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ABSTRACT

In a complex and dynamic world, the assumption that relationships in a system

remain constant is not necessarily a well-founded one. Allowing for time-varying

parameters in a regression model has become a popular technique, but the best way

to estimate the parameters of the time-varying model is still in discussion. These

parameters can be autocorrelated with their past for a long time (long memory), but

most of the existing models for parameters are of the short memory type, leaving the

error process to account for any long memory behavior in the response variable. As an

alternative, we propose a long memory stochastic parameter regression model, using

a fractionally integrated (ARFIMA) noise model to take into account long memory

autocorrelations in the parameter process. A fortunate consequence of this model is

that it deals with heteroscedasticity without the use of transformation techniques.

Estimation methods involve a Newton-Raphson procedure based on the Innovations

Algorithm and the Kalman Filter, including truncated versions of each to decrease

computation time without a noticeable loss of accuracy. Based on simulation results,

our methods satisfactorily estimate the model parameters. Our model provides a

new way to analyze regressions with a non-stationary long memory response and can

be generalized for further application; the estimation methods developed should also

prove useful in other situations.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In a complex and dynamic world, the assumption that relationships in a system

remain constant is not necessarily a well-founded one. Classical time series regression

analysis assumes that the relationships between the explanatory variables and the

response variables are constant. In situations where this is not the case, applying a

classical time series regression model can lead to non-negligible errors in our predic-

tions of the response variables. Researchers in other fields have turned to modeling

situations with non-constant coefficients to explain a more dynamic relationship

between a predictor and its response. For example, changing house prices in the

United Kingdom were modeled via time-varying coefficients in [3]. For simplicity, we

concentrate on the univariate time series regression, classically represented as

yt = zTt β + εt (1.1)

where yt is the response variable, zt is a known r × 1 vector (z1t, z2t, ...zrt)
T of

explanatory variables, β is an unknown r×1 vector (β1, ...βr) of regression coefficients,

and εt is the error at time t. Typically, βt and εt are assumed to be uncorrelated.

This implies that var(yt) = var(εt). That means any changes in the variance of the
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response is allegedly due to a change in the variance of the errors. While this may

be the case, a change in variance could also be due to a change in the relationship

between the explanatory variables and the response variable. Theoretical fixes for

non-stationary variance do exist and have been able to model some situations quite

well [7]. However, a different approach, one where changes in the variance are due to

the dynamic relationship between yt and zt, may prove more efficient and instructive.

A series, {yt}, is said to be stationary if its mean and autocovariance function

(ACVF), γy(h), are independent of t. That is, a stationary series has the same mean

for every time point in the series. Furthermore, a stationary series has Cov(yt, ys) =

Cov(yt+i, ys+i) for all i such that t + i, s + i ∈ 1, ..., n. In that case, we can set

h = |t − s| and say Cov(yt, ys) = Cov(yi, yi+h) = γy(h), as the covariance between

the variables depends only on the lag h = |t − s|. In other words, the relationship

between two observations only depends on how far apart they are, and not on when

they appear in the series. If γy(h) decreases very slowly, the data set is said to be

modeled by a long memory time series. More precisely, a data set is long memory if

∞∑
h=−∞

|γy(h)| =∞. (1.2)

The most widely used model for long memory time series is the ARFIMA(p, d, q), or

autoregressive fractionally integrated moving-average model. The popularity of the

ARFIMA(p, d, q) model may lie in its versatility; it can approximate well any long

memory process [18] and can also account for some short memory behavior [10]. It

is also common for an ARFIMA process to have local changes in mean even though

it is stationary, which can account for otherwise inexplicable shifts in the mean of a

time series.
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There are many different ways to account for long memory behavior in the re-

sponse variable of a time series regression. In the classical model, the long memory

component of the response is taken into account in the error series, {εt}. In this

case, we often model εt as an ARFIMA(p, d, q) process. This approach has been

fairly successful in economic and climatology data sets [1], [9], [12], [13], and [14].

Unfortunately, the complicated autocovariance structure of ARFIMA(p, d, q) models

presents a major difficulty with this technique. The inherent issues with analyzing

a series that is defined using a non-convergent infinite sum make more traditional

investigatory procedures challenging if not impossible. Furthermore, because a data

set can show both long memory and short memory properties, more complicated

models arise in research. One commonly used model of this type is a linear regression

with a stochastic ARMA parameter and long memory errors, discussed in Chapter 2.

However, treating long memory as part of the error series may under-emphasize the

importance of the long memory factor in the response.

1.2 Literature Review

In 1970, Thomas Burnett and Donald Gurthrie [4] developed estimators for stochastic

parameters. They found the best linear predictors that minimized the mean square

error, but they assumed that observation and explanatory variables were stationary

and that the stochastic parameter had a known covariance structure. In this paper,

we also assume that our stochastic parameter has a known covariance structure, but

relax the assumption that the observation and explanatory variables are stationary.

Given that most data sets are not stationary, this is an important improvement.

In “A Survey of Stochastic Parameter Regression” [20], Barr Rosenberg explains
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the importance of the stochastic parameter regression models. First, he makes

the distinction between stochastic and systematic parameter processes. Systematic

parameters vary with time but are deterministic and can thus be defined by a function.

Stochastic parameters, however, are actually a realization of a process at a given time

t. Rosenberg is slightly dismissive of stochastic parameter regression models in which

the parameters are stationary time series processes, saying they are of theoretical

value, but as they cannot, in general, be written in Markovian Canonical Form,

the computational burden of these approaches is too high to be useful. A general

comparison of the OLS approach to the stochastic parameter approach is made. In

it, Rosenberg reports that inappropriate use of fixed-parameter regression results in

unbiased but highly inefficient estimation of parameters. In fact, the OLS tends to

estimate the average of the stochastic process, sometimes resulting in predictions

that are merely an average. Methods of estimation for stochastic parameters are

discussed, with the maximum likelihood estimation and Bayes Estimation being

the most commonly applied, along with the Kalman Filter estimation. Rosenberg

concludes with an example in economics illustrating how stochastic parameter models

are important; if the stochastic process itself is a meaningful quantity, then changing

relationships between predictor and response need to be more meticulously analyzed.

Newbold and Bos developed a stochastic regression model similar to the one dis-

cussed in this paper. In their paper, “Stochastic Parameter Regression Models” [17],

they regressed the quarterly inflation rate on the quarterly interest rate with the

stochastic parameter following an AR(1) process with mean b as follows:

yt = α + βtzt + νt, (1.3)

(βt − b) = φ(βt−1 − b) + ωt, (1.4)
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where νt are iid errors. Robinson and Hidalgo [19] use this approach but generalized

it by allowing νt to have long memory. That approach is the most widely used in

modeling long memory in the response variable and is discussed further in Section 2.3.

1.3 Our Approach

We present a different approach, regressing a series that shows long memory on

an explanatory series with a stochastic parameter that shows long memory instead

of confining long memory behavior into the errors. Specifically, we suppose the

relationship

yt = µ+ βtzt + αat + εt, εt ∼ iid N(0, σ2
ε ) (1.5)

βt = (1−B)−dωt, ωt ∼ iid N(0, σ2
ω) (1.6)

holds, where yt is a long memory time series, µ is a constant location parameter,

zt is an explanatory series, α is a constant slope parameter, at is a series of known

inputs, βt is an ARFIMA(0, d, 0) process with mean zero, d ∈ (−1, .5) and {εt}

and {ωt} are uncorrelated. As mentioned previously, one benefit of the ARFIMA

model is that it can be generalized to include long memory and some short memory

behavior by letting βt ∼ ARFIMA(p, d, q) [10]. We choose the ARFIMA(0, d, 0) model

because of the simple expressions involved in its ACVF and MA(∞) specification.

However, our approach could be generalized to suit other situations in which short

memory influences exist. Another benefit of this approach is that it can naturally

account for heteroscedasticity in the response, since the variance changes with zt.

Perhaps the most important contribution of this model is that it allows for a more

precise understanding of the relationship between yt and zt, providing more power in
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analysis and prediction. We modify and use two previously established algorithms,

the Innovations Algorithm and the Kalman Filter, to estimate the parameters of our

model.

The rest of this paper proceeds as follows: Chapter 2 provides necessary back-

ground on time series for those less familiar with the topic, Chapter 3 explains the

details of our model, Chapter 4 discusses the Kalman Filter estimation method,

Chapter 5 discusses the Innovations Algorithm estimation method, Chapter 6 shows

a summary of simulations we performed to test the practical accuracy of the model,

and Chapter 7 contains concluding remarks.
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CHAPTER 2

PRELIMINARY BACKGROUND

2.1 Autocorrelation

Given a series of random variables, {yt}, it is common to assume in introductory

statistics that the yt are independent and identically distributed. While indepen-

dence implies that two observations are not related at all, two observations being

uncorrelated implies no linear relationship. If a series is correlated with itself, it is

said to be autocorrelated. More formally, yt and ys, s 6= t, are autocorrelated if

E(ytys)−E(yt)E(ys) 6= 0. When yt and ys are correlated, E(yt|ys) 6= E(yt). Thus, if

information about the underlying autocorrelation structure of {yt} can be obtained,

then with observations through time t, we can use E(yt+1|yt, yt−1, ...y1) to better

predict yt+1.

Instead of assuming a series is independent or uncorrelated, time series takes

advantage of autocorrelation in a series when trying to understand how observations

are related, providing powerful prediction capabilities. One widely implemented class

of time series models is known as Autoregressive Moving-Average (ARMA) models.

Let {wt}, t = 1, ..., n, be an iid series. Then an ARMA(1,1) model for {yt} would

be yt − φyt−1 = wt + θwt−1 where φ and θ are undetermined parameters. Thus, the

observation yt depends on the observation and corresponding error from one time

point ago and the error associated with time t. If an ARMA(2,1) model were more
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appropriate, that would suggest the observation yt depended on the observations from

two time points ago, the error from one time point ago, and the error associated with

time t. An ARMA(2,1) model reads yt − φ1yt−1 − φ2yt−2 = zt + θzt−1. The number

of parameters in an ARMA model is theoretically allowed to be any number, but in

practice a large number of parameters is frowned upon for reasons of computation,

understandability, and simplicity.

2.2 Long Memory Time Series

Long memory time series are implemented when the current observation, yt, shows

correlation with yt−k, where k takes on arbitrarily large values. One widely used

definition of a long memory time series mentioned above is

∞∑
h=−∞

|γ(h)| =∞, (2.1)

where γ(h) denotes the autocovariance at lag h. This definition is a result of analyzing

long memory time series in the time domain as opposed to the frequency domain. A

popular definition of long memory used in the frequency domain treatment of time

series is

f(λ) ∼ |λ|−2dl2(1/|λ|), (2.2)

where λ is in a neighborhood of zero and l2 is a slowly varying function [18], p. 40.

This paper focuses solely on the time domain. For more information on the frequency

domain of a time series, see [2] and [18]. Qualitatively, a long memory time series is

characterized by the idea that the current observation is related to all past observa-

tions. For example, monthly inflation rates might be expected to have a long memory,



9

as the expectation of inflation can cause inflation. In fact, monthly inflation rates have

been examined in the past and found to have long memory characteristics, such as

slowly decaying autocorrelation function values [9]. Data sets with long memory occur

in a variety of other disciplines, including hydrology [11], [16] and geoscience [21].

2.2.1 ARFIMA Models

One way to model long memory time series is with an autoregressive fractionally

integrated moving-average model, ARFIMA(p, d, q), model. The ARFIMA model is

an extension of the ARMA model briefly discussed above, where p and q have the

same meaning as in the ARMA model and d is the degree of fractional differencing,

discussed below. An ARFIMA(p, d, q) model may be represented as:

φ(B)yt = θ(B)(1−B)−dωt (2.3)

where φ(B) = 1 − φ1B − ... − φpBp is the pth order autoregressive polynomial and

θ(B) = 1+θ1B+...+θqB
q is the qth order moving average polynomial. The parameter

d is the long memory parameter, which describes how long of a memory the series yt

has, in some sense. We assume that φ(B) and θ(B) have no common roots. Now we

can use the binomial expansion to rewrite

(1−B)−d =
∞∑
j=0

ηjB
j = η(B),

where

ηj =
Γ(j + d)

Γ(j + 1)Γ(d)
(2.4)
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and Γ()̇ denotes the gamma function defined as Γ(y+1) = yΓ(y) for y > 0, [21] p. 269.

The parameter d entirely determines the long memory properties of the model, so it

is important to have good estimates for d. If d = 0, the stochastic process follows

an ARMA(p, q) model. With a few additional assumptions, we have the existence a

unique stationary solution to (2.3), which is is causal and invertible.

Theorem 2.2.1. (Palma, [18]) Consider the ARFIMA process defined by (2.3). As-

sume that the polynomials φ(z) and θ(z) have no common zeros and that d ∈ (−1, 1
2
).

Then,

(a) If the zeros of φ(z) lie outside the unit circle {z : |z| = 1}, then there is a unique

stationary solution of (2.3) given by

yt =
∞∑

j=−∞

ϕjωt−j = ϕ(B)ωt, (2.5)

where ϕ(z) = (1− z)−dθ(z)/φ(z).

(b) If the zeros of φ(z) lie outside the closed unit disk, {z : |z| ≤ 1}, then the solution,

{yt}, is causal.

(c) If the zeros of θ(z) lie outside the closed unit disk, {z : |z| ≤ 1}, then the solution,

{yt}, is invertible.

For a proof of this theorem, see [18], p. 44. Note that if we had instead written

the ARFIMA model as φ(B)(1 − B)dyt = θ(B)ωt, the solution may no longer be

unique [18], p. 46.

From Theorem 2.2.1, we have a way to write infinite AR and infinite MA expan-

sions of the stationary, causal, and invertible solution to an ARFIMA model. For

such a solution, we have:
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yt = (1−B)−dφ(B)−1θ(B)ωt = ϕ(B)ωt (2.6)

and

ωt = (1−B)dφ(B)θ(B)−1yt = π(B)yt. (2.7)

The infinite MA expansion, (2.6), was of supreme importance in implementing our

model. For an ARFIMA(0, d, 0) model, which is the process focused on in this thesis,

we have explicit expressions for the infinite MA expansion’s coefficients:

ϕj =
Γ(j + d)

Γ(d)Γ(j + 1)
, j ≥ 1 (2.8)

with initial condition ψ0 = 1. Note that the ϕj come from equation (2.4) because

φ(B) = θ(B) = 1 for an ARFIMA(0, d, 0) process. Here we stress that because of

the hyperbolic decay characteristic of a long memory process, these ϕj decay very

slowly to zero. One consequence of this is an inability to estimate the expression

yt =
∑∞

j=−∞ ϕjωt−j with a truncation at say, m, ŷt =
∑m

j=−m ϕjωt−j,m ∈ Z. Even

for very large m, this approximation would be off by a non-negligible amount [15],

p. 1671. This fact will cause us to use alternate expressions in Chapters 4 and 5.

We also have an explicit expression for the autocorrelation function (ACF) of an

ARFIMA(0, d, 0) process:

ρ(h) =
Γ(1− d)Γ(h+ d)

Γ(d)Γ(1 + h− d)
. (2.9)

The ACF for a general ARFIMA(p, d, q) process is quite complicated [22] and will

not be discussed here. The PACF for a general ARFIMA(p, d, q) process is even

more difficult to express. For the interested reader, please see [18] p. 48-50. When
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investigating (2.9), we see the hyperbolic decay referenced above. In the sample ACF

of a time series, a sample correlation between the bounds ±1.96n−1/2 is said not

to be significantly different from zero. In a short memory process, the correlation

between observations decays very quickly into the insignificant range. However, for a

long memory time series, the correlations remain significant for very large time lags

because of the hyperbolic decay, contributing to the name long memory time series.

Recall that any stationary short memory time series can be modeled arbitrarily

well by an ARMA(p, q) process. Here we present the corresponding theorem for long

memory time series.

Theorem 2.2.2. (Palma, [18]) Let {yt : t ∈ Z} be a linear regular process satisfying

yt =
∑∞

j=0 ψjεt−j = ψ(B)εt, where ψ0 = 1 and
∑∞

j=1 ψ
2
j < ∞ with strictly positive

spectral density fy satisfying f(λ) ∼ |λ|−2df2(|λ|). Then, there exists an ARFIMA

process with spectral density f such that for any ε > 0,

∣∣∣∣fy(λ)

f(λ)
− 1

∣∣∣∣ < ε,

uniformly for λ ∈ [−π, π].

Because this theorem is proved in the frequency domain, it requires more back-

ground for understanding than provided here, so interested readers may find the proof

in [18], p. 55.
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2.3 Linear Regression with Autocorrelated Errors

Recall that the classical univariate linear model is of the form (1.1). It is common to

suppose that εt is iid. However, in many cases, this is an inappropriate assumption.

Indeed, if there is autocorrelation in the error, we may be able come up with better

predictions. Thus, models arose assuming εt was an ARMA and more recently an

ARFIMA process. The estimation procedure usually uses the least-squares approxi-

mation for β and fits an ARMA or ARFIMA model to the sample residuals. Then,

β can be re-estimated after subtracting the fitted values from yt. This procedure

is repeated until the estimates converge. As mentioned previously, this is the most

common approach when long memory is apparent in yt. However, note that in this

case, var(yt) = var(εt), implying that any change in the variance of the response

series is due to fluctuation in the error. While this may be true in some cases,

it also makes sense that variation in the response should be linked to variance in

the explanatory series. One answer to this problem is to suppose that β is in fact

a stochastic process instead of a constant. If the series shows both long memory

and short memory characteristics, βt might be modeled as an ARMA process with

ARFIMA errors. A model supposing βt is long memory does not appear to have

occurred in the literature, and will be explained in the next chapter.

2.4 Maximum Likelihood Estimation

Maximum likelihood estimation, or MLE, is a widely used method of estimation in

statistics. The idea behind the MLE is that given a family of distribution functions

with a vector of parameters θ, we find the most likely value of θ given a set of

observations, {y1, ..., yn}. An example taken from “Mathematical Statistics with
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Applications,” [23], is as follows: suppose we choose two balls from a box containing

three balls with color red or white. We do not know how many balls are red and

white, but we choose two red balls without replacement. We know that the number

of red balls in the box must have been two or three. If there are only two red balls,

the probability of choosing those two balls is

(
2

2

)(
1

0

)
(

3

2

) =
1

3
.

However, if the number of red balls is actually three, then the probability of choosing

two red balls from three red balls is one! Since it is much more likely that there are

three red balls, given the random sample, we would hypothesize that the number of

red balls is three. This is an intuitive example of the maximum likelihood logic. A

more formal definition of maximum likelihood is given below.

Definition 2.4.1. : Method of Maximum Likelihood [23] p. 477

Suppose that the likelihood function depends on k parameters θ1, ..., θk. Choose as esti-

mates those values of the parameters that maximize the likelihood L(y1, ..., yn|θ1, ..., θk).

If the random sample consists of continuous random variables, then the likelihood

function L(θ) is the joint density function of those random variables. Since ln(L(θ)),

known as the log-likelihood function, is a monotonically increasing function of L(θ),

ln(L(θ)) is maximized when L(θ) is maximized. The log-likelihood function has some

nice properties in regards to numerical stability and derivative calculation and is

therefore often used in practice instead of the likelihood function.
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CHAPTER 3

STOCHASTIC PARAMETER REGRESSION FOR LONG

MEMORY TIME SERIES

3.1 Model Specification

We would like to develop a model where the long memory component is not treated as

a random accident, but an integral component of the series in question. To that end,

we suppose that given an explanatory series, {zt}, and a long memory response series,

{yt}, the relationships (1.5) and (1.6) hold. Because we have specified βt to follow an

ARFIMA(0, d, 0) process, we are only concerned with a series {βt} that is fractionally

integrated white noise, but our approach could be generalized to an ARFIMA(p, d, q)

process in order to model both long and short memory characteristics. Our approach

allows {εt} to take its classic linear regression role as iid errors. Note that the variance

of yt depends on the values of zt and the variance of βt as follows:

var(yt) = var(µ) + var(ztβt) + var(αat) + var(εt) (3.1)

= z2
t var(βt) + σ2

ε = z2
t σ

2
ω + σ2

ε . (3.2)

Thus, as zt increases, the variance of yt increases. This gives more explanatory power

to zt and contributes to a better understanding of the behavior of yt.

One example where large zt values might contribute to more variance in yt is
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large inflation values on nominal interest rates. In the late 1970s, inflation had

increased so much that the Federal Reserve made a sharp increase in interest rates

to encourage deflation. Doing so caused much unrest in the economy, and given the

different opinions over the effects of high inflation inside the Federal Reserve, interest

rates might have decreased much more quickly, causing even more fluctuation than

was seen at the time. As it was, the Federal Reserve still adjusted interest rates a

considerable amount until inflation broke. In times where the economy is not under

such duress, the inflation rate is under control and the Federal Reserve keeps interest

rates relatively constant. That is, when inflation is high, it causes interest rates to

be more variable. We plot this data set in Figure 3.1, using rates on three month

Treasury bills as a measure of interest rates. This data set is not appropriate for our

model as interest rates do not seem to display long memory, but the historical data

supports the hypothesis that large inflation rates contribute to more variable interest

rates. A plot of this data is shown in Figure 3.1. The data came from [6] and [8]. This

example demonstrates the need for stochastic parameter regression models because

of the increased variability of yt for different values of zt.

A pictorial example of a data set that could be well-explained by our model is

shown in Figure 3.2 and Figure 3.3. Figure 3.2 shows the yt and zt time series plots

on the same graph. The yt series has an intercept around ten and the zt series

has an intercept close to zero. Note that for peaks in zt values, yt tends to be

more variant. Furthermore, yt appears to have local changes in mean, something

the ARFIMA(0, d, 0) model accounts for. Figure 3.3 shows a scatterplot of yt and

zt. Notice that the variance of yt increases for large values of zt. This is because

the variance of yt is dependent on the values of zt. Because we take E(βt) = 0, the

scatterplot is centered at zero. This particular series was generated by taking zt to
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Figure 3.1: Interest Rates on Inflation

be a linear trend with AR(1) errors. That is, zt = α0 +α1t+ ξt, where ξt = φξt−1 + ηt

and ηt ∼ iid N(0, σ2
η). We let α0 = 0, α1 = .05, φ = .8 and σ2

η = 1. We also set µ = 10,

α = 0, σε = 1.5 and σω = 1. Here, βt is generated from a zero-mean ARFIMA(0, d, 0)

process with d = .4. Notice that at first glance, it may not be obvious that yt and

zt are linearly related. This means that data that should be theoretically related but

do not appear to be so in practice may be explained by a model similar to ours. We

definitely notice heteroscedasticity, with larger variance for larger values of zt. In

summary, our model has the flexibility to take into account long memory influences

in a time series, like local changes in mean, and is able to explain increasing variance

for larger values of the explanatory variable.
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3.2 Estimation Methods

In the next two chapters, we introduce our modifications to the Kalman Filter and

Innovations Algorithm, which allow us to use maximum likelihood estimation for our

parameters. We have four different techniques: a full Kalman Filter, a truncated

Kalman Filter, a full Innovations Algorithm, and a truncated Innovations Algorithm.

The maximum likelihood function has been investigated for these methods, so we can

adapt maximum likelihood estimation to our purposes.

One extension of the likelihood function is Whittle Estimation, often used to

estimate parameters when the observations show long memory and sometimes used

by built-in estimation routines in statistical programs [2], p. 363. Whittle Estimation

is a frequency domain approach and is a result of the fact that calculating the exact

likelihood function of an ARFIMA process is computationally demanding. However,

Whittle Estimation will not be used here as Chan and Palma [5] came up with another

way around using the exact likelihood function for estimation:

Theorem 3.2.1. (Chan and Palma, [5], Theorem 2.2)

Let {y1, ..., yn} be a finite sample of an ARFIMA(p, d, q) process. If Ω1 is the variance

of the initial state X1 for the infinite-dimensional representation, then the computa-

tion of the exact likelihood function depends only on the first n components of the

Kalman equations.

In other words, we can obtain the exact likelihood function for an ARFIMA process

with a finite sample of n. For the proof, see [5]. This approach is what we use in

our estimation methods. Because we have assumed that {εt} and {ωt} are Gaussian

processes, maximum likelihood estimation holds theoretical merits for estimating the

parameters of our model. We then use the expressions derived below to obtain the



20

innovations for each method and use those innovations to compute the maximum

likelihood function. Each likelihood function shown is equivalent, but the different

forms are included for notation purposes. We then use a Newton-Raphson procedure

with the “optim” function from R to obtain maximum likelihood estimates. For the

rest of the paper, we will suppose that the response variable yt and the covariate zt

have the relationship defined in (1.5) and (1.6).
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CHAPTER 4

THE KALMAN FILTER

The Kalman Filter uses a state space representation to obtain the prediction expres-

sion with minimum mean square error in the class of linear estimators [21], p. 325.

The Kalman Filter is a special application of state space models, so before presenting

the Kalman Filter, it would be prudent to begin with a discussion of said state space

models.

4.1 State Space Representation

State space models, also known as Dynamic Linear Models, are based on the premise

that the random variable of interest, the state variable, is not directly observed;

rather, we observe some linear combination of the state variable plus noise. The

basic observation equation is

yt = GtXt + εt, (4.1)

and the state equation is

Xt = FXt−1 +Wt. (4.2)

We assume that Wt ∼ iid N(0, Q) and εt ∼ iid N(0, R). While it is not a necessary

assumption, we keep things simple by supposing that {Wt} and {εt} are independent.

We also assume that X0 ∼ N(µ0,Ω0). Here, Xt and Wt are p×1 vectors, Ft is a p×p
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matrix, yt and εt are q × 1 vectors, Gt is q × p matrix, and q is allowed to be less

than, equal to, or greater than p. For the purpose of broadening the model, we can

also include inputs in the basic state and observation equation in the following way:

yt = GtXt + Γut + εt, (4.3)

Xt = FXt−1 + ζut +Wt. (4.4)

At first glance, the requirement that the state variable be well-fitted by an AR(1)

model may seem ill-suited to many situations. However, the state equation actually

allows for great flexibility. For example, in the univariate case, suppose we wish to

measure state βt, which is actually better fitted by an AR(m) model. We may then

write the state equation in the following way:



βt

βt−1

...

βt−m+1


=



φ1 φ2 · · · φm

1 0 0 0

...
. . . . . .

...

0 · · · 1 0





βt−1

βt−2

...

βt−m


+



ωt

0

...

0,


, (4.5)

where Xt = (βt, βt−1, ..., βt+m−1)T . The observation equation becomes

yt =

[
Gt 0 · · · 0

]
Xt + εt. (4.6)

In our case, we wish to measure the ARFIMA(0, d, 0) state βt, which follows an

AR(∞) model, specified in Theorem 2.2.1. It may be apparent to careful readers

that we would need an infinite state space model for our case. That intuition is

correct, as confirmed by Chan and Palma in [5], but we will demonstrate a way
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around this issue in Section 4.3. For more details on state space models, see [21].

With this groundwork laid out, we will consider the Kalman Prediction Equations.

4.2 Kalman Prediction

The Kalman Filter prediction equations are as follows:

Theorem 4.2.1. (Shumway and Stoffer, [21]) For the state-space model specified in

(4.3) and (4.4), with initial conditions E(X0) = µ0 and var(X0) = Ω0, the Kalman

prediction equations are:

Xt|t−1 = FtXt−1|t−1 + ζut,

Ωt|t−1 = FtΩt−1|t−1F
T
t +Q,

Xt|t = Xt|t−1 +Kt(yt −GtXt|t−1 − Γut),

Ωt|t = [I −KtGt]Ωt|t−1,

where I is the identity matrix and

Kt = Ωt|t−1G
T
t [GtΩt|t−1G

T
t +R]−1.

Kt is called the Kalman gain and is, in some sense, a measure of how well Xt|t−1

actually predicted Xt|t [21]. In addition to these equations, we also calculate the

corresponding innovations, which will be used to calculate the maximum likelihood

estimate. The innovations are:

υt = yt − E(yt|yt−1, yt−2, ...) = yt −GtXt|t−1 − Γut, (4.7)



24

and their corresponding variance-covariances matrices are:

Σt = var(yt −Gtxt|t−1 − Γut) = var(GtXt + εt −GtXt|t−1) = GtΩt|t−1G
T
t +R. (4.8)

These innovations are uncorrelated, which allows us to use them for the innovations

form of the maximum likelihood function, discussed below. As previously mentioned,

the Kalman estimates are those with the minimum mean square error in the class

of linear estimators. Another advantage of the Kalman equations is that once we

have calculated Xt|t−1, we can use that and yt to calculate Xt+1|t instead of having

to recalculate all the estimates over again. This makes the Kalman equations very

useful for real-time data. The final advantage is a bit more specific to this paper; the

Kalman Prediction equations give us expressions for the conditional expectation of

βt, which is useful for prediction purposes.

4.3 Full Kalman Filter

We would like to find the Kalman Prediction expressions for our model, represented

in (1.5) and (1.6). This presents a challenge; in 1998, Chan and Palma [5] proved that

there is no finite dimensional state space model for a long memory ARFIMA process.

However, we can extract the exact likelihood function of a long memory process from

a finite dimensional expression following Chan and Palma’s approach [5], by way of

Theorem 3.2.1 from Chapter 3.

Note that, in our notation, Ω1 is called Ω0|0 and X1 = X0|0. Furthermore, because

our state space equations are different from those in [5], the likelihood actually

depends on the first n+1 equations. Therefore, if our state space model is accurate for
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the first n+1 rows, our likelihood function should be exact. To use Theorem 3.2.1, we

will first state and prove a lemma used in the specification of our state space model.

Lemma 4.3.1. Let {βt} be a zero-mean stationary ARFIMA(0, d, 0) process with

d ∈ (−1, 0.5). For i = 1, . . . ,m, we have

βt+i|t =
∞∑
k=i

ϕkωt+i−k.

Proof. We will prove this for i = 1. Since βt = (1 − B)−dωt =
∑∞

k=0 ϕkωt−k with

ϕk = Γ(k+d)
Γ(d)Γ(k+1)

, we have

βt+1|t = E(βt+1|βt, βt−1, · · · )

= E

(
∞∑
k=0

ϕkωt+1−k

∣∣∣∣βt, βt−1, · · ·

)

= E(ωt+1|βt, βt−1, · · · ) + E

(
∞∑
k=1

ϕkωt+1−k

∣∣∣∣βt, βt−1, · · ·

)

=
∞∑
k=1

ϕkωt+1−k

because E(ωt+1|βt, βt−1, · · · ) = E(ωt+1) = 0 and E(
∑∞

k=1 ϕkωt+1−k|βt, βt−1, · · · ) =∑∞
k=1 ϕkωt+1−k, as

∑∞
k=1 ϕkωt+1−k only involves data from the first t observations.

Now we specify a new state space specification used for our model. We define the

observation and state equations (4.3) and (4.4) as follows:

Theorem 4.3.2. The state space representation (4.3) and (4.4) correctly models (1.5)

and (1.6), where
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Xt =



βt

βt+1|t

...

βt+n|t


, F =



0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0

...
...

...
. . . . . .

...

0 0 0 0 · · · 1

0 0 0 0 · · · 0


,Wt =



1

ϕ1

...

ϕn


ωt, Gt =

[
zt 0 · · · 0

]
.

Here, βt+i|t = E(βt+i|βt, βt−1, ...) and {Wt} ∼ iid N(0, Q) where

Q = σ2
ω



1 ϕ1 · · · ϕn

ϕ1 ϕ2
1 · · · ϕ1ϕn

...
...

. . .
...

ϕn ϕnϕ1 · · · ϕ2
n



If there is a drift in the data of α, then we set Γ =

[
µ α

]
and ut =

1

t

. Otherwise,

Γ = µ and ut = 1. Now, assume X0 ∼ N(X0|0,Ω0|0). We set X0|0 = 0 since E(βt) = 0

and have

Ω0|0 =



γβ(0) γβ(1) · · · γβ(n)

γβ(1)

... T

γβ(n)


(4.9)

where γβ(h) is the ACVF of {βt}, and the n× n matrix T has

Tij =

 γβ(j − i)− σ2
ω

∑i−1
k=0 ϕkϕk+(j−i), i ≤ j

Tji, i > j
(4.10)
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Proof. First, we will show that (4.3) and (4.4) are equivalent to (1.5) and (1.6).

Showing the equivalence of (1.5) and (4.3) is straightforward as GtXt = βtzt. Now

we focus on the state equation, (4.4). For this, note that the state equation (4.4) is

equivalent to the following system of equations:

βt = βt−1+1|t−1 + ωt,

βt+1|t = βt−1+2|t−1 + ϕ1ωt,

...

βt+n−1|t = βt−1+n|t−1 + ϕn−1ωt,

βt+n|t = ϕnωt.

We will show the first n equations hold true. For this, we use Lemma 4.3.1 to obtain:

βt =
∞∑
k=0

ϕkωt−k = ωt +
∞∑
k=1

ϕkωt−k = ωt +
∞∑
k=1

ϕkωt−1+1−k = ωt + βt−1+1|t−1,

which is equivalent to the first equation above. Next, Lemma 4.3.1 gives, for i =

1, . . . , n− 1,

βt+i|t =
∞∑
k=i

ϕkωt+i−k

= ϕiωt +
∞∑

k=i+1

ϕkωt−1+i+1−k

= ϕiωt + βt−1+i+1|t−1,

which corresponds to the second through nth equations. The last equation is not

true, but for large n, this would be appreciably negligible as shown in [5].
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Now, for the initial condition on Ω0|0 in (4.9), note that the stationarity of {Xt}

gives

Ω0|0 = V ar(X0)

= V ar(Xt)

=



V ar(βt) Cov(βt, βt+1|t) · · · Cov(βt, βt+n|t)

Cov(βt+1|t, βt) V ar(βt+1|t) · · · Cov(βt+1|t, βt+n|t)

...
...

. . .
...

Cov(βt+n|t, βt) Cov(βt+n|t, βt+1|t) · · · V ar(βt+n|t)


.

First, we consider the following covariances: for j = 1, . . . , n,

Cov(βt, βt+j|t) = Cov

(
∞∑
k=0

ϕkωt−k,
∞∑
k=j

ϕkωt+j−k

)

= σ2
ω

∞∑
k=0

ϕkϕk+j

= σ2
ω

∞∑
k=0

Γ(k + d)

Γ(d)Γ(k + 1)

Γ(k + j + d)

Γ(d)Γ(k + j + 1)

= σ2
ω

Γ(j + d)

Γ(d)Γ(j + 1)

∞∑
k=0

Γ(k + d)Γ(k + j + d)Γ(j + 1)

Γ(k + 1)Γ(d)Γ(j + d)Γ(k + j + 1)

= σ2
ω

Γ(j + d)

Γ(d)Γ(j + 1)
F (d, j + d; j + 1; 1)

= σ2
ω

Γ(j + d)

Γ(d)Γ(j + 1)

Γ(j + 1)Γ(1− 2d)

Γ(j + 1− d)Γ(1− d)

= γβ(j).

Here, F (x, y; v;w) is the hypergeometric function. Second, consider, for i ≤ j, i, j =

1, . . . , n,
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τi,j = Cov(βt+i|t, βt+j|t)

= Cov

(
∞∑
k=i

ϕkωt+i−k,
∞∑
k=j

ϕkωt+j−k

)

= σ2
ω

∞∑
k=i

ϕkϕk+(j−i)

= σ2
ω

(
∞∑
k=0

ϕkϕk+(j−i) −
i−1∑
k=0

ϕkϕk+(j−i)

)

= γβ(j − i)− σ2
ω

i−1∑
k=0

ϕkϕk+(j−i).

These results verify our expression of Ω0|0 in (4.9).

Now that we have expressions for the innovations from the Kalman Filter, we use

these innovations to compute the likelihood function:

L(µ, α, σε, d, σω) = (2π)−n/2

(
n∏
j=1

det Σt

)−1/2

exp

[
−1

2

n∑
j=1

υTt Σ−1
t υt

]
. (4.11)

Since, in our case, Σt and νt are scalars, this makes the log-likelihood function:

`(µ, α, σε, d, σω) = L(µ, α, σε, d, σω) = −1

2

n∑
j=1

ln Σt −
1

2

n∑
j=1

υ2
t

Σt

. (4.12)

when the constant term in (4.11) is ignored. This is also the likelihood function

expression for the Truncated Kalman Filter, detailed in the next section.

4.4 Truncated Kalman Filter

Thus far, we have developed a state space model of dimension (n + 1) × (n + 1).

In comparison to an infinite dimensional state space model, this is good news for
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computer estimation. However, using the Full Kalman Filter method described above

can be cumbersome for large n. One might be tempted to simply cut off the Full

Kalman Filter expressions, but because of the nature of a long memory time series,

simply cutting off the MA(∞) expression leads to non-negligible errors, as discussed

in Chapter 2. To that end, we would like to introduce a Truncated Kalman Filter of

dimension m×m where m is considerably less than n. For that purpose, we turn our

attention to the series δt = βt − βt−1.

Lemma 4.4.1. The MA(∞) representation for the differenced ARFIMA(0, d, 0) pro-

cess is

δt+i =
∞∑
k=0

ψkωt+i−k, (4.13)

where

ψk = ϕk − ϕk−1

with initial condition ϕ−1 = 0.

Proof. We re-express βt as an MA(∞) process: for d ∈ (−1, 0.5),

βt = (1−B)−dωt =
∞∑
k=0

ϕkωt−k,

with ϕj as in (2.8) [18], p.47. The differenced process, δt, is expressed as follows:

δt = βt − βt−1 =
∞∑
k=0

ϕkωt−k −
∞∑
`=0

ϕ`ωt−1−` =
∞∑
k=0

ψkωt−k,

δt+1 = βt+1 − βt =
∞∑
k=0

ϕkωt+1−k −
∞∑
`=0

ϕ`ωt−` =
∞∑
k=0

ψkωt+1−k,
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where ψk = ϕk − ϕk−1 with the initial condition ϕ−1 = 0. In general, we can deduce

(4.13): for i = 0, 1, . . .,

δt+i =
∞∑
k=0

ψkωt+i−k,

which is an MA(∞) representation for the differenced process δt+i = βt+i−βt+i−1.

One of the solutions Chan and Palma [5] came up with for the problem of being

unable to write a finite state space model was to consider the differenced series.

Indeed, since ψk → 0 faster than ϕk → 0, Chan and Palma truncate this expression

after m. That is,

δt+i ≈
m∑
k=0

ψkωt+i−k (4.14)

Lemma 4.4.2. The conditional expectation of δt+i given βt, ..., β1 has the expression

δt+i|t = E(δt+i|βt, ..., β1)

≈
m∑
k=i

ψkωt+i−k

Proof. We consider the conditional expectation of the differenced process {δt} as

follows. Using the MA(∞) expression (4.13) and the MA(m) truncation expression

(4.14), we obtain:
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δt+1|t = E

(
∞∑
k=0

ψkωt+1−k

∣∣∣∣βt, βt−1, · · ·

)

≈ E

(
m∑
k=0

ψkωt+1−k

∣∣∣∣βt, βt−1, · · ·

)

= E(ωt+1|βt, βt−1, · · · ) + E

(
m∑
k=1

ψkωt+1−k

∣∣∣∣βt, βt−1, · · ·

)

=
m∑
k=1

ψkωt+1−k,

δt+2|t = E

(
∞∑
k=0

ψkωt+2−k

∣∣∣∣βt, βt−1, · · ·

)

≈ E

(
m∑
k=0

ψkωt+2−k

∣∣∣∣βt, βt−1, · · ·

)

= E(ωt+2) + ψ1E(ωt+1) + E

(
m∑
k=2

ψkωt+2−k

∣∣∣∣βt, βt−1, · · ·

)

=
m∑
k=2

ψkωt+2−k,

which inductively results in the truncated expression in Lemma 4.4.2.

If we suppose that m in the approximation equation is such that (4.14) is within

a reasonable margin of error, we will take

δt+i =
m∑
k=0

ψkωt+i−k

From Lemma 4.4.2, we get:

δt−1+i|t−1 ≈
m∑
k=i

ψkωt−1+i−k (4.15)

Now we will present our long memory SPR model via the following truncated
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state space model representation.

Theorem 4.4.3. The state space representation (4.3) and (4.4) correctly models (1.5)

and (1.6), where

Xt =



βt

δt+1|t

...

δt+m|t


, F =



1 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0

...
...

...
. . . . . .

...

0 0 0 0 · · · 1

0 0 0 0 · · · 0


,Wt =



1

ψ1

...

ψm


, Gt =

[
zt 0 · · · 0

]
.

Here, Wt ∼ iid N(0, Q) with

Q = σ2
ω



1 ψ1 · · · ψm

ψ1 ψ2
1 · · · ψ1ψm

...
...

. . .
...

ψm ψmψ1 · · · ψ2
m


.

We now assume that X0 ∼ N(x0|0,Ω0|0). Since E(βt) = 0, we find X0|0 = 0 and

Ω0|0 =



σ2
ω

Γ(1−2d)
Γ(1−d)2

σ2
ω

∑m−1
k=0 ϕkψk+1 · · · σ2

ωϕ0ψm

σ2
ω

∑m−1
k=0 ϕkψk+1

... T

σ2
ωϕ0ψm


,

where T is an m×m matrix with



34

Tij =

 σ2
ω

∑m−1
k=i ψkψk+(j−i), i ≤ j;

Tji, i > j.

Proof. First we will show that (4.3) and (4.4) are equivalent to (1.5) and (1.6).

Showing the equivalence of (1.5) and (4.3) is straightforward as GtXt = βtzt. Now

we focus on the state equation, (4.4). For this, note that the state equation (4.4) is

equivalent to the following system of equations:

βt = βt−1 + δt|t−1 + ωt,

δt+1|t = δt−1+2|t−1 + ψ1ωt,

...

δt+m−1|t = δt−1+m|t−1 + ψm−1ωt,

δt+m|t = ψmωt.

We will show these m+ 1 equations hold true (within an approximation of m). First,

we use (4.13) and (4.15) as follows:

βt − βt−1 = δt ≈
m∑
k=0

ψkωt−k = ωt +
m∑
k=1

ψkωt−1+1−k = ωt + δt−1+1|t−1,

which is equivalent to the first equation above. Second, we use Lemma 4.4.2 to obtain,

for i = 1, . . . ,m− 1,

δt+i|t ≈
m∑
k=i

ψkωt+i−k = ψiωt +
m∑

k=i+1

ψkωt−1+i+1−k = ψiωt + δt−1+i+1|t−1,

which corresponds to the second through mth equations. Last, using Lemma 4.4.2
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gives

δt+m|t ≈
m∑

k=m

ψkωt+m−k = ψmωt

as required in the (m+ 1)th equation of (4.4).

Now we will show that the expression of Ω0|0 is correct. Because {Xt} is stationary,

we have that

Ω0|0 = V ar(X0)

= V ar(Xt)

=



V ar(βt) Cov(βt, δt+1|t) · · · Cov(βt, δt+m|t)

Cov(δt+1|t, βt) V ar(δt+1|t) · · · Cov(δt+1|t, δt+m|t)

...
...

. . .
...

Cov(δt+m|t, βt) Cov(δt+m|t, δt+1|t) · · · V ar(δt+m|t)


.

We also know that the stationary ARFIMA(0, d, 0) process {βt} has variance

V ar(βt) = γβ(0) = σ2
ω

Γ(1− 2d)

Γ(1− d)2
,

which verifies the (1, 1)th element of Ω0|0. From Lemma 4.4.2 and the infinite MA

expansion of βt, we have

Cov(βt, δt+j|t) ≈ Cov

(
∞∑
k=0

ϕkωt−k,
m∑
k=j

ψkωt+j−k

)

= σ2
ω

m−j∑
k=0

ϕkψk+j,

for j = 1, . . . ,m, which verifies the remaining elements in the first row of Ω0|0. Finally,

for i ≤ j, we have
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Ti,j = Cov(δt+i|t, δt+j|t)

≈ Cov

(
m∑
k=i

ψkωt+i−k,
m∑
k=j

ψkωt+j−k

)

= σ2
ω(ψiψi+(j−i) + ψi+1ψi+1+(j−i) + · · ·+ ψm−(j−i)ψm−(j−i)+(j−i))

= σ2
ω

m−(j−i)∑
k=i

ψkψk+(j−i),

which verifies the expression for T .
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CHAPTER 5

THE INNOVATIONS ALGORITHM

The Innovations Algorithm and the Durbin-Levinson Algorithm are both one-step

prediction recursion schemes. The Durbin-Levinson Algorithm can have smaller

variance, but has the requirement that the series it is predicting be stationary. The

Innovations Algorithm, however, only requires the series have a finite second moment,

meaning it can be applied directly to a non-stationary series. This is important

because one of the advantages of our model is the ability to take into account dynamic

variance patterns. Thus, the technique used to predict the series must also not require

stationarity.

5.1 Best Linear Predictor

The Innovations Algorithm stems from applications of the best linear predictor. The

best linear predictor of random variable is defined as the linear combination of past

values that has minimum variance [2], p. 63. If we denote the best linear predictor

of Xn+h given n past values as PnXn+h, then the best linear predictor of a stationary

time series given X1, X2, ..., Xn is

PnXn+h = µ+
n∑
i=1

ai(Xn+1−i − µ), (5.1)
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where a = (a1, ..., an)T satisfies

Γna = γn(h), (5.2)

Γn = [γX(i− j)]ni,j=1, and γn(h) = (γX(h), γX(h+ 1), ..., γX(h+ n− 1))T .

The following properties of the best linear predictor are useful [2], p. 65:

1. E(Xn+h − PnXn+h)
2 = γX(0)− aTγn(h)

2. E(Xn+h − PnXn+h) = 0

3. E[(Xn+h − PnXn+h)Xj] = 0, for j = 1, 2, ..., n

Thus, the prediction error is uncorrelated with the observations. This result will be

used for obtaining the likelihood function via the Innovations Algorithm.

5.2 Innovations Algorithm

To introduce the Innovations Algorithm, we will follow Brockwell and Davis in their

approach and notation [2], p. 71-73. Now, suppose Xt is a zero-mean time series with

finite second moment and set κ(i, j) = E(XiXj). Let

X̂t =

 0, t = 1

Pt−1Xt, t = 2, ..., n

and

νt = E(Xt+1 − PtXt+1)2.

We will define the innovations as Ut = Xt−X̂t. Notice that the νt are the correspond-

ing mean square prediction errors. With this notation, we can rewrite the above as

U = AX where U = (U1, ...Un)T , X = (X1, ..., Xn)T and
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A =



1 0 0 · · · 0

a11 1 0 · · · 0

a22 a21 1 · · · 0

...
...

...
. . . 0

an−1,n−1 an−1,n−2 an−1,n−3 · · · 1


.

If {Xt} is stationary, this simplifies with aij = aj from (5.2) with h = 1. A is invertible

as its determinant is one. Because A is lower triangular, A−1 := C has the form:

C =



1 0 0 · · · 0

θ11 1 0 · · · 0

θ22 θ21 1 · · · 0

...
...

...
. . . 0

θn−1,n−1 θn−1,n−2 θn−1,n−3 · · · 1


Now, since Ut = Xt − X̂t, we have X̂ = X − U, (X̂ = (X̂1, ..., X̂n)T ) and because

U = AX we have, X̂ = CU − U = Θ(X − X̂) where

Θ =



0 0 0 · · · 0

θ11 0 0 · · · 0

θ22 θ21 0 · · · 0

...
...

...
. . . 0

θn−1,n−1 θn−1,n−2 θn−1,n−3 · · · 0


,

This relationship can be rewritten as
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X̂t+1 =

 0, t = 0∑n
j=1 θtj(Xt+1−j − X̂t+1−j), t = 1, ..., n

Once we find the θij, then we can recursively compute the one-step ahead prediction.

The Innovations Algorithm below is a recursive scheme to find the θij, the one-step

ahead prediction, and the corresponding prediction error.

Definition 5.2.1. The Innovations Algorithm (Brockwell and Davis, [2])

The coefficients θn1, .., θnn can be computed recursively from the equations

ν0 = κ(1, 1),

θn,n−k = ν−1
k (κ(n+ 1, k + 1)−

∑k−1
j=0 θk,k−jθn,n−jvj), 0 ≤ k < n

and

νn = κ(n+ 1, n+ 1)−
∑n−1

j=1 θ
2
n,n−jνj.

5.3 Full Innovations Algorithm

Recall that, for this paper, we have assumed E(βt) = 0. Therefore, the quantity

Vt = yt − E(yt) = βtzt + εt has E(Vt) = 0. These Vt will serve as our Xt. Let us

examine the covariance structure of Vt.

Cov(Vt, Vs) = Cov(βtzt + εt, βszs + εs) (5.3)

= Cov(βtzt, βszs) + Cov(βtzt, εs) + Cov(εt, βszs) + Cov(εt, εs) (5.4)

=

 Cov(βtzt, βtzt) + 2Cov(βtzt, εt) + Cov(εt, εt), t = s

Cov(βtzt, βszs) t 6= s
(5.5)

=

 z2
t γβ(0) + σ2

ε , t = s

ztzsγβ(|t− s|), t 6= s
(5.6)
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since βt and εt are assumed uncorrelated. This implies that Vt is not stationary,

since the ACVF of Vt depends on t in the way of zt. However, as discussed above,

the Innovations Algorithm does not require stationarity of the process of interest.

Rather, we only need that E(V 2
t ) < ∞. Under the mild assumptions that βt and εt

have finite variance, which is assumed throughout this paper, we have that condition.

Now we can apply the Innovations Algorithm to Vt. Once we obtain the in-

novations and their mean square prediction errors, νt, the likelihood function of

~V = (V1, ..., Vn)T can be expressed as

L(µ, α, σε, d, σω) =
1√

(2π)n
∏n

t=1 νt−1

exp

[
−1

2

n∑
t=1

(Vt − V̂t)2

νt−1

]
. (5.7)

In the interest of numerical stability, we use the log-likelihood form of the above.

`(µ, α, σε, d, σω) = lnL(µ, α, σε, d, σω) = −1

2

n∑
t=1

ln(νt−1)− 1

2

n∑
t=1

(Vt − V̂t)2

νt−1

. (5.8)

With this function, we run a Newton-Raphson algorithm using the optim function in

R to obtain the maximum likelihood estimates of µ, α, σε, d and σω.

5.4 Truncated Innovations Algorithm

Recall from the discussion in Section 4.4 that if we use the differenced process, δt =

βt−βt−1, instead of βt, we can use a truncated expression to model our process within

a reasonable margin of error and with the benefit of increased computation speed.

To obtain innovations for the truncated Innovations Algorithm, we need to perform

some algebra to get the innovations in terms of δt and make sure the expected value

of those innovations is zero.
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First, we have

yt−1 = µ+ αat−1 + βt−1zt−1 + εt−1 (5.9)

from (1.5). Then, define rt = zt/zt−1, t = 2, ..., n and multiply both sides of (5.9) by

rt. Doing so, we get

rtyt−1 = rtµ+ αrtat−1 + βt−1zt + rtεt−1. (5.10)

Now we denote Ut = yt − rtyt−1 and obtain

Ut = (µ+ αat−1 + βt−1zt−1 + εt−1)− (rtµ+ αrtat−1 + βt−1zt + rtεt−1)

= (1− rt)µ+ (at − rtat−1)α + δtzt + (εt − rtεt−1).
(5.11)

Taking the expected value of Ut yields E(Ut) = (1− rt)µ+ (at− rtat−1)α. Finally, we

define Xt for our truncated model as Vt = Ut − E(Ut) = δtzt + εt − rtεt, t = 2, ..., n.

Therefore, E(Vt) = 0. Let us examine the covariance structure of Vt; WLOG, s > t.

Cov(Vt, Vs) = Cov(δtzt, δszs) + Cov(εt − rtεt−1, εs − rsεs−1)

=


z2
t V ar(δt) + V ar(εt) + r2

tV ar(εt−1), if s− t = 0;

ztzsCov(δt, δt+1) + Cov(εt − rtεt−1, εt+1 − rt+1εt), if s− t = 1;

ztzsCov(δt, δs), if s− t = 2, . . . , n− 2,

≈



z2
t γδ(0) + (1 + r2

t )σ
2
ε , if s− t = 0;

ztzsγδ(1)− rsσ2
ε , if s− t = 1;

ztzsγδ(s− t), if s− t = 2, . . . ,m;

0, if s− t = m+ 1, . . . , n− 2,

because of the truncation of the model at m, and where γδ(h) is the ACVF of δt.
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Clearly, Vt is not stationary, but that is not a problem for the Innovations Algorithm.

Again, the requirement that E(V 2
t ) <∞ is satisfied as long as the variance of βt and

εt are finite. Now, WLOG V ∗t−1 = Vt, t = 2, .., n for indexing purposes, and we apply

the Innovations Algorithm, Definition 5.2.1, to V ∗t . Then, the log-likelihood function

for (V ∗1 , ..., V
∗
n−1)T is

`(µ, α, σε, d, σω) = lnL(µ, α, σε, d, σω) = −1

2

n−1∑
t=1

ln(νt−1)− 1

2

n−1∑
t=1

(V ∗t − V̂ ∗t )2

νt−1

. (5.12)
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CHAPTER 6

SIMULATION RESULTS

We simulated covariates from five different models to test our estimation methods

described above. The models we used simulate common characteristics of data

and are described below. When estimating the parameters of our SPR model, we

standardized the zt in the following way: zt = zt,unstandard/sd(zt,unstandard). This helps

us to obtain more stable convergence. The covariates used in our simulation findings

are summarized in Table 6.1.

Process Expression Parameter Choices
Model 1 AR(1) zt = φzt−1 + ξt φ = .8, σ2

ξ = 1

Model 2 Random Walk
with Drift

zt = zt−1 + ξt ξt ∼ iid N(0, σ2
ξ ),

σ2
ξ = 1

Model 3 Linear Trend
with AR(1) Errors

zt = α0 + α1t+ ξt ξt = φξt−1 + ηt,
ηt ∼ iid N(0, σ2

η),
α0 = 0, α1 = .05,
φ = .8, σ2

η = 1

Model 4 Periodic with
Random Errors

zt = α0+α1 cos(2π/T )
+ α2 sin(2π/T ) + ξt

α0 = 4, α1 = 1
α2 = 1, T = 12,
σ2
ξ = 1

Model 5 Periodic with
Linear Trend
and Random Errors

zt = α0+α1 cos(2π/T )
+ α2 sin(2π/T )
+ α3t+ ξt

ξt ∼ iid N(0, σ2
ξ ),

α0 = 4, α1 = 1,
α2 = 2, α3 = .5,
T = 12, σ2

ξ = 1

Table 6.1: Choices for Covariate Models

Notice that a period of T = 12 suggests monthly data.



45

We ran 1000 simulations from each model, using FIA,TIA, and TKF. Because

FIA and FKF produce the same results both theoretically and in practice, we will

not include the FKF results. We obtained OLS estimates by fitting a classical constant

parameter regression model and compare those estimates to ours. The OLS approach

does not have a natural estimate for σε and σω, so OLS estimates for those results

are not included. Finally, for presentability, we did not include estimates for µ, as µ

is not generally a parameter of interest in many practices. In mean and variance, the

estimates for µ behave much the same as for α. The tables below show the results

for α = .05, d = .4, σε = 1.5 and σω = 1. The figure following contains the boxplots

for the parameters in Model 1. For the remaining boxplots, please see Appendix A.

αOLS αFIA αTIA αTKF dOLS dFIA dTIA dTKF
Model 1 .0496 .0499 .0499 .0498 .3056 .3801 .3976 .3842
Model 2 .0497 .0498 .0499 .0498 .2696 .3788 .3877 .3757
Model 3 .0497 .0498 .0497 .0498 .2312 .3671 .3823 .3662
Model 4 .0496 .0499 .0499 .0499 .2906 .3810 .3980 .3836
Model 5 .0498 .0500 .0500 .0500 .2641 .3801 .3925 .3793

Table 6.2: Simulation Results: α and d

σε,F IA σε,T IA σε,TKF σω,FIA σω,TIA σω,TKF
Model 1 1.4043 1.4015 1.3846 .9999 1.0016 1.0068
Model 2 1.4409 1.4385 1.4324 1.0118 1.0145 1.0197
Model 3 1.4811 1.4793 1.4784 1.0032 1.0034 1.0094
Model 4 1.4306 1.4330 1.4117 1.0003 1.0010 1.0089
Model 5 1.4660 1.4630 1.4563 1.0014 1.0040 1.0102

Table 6.3: Simulation Results: σε and σω

The simulation results show that each of the estimation methods proposed in this

paper provide very good point estimates for each of the unknown parameters. The

estimate for d in particular is very promising, given that the OLS estimate is quite far

from the true value, 0.4. As seen in the boxplots following in Figure 6.1, the standard
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error for the OLS estimate of α is quite high compared to FIA, TIA, and TKF. Thus, 

our proposed estimates seem to outperform the OLS estimates. The standard errors 

of our estimates are quite reasonable, except perhaps for the estimates of σε. This issue 

is addressed in Chapter 7.
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Figure 6.1: Model 1 Boxplots
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CHAPTER 7

CONCLUSION

In this paper, we established a model for taking into account changes in the relation-

ship between predictor and response variables when the response shows long memory

behavior. This model takes heteroscedasticity into account because the variance of the

response variable is related to the value of the predictor variable, adding to the time

series analysis toolbox. Using this approach also gives more explanatory power to the

predictor variable by allowing for the relationship between the predictor and response

to have its own meaning as a stochastic process. We also developed estimation

methods using the Kalman Filter and Innovations Algorithm, including a truncated

version of each to decrease computational burden, and then extracted the maximum

likelihood estimates using a Newton-Raphson procedure. The specialized model in

this paper is most applicable to data sets where the response shows long memory and

the coefficients describing the response’s linear relationship to the predictor are zero

on average, since we focused on the case where E(βt) = 0 for computational reasons.

If our approach is generalized, it could also be applied when the overall relationship

between the predictor and response is nonzero.

Our simulation results provide numerical evidence for the usefulness of our model

and estimation methods. We can see from the simulations that the OLS estimate

performs well on average for estimates of α and µ (not pictured), but it is significantly
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low for the d estimate. The OLS estimate also has considerably larger variance in

the case of estimating α. The estimation methods we developed appear to be quite

accurate for the simulated covariate models described. We also notice that the param-

eter estimates do not appear to be greatly affected by the chosen estimation method

(aside from the OLS estimate), which adds credence to the truncated methods, as they

cause much less computational burden. One topic of further investigation might be

the estimates for σε, which have a higher variance than the other parameter estimates

for certain models (see Appendix A). This could be due to the relationship of σε, d,

and σω; if σε is over-estimated, it takes away explanatory power from the βt series, and

thus d and σω. It could be possible that, if σε is large, it overwhelms the estimation

of the long memory parameters, making our estimates less accurate. Thus, different

parameter values for σε, d, and σω could make our estimates slightly more or less

variant.

Extensions of this paper have been alluded to throughout. The simplest modifi-

cation would be allowing for E(βt) = β to be nonzero. The theoretical changes to

the model are uncomplicated, but when we attempted to estimate a nonzero β, we

ran into computation issues. The second, and much more complicated modification

to our model would be to allow βt to take on an arbitrary ARFIMA(p, d, q) process.

Again, this should not pose any major theoretical issues, but the ACF and infinite

MA coefficients for the ARFIMA(p, d, q) model are far more difficult to work with. At

the very least, this could introduce more room for computational error and increase

computational demands. An alternative would be to take short memory influences

into account by adding a different predictor variable and supposing that the long

memory and short memory components come from different sources. In any case, the

model discussed in this paper should act as a useful base for long memory time series
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regression analysis.
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APPENDIX A

OTHER SIMULATION BOXPLOTS
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Figure A.1: Model 2 Boxplots



55

OLS FIA TIA TKF

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Estimated Linear Trend
α

OLS FIA TIA TKF

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Estimated Long Memory Parameter

d

FIA TIA TKF

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Estimated Regression Error

σ ε

FIA TIA TKF

0.
6

0.
8

1.
0

1.
2

1.
4

Estimated Long Memory Errors

σ ω

Figure A.2: Model 3 Boxplots
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Figure A.3: Model 4 Boxplots
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Figure A.4: Model 5 Boxplots
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