 reveals that the summation is

a function of receiver spacing, whereas the exponential factors outside the summation

are functions of offset distance. This suggests a technique for determining α that can

be used with data collected using a source walk-away experimental design: When

multiple offsets (r0j) are used, we can obtain alpha from the regression coefficient

(slope) of the logarithm of the absolute value of the left-hand side of Equation 5.21

with respect to r0j. When only two offsets are used, alpha can be obtained using:

α =
ln|F ′2(K)| − ln|F ′1(K)|

r01 − r02

(5.22)

where F ′1(K) and F ′2(K) are the temporal-spatial Fourier transforms of data taken at

offset distances r01 and r02, respectively. With more than two offsets, we could obtain

α from the regression coefficient (slope) of ln|F ′j(K)| with r0j.
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Figure 5.2: Gaussian white noise was added to the data from each trace.

5.4 Synthetic Data and Data Reduction Methods

We will demonstrate the data reduction methods of the previous section using syn-

thetic data generated using the wave form partitioning techniques presented in Section

5.1.

5.4.1 Synthetic Data

We will generate synthetic data using the earth models presented in Chapter 4, and

the waveform partitioning techniques presented in Section 5.1. The source waveform

will be a unit pulse generated by superposition of sinusoidal waves with frequencies

varying, in 1
4

Hz increments, between 4 and 120 Hz. We will add Gaussian white

noise, with a standard deviation equal to 10% of the RMS signal strength of the most

distal receiver, to the data (Figure 5.2).

Our simulated data will be collected over a 2 second interval using a of sampling

rate of 600 samples/s, which corresponds to a Nyquist frequency of 300 Hz. We will
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Figure 5.3: Comparison of low density (l) and high density (r) synthetic data shot
gathers for a single viscoelastic layer over a half-space (Figure 4.8). Gaussian white
noise has been added to both data sets.

use two different receiver spacings: A low density lay-out with a receiver spacing of

1 m and a 95 m aperture, and a high density lay-out with 6 receivers per meter,

and a 15.84 m aperture. Both lay-outs employ 96 receivers. See Table 5.2 for the

frequency and velocity ranges of each lay-out. For each lay-out, we will simulate a

source walk-away experimental design using two different receiver offsets: The first

at 10 m and the second at 20 m. More information about the methods and code

(SignalBuilder.m) used to create synthetic data can be found in Appendices A and

B.

5.4.2 Reducing Source Walk-Away Data

We will use the following procedure to reduce data from our source walk-away exper-

iment.

• Apply a geometric correction to the data from each receiver. This can be done by

multiplying the data from each receiver by the square root of its distance from the
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source,
√
r0j + k∆r.

• For each source offset distance, create a K-f plot using successive time and space

domain Fourier transforms. Use the absolute value of the transformed data to create

the K-f plots and frequency slices described below. Detailed procedures for creating

a K-f plot can be found in Appendix C.

� For each of these plots, visually identify each mode (Figure 5.5).

� For each wave number, create a slice of frequency domain data, and de-

termine the frequency and amplitude corresponding to each mode (Figure

5.6). More detailed procedures for creating a constant wave number slice

can be found in Appendix C.

� For each wave number-frequency pair, determine velocity using v = f/k.

Use these values to create a dispersion curve.

� When using only two source offsets, Equation 5.22 can be used to de-

termine the attenuation coefficient, α, for each frequency. When using

more than two source offsets, use the regression technique described in

the previous section. Use these values to create an attenuation curve.

5.4.3 Reducing Receiver Walk-Away Data

The process of obtaining a dispersion curve from receiver walk-away data is similar

to that for source walk-away data, but because only one source position is used, we

will need to use a different method for obtaining attenuation data.
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cluded. In this case, we have masked-out all data not associated with the first har-
monic (n=1). Figure 5.5 illustrates unmasked data.

• Apply a geometric correction to the data from each receiver. This can be done by

multiplying the data from each receiver by the square root of its distance from the

source,
√
r0j + k∆r.

• Using the data from all receiver positions, create a K-f plot using successive time

and space domain Fourier transforms.

� Visually identify each mode (Figure 5.5).

� For each wave number, create a slice of frequency domain data. Identify

the frequency corresponding to each mode (Figure 5.6).

� For each wave number-frequency pair, determine velocity using v = f/k.

Use these values to create a dispersion curve.

• For a receiver walk-away experiment, we will obtain attenuation coefficients in

frequency-space domain. Do the following for each mode:
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Figure 5.5: Comparison of K-f plots obtained using the low density (left) and high
density (right) lay-outs. Note the logarithmic color scale.

� In K-f domain,mask-out all data not associated with the mode of interest

(Figure 5.4).

� Use a single Fourier transformation to convert the masked data to

frequency-space domain.

� For each receiver, determine the amplitude of each frequency.

� For each frequency, determine the attenuation coefficient from the re-

gression coefficient (slope) of the logarithm of amplitude versus receiver

offset.

5.5 Results

In this section, we will demonstrate the data reduction process for synthetic data

produced using the one, two, and three layer viscoelastic models presented in Chapter

4.
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Figure 5.6: Constant wave number slices obtained from Figure 5.5.

5.5.1 One-Layer Model

Examination of K-f plots (figure 5.5) confirms that at low frequencies, data obtained

using the low density lay-out provide better resolution than data obtained from the

high density lay-out. It is possible to visually identify modes using K-f plots alone, and

satisfactory dispersion curves can be so obtained; however, this procedure does not

yield data of sufficient accuracy to calculate attenuation. In practice, we can identify

approximate relationships visually using K-f plots, and then refine them using either

constant frequency or constant wave number plots such as shown in figure 5.6.

Given the general orientation of modes (Figure 5.5), constant wave number plots

are less noisy than their constant frequency counterparts. Peak identification is rela-

tively easy at low wave numbers, but becomes increasingly difficult as wave number

increases. By approximately 0.4 cycles/m, corresponding to a 100 m/s phase veloc-

ity frequency of 40 Hz, peaks become so difficult to isolate, that mispicks are likely.

Beyond 0.4 cycles/m, data from the high density lay-out can be used (Figure 5.7),

permitting the frequency range of dispersion and attenuation curves to be extended
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Figure 5.7: Expanded K-f plot of high density lay-out data. This data permitted
marginally better discrimination of modes in the region of mode convergence than
could be obtained from low density lay-out data.

by a few Hertz. Beyond wave numbers of about 0.6 cycles/m, modes converge into

a single, inchoate blob. For the low density lay-out, this corresponds reasonably well

to our design criteria (Figure 5.8). Somewhat surprisingly, the high density lay-out

only extends this limit a few Hertz (Figure 5.8).

After correcting for geometric dispersion (Sub-section 3.3.3), we find attenuation

values for each frequency by applying Equation 5.22 to the absolute value of corre-

sponding K-f pairs from both 10 m and 20 m offset distances. Accurate amplitude

measurement is hampered by noise appearing at around 20 Hz (Figure 5.10). By

about 30 Hz, little meaningful amplitude information can be gleaned from either the

low or high density lay-outs.

In general, useful attenuation data are only available for the fundamental mode

and first harmonic (figure 5.11).

Attenuation information from the high density lay-out is unusable (figure 5.12).
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Figure 5.8: Dispersion curves obtained from the low density lay-out. Synthetic data
were generated using the one-layer viscoelastic model illustrated in Figure 4.8. Com-
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Figure 5.9: Dispersion curves obtained from the high density lay-out. Synthetic
data were generated using the one-layer viscoelastic model illustrated in Figure 4.8.
Compare with the theoretical curves for the same model (Figure 4.10).
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density lay-out. Attenuation values obtained from the remaining modes were com-
pletely unsable. Synthetic data were modeled using the one-layer viscoelastic model
illustrated in Figure 4.8. Compare with the theoretical curve for the same model
(Figure 4.11).

5.5.2 Two-Layer Model

The data reduction procedures for the two-layer model are similar to those used for

the single-layer model. Dispersion curves for the second and third overtones capture

the layer two shelf at approximately 200 m/s. It is possible to obtain dispersion

curves for the second and third overtones up to a frequency of 60 Hz. Recall that for

a two-layer viscoelastic model, attenuation curves for higher level modes were inverted

with respect to the one-layer elastic model (Figure 4.21). Evidently, this inversion

effect permits higher order modes to remain viable to higher frequencies than either

the fundamental or first harmonic. Unfortunately, this means that there is little

difference in the signals obtained at 10 m and 20 m source offsets, so beyond about

30 Hz, the calculated attenuation coefficients for the second and third harmonics

(n=2,3) are either zero or negative (Figure 5.10).
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Figure 5.13: Dispersion curves for synthetic two-layer viscoelastic data (Figure 4.18)
obtained from the low density lay-out. Compare with the theoretical curve for the
same model (Figure 4.20).
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Figure 5.14: Attenuation curves for synthetic two-layer viscoelastic data (Figure 4.18)
obtained from the low density lay-out. Compare with the theoretical curve for the
same model (Figure 4.21).
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Figure 5.15: Dispersion curves for synthetic three-layer viscoelastic data (Figure 4.23)
obtained from the low density lay-out. Compare with the theoretical curve for the
same model (Figure 4.27).

5.5.3 Three-Layer Model

Data reduction procedures and results for the three-layer model are similar to those

obtained for the two-layer model. Although the attenuation coefficients experience the

same inversion effect as was observed for the two-layer model, this does not translate

into an increase in the frequency over which dispersion data can be obtained. The

shelves associated with layers 2 and 3 are evident, but not particularly pronounced.

5.6 Summary: Data Reduction

In this chapter, we discussed considerations for the design of field experiments, and

demonstrated a method for obtaining dispersion curves and attenuation plots from

data obtained using a source walk-away field experiment. Obtaining data suitable

for generating dispersion curves is a straightforward process, but obtaining data from
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Figure 5.16: Attenuation curves for synthetic three-layer viscoelastic data (Figure
4.23) obtained from the low density lay-out. Compare with the theoretical curve for
the same model (Figure 4.28).

which attenuation information can be generated requires that special care be taken

when designing and conducting a field experiment.

We compared the performance of two different receiver lay-outs using 96 receivers

each. It had been hoped that the high density lay-out would extend the frequency

range of the experiment; however, because of its small aperture, the high density

lay-out was unable to satisfactorily resolve modes at high frequencies. On the other

hand, the low density lay-out, with its large aperture, produced usable data over a

much wider range of frequencies and wave numbers.

Using the low frequency lay-out, we were able to obtain dispersion curves for all

modes and all three models over an interval from 10 Hz to about 50 Hz. Our ability

to evince attenuation information from the data was more limited. For the one and

two-layer models, we were only able to obtain accurate attenuation from the first

two modes. Beyond about 25 Hz, modes were sufficiently close to each other that
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partitioning amplitude information became difficult. Prominent shelves in the three-

layer model kept peaks separated over a larger range of frequencies, and reasonably

good attenuation information could be obtained at frequencies up to about 35 Hz.
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CHAPTER 6:

DATA INVERSION

In the previous chapter, we reduced field data into a form that can be represented by

dispersion and attenuation curves. In this chapter, we will be concerned with finding

layer geometry and material properties that provide a plausible explanation for the

dispersion and attenuation curves and, by extension, the field data. This process is

called inversion.

6.1 Joint Inversion Using the Gauss-Newton

Method

We will briefly discuss the Gauss-Newton method for inverting non-linear data. A

more thorough treatment can be found in most elementary texts on inversion, such

as Aster et al. (2013). In the present exposition, we follow the treatment of Michaels

(1998), who used the method to invert shear wave dispersion and attenuation data

obtained from downhole studies.

Consider the general, non-linear relationship, G(f,m) = d(f), where d(f) is a

data vector, f is frequency, and m is a vector of model parameters such as thickness

(h), density (ρ), shear modulus (µ), and viscosity (η) for each layer. For the present

discussion, the data vector, d(f), contains measurements taken at a specific frequen-

cies from either dispersion or attenuation curves. Note that the data vector includes

error, and is equal to dtrue(f) + ε, where dtrue(f) is a vector of error-free values, and
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ε is a vector of errors.

Our task will be to find an estimate of m, which we will call m̂, that best fits the

data vector. Our approach will be to use an iterative procedure, and we will denote

successive trial values our estimate as m̂k. The residual, or difference between the

measured data and an estimate made using our assumed value, is given by:

rk = d(f)−G(f, m̂k) (6.1)

where rk is a vector of residual values. Under the least-squares criterion for best fit,

we could obtain an estimate of m by adjusting m̂k until we find a value for which

the sum of squared residuals is minimized. Given the potential number of model

parameters, this could be a time-consuming process, indeed.

We note that rk is a vector pointing from G to the data, d(f). Assuming G to be

differentiable, and reasonably linear in the vicinity of d(f) and G, rk is approximately

equal to:

rk ≈


∂G(f1,m)
∂m1

∂G(f1,m)
∂m2

. . .

∂G(f2,m)
∂m1

∂G(f2,m)
∂m2

. . .

...
...

. . .

∆mk = J(f,m)∆mk (6.2)

where ∆mk = m− m̂k, and the matrix of partial derivatives is called the Jacobian,

J, of G. Use of the Jacobian effectively linearizes the problem. The relationship,

rk = J∆mk, is amenable to linear least squares regression techniques (Aster et al.,

2013). We should mention a few important assumptions of least squares regression:

The errors in the data vector, (ε), should be random, independent, and normally

and identically distributed. The last assumption, that the errors be normally and
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identically distributed, is a fairly weak assumption so long as variance is equal (Rice,

1995).

We will typically have more than one dispersion and attenuation curve at our

disposal, and we would like to be able to use the data from all of these when estimating

parameters. Such a procedure is referred to as joint inversion. We restate the Jacobian

matrix with a separate section (set of rows) for each curve:


J(f,m)curve1

J(f,m)curve2
...

∆mk =


rkcurve1

rkcurve2

...

 (6.3)

Given the large differences in scale between the velocity vector (∼100s of meters

per second), and the attenuation coefficient (∼0.1 per meter), we expect large dispar-

ities in the variances of the data vectors associated with each section of (6.3), thus

violating the equal variance assumption of least squares regression. To ameliorate

this situation, we resort to a row weighting scheme using a square, diagonal matrix

with dimensions equal to the number of data points, and diagonal entries equal to

the reciprocal of the standard deviation of each block of data (Brandal, 1991):

W =



1/σ1 0 0 0 0 0 . . .

0 1/σ1 0 0 0 0 . . .

0 0 1/σ1 0 0 0 . . .

. . . 0 0 1/σ2 0 0 . . .

. . . 0 0 0 1/σ2 0 . . .

. . . 0 0 0 0 1/σ2 . . .

...
...

...
...

...
...

...
. . .



(6.4)
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Although unrelated to the statistical assumptions of least squares regression, com-

putational instability may arise when there are large differences between the typical

values of each column of the Jacobian (Brandal, 1991). We can reduce the risk of

computational instability by scaling columns so that their typical values are of similar

magnitude. This is tantamount to multiplying the Jacobian by a diagnal matrix with

dimensions equal to the number of columns of the Jacobian, and diagonal entries

equal to the reciprocal of the mean value of each column:

Y =



1/x1 0 0 0 0 . . .

0 1/x1 0 0 0 . . .

. . . 0 1/x2 0 0 . . .

. . . 0 0 1/x2 0 . . .

...
...

...
...

...
...

. . .


(6.5)

Applying weighting factors, (6.3) can be rewritten as:

(WJY)Y−1∆mk = Wrk (6.6)

and the least squares solution is:

∆m̂k = H∆rk (6.7)

H = Y[(WJY)T(WJY)]−1(WJY)TW

The algorithm is applied iteratively, adding ∆m̂k from the previous iteration to

calculate a new estimate of m.
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6.1.1 Estimating Error

Error estimates can be found using:

Cm = HCdHT (6.8)

where Cm is a covariance matrix for estimates of m, and Cd is the data covariance

matrix. Diagonal entries of Cm represent the variance of each parameter represented

by m̂ (Michaels, 1998). Off-diagonal entries indicate the correlation, or interaction,

between terms (Rice, 1995).

Similarly, the diagonal terms of the data covariance matrix represent the variance

of each data point, and the off-diagonal terms indicate the degree to which these

terms may not be independent. Diagonal terms correspond to the variance that can

be computed by taking multiple measurements at a single point.

Aster et al. (2013) recommend that a model resolution test be conducted to eval-

uate model resolution. The resolution matrix obtained from such a test is an nxn

matrix, where n is equal to the dimension of the model space. In this instance, the

model space will equal the number of parameters used in the inversion. Aster et al.

give the trace of the resolution matrix as a quantitative measure of resolution: The

trace should be close to the model space.

6.1.2 Constraining Layer Thickness

We will see that inversion estimates of shear modulus and viscosity are sensitive to

the layer thickness used in the model. Incorporating layer thicknesses from other

sources, such as borehole information, can substantially improve viscoelastic param-
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eter estimates.

Even when individual layer thicknesses are not known, borehole information may

suggest a total thickness for the layer stack. Alternatively, a useful estimate of ef-

fective total layer thickness can also be obtained by inspection of dispersion curves.

Recall that the spacing between cut-off frequencies is a function of top layer veloc-

ity, half-space velocity, and layer thickness (Equation 1.3). This can be used to find

the equivalent single-layer thickness of a layered structure. In either case, we can

constrain the model using a modified Jacobian matrix.

Recall that we defined equivalent layer thickness using Equation 4.3.

h =
n∑
j=1

hj
β1

βj

where h is obtained using Equation 1.3. β1 can be obtained from the asymptotic

velocity of the dispersion relationships. Accurate estimates of β1 and β2 can be

obtained from shot gathers.

When no information about layer structure is available, satisfactory partitions can

be obtained by dividing the equivalent layer into two or more layers with a modulus

that is similar to the modulus of the top layer. To avoid the possibility of a producing

a hidden layer (velocity decreasing with depth), the assumed modulii of the initial

model should increase monotonically.

As discussed later in this chapter, it is usually best to overestimate the number

of layers. In tests on synthetic data, modeling a single, homogeneous layer using a

two layer model provided reasonable results. Modeling a two-layer structure with

a one-layer model tended to produce thickness and modulus estimates that were an

amalgam of the two-layer properties; however, the viscosity estimate obtained from
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the one-layer model was neither representative of the true viscosity of either layer

individually, nor was it a value intermediate between the layer viscosities.

For simplicity, we assume a multi-layer inversion model with only layer heights

as parameters. For the current discussion, then, ∆hk = ∆m̂k, and Equation 6.2

becomes:

rk = J(f,m)∆h (6.9)

where ∆hk is a vector of differential heights. For a model that is constrained by

Equation 4.3, only n-1 heights can be varied independently. The change in the nth

layer height is a function of the changes of the other layers in the model. Rearranging

(4.3), we obtain a relationship for the thickness of the nth layer:

hn = h
βn
β1

− h1
βn
β1

− h2
βn
β2

− . . . (6.10)

The change in layer n thickness is:

∆hn = −∆h1
βn
β1

−∆h2
βn
β2

− . . . (6.11)

If we denote the Jacobian elements of (6.9) with Ji,j, a single row multiplication

could be represented as:

ri = Ji,1∆h1 + Ji,2∆h2 + . . .+ Ji,n∆hn (6.12)

Substituting (6.11) into (6.12):
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ri = Ji,1∆h1 + Ji,2∆h2 + . . .+ Ji,n(−∆h1
βn
β1

−∆h2
βn
β2

− . . .) (6.13)

which can be rearranged into:

ri = (Ji,1 −
βn
β1

Ji,n)∆h1 + (Ji,2 −
βn
β2

Ji,n)∆h1 + . . . (6.14)

We will refer to:

J ′i,j = (Ji,j −
βn
βj
Ji,n) (6.15)

as a modified Jacobian element. The modified Jacobian matrix is formed by sub-

stituting a modified Jacobian element for each Jacobian element computed using a

layer thickness parameter. Layer n thickness is then removed from the model. For

example, suppose that are using a three-layer model with layer thickness and shear

modulus as parameters. The model could be represented as:

r =


J1,h1 J1,h2 J1,h3 J1,µ1 J1,µ2 J1,µ3

J2,h1 J2,h2 J2,h3 J2,µ1 J2,µ2 J2,µ3

...
...

...
...

...
...





∆h1

∆h2

∆h3

∆µ1

∆µ2

∆µ3


(6.16)

Using a modified Jacobian matrix, the constrained model is rewritten:
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r =


J ′1,h1 J ′1,h2 J1,µ1 J1,µ2 J1,µ3

J ′2,h1 J ′2,h2 J2,µ1 J2,µ2 J2,µ3

...
...

...
...

...





∆h1

∆h2

∆µ1

∆µ2

∆µ3


(6.17)

The nth layer thickness can then be found using Equation 6.10.

If the thickness constraint is an actual thickness, such as might be obtained from

borehole data, then (6.15) simplifies to:

J ′i,j = (Ji,j − Ji,n) (6.18)

6.2 Methods

We will evaluate the inversion procedure by applying it to the dispersion and atten-

uation curves obtained from the low density lay-out, as described in the previous

chapter.

6.2.1 Inversion Procedure

The general inversion process begins with data matrices representing dispersion and

attenuation curves, and an initial model, m̂0, of assumed layer properties such as

thickness, shear modulus, and viscosity, a delta properties matrix, and a data covari-

ance matrix.

• For each inversion iteration:
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� Use the assumed model to produce theoretical seed matrices representing

dispersion and attenuation curves as discussed in Chapter 4. Tools and

procedures for producing seed matrices can be found in Appendix A.

� The delta properties matrix is used to calculate the Jacobian. For each

property being estimated, the delta properties matrix includes a delta

value that will be used to approximate the Jacobian in Equations 6.2 and

6.3. More information about the delta properties matrix can be found in

Appendix C.

� Calculate the Jacobian using the seed model and the delta properties

matrix. Tools and techniques for calculating the Jacobian can be found

in Appendix C.

� For models with constrained layer properties (e.g., total layer thickness,

or effective layer height), we will need to produce a modified Jacobian

using the procedures discussed in Section 6.1.2

� The data covariance matrix will be used to compute a model covariance

matrix. See the Section, Parameter Error Estimates, for a discussion of

the method used to create the data covaraince matrix.

� Solve Equation 6.3 for ∆mk using the methods described in Section 6.1.

Tools and techniques for solving Equation 6.3 and for obtaining a matrix

of covariance estimates can be found in Appendix C.

� Add the vector, ∆mk to the assumed model to obtain a new assumed

model (m̂k), and repeat until the model reaches the desired level of con-

vergence.
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6.2.2 Characterization Models

We will characterize the reduction/inversion process by evaluating its behavior with

respect to the one, two, and three-layer viscoelastic models presented in Chapter 4.

Characterization experiments will include the following:

� Data from all three models will be inverted using initial estimates of

layer thickness, shear modulus, or viscosity that differ from their true

values.

� Data from the single layer model will be also be inverted using a model

in which initial estimates of viscosity are zero.

� In order to investigate the effects of including incorrect/biased assump-

tions, the single-layer model will be inverted by either holding incorrect

values of layer thickness or shear modulus constant.

� Data from the single-layer model will be inverted to demonstrate the

procedure’s ability to invert data using dispersion and attenuation infor-

mation from a single mode, two modes, and all modes.

� Data from the single layer model will be inverted to demonstrate the pro-

cedure’s ability to obtain parameter estimates using either just dispersion

information or just attenuation information.

� Using the single-layer model, joint inversion will be compared to a se-

quential inversion process. In a sequential inversion cycle, data is first

inverted for thickness and shear modulus using dispersion data, and then

inverted for viscosity using attenuation data.
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� Data from the two-layer model will be inverted using fundamental mode

data, data from the fundamental mode and first harmonic, and data from

all modes.

� Data from the two-layer model will be inverted for viscosity using only

dispersion information.

� Data from the two and three-layer models will also be inverted using a

modified Jacobian that constrains either total layer thickness or effective

layer thickness.

� Subsets of data obtained from the one-layer model will be inverted

to demonstrate the method’s ability to estimate parameters using either

dispersion data alone, or using attenuation data alone.

� In order to investigate the effects of making incorrect assumptions about

the number of layers used in the model, two-layer data will be inverted

using an inversion model with only one layer, and one-layer data will be

modeled using an inversion model with two layers.

6.3 Single Layer Property Estimates Using Only

Fundamental Mode Data

Only the fundamental mode is present at the lowest frequencies, and it is possible

that the only usable dispersion and attenuation information obtained from field data

will be from the fundamental mode. We will apply our inversion procedure to the

fundamental mode data obtained from the single-layer viscoelastic model (Figure 4.8).
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Dispersion and attenuation data can be seen in Figures 5.8 and 5.11. The usable

data for both of these curves occurs between 9 and 19 Hz. For this inversion, we

varied layer thickness, shear modulus, and viscosity. The remaining properties were

fixed at those of Figure 4.8.

Applying our joint inversion procedure to this data, we obtain the convergence

history illustrated in Figure 6.1. All three estimates converged quickly to reasonable

values. A two parameter inversion model, which held layer thickness at a constant 5

m while varying shear modulus and viscosity, converged to similar values.

6.3.1 Effects of Varying Half-Space Parameters

Varying the half-space shear modulus by ± 50 % of its base value (288 MPa) has

no discernable effect. Even after row and column scaling, the values of the Jacobian

column associated with half-space modulus remain at least four orders of magnitude

smaller than the values in the other columns.

In Chapter 4, we noted that half-space material properties only exert a significant

effect near the cut-off frequency: When the Love wave phase velocity was near that

of the half-space. Inspection of Figures 5.8 and 5.11 reveals that the data used in

the previous inversion were obtained for phase velocities far from half-space velocity,

so the relative unimportance of half-space parameters is not surprising. This lack of

sensitivity to half-space properties held for this and all other models tested, and in

subsequent inversion tests, half-space parameters were fixed at their true values.
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Figure 6.1: Convergence history for single mode data for a soil model consisting of
a single viscoelastic layer over a half-space. Dashed lines indicate the value used to
create synthetic data.
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6.3.2 Effects of Model Bias

Model bias occurs when we assume an incorrect fixed parameter value in our model.

For example, we might have obtained a 4 meter estimate of layer thickness using

bore hole data, and used this, instead of the true 5 meter value, as a fixed model

parameter. For the present inversion problem (one layer and one mode), this has very

little effect. In fact, estimates of modulus and viscosity only changed about 5% when

layer thickness was changed from a fixed value of 4 meters to a fixed value of 6 meters ;

however, we will see that including more modes and more layers in the model greatly

increases the sensitivity of the shear modulus estimate to assumed layer thickness.

On the other hand, the effect of using an incorrect fixed value for shear modulus

has a substantial effect on the viscosity estimate. Holding layer thickness at 5 meters,

and fixing shear modulus at 12.8 MPa (20% low), results in a viscosity estimate that

is about 13% low (13,960 Pa-s). Using a fixed value of 19.2 MPa (20% high) results

in a viscosity estimate that is nearly 60% high (25,400 Pa-s).

6.3.3 Models Using Only Dispersion Data

As noted in Chapter 5, accurate attenuation data is difficult to obtain, and is not

generally available over as wide a range of frequencies as dispersion data. Comparison

of dispersion curves for the one layer elastic and viscoelastic models shows some

subtle differences, and it might be hoped that these differences could be used to

ascertain underlying values of viscosity. Applying a three-parameter model (thickness,

modulus, and viscosity) to the fundamental mode provides an excellent estimate of

layer thickness (4.998 m), and a reasonable estimate of shear modulus (14.81 MPa);

however, the model failed to converge to a meaningful value of viscosity. Estimates
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obtained from subsequent iterations vary by as much as 50,000 Pa-s.

6.3.4 Models Using Only Attenuation Data

We also evaluated the quality of parameter estimates obtained using attenuation data,

alone. A three-parameter model (thickness, modulus, and viscosity) was applied to

fundamental mode attenuation data. The model was unable to obtain a meaningful

layer thickness estimate.

By using a fixed, 5 m thickness, reasonable estimates of shear modulus (17.62

MPa) and viscosity (19,900 Pa-s) were obtained using a two parameter model (mod-

ulus and viscosity).

Usable phase velocity information can be gleaned from from the shot gather (Fig-

ure 5.3). The slopes of the upper and lower boundaries of the envelope containing the

waveforms are equal to the half-space and layer shear wave velocities, respectively.

Using these slopes, and assuming a material density for each layer, we can obtain an

accurate estimate of the shear modulii for both the layer and half-space.

6.4 Single-Layer Property Estimates Using

Several Modes

6.4.1 Joint Inversion of Dispersion and Attenuation Data

Joint inversion of dispersion and attenuation information obtained from a single-layer

model failed to yield stable property estimates.

The main culprit preventing convergence was the labile behavior of overtones.
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In Chapter 4, we saw that at low viscosities, overtones typically evolved along the

real axis. At higher viscosities, these overtones could disappear, and be replaced by

a companion mode originating from the imaginary axis. The point at which this

transition occurs is dependent on layer geometry, shear modulus, and viscosity. In

the case of the one layer model presented in Chapter 4, the first overtone is a primary

mode (n=1), and the second and third overtones are companion modes (n=2i, n=3i).

While attempting to invert the data, we found that combinations of layer thickness,

shear modulus, and viscosity that best fit first overtone data were inconsistent with the

existence of companion second and third overtones. Conversely, model parameters

that were consistent with companion second and third overtones were inconsistent

with a primary first overtone.

A model using a 4 meter layer thickness, 12.8 MPa shear modulus, and 12,800 Pa-

s viscosity resulted in a fundamental and first three overtones that originated along

the real axis. A model using a 6 meter layer thickness, 19.2 MPa shear modulus,

and 12,800 Pa-s viscosity induced all overtones to originate along the imaginary axis.

If the initial values used in the inversion process produced the wrong combination of

modes, the inversion was doomed. When this happened, the model became unstable,

oscillated between mode type, and failed to converge.

It is possible to force the model to use information from a particular overtone;

however, this presupposes a knowledge of layer geometry and properties that normally

would be unavailable to researchers working with field data.
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Figure 6.2: Convergence history for sequential inversion of data from all four modes
for a soil model consisting of a single viscoelastic layer over a half-space. Dashed lines
indicate the values used to create synthetic data.
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6.4.2 Sequential Inversion of Dispersion and Attenuation Data

In sequential inversion, a model using only dispersion information is inverted to es-

timate layer thickness and shear modulus. This is followed by an inversion using

only attenuation information to estimate viscosity. In order to eliminate the labile

overtone problem described in the previous sub-section, it is necessary to initiate the

model with a value of viscosity that guaranteed convergence to the proper (primary

vs. companion) overtone.

Sequential inversion proved far more effective than joint inversion. In all single

layer cases, this dispersion model converged quickly (Figure 6.2). For the single-layer

model, sequential inversion gave reasonable results when information from only the

fundamental mode and first overtone were used.

Applying sequential inversion to a three-parameter model using only first overtone

dispersion and attenuation data, the model converged to a viscosity estimate of 17,701

Pa-s–About 11% higher than the true value.

6.4.3 Notes on Single-Layer Inversion

Inversion for thickness and shear modulus using dispersion information proved to be

a reasonably robust procedure that converged quickly to values that are reasonably

close to true values. When inverting multi-mode data for shear modulus, alone, it

was found that the final estimate of shear modulus could be sensitive to assumed

layer thickness. Although a one-parameter inversion for viscosity, alone, is insensitive

to the assumed value of layer thickness, it is quite sensitive to the assumed value of

shear modulus. Thus, in a three-parameter inversion (layer thickness, shear modulus,

and viscosity), small errors in the final estimate of layer thickness can lead to large
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errors in viscosity. We noted that in a three-parameter model, these errors were

accompanied by instability.

Accurate single-layer thickness and velocity information may be available from

other sources. Top layer and half-space phase velocities can be obtained from mea-

surements on the shot gather; these, in turn, can be used with assumed density values

to find estimates of shear modulus.

Measuring the distances between the three cut-off points in Figure 5.13, we find

an average cut-off interval of 11 Hz. The lowest fundamental mode velocities obtained

from the data used to generate this figure averaged about 103 m/s. With an accurate

estimate of half-space velocity, we can solve Equation 1.3 to obtain a 4.84 m layer

thickness estimate. Absent a half-space velocity estimate, we can ignore the square

root term in (1.3) and obtain a 4.69 m estimate, which can be used as an initial value

for the inversion process.

6.5 Two-Layer Model

Reasonably good parameter estimates were obtained from the two-layer model. Unlike

inversion using single mode data from a single-layer model, single-mode inversion

estimates of shear modulus and viscosity from the two-layer model were quite sensitive

to layer thickness. When total layer thickness constraints were included in the model,

even inversion using fundamental mode data, alone, could yield useful viscoelastic

layer property estimates.
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Figure 6.3: Convergence history for sequential inversion using data from all modes for
a model consisting of two viscoelastic layers over a half space. Dashed lines indicate
the values used to create synthetic data.
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6.5.1 Two-Layer Model Using Only Dispersion Data

When using sequential inversion, it was necessary to add a viscosity term in order

to produce the shelf observed in the mode 2 and 3 dispersion curves. Given this

viscosity dependence of the dispersion curves, it was hoped that reasonable viscosity

estimates might be evinced from the dispersion data. In fact, very satisfactory vis-

cosity estimates were obtained by an inversion model incorporating layer thickness,

shear modulus, and viscosity (Table 6.2).

6.5.2 Using a One-Layer Model with Two-Layer Data and

Vice Versa

It is possible that the layer structure of field data could be misinterpreted. Absent the

obvious shelves of the second and third overtones (Figure 5.13), it would be difficult

to ascertain, a-priori, the number of layers to be used in a model. Inverting the two

layer viscoelastic data using a one layer model yielded a thickness estimate of 4.24 m,

a shear modulus estimate of 21.4 Pa, and a viscosity estimate of 7,780 Pa-s.

Model Parameter True Initial Value Mode 0∗ Modes 0,1∗ All Modes
h1 (m) 2.50 2.00 2.17 2.44 2.74
µ1 (Pa) 16E6 12.8E6 14.3E6 14.5E6 19.4E6
η1 (Pa-s) 16E3 6.57E3 15.7E3 16.8E3 22.9E3
h2 (m) 5.00 4.50 5.27 5.70 4.15
µ2 (Pa) 68.0E6 82.2E6 41.9E6 63.1E6 68.3E6
η2 (Pa-s) 34E3 6.5E3 52.0E3 51.3E3 36.5E3

Table 6.1: Results from the sequential inversion of two layer data using one, two, or
all modes. ∗ indicates that total layer thickness was constrained to an effective height
of h = 5m. Convergence history for the all-mode model is also displayed in Figure
6.3.
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Model Parameter True Initial Value Dispersion Data
h1 (m) 2.50 2.00 2.59
µ1 (Pa) 16E6 16E6 14.7E6
η1 (Pa-s) 16E3 6.57E3 12.6E3
h2 (m) 5.00 4.50 5.61
µ2 (Pa) 68.0E6 82.2E6 68.7E6
η2 (Pa-s) 34E3 6.5E3 38.8E3

Table 6.2: Reasonable viscosity estimates could be obtained using dispersion data,
alone with two-layer data.

Both the thickness and shear modulus estimates are between the true values for

layers one and two; however, the viscosity estimate seems anomalously low. The

standard deviation for this estimate was 41,200 Pa-s.

Applying a two-layer model to the one layer data of the previous section gives

better results. Ideally, the estimates of shear modulus and viscosity for both layers

would be 16E6 and 16E3, respectively. By constraining total layer thickness to the

true value of 5 m, the resulting two-layer model yields good estimates of modulus,

and reasonable viscosity estimates: Both the layer one and layer two shear modulus

estimates are, respectively, 15.5E6 and 15.4E6 Pa. Viscosity estimates are 12.1E3

and 33.7E3 Pa-s for both layers.

6.5.3 Three-Layer Model

For the three-layer model, layer thickness, shear modulus, and viscosity estimates

obtained using an unconstrained inversion model were very poor. In fact, the un-

constrained inversion yielded negative values for shear modulus and viscosity, and

the inversion model never actually converged (Table 6.3). Obtaining reasonable vis-

coelastic parameter estimates required that layer thickness be constrained. Including
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Model Parameter True Initial Value Unconstrained h = 5 Fixed h
h1 (m) 2.73 2.5 2.03 2.55 2.73
µ1 (Pa) 16E6 12.8E6 10.86E6 12.9E6 14.7E6
η1 (Pa-s) 16E3 6.57E3 22.9E3 21.1E3 19.66E3
h2 (m) 2.73 2.5 2.17 0.56 2.73
µ2 (Pa) 68.0E6 54.4E6 -33E6 58.9E6 77.8E6
η2 (Pa-s) 34E3 6.57E3 -39.5E3 41.1E3 37.9E3
h3 (m) 2.73 3.75 7.0 4.095 2.73
µ3 (Pa) 153.0E6 122.4E6 36.2E6 96.1E6 94.2E6
η3 (Pa-s) 51.0E3 6.57E3 -44,473 44.0E3 50.0E3

Table 6.3: Parameter estimates obtained for the three-layer model. Constraining
effective height to h = 5 m improved model stability. Fixing layer thicknesses at
their true values (2.73 m) yielded the best estimates of all.

either the constraint that effective total layer thickness equal 5 m, or that each layer

thickness be fixed at its true value of 2.73 m greatly improved the model.

6.6 Parameter Error Estimates

Parameter covariance estimates were obtained for all models using Equation 6.8. Data

error estimates could be obtained by running the experiment several times, making a

separate dispersion or attenuation curve for each run, and then computing a separate

variance for each point. Given the amount of time necessary to run the experiment

a single time, this was not feasible. For the following analyses, we assumed that

no correlation (hence, no covariance) exists between the elements of the data vector.

Data error estimates were obtained using the root mean square of residuals from best-

fit polynomials taken for segments of each dispersion or attenuation curve. Because

similar analyses were performed using the same data sets, these estimates tended to

be similar. Except where noted, these estimates apply to all models (Table 6.4).
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Layer h (m) µ (Pa) η (Pa-s)
1 0.05 (1.0%) 0.48E6 (3.0%) 260 (1.6%)
2 0.06 (1.2%) 0.92E6 (1.36%) 1,500 (4.4%)
3 0.7 (25.6%) 3.7E6 (2.4%) 6,000 (11.8%)

Table 6.4: Typical standard deviations of estimated model parameters obtained from
the model covariance matrix.

Note that error estimates tend to increase with depth.

Model resolution tests (see Sub-section 6.1.1) were performed on Jacobians from

inversion models using thickness, shear modulus, and viscosity for the one, two, and

three layer soil models. For one, two, and three-layer soil models, the model spaces,

are 3, 6, and 9, respectively. For the three Jacobians tested, the traces of the reso-

lution matrices were, respectively, 3.0000, 6.0000, and 9.0000. These values compare

favorably with the criterion (Aster et al., 2013) that the trace of the resolution matrix

should be close to the model space.

6.7 Summary

As a result of our synthetic data experiments, we make the following generalizations:

� Reasonable single layer estimates can be obtained using dispersion and

attenuation from only the fundamental mode.

Varying half space by ± 50 % had no discernable effect on other parameter

estimates.

For a single-layer model, assuming an incorrect fixed value of layer thick-

ness has a modest effect on estimates of shear modulus and viscosity;



162

however, assuming an incorrect fixed value of shear modulus can effect a

very large error in viscosity estimates.

Labile changes from primary to companion modes (and vice versa) could

cause the inversion process to converge to the wrong mode, entirely.

Avoiding this problem requires that the model be initialized using vis-

cosities near the true values, and that a sequential inversion process be

employed.

Attempts to estimate viscosity using dispersion data, alone, were only

successful when inclusion of viscosity created an obvious shelf that was

not present in the purely elastic model.

Attempts to estimate layer thickness and shear modulus using only atten-

uation information were unsuccessful.

It is better to assume a model with too many layers than it is to assume

a model with too few layers.

For two and three-layer models, the inversion procedure is sensitive to

initial assumptions about layer thickness. For the two-layer model, con-

straining total layer thickness or effective layer thickness improved esti-

mates of shear modulus and viscosity. For the three-layer model, reason-

able (non-negative) estimates of shear modulus and layer thickness could

not be obtained without constraining either total layer thickness or effec-

tive layer thickness.
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CHAPTER 7:

CONCLUSIONS AND RECOMMENDATIONS

FOR FURTHER RESEARCH

We set out to determine whether or not Love wave inversion could be a viable means

for determining viscoelastic soil properties. The answer is a qualified yes. We demon-

strated a method for winnowing Love wave modes from the types of data typically

collected in the field, and we developed a straightforward inversion process that can be

used to identify and characterize soil layering. As we have seen, the inversion process

is relatively stable, and almost always yields a solution. For single-layer models, the

method gives reasonable estimates of layer thickness, shear modulus, and viscosity,

even when dispersion and attenuation information is only available for a single mode.

As the number of layers increases, accurate estimates of shear modulus and viscos-

ity require that constraints on layer thickness be incorporated into the model. This

suggests that surveys using Love waves should be used in conjunction with downhole

or crosshole methods: With layer thicknesses from these latter methods as a control,

Love wave seismic methods can be used to extend the area of investigation.

We saw that the process for determining dispersion information was relatively

straightforward; however, obtaining amplitude information of sufficient quality to

estimate attenuation coefficients requires that extra care be used in the design and

conduct of field experiments. Given a sufficient level of care, we have shown how data

from a source walk-away experiment can be used to extract attenuation information

of sufficient quality to estimate viscous soil parameters.
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Depending on local conditions and equipment availability, a receiver walk-away

experiment may afford better reproducibility, and we have suggested a method for

estimating dispersion curves and attenuation coefficient for receiver walk-away exper-

iments.

Our analyses in Chapters 4 through 6 were conducted using layer thicknesses

between 5 and 10 m, and useful data was obtained from modes between about 10

and 50 Hz. As discussed in Chapter 1, Vs30 calculations specified by the International

Building Code require that viscoelastic properties be measured to a depth of at least

30 m. Using the scaling rules derived in Chapter 4, the first four modes of a 30 meter

layer structure would make their appearances at frequencies less than about 10 Hz.

Higher modes might be detectable above this frequency range, but as we saw at the

end of Chapter 4, the behavior of higher modes can very difficult to predict. Receivers

with a two to three Hertz lower limit should be considered for Vs30 surveys.

Mode ambiguity was an impediment to inverting the data. The potential for a

mode to transition from a primary to a companion mode, or vice versa, was the usual

culprit when the inversion process became bistable. Nevertheless, choosing initial

values of layer thickness, shear modulus, and viscosity that ensured the proper mode

type (primary vs. companion) prevented this issue.

The current inversion process is very labor intensive, and requires between sixteen

and twenty hours per inversion. In particular, the process of identifying and tracking

roots in order to create predictive dispersion curves is very time consuming, and it is

only automated at frequencies far from each mode’s cut-off frequency. Attempts to

fully automate the procedure in the cut-off frequency region were unsuccessful.

When analyzing K-f plots, modes are fairly easy to identify visually; however, the
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task of separating and measuring their amplitudes is both labor intensive and prone

to error. Many attempts were made to filter the data; however, most of these schemes

required a-priori knowledge of the system’s dispersive behavior.

7.1 Lessons Learned

We will recapitulate some of the more important lessons learned in the course of our

investigation:

� Although single-layer viscoelastic property estimates can be obtained

using only fundamental mode information, estimates for multi-layer sys-

tems require that higher order mode information be used.

� Love waves are relatively insensitive to half-space parameters, and it is

probably not possible to obtain meaningful half-space viscosity estimates

by means of Love wave inversion.

� Roots representing the complex velocities of Love wave modes evolve in

pairs, with a primary mode originating from along the real axis, and a

companion mode originating from along the imaginary axis. In all cases

studied, only one root from each pair exhibited a loss tangent less than

unity, and was expressed as a propagating wave.

� Most meaningful information is obtained at low frequencies and long

wave numbers. The information obtained by the high density array was

of no use in either the data reduction or inversion processes. By design,

10 Hz receivers and 1 m spacing was about right for the 5 to 10 m depths
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explored in the current work; however, deeper investigation will require a

concomitant decrease in receiver frequency and increase in receiver spac-

ing.

� Attenuation coefficients can only be derived from dispersion curves when

the layer structure is conducive to large, viscoelastically induced, changes

in dispersion curves. This will generally only be true for higher order

modes. A more general approach to obtaining attenuation information

requires accurate amplitude measurements, which, in turn, require a well-

designed and carefully executed experiment.

� Inversion estimates of viscosity are sensitive to assumptions about lay-

ering. Accurate viscosity estimates require constraints on the inversion

model that can either be obtained through inclusion of information from

higher order modes, or from external information about total layer height

and structure.

� Simultaneous inversion using both dispersion and attenuation informa-

tion can be unstable. A better approach is to sequentially invert dispersion

curves to obtain layer thickness and shear modulus, and to invert atten-

uation curves to obtain viscosity. Periodically, updating the model, and

repeating the process until it converges. It may be necessary to include a

viscosity term in the initial parameter estimate to assure that the model

converges to the correct (primary/companion) mode.
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7.2 Recommendations for Further Research

Before Love wave inversion can become a viable means for estimating viscoelastic soil

properties, the following work will be necessary:

� Research should be done to better understand and predict the pairing

of companion roots, with particular emphasis on understanding how to

identify and incorporate this knowledge into the inversion model.

�Work should be done to fully automate the root-tracking procedure near

the cut-off frequency. This would enable the entire inversion cycle to be

automated.

� The process of identifying and tracking modes in K-f plots is labor inten-

sive and prone to error. At low frequencies (near the cut-off frequency),

modes are fairly easy to identify; however, identifying modes and mea-

suring their amplitudes becomes much more difficult with increasing fre-

quency. Work should be done to determine the best ways to filter and

measure root amplitudes.

� Work should be done to understand layer structures not explored in

this investigation. For example, we did not explore the effects of a layer

structure in which velocity does not increase monotonically with depth

(hidden layers).

� We adopted a viscoelastic constitutive model, in part, because of its

wide use. As noted in Chapter 1, other constitutive models exist. In

particular, it appears that a Coulombic model is a better fit to data from

dry soils. Work should be done to extend the method to dry soils.



168

� Work should be done to characterize and minimize the variability of

source walk-away and receiver walk-away experiments.

� Before using the attenuation data reduction method described for re-

ceiver walk-away experiments, it should be characterized using synthetic

data.

7.3 Concluding Remarks

In summary, we must conclude that while Love wave inversion is feasible, several

technical challenges must be overcome before it can become a viable research tool.
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APPENDIX A:

FORWARD MODELING UTILITIES:

DOCUMENTATION

The forward modeling utilities are a group of related MATLAB R© scripts and func-

tions. In this appendix, we will outline the procedures used to create a complex

velocity plot (Figure 4.9 ), dispersion plot (Figure 4.10), attenuation plot (Figure

4.11), and loss tangent plot (Figure 4.12 ). We will also discuss the procedure for

creating synthetic data (Figure 5.3). Along the way, we will learn to use a few addi-

tional utilities. The code for each utility described in this appendix can be found in

Appendix B.

A.1 Getting Started

First, be sure that all required functions are loaded into the same directory. All

utilities, except PropagateZ.m and RootReports.m, require the function Propagate.m.

RootFinder.m, RootTracker.m, RootHunter.m, and FineRoot.m also require the func-

tion, Cauchy.m. RootTracker.m and RootHunter.m require FineRoot.m

All utilities require an n x 4 layer properties matrix. Row 1 contains properties for

the top layer, row 2 contains properties for the second layer, and so-on. The last row

contains properties for the half space. The first column contains the layer thickness in

meters, the second contains the layer density in kg/m3, the third contains the shear

modulus in Pascals, and the fourth row contains viscosity in Pa-s. The half-space
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thickness isn’t used, so the user can set it to any value. The layer properties matrix

for the single viscoelastic layer over a half-space illustrated in Figure 4.8 is:

layer props =

5 1600 16E6 16000

0 1800 288E6 0


• The basic steps for creating dispersion curves and attenuation plots are:

� Use LoveObjects.m to become familiar with root behavior. Pay par-

ticular attention to the frequencies at which new modes evolve, and the

frequencies at which they begin to approach layer velocity (Figure 4.9).

� Use RootFinder.m to determine the approximate complex velocities of

each root. These will be used as starting points for RootTracker.m and

RootHunter.m.

� Use RootTracker.m or RootHunter.m to obtain complex velocities over

the desired interval. Both of these utilities use the same inputs, and give

the same outputs; however, RootTracker.m is optimized for roots that

originate along the real axis. For roots originating along the imaginary

axis, RootHunter.m is a better choice.

� Use RootReports to obtain summary layer and Love wave data. This

includes frequency, phase velocity, and attenuation values that can be

plotted to create dispersion curves and attenuation plots (Figures 4.10

and 4.11).

• The basic steps for creating displacement and stress vectors by depth (Figure 4.2)

are:
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� Use FineRoot.m to obtain a precise (at least 2 decimal places) estimate

of a root’s location for a desired mode and frequency.

� Use PropagateZ.m to generate a matrix of displacement/stress vectors

over the desired range of depths.

A.2 LoveObjects

For a given frequency, LoveObjects.m creates a complex velocity plot such as those

displayed in Figure 4.9, and returns a matrix of objective function values used to

create that plot. LoveObjects.m requires a matrix defining the real and imaginary

boundaries for the root search. The first row contains values for the real axis, and

the second contains values for the imaginary access. Columns contain the lower limit,

upper limit, and number of velocity increments for each axis. The matrix used to

create the panels in Figure 4.9 is:

search limits =

100 450 350

0 100 100


This matrix instructs LoveObjects.m to calculate the objective function at one me-

ter per second increments in both the real and imaginary directions. A larger number

of increments can be used, but it is probably more efficient to use LoveRoots.m to de-

termine approximate locations for each root, and then use FineRoot.m to determine

the root’s exact location.

Absolute values of the objective function can span several decades, so the color

values displayed on the complex velocity plot represent the logarithm of the absolute



182

value of the objective function. The squelch feature sets upper and lower limits to

the values displayed on the color axis. If both the high and low squelch values are

equal to each other, no squelch will be used. The function call used to create the 35

Hz panel of Figure 4.9 is:

obj_fun=LoveObjects(35,layer_props,search_limits,-12.5, -6);

A.3 RootFinder

RootFinder.m locates roots in a user defined search search window and returns the

locations of roots to a 3xm matrix. The user defines the number and width of boxes

in the real and imaginary directions. RootFinder.m searches each box, and only

returns a result if it detects one or more roots in that box. If there is only one root

in the box, RootFinder.m returns its real velocity, imaginary velocity, and a quality

number that should be approximately unity. If the box contains more than one root,

RootFinder.m returns ambiguous real and complex values, and a quality number that

should be approximately equal to the number of roots in the box. If a box contains

more than one root, the user can either decrease the dimensions of the boxes used in

the search, or use FineRoot.m to discriminate between roots.

The command:

roots=RootFinder(35,layer_props,100,0,20,10,15,8);

looks for roots at 35 Hz using the layer props matrix. The lower-left hand corner

of the search window is at 100 m/s (real), and 0 m/s imaginary. Each box has

dimensions of 20 m/s (real) by 10 m/s (imaginary) There are 15 boxes in the real

search direction and 8 boxes in the imaginary direction. This command returns:
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roots =


110.5000 138.5000

11.5000 30.5000

2.0591 0.9928


The first column of roots contains the real and imaginary velocities, 110.5000 and

11.5000, respectively; however, the quality number 2.0591 in the third row indicates

that there were two roots in this search box. The 0.9928 quality number in row

3, column 2 indicates that there is a unique root at 138.5000 (real) and 30.5000

(imaginary). Rerunning RootFinder.m using a finer search box allows us to separate

the double root:

roots=RootFinder(35,layer_props,100,0,5,5,5,5);

roots =


101.5000 110.5000

11.5000 14.5000

1.0777 1.0798


RootFinder.m uses the argument principle (Chapter 5) for finding roots, and the

quality number in row 3 is computed numerically using the path integral described by

Equation 3.56. The quality number can be used to assess the quality of the real and

complex values obtained by RootFinder.m: A quality number between about 0.85 and

1.15 suggest a high quality solution, while values outside this range should probably

be verified using slightly different search parameters, or by using FineRoot.m.

The default interval (∆z = ∆x+i∆y) used in the path integration is 1 m/s in each

direction. These values can be adjusted by changing xi and yi inside the MATLAB R©

script; however, this can cause RootFinder.m to run very slowly. A better practice is
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to use FineRoot.m when a high degree of precision is required.

A.4 RootTracker

RootTracker.m tracks the complex velocity of a single root with respect to changing

frequency. As we noted in Section 4.2, the frequency dependent behavior of an in-

dividual root can be very non-linear, especially in the region near cut-off frequency.

RootTracker.m is optimized for following roots that originate along the real axis. For

roots originating along the imaginary axis, use RootHunter.m. A root’s viscosity de-

pendent behavior is reasonably linear, so RootTracker.m works by first finding the

system’s purely elastic real root, and then tracking its complex velocity while slowly

varying its viscoelastic parameters. After each viscosity increment, the root’s location

is recalculated using FineRoots.m.

Given an initial frequency, elastic root position, layer properties, and search pa-

rameters, RootTracker.m will find both the elastic and complex velocities of the root

at subsequent frequencies. For example, given the input matrix:

love roots =



0

0

0

30

176.4


The command:

love_roots=RootTracker(love_roots, 35,1,layer_props,3,5,10);
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will track a root from 30 Hz to 35 Hz at 1 Hz intervals. The 176.4 m/s value in row

5 is an initial velocity calculated using the purely elastic model. The search window

for each root is ± 3 from the root’s previous real velocity component and ± 5 from

the root’s previous imaginary velocity component. The root will be tracked at each

of 10 viscosity increments. This command returns the following matrix:

love roots =



0 158.7500 152.2500 147.0500 142.5500 138.8500

0 41.2500 37.2500 34.2500 31.9500 30.1500

0 1.0692 1.0689 1.0691 1.0692 1.0693

30 31 32 33 34 35

176.400 166.0500 157.9500 151.4500 146.2500 141.8500


where row 1 contains real velocity components, row 2 contains imaginary velocity

component, row 3 contains quality numbers, row 4 contains frequency, and row 5

holds the corresponding elastic velocity. If RootTracker.m is unable to find a root, it

will insert zeros in rows 1 and 2, and skip to the next frequency increment. Elastic

root behavior is easy to follow, so even if RootTracker.m is unable to find the complex

velocity, it usually is able to find the corresponding real velocity. The user can fill-in

missing complex roots by refining search parameters and using rows 4 and 5 of the

previously known good root as starting points.

A.5 RootHunter

RootHunter.m tracks the complex velocity of a single root with respect to changing

frequency. RootHunter.m must be initiallized with three initial complex velocities.
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Using those initial root locations, RootHunter.m predicts a root’s next position using

a second derivative model. RootHunter.m works best for roots that originate along

the imaginary axis. For roots that originate along the real axis, RootTracker.m may

be a better choice.

Given a matrix of initial frequencies, viscoelastic (complex) root positions, layer

properties, and search parameters, RootHunter.m will find the complex velocities of

the root at subsequent frequencies. For example, given the input matrix:

love roots =



197.3050 221.3500 204.8000

213.7550 132.2500 89.6500

1.0589 1.0587 1.0590

25 26 27

0 0 0


The command:

love_roots=RootHunter(love_roots, 30,1,layer_props,15,15,0.1,0.1);

will track a root from 27 Hz to 30 Hz at 1 Hz intervals, given the three initial root

locations in love roots. The search window for each root is ± 25 from the root’s

previous real velocity component and ± 5 from the root’s previous imaginary veloc-

ity component. The large real search window is required because of the non-linear

behavior of the real velocity component in the initial three values of love roots. The

location of each root will be determined using 0.1 m/s increments. This command

returns the following matrix:
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love roots =



197.3050 221.3500 204.8000 189.1025 176.5813 166.6981

213.7550 132.2500 89.6500 67.9525 55.0563 47.0106

1.0589 1.0587 1.0590 1.0585 1.0148 1.0146

25 26 27 28 29 30

0 0 0 0 0 0


where row 1 contains real velocity components, row 2 contains imaginary velocity

component, row 3 contains quality numbers, row 4 contains frequency. RootHunter.m

neither requires nor provides any values to row 5. If RootHunter.m loses track of a

root, it will quit searching. The user can fill-in missing complex roots by refining

search parameters and using rows 1 and 2 of the previously known good root as

starting points. In this example, we note that by 30 Hz, velocity behavior has

become reasonably well behaved, so it is possible to reduce the search window, thereby

decreasing processing time.

A.6 RootReports

RootReports.m uses the output from either RootTracker.m or RootHunter.m to gen-

erate a report of Love wave and layer phase velocities, attenuation coefficients, at-

tenuation ratios, and other information. Amongst other uses, this information can

be used to create plots of dispersion and attenuation like 4.10, and 4.11. Using the

output obtained from the previous discussion (Appendix A.5), the command:

love_report=RootTracker(layer_props,love_roots);
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produces the following report:

love report =



30 31 . . .

0 1.0692 . . .

0 158.7500 + 41.2500i . . .

Inf 0.1829− 0.0475i . . .

NaN 169.4685 . . .

0 0.04753 . . .

0 0.2598 . . .

100.4393 + 9.3836i 100.4687 + 9.6935i . . .

1.8605− 0.1738i 1.9208− 0.1853i . . .

101.3160 101.4040 . . .

−0.0934 −0.09648 . . .

400 400 . . .

0.4712 0.4869 . . .

400 400 . . .

0 0 . . .


where row 1 contains the frequency, row 2 the quality number, row 3 the Love wave

complex velocity, row 4 the Love wave complex wave number, row 5 the Love wave

phase velocity, row 6 the Love wave attenuation coefficient, and row 7 the Love wave

attenuation ratio. Rows 8 through 11 contain the layer 1 complex velocity, complex

wave number, phase velocity, and attenuation ratio. Rows 12 through 15 contain the

same information for layer 2, and so-on.
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A.7 FineRoot

FineRoot.m is the precision root locater for RootTracker.m and RootHunter.m, but it

can also be used as a stand-alone tool for finding precise root location than are given

by RootFinder.m. The command:

roots=FineRoot(35,layer_props,138.85,30.15,2,3,0.01,0.01);

will search at 35 Hz for a complex root in the vicinity of 138.85 + 30.15i m/s. The

search box will extend ± 2 in the real and ±3 in the imaginary direction. The search

increments will be 0.01 in both directions. The search will return:

roots =


138.8450

30.1450

1.1058


where 138.8450 and 30.1450 are the real and imaginary velocity components, respec-

tively, and 1.1058 is the quality number.

A.8 PropagateZ

PropagateZ.m produces a matrix of motion-stress values corresponding to each depth

in a user defined depth profile matrix.

depth_profile=[0:0.01:100];

was used to create a 100 meter depth profile with 0.01 m spacing. The command:

ms=PropagateZ(35,layer_props,depth_profile,138.845,30.145);
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creates plots of the displacement (Figure 4.2) and stress vectors, and the following

matrix:

ms =



0 0.01 . . .

1 1 . . .

0 0.01 . . .

1 0.9999 . . .

0 −3.9000e+ 05 . . .


where the first row is the depth, the second is the layer number, the third is the

thickness (depth below the previous layer boundary), row 5 is the displacement, and

row 6 is the stress. The displacement at the top of the matrix is arbitrarily set to 1

meter; however, this can be altered by adjusting the first row of l 0 in PropagateZ.m.

The algorithm used by PropagateZ.m is similar to that of Propagate.m; however,

instead of continuing calculations to the half-space, it calculates the value of the

motion-displacement vector at an arbitrary depth.

A.9 Propagate

Propagate.m creates the propagator matrix (Equation 3.26) and computes its objec-

tive function (Equation 3.27) for a given frequency and complex velocity. We should

note that the upper-right hand element of the matrix in Equation 3.21 can pose com-

putational difficulties when ν ≈ 0. This is rectified by using the approximation, hj/µ
∗

when the modulus of ν < 0.000001. This is justified by the following:
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lim
ν→ 0

sinh(νhi)

νµ∗
= lim

ν→ 0

1

νµ∗

∞∑
k=1

(νhj)
2k+1

(2k + 1)!
=
hj
µ∗

(A.1)

A.10 Cauchy

Cauchy.m returns the path integral (divided by 2πi) around a rectangular region

in the complex plane. This is a numerical approximation of Equation 3.56. This

should, ostensibly, be an integer representing the number of roots in the region, and

in most cases, Cauchy.m yields a value within about 0.15 units of the corresponding

integer. Deviations larger than this suggest that the integration path may have come

close to a root (either inside or outside the path), and that the integration may have

been compromised; hence, we use the term quality number for the value returned by

Cauchy.m.

A.11 SignalBuilder

SignalBuilder.m creates a signal matrix of time domain synthetic data for a single

mode. Each column of data represents the time domain signal obtained from a single

receiver (Figure 5.3). SignalBuilder.m requires that PropagateZ.m be located in the

same directory.

Signals may be added to an existing signal matrix, so that the effects of multiple

modes can be superposed. In addition to a signal matrix, SignalBuilder.m requires

a layer properties matrix, the output from RootReports.m, a depth profile matrix, a

source properties matrix, and information about the source-receiver offset, receiver

spacing, temporal sample interval, and pulse duration. As an example, we will build
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the fundamental mode of the signal used in our single viscoelastic layer examples.

This signal will be generated for an array of 96 geophones with 1 meter spacing.

Temporal sampling rate will be 600 samples/s over a 2 second interval. We will

simulate an 0.25 s pulse by superimposing signals taken at 0.25 Hz intervals, between

4 Hz to 120 Hz.

We begin by preparing a signal matrix called wiggles :

wiggles=zeros(1200,96);

Using either RootTracker.m or RootFinder.m, we find roots at 0.25 Hz increments

over the interval between 4 and 120 Hz. This information is then used by RootRe-

ports.m to create the following matrix:

love report = 1e+02∗



0.0400 0.0425 0.0450 . . .

0.0113 0.0113 0.0113 . . .

3.5006 + 0.02701i 3.2181 + 0.04681i 2.9355 + 0.0661i . . .

0.0007− 0.0000i 0.0008− 0.0000i 0.0010− 0.0000i . . .

3.5009 3.2188 2.9371 . . .

0.0000 0.0000 0.0000 . . .

0.0001 0.0001 0.0002 . . .

...
...

...
. . .


Source properties are tabulated in a 3 x n matrix. Each column corresponds to a

column of love report, with frequency in row 1, amplitude in row 2, and phase angle
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(in radians) in row 3. Because we are building a unit pulse, we will set amplitude

and phase angle to one and zero, respectively, for all freqencies:

layer props =


4 4.2500 4.5000 . . .

1 1 1 . . .

0 0 0 . . .


The partition function, Γ, discussed in Section 5.1 requires that the motion-stress

vector be integrated across the half-space. In practice, we find that limiting the

integration to a depth equal to about 1.5 wavelengths has no observable effect on

accuracy. Nevertheless, the integration is fairly quick: We will use a depth profile of

100 meters and 0.01 meter increments:

depth_profile=[0:0.01:100];

wiggles=SignalBuilder(wiggles,10,1,1/600,love_report,...

layer_props,depth_profile,source_props,0.25);

was used to create the fundamental mode signal for 5.3. The process was repeated in

order to add signals for the first three overtones.
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APPENDIX B:

FORWARD MODELING MATLAB R© CODE

B.1 About the Forward Modeling Utilities

The forward modeling utilities were tested using MATLAB R© Student Version, R2009a

on a 32 bit Apple MacBook R© with an Intel core duo microprocessor, and on a 64 bit

Apple i-Mac R© with a Core-2 duo microprocessor.



195

B.2 LoveObjects

function obj_fun=LoveObjects(freq,layer_props,search_limits,Lsquelch,Hsquelch)

%LoveObjects produces a matrix of the objective function and and a graph

%of imaginary velocity (Ci) versus real velocity (Cr).

%Lsquelch and Hsquelch are used to adjust the color axis.

%Requires that Propagate.m be in the same directory.

%example of a layer properties matrix for 3 VE layers over a half space.

%Properties are thickness (m),density (kg/m^3), shear modulus (Pa), and

%viscosity (Pa-s)

%layer_props=[1.67 1600 16E6 16000;1.66 1700 68E6 34000; 1.67 1700 153E6

%51000; 0 1800 288E6 0]

%example of a search limits matrix.

%row 1: lower bound, upper bound, increment for real velocity axis

%row 2: lower bound, upper bound, increment for imaginary velocity axis

%search_limits= [100,450,350;0,100,100];

lrv=search_limits(1,1);

urv=search_limits(1,2);

nrv=search_limits(1,3);

liv=search_limits(2,1);

uiv=search_limits(2,2);

niv=search_limits(2,3);

irv=(urv-lrv)/nrv; %Real Search Increment

iiv=(uiv-liv)/niv; %Imaginary Search Increment

obj_fun=zeros(niv+1,nrv+1); %Store Objective Function Here

for ii=0:nrv

for jj=0:niv

rv=lrv+ii*irv; %love wave real velocity component

iv=liv+jj*iiv; %love wave imaginary velocity component

obj_fun(jj+1,ii+1)=Propagate(freq,layer_props,rv,iv);

end

end
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figure;

imagesc(lrv:irv:urv,liv:iiv:uiv,log(abs(obj_fun(:,:))));

if Lsquelch ~= Hsquelch

caxis([Lsquelch Hsquelch]);

end

title([’Objective Function (’,num2str(freq),’Hz)’]);

xlabel(’Love wave real velocity--C_r, (m/s)’);

ylabel(’Love wave imag velocity--C_i, (m/s)’);

set(gca,’YDir’,’normal’); %Sets Y axis to a more conventional direction.

end
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B.3 RootFinder

function Roots = RootFinder(freq,layer_props,lx,ly,wx,wy,nx,ny)

%(frequency, layer properties matrix, left-real, lower-imag, box width,

% box height, number of boxes in real direction, number of boxes in

%imaginary direction)

%Requires Propagate.m

nroots=0;

Roots=zeros(3,1);

xi=1; %Search resolution in real direction.

yi=1; %Search resolution in imaginary direction.

for kk=0:ny

cy=ly+kk*wy;

for jj=0:nx

cx=lx+jj*wx;

%cx and cy are locations of the lower left corner of each sub box.

dx=cx+wx;

dy=cy+wy;

CI=Cauchy(freq,layer_props,cx,dx,cy,dy);

if abs(CI)>0.5

nroots=nroots+1;

for ii=1:wy/yi

ey=dy-ii*yi;

if abs(Cauchy(freq,layer_props,cx,dx,cy,ey)) < 0.5

Ci=ey+0.5*yi;

break;

end

end

for ii=1:wx/xi

ex=cx+ii*xi;

if abs(Cauchy(freq,layer_props,ex,dx,cy,dy)) < 0.5

Cr=ex-0.5*xi;
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break;

end

end

Roots(1,nroots)=Cr;

Roots(2,nroots)=Ci;

Roots(3,nroots)=abs(CI);

end

end

end

end
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B.4 RootTracker

function love_roots = RootTracker(love_roots,ffin,fi,layer_props,tx,ty,neta)

%Given an initial root position and Frequency, RootTracker finds subsequent

%RootPosition/Frequency pairs. By using the input file, love_roots,

%RootTracker can add new root locations to an existing file. fi is the

%frequency increment, and ffin is the final frequency. layer_props is an

%mxn matrix of material properties (see example), and tx and ty are the

%half search intervals. neta is the number of viscosity increments.

[rrows rcols]=size(love_roots);

fstart=love_roots(4,rcols); %frequency at which search begins.

realstart=love_roots(5,rcols);%Last real velocity at which a search began

x=realstart;

y=0;

cx=realstart-tx;

dx=realstart+tx;

cy=y-ty;

dy=y+ty;

[prows pcols]=size(layer_props);

layer_search=layer_props;

layer_search(:,4)=0;

for jj=fstart+fi:fi:ffin

layer_search(:,4)=0;

while abs(Cauchy(jj,layer_search,cx,dx,cy,dy))<0.5

realstart=realstart-sign(fi)*2*tx;

cx=realstart-tx;

dx=realstart+tx;

cy=y-ty;

dy=y+ty;

end

rcols=rcols+1;
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A=FineRoot(jj,layer_search,realstart,y,tx,ty,0.1,0.1);

love_roots(1,rcols)=A(1,1); %Real Velocity

love_roots(2,rcols)=A(2,1); %Imaginary Velocity

love_roots(3,rcols)=A(3,1); %Cauchy Integral/(2*pi*i)

love_roots(4,rcols)=jj; %Frequency

love_roots(5,rcols)=A(1,1); %Real Search Start Point

for kk=1:prows

for ll=1:neta

layer_search(kk,4)=ll/neta*layer_props(kk,4);

A=FineRoot(jj,layer_search,A(1,1),A(2,1),tx,ty,0.1,0.1);

love_roots(1,rcols)=A(1,1); %Real Velocity

love_roots(2,rcols)=A(2,1); %Imaginary Velocity

love_roots(3,rcols)=A(3,1); %Cauchy Integral/(2*pi*i)

end

end

end

end
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B.5 RootHunter

function love_roots = RootHunter(love_roots,ffin,fi,layer_props,tx,ty,xi,yi)

%Tracks and Records real and imaginary location of a root from flow in

%frequency intervals of fi given layer properties and an initial location

%for the root.

%RootHunter requires an input array with root locations corresponding to

%three different frequencies.

jcol=1; %Initialize Last Data Column

[nrows ncols]=size(love_roots); %Checking for end of data

jcol=ncols;

%real derivatives

delta=love_roots(4,jcol)-love_roots(4,jcol-1);

der1r=(love_roots(1,jcol)-love_roots(1,jcol-1))/delta;

delta=love_roots(4,jcol-1)-love_roots(4,jcol-2);

der1pr=(love_roots(1,jcol-1)-love_roots(1,jcol-2))/delta;

delta=(love_roots(4,jcol)-love_roots(4,jcol-2))/2;

der2r=(der1r-der1pr)/delta;

%imaginary derivatives

delta=love_roots(4,jcol)-love_roots(4,jcol-1);

der1i=love_roots(2,jcol)-love_roots(2,jcol-1)/delta;

delta=love_roots(4,jcol-1)-love_roots(4,jcol-2);

der1pi=love_roots(2,jcol-1)-love_roots(2,jcol-2)/delta;

delta=(love_roots(4,jcol)-love_roots(4,jcol-2))/2;

der2i=(der1i-der1pi)/delta;

fstart=love_roots(4,jcol) + fi;

x=love_roots(1,jcol) + der1r*fi+ der2r/2*fi^2;

y=love_roots(2,jcol)+ der1i*fi+ der2i/2*fi^2;
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for jj=fstart:fi:ffin

jcol=jcol+1;

A=FineRoot(jj,layer_props,x,y,tx,ty,xi,yi);

love_roots(1,jcol)=A(1,1);

love_roots(2,jcol)=A(2,1);

love_roots(3,jcol)=A(3,1);

love_roots(4,jcol)=jj;

delta=love_roots(4,jcol)-love_roots(4,jcol-1);

der1r=love_roots(1,jcol)-love_roots(1,jcol-1)/delta;

delta=love_roots(4,jcol-1)-love_roots(4,jcol-2);

der1pr=love_roots(1,jcol-1)-love_roots(1,jcol-2)/delta;

delta=(love_roots(4,jcol)-love_roots(4,jcol-2))/2;

der2r=(der1r-der1pr)/delta;

delta=love_roots(4,jcol)-love_roots(4,jcol-1);

der1i=(love_roots(2,jcol)-love_roots(2,jcol-1))/delta;

delta=love_roots(4,jcol-1)-love_roots(4,jcol-2);

der1pi=(love_roots(2,jcol-1)-love_roots(2,jcol-2))/delta;

delta=(love_roots(4,jcol)-love_roots(4,jcol-2))/2;

der2i=(der1i-der1pi)/delta;

x=A(1,1) + der1r*fi+der2r/2*fi^2;

y=A(2,1)+ der1i*fi+der2i/2*fi^2;

end

end
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B.6 RootReport

function love_report = RootReport(layer_props, love_roots)

%RootReport uses a material property matrix and the output from

%RootTracker to generate a report of:

%Row 1: Frequency

%Row 2: Quality Number

%Row 3: Love Wave Complex Velocity

%Row 4: Love Wave Complex Wave Number

%Row 5: Love Wave Phase Velocity

%Row 6: Love Wave Attenuation Coefficient

%Row 7: Love Wave Attenuation Ratio

%Row 8: Layer 1 Complex Velocity

%Row 9: Layer 1 Complex Wave Number

%Row 10: Layer 1 Phase Velocity

%Row 11: Layer 1 Attenuation Ratio

%Row 12: Layer 2...

%etcetera through half-space

[prows pcols]=size(layer_props);

[rrows rcols]=size(love_roots);

love_report=zeros(7+4*prows,rcols);

for jj=1:rcols

love_report(1,jj)=love_roots(4,jj);

love_report(2,jj)=love_roots(3,jj);

love_report(3,jj)=love_roots(1,jj)+i*love_roots(2,jj);

love_report(4,jj)=2*pi*love_roots(4,jj)/love_report(3,jj);

A=real(love_report(3,jj));

love_report(5,jj)=love_report(3,jj)*love_report(3,jj)’/A;

love_report(6,jj)=-imag(love_report(4,jj));

love_report(7,jj)=-imag(love_report(4,jj))/real(love_report(4,jj));

end

for jj=1:rcols
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for kk=0:prows-1

omega=2*pi*love_roots(4,jj);

rho=layer_props(kk+1,2);

mu=layer_props(kk+1,3);

eta=layer_props(kk+1,4);

csv2=1/rho*(mu+i*omega*eta);

love_report(7+4*kk+1,jj)=sqrt(csv2);

love_report(7+4*kk+2,jj)=omega/love_report(7+4*kk+1,jj);

love_report(7+4*kk+3,jj)=omega/real(love_report(7+4*kk+2,jj));

A=-imag(love_report(7+4*kk+2,jj));

B=real(love_report(7+4*kk+2,jj));

love_report(7+4*kk+4,jj)=A/B;

end

end

end
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B.7 FineRoot

function A= FineRoot(freq,layer_props,x,y,tx,ty,xi,yi)

%Given a center point and box dimensions, FineRoot will find the exact

%coordinares of a root within that box. xi and yi indicate search

%granularity.

%Requires that Cauchy.m and Propagate.m be located in the same directory.

lx=x-tx;

ly=x-ty;

A=zeros(3,1);

%x and y are centers, and tx and ty are tolerances.

cx=x-tx; %cx and cy are locations of the lower left corner of each sub box.

cy=y-ty;

dx=x+tx;

dy=y+ty;

CI=Cauchy(freq,layer_props,cx,dx,cy,dy);

if abs(CI)>0.5

for ii=0:yi:2*ty

ey=dy-ii;

if abs(Cauchy(freq,layer_props,cx,dx,cy,ey)) < 0.5

Ci=ey+0.5*yi;

break;

end

end

for ii=0:xi:2*tx

ex=cx+ii;

if abs(Cauchy(freq,layer_props,ex,dx,cy,dy)) < 0.5

Cr=ex-0.5*xi;

break;

end

end
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A(1,1)=Cr;

A(2,1)=Ci;

A(3,1)=abs(CI);

end

end
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B.8 PropagateZ

function l_profile=PropagateZ(freq,layer_props,depth_profile,rv,iv)

%PropagateZ returns the motion-stress vector for selected depths given a

%frequency, matrix of layer properties, real Love velocity, imaginary Love

%velocity, and a matrix of desired depths.

%(frequency, layer property matrix, Love real velocity,Love imaginary

%velocity)

%depth_profile=[1,0.01:0.01:100];

[np nz]=size(depth_profile);

l_0=[1;0];% Initialize Motion Stress Vector for surface conditions

%l_profile Row 1 = depth

%l_profile Row 2 = layer

%l_profile Row 3 = thickness

%l_profile Row 4 = motion vector

%l_profile Row 5 = stress vector

[nlayers nprops]=size(layer_props);

layer_tops=zeros(1,nlayers); %Z coordinate of each layer top

layer_tops(1,1)=0;

for kk=2:nlayers

layer_tops(1,kk)=layer_tops(1,kk-1)+layer_props(kk-1,1);

end

l_profile=zeros(5,nz); %Initializing l_profile matrix

l_profile(1,:)=depth_profile(1,:);

l_profile(2:3,1)=[1;0];

for jj=1:nlayers

for kk=1:nz

if l_profile(1,kk) > layer_tops(1,jj)

l_profile(2,kk)=jj;

l_profile(3,kk)=l_profile(1,kk)-layer_tops(1,jj);
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end

end

end

clv=rv+i*iv; %love wave complex velocity

clk2=(freq*2*pi()/clv)^2; %Love Wave complex wave numb. squared (K^2)

for jj=1:nz

Pzz0=[1,0;0,1]; %Initialize Propagator Matrix

layer=l_profile(2,jj);

for kk=1:layer-1

thk = layer_props(kk,1); %Layer kk thickness

rho = layer_props(kk,2); %Layer kk density

mu = layer_props(kk,3); %Layer kk shear modulus

eta= layer_props(kk,4); %Layer kk effective viscosity

muc= mu + i*eta*2*pi()*freq; %Layer kk complex effective viscosity

csv2=muc/rho; %Shear Wave Complex Velocity (squared)

csk2=(freq*2*pi())^2/csv2; %Shear Wave complex wave num. squared(k^2)

nu=sqrt(clk2 - csk2); %Complex Vertical Exponent

%Necessary to keep A[1,2] from exploding. See Appendix C.1

if abs(nu) <0.000001

A=[cosh(nu*thk),thk/muc;nu*muc*sinh(nu*thk),cosh(nu*thk)];

else

A=[cosh(nu*thk),sinh(nu*thk)/(nu*muc)...

nu*muc*sinh(nu*thk),cosh(nu*thk)];

end

Pzz0=A*Pzz0;

end

if layer < nlayers

thk = l_profile(3,jj); %Layer kk thickness

rho = layer_props(layer,2); %Layer kk density

mu = layer_props(layer,3); %Layer kk shear modulus

eta= layer_props(layer,4); %Layer kk effective viscosity

muc= mu + i*eta*2*pi()*freq; %Layer kk complex effective viscosity

csv2=muc/rho; %Shear Wave Complex Velocity (squared)

csk2=(freq*2*pi())^2/csv2; %Shear Wave complex wave num. squared (k^2)
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nu=sqrt(clk2 - csk2); %Complex Vertical Exponent

%Necessary to keep A[1,2] from exploding.

if abs(nu) <0.000001

A=[cosh(nu*thk),thk/muc;nu*muc*sinh(nu*thk),cosh(nu*thk)];

else

A=[cosh(nu*thk),sinh(nu*thk)/(nu*muc)...

nu*muc*sinh(nu*thk),cosh(nu*thk)];

end

Pzz0=A*Pzz0;

else

thk=l_profile(3,jj); %Depth to top of half space

rho = layer_props(nlayers,2); %Half space density

mu = layer_props(nlayers,3); %Half space shear modulus

eta= layer_props(nlayers,4); %Half space effective viscosity

muc= mu + i*eta*2*pi()*freq; %Half Space complex effective viscosity

csv2=muc/rho; %Shear Wave Complex Velocity (squared)

csk2=(freq*2*pi())^2/csv2; %Shear Wave complex wave num squared (k^2)

nu=sqrt(clk2 - csk2); %Complex Vertical Exponent

A=0.5*[exp(-nu*thk) -1/(muc*nu)*exp(-nu*thk)...

-muc*nu*exp(-nu*thk) exp(-nu*thk)];

Pzz0=A*Pzz0;

end

l_profile(4:5,jj)=Pzz0*l_0;

end

figure; %Displacement

plot(real(l_profile(4,:)),-depth_profile(1,:));

title([’Displacement (’,num2str(freq),’) Hz’]);

figure; %Stress

plot(real(l_profile(5,:)),-depth_profile(1,:));

title([’Stress (’,num2str(freq),’) Hz’]);

end
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B.9 Propagate

function OBJ=Propagate(freq,layer_props,rv,iv)

%(frequency, layer property matrix, Love real velocity,Love imaginary

%velocity)

[nlayers nprops]=size(layer_props);

nlayers=nlayers-1;

clv=rv+i*iv; %love wave complex velocity

clk2=(freq*2*pi()/clv)^2; %Love Wave complex wave number squared (k-squared)

Pzz0=[1,0;0,1]; %Initialize Propagator Matrix

for kk=1:nlayers

thk = layer_props(kk,1); %Layer kk thickness

rho = layer_props(kk,2); %Layer kk density

mu = layer_props(kk,3); %Layer kk shear modulus

eta= layer_props(kk,4); %Layer kk effective viscosity

muc= mu + i*eta*2*pi()*freq; %Layer kk complex effective viscosity

csv2=muc/rho; %Shear Wave Complex Velocity (v^2)

csk2=(freq*2*pi())^2/csv2; %Shear Wave complex wave number squared (k^2)

nu=sqrt(clk2 - csk2); %Complex Vertical Exponent

%Necessary to keep A[1,2] from exploding.

if abs(nu) <0.000001

A=[cosh(nu*thk),thk/muc;...

nu*muc*sinh(nu*thk),cosh(nu*thk)];

else

A=[cosh(nu*thk),sinh(nu*thk)/(nu*muc);...

nu*muc*sinh(nu*thk),cosh(nu*thk)];

end

Pzz0=A*Pzz0;

end

%Half Space and Boundary Value Matrix

%thk=sum(layer_props(1:nlayers,1)); %Depth to top of half space.

thk=sum(layer_props(1:nlayers,1));
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rho = layer_props(nlayers+1,2); %Half space density

mu = layer_props(nlayers+1,3); %Half space shear modulus

eta= layer_props(nlayers+1,4); %Half space effective viscosity

muc= mu + i*eta*2*pi()*freq; %Half Space complex effective viscosity

csv2=muc/rho; %Shear Wave Complex Velocity (squared)

csk2=(freq*2*pi())^2/csv2; %Shear Wave complex wave number squared (k^2)

nu=sqrt(clk2 - csk2); %Complex Vertical Exponent

Finv=1/(2*nu*muc)*[nu*muc*exp(nu*thk),-exp(nu*thk);...

nu*mu*exp(-nu*thk),exp(-nu*thk)];

H=Finv*Pzz0;

OBJ=H(2,1);

end
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B.10 Cauchy

function CI=Cauchy(freq,layer_props,cx,dx,cy,dy)

%Computes Cauchy Path Integral given frequency, layer properties,

%and corner points.

%Requires that Propagate.m be located in the same directory.

CI=0; %Initialize Cauchy Integral

for ii=cx:dx

num=Propagate(freq,layer_props,ii+1,cy)-Propagate(freq,layer_props,ii,cy);

den=Propagate(freq,layer_props,ii+1,cy)+Propagate(freq,layer_props,ii,cy);

CI=CI+2*num/den;

end

for ii=cy:dy

num=Propagate(freq,layer_props,dx,ii+1)-Propagate(freq,layer_props,dx,ii);

den=Propagate(freq,layer_props,dx,ii+1)+Propagate(freq,layer_props,dx,ii);

CI=CI+2*num/den;

end

for ii=cx:dx

num=Propagate(freq,layer_props,ii+1,dy)-Propagate(freq,layer_props,ii,dy);

den=Propagate(freq,layer_props,ii+1,dy)+Propagate(freq,layer_props,ii,dy);

CI=CI-2*num/den;

end

for ii=cy:dy

num=Propagate(freq,layer_props,cx,ii+1)-Propagate(freq,layer_props,cx,ii);

den=Propagate(freq,layer_props,cx,ii+1)+Propagate(freq,layer_props,cx,ii);

CI=CI-2*num/den;

end

CI=CI/(2*pi*i);

end
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B.11 SignalBuilder

function wiggles=SignalBuilder(wiggles,x0,dx,dt,love_report,layer_props,...

depth_profile,source_props,pulse)

%SignalBuilder adds signals to an existing matrix of signal data.

%wiggles(time,vsp).

%x0 is x coordinate of first VSP, dx is x increment, dt is time increment.

%love_report is output from RootReport.m

%layer_props is a layer properties matrix.

%depth_profile is the depth profile over which I_2 is integrated.

%source_props is a 3 x n matrix with [freq1 amp1 phase1; freq2 amp2

% phase2...]

%pulse is the duration of the source signal

%Requires that PropagateZ.m be located in the same directory.

[wrows wcols]=size(wiggles);

[rrows rcols]=size(love_report);

for kk=1:rcols

f = love_report(1,kk);

alpha=love_report(6,kk);

kr=real(love_report(4,kk));

%Calculates the partition function

rv=real(love_report(3,kk));

iv=imag(love_report(3,kk));

l_profile=PropagateZ(f,layer_props,depth_profile,rv,iv);

Kr=2*pi*f*rv/(rv^2+iv^2);

%Computes I_sigma

I_sigma=0;

[nrows ncols]=size(l_profile);

for jj=1:ncols-1

dz=l_profile(1,jj+1)-l_profile(1,jj);

layer=l_profile(2,jj);

I_sigma=I_sigma+abs(l_profile(4,jj))^2*layer_props(layer,3)*dz;

end

Gamma=1/(8*I_sigma)*sqrt(2/(pi*Kr*1));
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v=love_report(5,kk);

omega=2*pi*f;

ll=1;

while source_props(1,ll) ~= f

ll=ll+1;

end

amp=source_props(2,ll);

ph=source_props(3,ll);

for mm=1:wcols

r=x0+(mm-1)*dx;

t0=r/v;

tp=t0+pulse;

tlast=min(wrows,floor(tp/dt));

for nn=ceil(t0/dt):tlast

wiggles(nn,mm)=wiggles(nn,mm)+1/sqrt(r)*Gamma*amp*...

exp(-alpha*r)*cos(omega*nn*dt-kr*r+ph-pi/4);

end

end

end

end
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APPENDIX C:

INVERSION UTILITIES: DOCUMENTATION

The inversion utilities are a group of related MATLAB R© scripts and functions. In

this appendix, we will outline the procedures used to create a shot gather (figure

5.3), K-f plot (figure 5.5), and invert dispersion and attenuation curves using the

Gauss-Newton inversion method. The code for each of these utilities can be found in

Appendix D.

C.1 Getting Started

First, be sure that all required functions are loaded in the same directory. The utility

Jacob.m requires that FineRoot.m and Cauchy.m be loaded in the same directory.

� Use WigglePlot.m to look at data quality. The slopes of the bottom

and top portions can be used as initial estimates of the top layer and

half-space shear wave velocities.

� Use KFreq.m to construct K-f plots, then visually identify patterns of

maxima corresponding to Love wave modes. For each wave number (K),

plot a slice of the data and manually identify, measure, and record each

peak corresponding to the Love wave mode. For each peak, determine the

phase velocity using the relationship CL = f/K.

� Determining attenuation coefficient will require amplitude data from two

different source offsets. Repeat the previous procedure for data taken at a
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second source offset distances, and then determine attenuation coefficients

at each frequency using the relationship α = 1
(d2−d1)

ln(A2

A1
), where A2 and

A1 are amplitudes at two different source offsets, d2 and d1.

� Use FilePrep.m to prepare appropriately formatted data matrices for

Jacob.m and LoveInv.m.

� Use Jacob.m to create a Jacobian for the inversion.

� Use LoveInv.m to invert the data, and obtain estimates of selected layer

properties (The Inverse Problem). Repeat the process to obtain a better

estimate.

C.2 WigglePlot

WigglePlot.m produces a shot gather, such as that in figure 5.3. The function call,

wig=WigglePlot(wiggles,lo,hi,dx,dt,nt,scale,exclud);

plots the data in the m x n matrix wiggles, where m is the number of measurement

time intervals, and n is the number of receivers (geophones). Each column contains

time domain data from a single receiver. Data can be plotted over a range of receiver

numbers, between lo and hi. dx and dt indicate the receiver spacing (meters) and

time increment (seconds). nt is the total interval over which the signal was gathered

(in seconds). The scaling factor, scale allows trace magnitude to be expanded. The

1 x n matrix exclude allows selected traces to be excluded. If no traces are to be

excluded, set exclude to []. For example:
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wig=WigglePlot(wiggles,15,96,1.5,1/600,2,1.5,[22 35 73]);

will use data from the 1200 row x 96 column matrix wiggles to create a shot gather.

The plot will only include traces from receivers 15 to 96. Receiver spacing is 1.5

meters, and data was gathered at a 600 Hz sample rate (0.00167 s sampling interval).

All 2 seconds of data will be displayed. The magnitude of each trace will be magnified

1.5 times, and traces 22, 35, and 73 will be excluded from the final plot.

C.3 Kfreq

Kfreq.m creates a K-f plot like that of figure 5.5. The command:

[fshot ffshot]=Kfreq(wiggles,dx,dt);

plots data from the m x n matrix wiggles, where m is the number of rows of time step

information, and n corresponds to the number of receivers. dx and dt are, respectively,

receiver spacing and time increment. The matrices fshot and ffshot contain Fourier

transformed (time domain) and double Fourier transformed (K-f domain) data. If

wiggles is a 1200 row by 96 column matrix, the command:

[fshot ffshot]=Kfreq(wiggles,1/6,1/600);

produces a plot with a wave number axis scaled from 1/(n ∗ dx) = 6/96 = 1/16 to

1/dx = 6, and frequency from f/m = 600/1200 = 0.5 to 600. For the plots in chapter

6, the data was plotted with an additional 1200 rows in the time direction, and 96

extra columns in the spatial direction.

Once the K-f plot has been generated, it is used to identify modes. For each

mode, determine a set of K-f values visually, and then make a K-slice from ffshot.
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This command was used to generate the K-f slice (frequency-amplitude curve) in the

right panel of figure 5.7:

plot(600:-600/2400:600/2400,abs(ffshot(1:2400,16)));

The data from wiggles was padded with an additional 1200 rows and 96 columns of

zeros, resulting in a 2400 x 192 matrix. ffshot has the same dimensions. The number

16 indicates the column number of ffshot. The corresponding wave number can be

found: K = colno
dx∗ncols = 16

0.167∗192
= 0.5.

C.4 FilePrep

The utility FilePrep.m converts matrices to a form that is suitable for Jacob.m and

LoveInv.m from an input matrix, seed, and a delta layer properties matrix, dP. seed is

an (m+1) x (n+1) matrix of data with frequency in column 1, and a label in column 2

indicating whether the column will be used to invert velocity data (1), or attenuation

data (2). The matrix:

seed =



0 1 2 1 . . .

9 117 + 6i 126 + 3.2i 115 + 4.2i . . .

10 112.75 + 6.25i 124.2 + 3.8i 114.5 + 4.5i . . .

...
...

...
...

. . .


includes data at 9 and 10 Hz. The first column indicates the frequency corresponding

to each measurement. The 1s and 2s in the first row of data indicate that the second

column will be treated as dispersion information, the third column will be treated as
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attenuation, and the fourth column will be treated as dispersion information. The

matrix:

dP =

0 0 1E5 500

0 0 0 0


is a delta layer properties matrix that instructs FilePrep.m to build the appropriate

matrices for a two parameter model using shear modulus and viscosity. Jacob.m will

use shear modulus and viscosity increments, respectively, of ±1E5 MPa and ±500

Pa-s. The function call:

[Lseed tune J]=FilePrep(dP,seed);

produces three matrices. The data from seed are reformatted into a four column

matrix called Lseed. The first three columns of Lseed are frequency, a column/row

identifier, and a flag (1 or 2) indicating whether the data will be treated as dispersion

information or attenuation information. All of the data is contained within column

4. The matrix:

Lseed =



9 2.0010 1 117 + 6i

10 2.0020 1 112.75

9 3.0010 2 126 + 3.28

...
...

...
...


contains the (partial) output from FilePrep.m. The column/row identifier of 2.0020

indicates that the data originally came from column 2 and row 2 of seed.

The tune matrix includes the same three columns of identifying information as

Lseed, and is followed by five columns that can be used to optimize calculation of
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the Jacobian in Jacob.m. The value in column 5 modulates the values of dP for the

corresponding row. Columns 4, 5, 6, and 7 are, respectively, window sizes and search

increments used by Jacob to hunt for roots (These serve the same function as the

corresponding values used by RootTracker.m). The output is:

tune =



9 2.0010 1 1 10 10 0.1 0.1

10 2.0020 1 1 10 10 0.1 0.1

9 3.0010 2 0.1 5 4 0.5 0.5

...
...

...
...


In this matrix, the first two rows of tune have been set to the defaults; however, the

user has modified the parameters in the third row. When computing the correspond-

ing Jacobian, the values of the delta properties matrix (dP) will be multiplied by 0.1.

Also, the size of the window used to search for the changing root will be 5 and 4 m/s

in the real and imaginary directions, respectively. The search resolution (an indicator

of search accuracy) has been reduced to 0.5 m/s. More information about using the

tune matrix is found in the section on Jacob.m.

FilePrep.m also produces an empty Jacobian matrix for use by Jacob.m.

C.5 Jacob

Jacob.m calculates the Jacobian matrix associated with a given layer properties

model. Jacob.m requires that FineRoots.m and Cauchy.m be located in the same

folder. Jacob.m computes the Jacobian using a central difference formulation. For

each layer property used in the model, it finds the location of a root using G(prop+

∆prop) and G(prop−∆prop), where ∆prop is obtained from the dP matrix. This is
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then divided by 2∆prop. If ∆prop is too large, Jacob.m may not be able to identify

the root. To correct this, the corresponding modulation factor (column 4) of tune can

be reduced. Alternatively, the size of the search window in columns 5 and 6 can be

increased. Increasing the search window can greatly increase processing time. When

accuracy does not suffer, search resolution (columns 7 and 8) can be reduced with a

concomitant decrease in processing time.

The command:

J=Jacob(layer_props,Lseed,J,tune,dP);

produces an m x n Jacobian matrix, where m is the number of data points being

inverted, and n is the number of properties used in the model.

C.6 LoveInv

LoveInv.m inverts the data to find ∆m, the delta layer properties matrix. The

command:

[dm Covm]=LoveInv(Ldata,Lseed,J,W.Y,covd);

invokes LoveInv.m. Lseed was discussed in the previous section. It contains values of

roots for the assumed properties matrix specified in layer props. Ldata is a matrix

of data values (obtained from a dispersion or attenuation curve), and should be for-

matted exactly like Lseed. FilePrep.m can be used to pepare Ldata so that each of

its entries corresponds exactly to those in Lseed.

W and Y are, respectively, diagonal row and column weighting matrices that are

defined by the user. W should be an m x m diagonal matrix, where m is the number
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of rows in Ldata. For the inversion procedures of chapter 6, the diagonal entries were

set equal to the reciprocal of the standard deviation of each group of data from the

corresponding data row (for example, all mode 0 attenuation data, or all mode 1

dispersion data).

Y is a column weighting matrix that enhances stability of the solution. Y is an

n x n diagonal matrix, where n is the number of independent variables in the model

(i.e. the number of columns of J ). When the typical values of each column are of the

same order of magnitude, the diagonal entries of Y can be set to 1. For the inversion

procedures of chapter 6, the diagonal entries were set equal to the average values of

the corresponding columns.

Covd is an m x m data covariance matrix, where m is the number of rows in Ldata.

Generally, covariance information was unavailable, and only the diagonal (varance)

entries were used. Variance was imputed from the residuals obtained from a line or

polynomial of best fit through the local data.

To obtain an estimate of layer properties, add the appropriate value of dm to the

corresponding entry in the layer properties matrix. In general, the method converges

within five or fewer iterations.
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APPENDIX D:

INVERSION MATLAB R© CODE

D.1 About the Inversion Utilities

The inversion modeling utilities were tested using MATLAB R© Student Version,

R2009a on a 32 bit Apple MacBook R© with an Intel core duo microprocessor, and on

a 64 bit Apple i-Mac R© with a Core-2 duo microprocessor.



224

D.2 WigglePlot

function wig=WigglePlot(wiggles,lo,hi,dx,dt,nt,scale,exclud)

%displays a wiggle plot

%wiggles data from all shot points (time x vsp)

%wig=traces of shot points excluding those in exclud

%lo and hi: lowest and highest trace to be plotted

%dx=distance between traces (use 1 to plot station)

%dt=time sampling interval

%nt=number of time increments

%scale=width of a wiggle

%e.g. exclud = [1 9 16] to exclude traces 1,9, and 16. [] for all traces

npts=nt;

figure;

axes(’XAxisLocation’,’top’);

hold on;

[nrows ncols]=size(exclud);

trinfo=zeros(1,hi-lo+1);

wig=zeros(npts,hi-lo+1);

for ii=lo:hi

trace = ii;

trinfo(1,ii)= max(abs(wiggles(:,ii)))/scale;

wig(:,ii)=ii*dx+dx*wiggles(:,ii)/trinfo(1,ii);

for jj=1:ncols

if exclud(1,jj)==ii;

wig(:,ii)=0;

end

end

plot(wig(:,ii),dt:dt:npts*dt);

end

axis([lo*dx hi*dx dt npts*dt]);

axis ij;

end
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D.3 Kfreq

function [fshot ffshot]=Kfreq(wiggles,dx,dt)

%Creates a K-f plot of wiggles, and produces files of the Fourier transformed

%(time domain) and double Fourier transformed (K-f domain) data.

[nrows ncols]=size(wiggles);

fshot=zeros(nrows,ncols);

ffshot=zeros(nrows,ncols);

for ii=1:ncols

fshot(:,ii)=fft(wiggles(:,ii));

end

for ii=1:nrows

ffshot(ii,:)=fft(fshot(ii,:));

end

k=1/dx;

f=1/dt;

imagesc(k:-k/ncols:k/ncols,f/nrows:f/nrows:f,log(abs(ffshot)));

end
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D.4 FilePrep

function [Lseed tune J]=FilePrep(dP,seed)

%FilePrep converts matrices to a form suitable for Jacob.m and LoveInv.m.

%The matrix seed must be in a format with frequency in column 1,

%and either dispersion or attenuation information in the remaining columns.

%The first row of each data column should identify the column as either

%containing velocity (1) or attenuation (2) information. FilePrep.m

%ignores entries of zero. FilePrep.m may be used to prepare either data

%matrices containing real velocities, or predictor files containing complex

%velocities.

%dP is an m x 4 matrix of delta layer properties used to calculate the

%Jacobian. The entries should correspond, exactly, to those in the layer

%properties matrix. For properties not used in a model, enter zero.

%tune is a default tuning matrix that can be used to optimize the operation

%of Jacob.m. The first three colums of tune are intended to help the user

%navigate, and not used by any subsequent operation. Cols 1,2,3 are the

%frequency, col.row of the seed entry, and the vel/attenuation

%flag from row 1. Columns 4 through 8 are default values that can be

%changed in order to stabilize values of the Jacobian. Typically, the

%values should be changed to 1/10th of their default values if data

%corresponds to a cut-off frequency.

%J is a blank input file for Jacob.m.

[lrows lcols]=size(dP);

[srows scols]=size(seed);

Lseed=zeros(1,4);

tune=zeros(1,8);

kk=0;

%default values of tuning matrix

tx=10;

ty=10;

xi=0.1;

yi=0.1;
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%Determine number of cols in Jacobian

jcols=0;

for jj=1:lrows

for kk=1:lcols

if dP(jj,kk)~=0

jcols=jcols+1;

end

end

end

%Transform seed into an n x 4 array containing frequency (row 1),

%complex velocity (row 2), a flag indicating whether this will be

%processed using dispersion (1) or attenuation (2) criteria, and an

%information column containing the corresponding row/column of seed_roots.

jrows=0;

for ii=2:scols

for jj=2:srows

f=seed(jj,1);

cv=seed(jj,ii);

flag=seed(1,ii);

info=ii+jj/100;

if cv ~= 0

jrows=jrows+1;

Lseed(jrows,:)=[f info flag cv];

tune(jrows,:)=[f info flag 1 tx ty xi yi];

end

end

end

J=zeros(jrows,jcols);

end
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D.5 Jacob

function J=Jacob(layer_props,Lseed,Jin,tune,dP)

%layer_props is an m x 4 matrix of layer properties

%Lseed is an m x 4 matrix containing frequency, a row/column

%identifier, a flag signaling whether the row should be treated as a

%dispersion curve (1) or as an attenuation curve (2), and complex

%velocity.

%dP is an m x 4 matrix of delta layer properties used to calculate the

%derivative (corresponds to layer_props). A zero in a row/column of dP

%indicates that that property should not be used in the computation.

[usrows uscols]=size(Lseed);

[lrows lcols]=size(layer_props);

[jrows jcols]=size(Jin);

P=layer_props;

J=Jin;

for ii=1:usrows

f=Lseed(ii,1);

x=real(Lseed(ii,4));

y=imag(Lseed(ii,4));

flag=Lseed(ii,3);

fact=tune(ii,4);

tx=tune(ii,5);

ty=tune(ii,6);

xi=tune(ii,7);

yi=tune(ii,8);

if flag==1

%Calculates Jacobian for Dispersion Curves

jcols=0;

for jj=1:lrows

for kk=1:lcols

if dP(jj,kk)~=0

jcols=jcols+1;
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PP=P;

PM=P;

PP(jj,kk)=P(jj,kk)+fact*dP(jj,kk);

PM(jj,kk)=P(jj,kk)-fact*dP(jj,kk);

A=FineRoot(f,PP,x,y,tx,ty,xi,yi);

B=FineRoot(f,PM,x,y,tx,ty,xi,yi);

Ca=(A(1,1)^2+A(2,1)^2)/A(1,1);

Cb=(B(1,1)^2+B(2,1)^2)/B(1,1);

J(ii,jcols)=(Ca-Cb)/(2*fact*dP(jj,kk));

end

end

end

else

%Calculates Jacobian for Attenuation Curves

jcols=0;

for jj=1:lrows

for kk=1:lcols

if dP(jj,kk)~=0

jcols=jcols+1;

PP=P;

PM=P;

PP(jj,kk)=P(jj,kk)+fact*dP(jj,kk);

PM(jj,kk)=P(jj,kk)-fact*dP(jj,kk);

A=FineRoot(f,PP,x,y,tx,ty,xi,yi);

B=FineRoot(f,PM,x,y,tx,ty,xi,yi);

Ca=2*pi*f*A(2,1)/(A(1,1)^2+A(2,1)^2);

Cb=2*pi*f*B(2,1)/(B(1,1)^2+B(2,1)^2);

J(ii,jcols)=(Ca-Cb)/(2*fact*dP(jj,kk));

end

end

end

end

end

end
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D.6 LoveInv

function [dm Covm]=LoveInv(Ldata,Lseed,J,W,Y,Covd)

%be sure that the data rows and unwrpt_seed rows correspond exacly to the

%Jacobian rows.

%W is an m x m Row Weighting Matrix, where m is the number of rows in

%data/J.

%Y is an n x n column weighting matrix, where n is the number of columns

% in the Jacobian.

%Cov is an n x n covariance matrix containing variances. If covariance

%information is unknown, use a diagonal matrix with variance equal to the

%variances of the corresponding elements of the data vector.

[usrows uscols]=size(Lseed);

pred_data=zeros(usrows,1);

for ii=1:usrows

rv=real(Lseed(ii,4));

iv=imag(Lseed(ii,4));

f=Lseed(ii,1);

if Lseed(ii,3)==1

Cl=(rv^2+iv^2)/rv;

pred_data(ii,1)=Cl;

else

alpha=2*pi*f*iv/(rv^2+iv^2);

pred_data(ii,1)=alpha;

end

end

r=Ldata(:,4)-pred_data;

Q=W*J*Y;

H=Y*(Q’*Q)^-1*Q’*W;

dm=H*r;

Covm=H*Covd*H’;

end




