

Micron School of

**Materials Science and Engineering** 

# Phase Field Modeling of Martensitic Phase Transformation in Nitinol

Eric Rivera<sup>1</sup>, Mahmood Mamivand<sup>2</sup>

<sup>1</sup>Department of Mechanical Engineering, University of Puerto Rico, Mayagüez <sup>2</sup>Department of Mechanical and Biomedical Engineering, Boise State University



## Introduction

Nitinol (NiTi), is a Shape Memory Alloy (SMA) composed of nickel (Ni) and titanium (Ti). SMAs are characterized by the Shape Memory Effect (SME), which results from a crystalline phase change known as "Thermoelastic Martensitic Transformation". If the material is deformed and then heated, Nitinol's crystallographic arrangement changes from monoclinic (Martensite) to cubic recovering its original pre-deformed (Austenite), microstructure. These characteristics makes Nitinol useful for many biomedical and industrial applications.

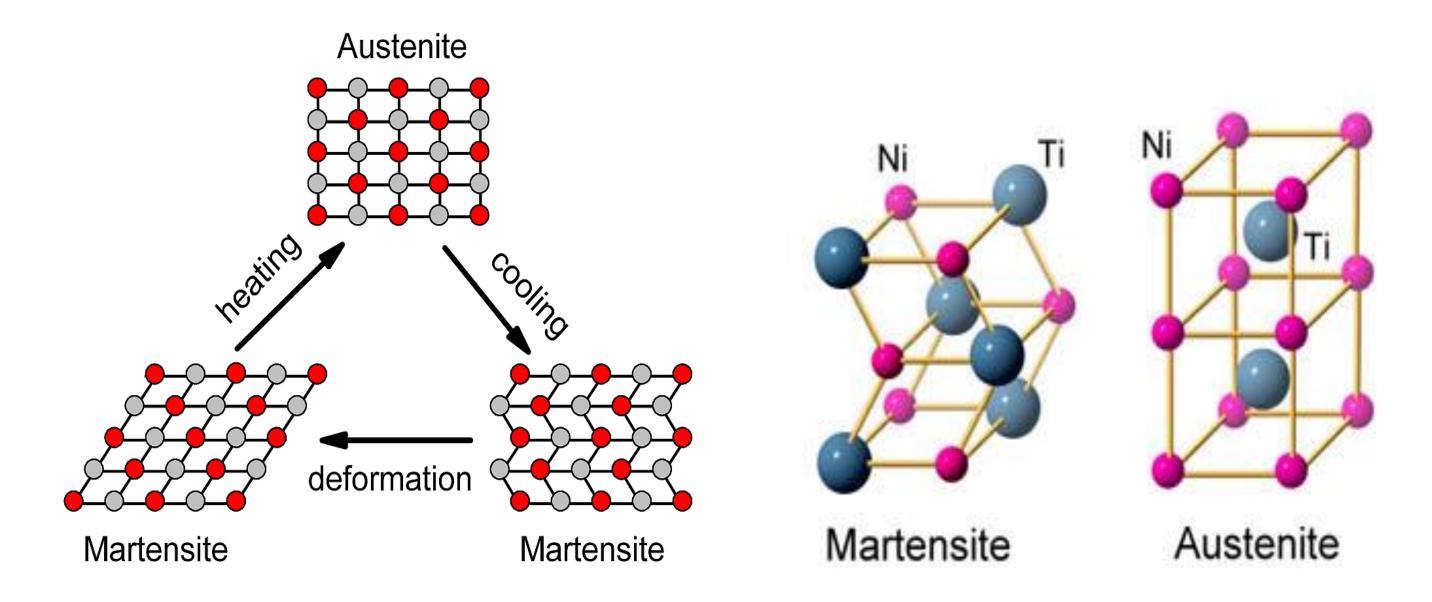



Figure 1: Martensitic Phase **Transformation (MPT)** 

Figure 2: Crystallographic **Arrangements of NiTi** 

## Objectives

Develop a 2D phase field model to study the Martensitic Phase Transformation in NiTi

Establish a phase field methodology that is generally applicable to distinct SMAs

Conduct simulations in a temperature regime in which the alloy exhibits the SME

## Methods

Phase Field Method

Ginzburg-Landau Theory

MOOSE Software

Figure 3: Methodology for MPT Simulation

The total Gibbs free energy for a proper MPT is defined as the sum of the local and elastic free energy densities and the coupling of the transformation strain tensor  $\varepsilon_t$ through a 2-3-4 polynomial  $\varphi(\eta)$ , where a is a constant and η is the order parameter.

$$F_{Gibbs} = F_{loc} + F_{el} + \varepsilon_t \varphi(\eta)$$

$$\varphi(\eta) = a\eta^2 + (4 - 2a)\eta^3 + (a - 3)\eta^4$$

$$0 \le a \le 6; \ 0 \le \eta \le 1$$

 $F_{loc}$  is expressed as a 2-3-4 polynomial, dependent on the temperature T and  $\eta$ .

$$F_{loc} = F(T, \eta) = A\eta^2 + (4\Delta G^T - 2A)\eta^3 + (A - 3\Delta G^T)\eta^4$$

A is constant and  $\Delta G^T$  is the change is Gibbs free energy from Austenite to Martensite. For the simulation, the temperature was reduced from 333K to 100K to generate a temperature-induced MPT. For a=3 and the  $\Delta T$  described above,  $F(T, \eta)$  and  $\varphi(\eta)$  are defined as:

$$\varphi(\eta) = 3\eta^2 - 2\eta^3$$

$$F(T,\eta) = -1021\eta^2 + 470\eta^3 + 158\eta^4$$

#### Results

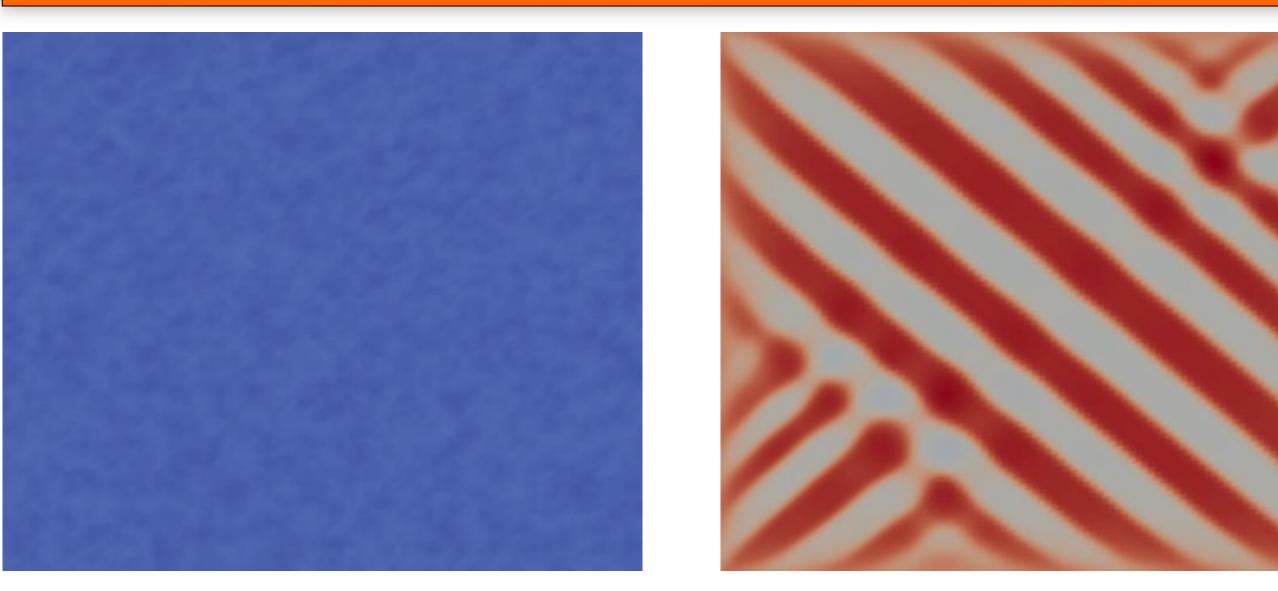



Figure 4: Initial Microstructure Figure 5: Final Microstructure

Austenite

Martensite Var. 1

Martensite Var. 2

The mesh grids are colored by the value of the order parameter η, representing different microstructure variants. The simulation conducted utilized a reference that is being refined. Similar results are hypothesized.

#### Conclusion

- The Ginzburg-Landau theory is a practical approach to understand the relationship between the Austenite and Martensite phases
- Different temperature-induced Martensite variants may coexist within the material as a result of distinct twinned microstructure arrangements

### Future Work

Revise the MOOSE input parameters for quantitative modeling of MPT in NiTi

Apply the described phase field model to distinct SMAs to study their microstructure evolution

[3] Treatments, T. (2002). Advanced Engineering Materials, 4(7), 437–451.

The project described was supported by the National Science Foundation via the REU Site: Materials for Society at Boise State University under Grant No. DMR 1658076



<sup>[1]</sup> Mamivand, M., Zaeem, M. A., & El Kadiri, H. (2013). Computational Materials Science, 77, 304–311.

<sup>[4]</sup> Tang, W. (1997). Metallurgical and Materials Transactions A, 28(3), 537–544.