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Highlights 

 Whole-brain transcriptomics analysis shows that EAE causes dysregulation of neuronal 

signaling and maturation and a pro-inflammatory profile. 

 Treatment with farnesol (FOL) attenuates the expression of immune/inflammation 

response genes and pathways. 

 FOL treatment alters cellular stress response pathways and genome regulation/repair 

mechanism pathways in EAE Brains 
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Abstract 

Background: Farnesol (FOL) prevents the onset of experimental autoimmune encephalitis 

(EAE), a murine model of multiple sclerosis (MS). Objective: We examined the transcriptomic 

profile of the brains of EAE mice treated with daily oral FOL using next-generation sequencing 

(RNA-seq). Methods: Transcriptomics from whole brains of treated and untreated EAE mice at 

the peak of EAE was performed. Results: EAE-induced mice, compared to naïve, healthy mice, 

overall showed increased expression in pathways for immune response, as well as an increased 

cytokine signaling pathway, with downregulation of cellular stress proteins. FOL downregulates 

pro-inflammatory pathways and attenuates the immune response in EAE. FOL downregulated the 

expression of genes involved in misfolded protein response, MAPK activation/signaling, and pro-

inflammatory response. Conclusion: This study provides insight into the molecular impact of FOL 

in the brain and identifies potential therapeutic targets of the isoprenoid pathway in MS patients. 

Keywords: EAE, Farnesol, isoprenoids, brain, transcriptomics.  
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1. Introduction 

Multiple sclerosis (MS) is a chronic autoimmune disorder that causes loss of the myelin 

sheath in the CNS. Known pathological hallmarks of MS are demyelination, axonal degeneration, 

and breakdown of the blood-brain barrier (BBB), but it has an unknown etiology [1]. Hallmark 

symptoms of MS include muscle weakness, cognitive decline, and vision loss [2]. Around 2.5 

million people globally are diagnosed with MS, with a prevalence of 50-300 per 100,000 people 

[3]. The gut microbiome has increased in interest as a possible therapeutic target for 

neurodegenerative/ autoimmune disease, with evidence showing that the gut microbiome during 

active stages of MS is significantly different compared to healthy individuals [4]. Gut composition 

changes trigger alterations in the circulating Treg/Th17 cell ratio [5]. Th17 cells collected in the 

brain and spinal cord lesions show an enhanced proliferative response to multiple myelin peptides 

[6]. 

Studies have shown that oral administration of isoprenoids protects against CNS 

inflammatory demyelination [7] and suppresses immune responses [8]. Farnesol (FOL) is a 15-

carbon isoprenol derived from farnesyl pyrophosphate, a key intermediate of the cholesterol 

synthesis pathway. It is a component of essential oils derived from plants (cis,trans-farnesol) such 

as citronella, chamomile, and lemongrass. FOL is also found in mammalian tissues and cells 

(trans,trans-farnesol). Isoprenoids are bioactive compounds shown to regulate various signaling 

pathways and have reported anti-inflammatory/cancer properties [9]. Earlier studies have 

reported significant inhibition of neuronal and vascular voltage-gated Ca2+ channels by FOL, 

suggesting potential physiological regulation of Ca2+ signaling in the brain and the vasculature 

[10] [11]. Oral FOL treatment also reduced neurotoxicity, oxidative stress, and reactive gliosis in 

an acrylamide-induced neurotoxic mouse model. FOL treatment showed a reduction of pro-

inflammatory cytokines tumor necrosis factor-alpha (TNF-ɑ) and interleukin-1𝛽 (IL-1𝛽) and 
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improved motor coordination [12]. Last, we recently showed that oral FOL treatment reduces the 

infiltration of immune cells into the CNS of EAE mice, protecting the animals against the disease 

[13]. 

RNA sequencing (RNA-seq) is a powerful tool for quantitatively analyzing gene expression 

in cells and tissues. This experimental tool has been used to identify pathways altered by diseases 

and impacted by treatment [14]. We used RNA-seq to characterize transcriptome alterations of 

the EAE brain and identify the molecular mechanisms associated with FOL protection against the 

disease [13].  

2. Methods 

2.1. Animals and housing conditions 

Ten-week-old female C57BL6 NHsd mice weighing approximately 20 grams (Envigo RMS, 

Inc., Indianapolis, IN, USA) were housed in groups of 5 in wire-top cages with a 12-h light/dark 

cycle (22 ± 1 ºC; 23-33% humidity). Animals had free access to food and water with all care and 

procedures following Eastern Washington University institutional policies for animal well-being 

and health (IACUC protocol 2019-10-12). 

2.2. EAE induction and treatments 

Animals were given one week to acclimate to the EWU housing environment. EAE was 

induced using Hooke Laboratories Induction kits (Hooke KitTM EK-2110, Hooke Laboratories, 

Lawrence, MA). The kits use MOG35-55 in emulsion with complete Freund’s adjuvant (CFA) and 

Pertussis toxin (PTX) in a glycerol buffer. On day 0 of EAE induction, the MOG35-55-CFA emulsion 

was diluted with PTX in phosphate-buffered saline and injected subcutaneously. PTX toxin 

injection was repeated the following day (day +1). The mice were then randomly allocated to three 

experimental groups to receive 100 mg/kg/day of FOL (trans, trans-farnesol, Sigma-Aldrich, cat. 
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#277,541) solubilized in corn oil (EAE-FOL; n=10 mice), corn oil only (CO-EAE; n=9), or no 

treatment (EAE group; n=9). FOL and corn oil were administered daily by gavage, with the dose 

adjusted weekly according to animal body weights. A group of sex- and age-matched mice was 

not EAE-induced (Naïve: n = 8) and were used as healthy controls. Brains of naïve mice were 

collected matching collection daytime of the experimental groups. 

2.3. RNA extraction and RNA sequencing 

Brains were collected aseptically at the EAE disease’s peak (day 19) after CO2 euthanasia. 

The tissue collection time was selected based on previous EAE experiments for this project [13]. 

The EAE clinical scores at euthanasia were: EAE: 2.4 ± 1.3; CO-EAE: 1.5 ± 1.0; EAE-FOL: 0.8 ± 

1.0 [13]. The brains from healthy animals (Naïve) were collected during the same daytime as the 

experimental controls. Samples were stored at -80 ºC until RNA extraction, after a quick rinse 

with ice-cold phosphate-buffered saline and snap freeze in liquid nitrogen. Half brains were 

homogenized with a tissue disruptor (Fisherbrand Bead Mill 24; Fisher Scientific, Waltham, MA, 

USA). RNA was then extracted and purified using RNeasy Kits (Qiagen, Germantown, MD, USA). 

RNA quality and concentration were determined using a nanodrop spectrophotometer 

(ThermoFisher Scientific, Waltham, MA, USA) and PCR and gel electrophoresis (1% agarose) at 

the Genomics Core Lab at Washington State University College of Pharmacy). Samples were 

diluted in nucleotide-free water and stored at -80 ºC until sequencing. 

2.4. Illumina sequencing 

Novogene Corporation Inc. (Sacramento, CA) performed sequencing. RNA purity was 

rechecked by Novogene using the NanoPhotometer® spectrophotometer (Implen, CA, USA). 

Next, RNA integrity and quantitation were determined with an RNA Nano 6000 Assay Kit of the 

Bioanalyzer 2100 system (Agilent Technologies, CA, USA). For sequencing, 1 g RNA per 



 

 7 

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at Clinical 

Immunology, published by Elsevier. Copyright restrictions may apply. https://doi.org/10.1016/j.clim.2023.109752. 

sample was used. Libraries were generated using NEBNext® UltraTM RNA Library Prep Kit for 

Illumina® (NEB, USA). mRNA was purified from total RNA using poly-T oligo-attached magnetic 

beads. Fragmentation was performed in NEBNext First Strand Synthesis Reaction Buffer. The 

first strand of cDNA was synthesized using a random hexamer primer and M-MuLV Reverse 

Transcriptase (RNase H-). The second strand was synthesized with DNA Polymerase I and 

RNase H. Exonuclease/polymerases were used to generate blunt ends. NEBNext Adaptor with 

hairpin loop structure was ligated to prepare for hybridization. 150~200 bp in length cDNA 

fragments were selected with the AMPure XP system (Beckman Coulter, Beverly, USA). USER 

Enzyme (NEB, USA) (3 μl) was used with size-selected, adaptor-ligated cDNA at 37 °C for 15 

min followed by 5 min at 95 °C before PCR. PCR was performed with Phusion High-Fidelity DNA 

polymerase, Universal PCR primers, and Index (X) Primer. PCR products were purified (AMPure 

XP system), and library quality was assessed on the Agilent Bioanalyzer 2100 system. 

2.5. RNA-seq analysis and statistical analysis 

RNA-seq libraries were mapped to a mouse reference genome (Kallisto STAR). Reference 

genome and gene model annotation files were downloaded from the genome website browser 

NCBI/UCSC/Ensembl directly. Indexes of the reference genome were built using STAR, and 

paired-end clean reads were aligned to the reference genome using STAR (v2.5). STAR used 

the Maximal Mappable Prefix (MMP) method, which can generate a precise mapping result for 

junction reads. Clean raw reads were calculated into FPKM (fragments per Kilobase of exon 

model per million reads mapped). We identified differentially expressed genes (DEGs) using the 

criterion of P < .05 and |log2 (fold change)|. Volcano plots, PCA, cluster plots, and DEG diagrams 

were prepared by Jupyter (Maayanlab. cloud) software [15]. Gene Ontology (GO) enrichment 

results (up/downregulation) were analyzed using Enrichr datasets and compared the domains of 

molecular function, cellular component, and biological process. (GO_Biological Process_2018, 

GO_Molecular_Function_2018, GO_Cellular component_2018). Pathway enrichment analysis 
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was done with KEGG using Enrichr (Kyoto Encyclopedia of Genes and Genomes) with their 

respective libraries (KEGG_2016, Reactome_2016, WikiPathways_2016). Transcription factor 

enrichment analysis analyzed pathways (up/downregulated) using Enrichr, with their libraries 

(ChEA_2016, ENCODE_FT_ChIP-seq_2015, ARCH_TFs_Coexp). All Significant results using 

catalogs/libraries were determined using Benjamin-Hochberg correction, then a cut-off P-

value<0.1.  Fragments Per Kilobase of transcript sequence per Millions of base pairs sequenced 

(FPKM) were compared by analysis of the variance followed by Tukey’s multiple comparisons. 

Statistical analyses were performed with Rstudio (RStudio Team (2020). RStudio: Integrated 

Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/) and with GraphPad 

Prism version 9.4 for Apple (GraphPad Software, San Diego, California USA, 

www.graphpad.com”). Figures were generated with RStudio and with GraphPad Prism. 

3. Results 

3.1. Whole brain RNA-seq data quality control and data distribution 

All reads were filtered to obtain clean reads by removing reads containing adapters and poly-

N sequences, reads with more than 10% of bases that could not be determined, and low-quality 

reads with a Qscore (Quality value) of over 50% bases being <= 5. The error rate of the whole 

sequences for all samples was 0.02%, the Q20(%) (Phred values greater than 20 base number 

contain the percentage of total bases) at least 98%, and the lowest Q30(%) 94.84%. Phred 

defines the quality of the nucleobase’s identification generated by the sequencing. Pearson 

analysis performed using the sequences of all samples identified one brain sample with a low 

correlation with all the other samples (EV4, Suppl. Fig. 1). Therefore, EV4 was excluded from all 

analyses. Figure 1 shows the differential expression patterns as a heatmap, overlapping Venn 

diagram, Principal Analysis Components (PCAs), and volcano plots. A statistical analysis of all 

gene counts downregulated and upregulated in the brains of EAE mice vs. naïve mice are shown 

in Table 1 and Table 2, respectively.  The tables also show group-to-group comparisons. 

http://www.graphpad.com/
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3.2. Effect of EAE on gene expression – Untreated EAE vs. healthy (Naïve) 

comparison 

3.2.1. EAE causes dysregulation of neuronal signaling and maturation. 

Gene Ontology (GO) is commonly used to describe and classify gene characteristics on a 

wide-scale analysis [16]. DEGs associated with “nervous system development” (GO: 0007399) 

were downregulated in EAE vs. healthy (Naïve) (Suppl. Fig. 10A). Sema3c, Dpysl3 (Suppl. Fig. 

13), and Plxna4 (Fig. 2A), all known regulators of nervous system development, were 

downregulated. Sema3c (Suppl. Fig. 13) product is the co-receptor for Plxn4a [17]. GO term 

enrichment analysis showed 19 DEGs in “regulation of cell differentiation” (GO: 0045595) were 

downregulated in EAE vs. healthy (Naïve) (Suppl. Fig. 10A). We used the Kyoto Encyclopedia of 

Genes and Genomes database (KEGG) for further analysis of the genes associated with specific 

pathways and networks [18]. This analysis showed the downregulation of 13 DEGs related to 

axon guidance (hsa04360) and downregulation of the “cell adhesion molecules” pathway (CAMs; 

12 DEGs associated) (Suppl. Fig. 4A). CAMs are an essential part of axon response to 

extracellular stimuli and play a crucial role in neuronal morphology [19]. Slc4a11 was also 

downregulated in EAE vs. healthy (Naïve) (Fig. 2B), associated with suppressing neuronal 

excitability [20]. 

Aside from neurons, genes associated with neuronal development were also downregulated 

in EAE, including Smarca4 (Fig. 4A), a requirement for oligodendrocyte differentiation/maturation 

[21]. Downregulation of Fabp7 was also reported (Suppl. Fig. 13), a gene required for 

oligodendrocyte differentiation [22]. This pattern continued with the downregulation of Myt1l and 

Pou3f2, two genes implicated in neuronal differentiation (Fig. 4A). In contrast, DEGs associated 

with “osteoclast differentiation” were upregulated in EAE vs. healthy (Naïve) (Suppl. Fig. 4A). 
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EAE also decreased the expression of DEGs associated with “GABA synthesis, release, 

reuptake, and degradation” as well as “Transmission across chemical synapses” (R-HSA-

888590) when compared to naïve conditions (Fig. 3B). We found that EAE caused the 

upregulation of Gabrr3 (Fig. 5A) but the downregulation of Gabra2, Gabre, Gabrg2, Gabbr2, and 

Gabra3 (Suppl Fig. 13). GO term enrichment analysis showed downregulation of “transmitter-

gated ion channel activity involved in the regulation of postsynaptic membrane potential” (GO: 

0099529) and “chlorine channel activity” (GO: 0005254). Gabra2 and Gabrg2 were DEGs 

associated with both pathways described. Last, KEGG analysis showed downregulation of 

“alanine, aspartate, and glutamate metabolism” in EAE (Suppl. Fig. 4A). The imbalance between 

glutamate and GABA has been shown to affect fatigue in MS [23]. 

The comparison between untreated EAE brains and healthy (Naïve) mice brains suggests 

that at the peak of the disease, neuroinflammation causes dysregulation in neuronal differentiation 

and development. The data further show that EAE downregulates pathways implicated in GABA-

mediated neurotransmission. 

3.2.2. EAE causes a pro-inflammatory immune response in the Brain. 

We examined the expression of genes involved in pro-inflammatory and immune-related 

pathways using the Reactome database [24]. In EAE, 116 DEGs associated with “immune 

response” pathways were upregulated (Fig. 2A). The pathways “chemokine activity” (GO: 

008998) and “chemokine receptor binding” (GO:0042379) were also upregulated (Suppl. Fig. 8A). 

“Cytokine-mediated signaling pathway” (GO: 0019221) and those implicated in the “cellular 

response to cytokine stimulus” (GO: 0071345) (Suppl. Fig. 10A), and “cytokine receptor activity” 

(GO: 0004896) (Suppl. Fig. 6A) pathways were also upregulated. Further analysis using 

Wikipathways revealed upregulation of the “IL-5 signaling” and “IL-3 signaling” pathways (not 

shown) in the EAE brain. Interestingly, GO and KEGG analyses showed upregulation of DEGs in 
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the “Toll-like receptor Signaling” pathway (Suppl. Fig. 8A & Fig. 2A). This finding was supported 

by the Reactome analysis that identified upregulation of the “Toll-like receptor cascades” pathway 

and upregulation of the “TLR4 Cascade” (14 DEGs) pathway (Suppl. Fig. 4B). KEGG also found 

upregulation of the “TNF signaling pathway" (18 DEGs) and “Complement and coagulation 

cascade” (11 DEGs) (Suppl. Fig 4A), and “MHC protein binding” (5 DEGs) (GO: 0042287) (Suppl. 

Fig. 8A).   

We also observed increased expression of DEGs associated with “STAT2” (Fig 4A) and the 

“Jak-STAT signaling” pathways (Suppl. Fig. 4A), and “Negative regulation of viral genome 

replication” (12 DEGs) (GO: 0045071) (Suppl. Fig. 10A). Genes connected with interferon (IRF) 

pathways (IRF1, IRF2, IRF5, IRF7, and IRF9 pathways) were also upregulated (Fig. 2A). IRF 

pathways are well-characterized in the context of viral infections [25]. Interestingly, Trim23 was 

downregulated (Fig. 4A). Trim23 has been associated with viral infection-based autophagy [26]. 

Last, the involvement of interferon-related pathways in EAE was further supported with the 

upregulation of 19 “interferon alpha/beta signaling” (19 DEGs) and “interferon gamma signaling” 

(16 DEGs) (Fig. 2A). These findings are relevant considering that IFN-beta (IFN-) was the first 

disease-modifying treatment approved for MS [27]. 

Last, pathways associated with the immune response to pathogenic microbes were also 

upregulated in EAE. By KEGG, DEGs related to parasitic “Leishmaniasis” and “Chagas disease,” 

viral “Herpes simplex infection” and “Measles infection,” and bacterial “Staphylococcus aureus 

infection” were upregulated in EAE vs. healthy (Naïve) (Suppl. Fig. 4A). 

In summary, our data show upregulations of both innate and adaptive immune cell activity in 

the brains at EAE’s clinical peak, including increases in chemokine/cytokine, pro-inflammatory, 

and toll-like receptor pathways.  
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3.2.3. EAE impacts sterol synthesis regulatory genes. 

Recent literature has highlighted that neuronal cholesterol synthesis is vital for remyelination, 

with oligodendrocytes increasing cholesterol synthesis after neuronal injury [28]. GO analysis 

showed downregulation of 12 DEGs associated with both the “cholesterol biosynthesis” in EAE 

(Fig. 2A); Reactome analysis showed downregulation of several DEGs of the “activation of gene 

expression by sterol regulatory element binding proteins (SREBP)” pathway (Fig. 2A). These 

pathways had six overlapping DEGs: Sqle, Hmgcs1, Mvd, Hmgcr, Dhcr7, Lss, and Fdft1. Sqle 

and Hmgcr are essential enzymes to the mevalonate pathway [29], and Hmgcs1 is a critical rate-

limiting step in cholesterol production in neurons and astrocytes [30]. Fdft1 is a 

farnesyltransferase with dysregulation associated with cancer progression [31]; In addition,  Dhcr7 

is the last step in the cholesterol synthesis cascade [32]. Overall, highlighting in EAE is a 

downregulation of gene expression associated with several phases of cholesterol synthesis. 

KEGG analysis also showed the downregulation of seven DEGs in the “steroid biosynthesis” 

pathway in EAE mice (Suppl. Fig. 4A). Four DEGs associated with “cholesterol synthesis” also 

correlated with the “steroid biosynthesis” pathway: Sqle, Dhcr7, Lss, and Fdft1. R Studio analysis 

verified the downregulation of both Sqle and Dhcr7 in EAE vs. naïve mice (Suppl. Fig. 14). 

3.3. Effect of FOL on gene expression - EAE-FOL vs. untreated EAE comparisons 

3.3.1. FOL attenuates the expression of immune/inflammation response genes and 

pathways. 

The anti-inflammatory activity of FOL has been attributed in part to its ability to control 

cytokine release [9] [33]. Brain samples from the EAE-FOL group showed upregulation of 8 

“positive regulation of leukocyte migration” DEGs. Four of these DEGs were affiliated with 

“leukocyte aggregation.” They were significantly upregulated compared to the Naïve group 

(healthy mice) (Suppl. Fig. 10C). GO analysis revealed a downregulation of DEGs in the “antigen 
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processing and presentation” pathway in EAE-FOL brains (Suppl. Fig. 5B) and KEGG reported 

downregulation of genes of the “TNF signaling pathway” (Suppl. Fig. 5B). The downregulated 

DEGs of the “TNF signaling pathway” were Nfkbia, Mmp14, Atf6b, Akt2, Pik3r2, Fos, Junb, Cxcl1, 

and Map3k5. In addition, there was a trend (p < 0.01) for FOL-induced Fas downregulation (Suppl. 

Fig. 12). This is notable considering that Fas over-expression in CD8 T cells correlates with 

exacerbated EAE [34]. KEGG analysis further showed the downregulation of genes of the “human 

T-lymphocyte virus 1” pathway in the brains of FOL-treated EAE mice compared to those from 

untreated EAE animals (Suppl. Fig. 5B). Of note is the downregulation of Crem and Tcf7 (Fig. 

4B), two genes considered markers of pro-inflammatory Th17 cells and believed to play a role in 

MS  immunopathology [35] [36]. MAP kinase pathways were downregulated in FOL-treated EAE 

mice, the “negative regulation of MAP kinase activity” pathway (GO: 0043407; Suppl. Fig. 11B) 

and the Reactome “MAPK targets/Nuclear events mediated by MAP kinases” pathway (5 DEGS, 

Fig. 4A), with three overlapping genes (Dusp4, Dusp3, and Dusp6). FOL also showed 

downregulation in the “glucocorticoid receptor binding” pathway (5 DEGs) (Suppl. Fig. 9B), a 

pathway that has been the target of anti-inflammatory steroids used in MS treatments [37]. 

3.3.2. FOL treatment alters cellular stress response pathways in EAE brains 

Current literature supports that endoplasmic reticulum (ER) and oxidative stress are critical 

regulators of neuronal apoptosis [38]. Several ER/oxidative stress pathways were found to be 

downregulated in brains of EAE mice treated with FOL: “unfolded protein response” pathway 

(Reactome analysis; Fig. 3), “response to ER stress” pathway (13 DEGs, GO: 0034976, Suppl. 

Fig. 11B), “protein processing in the ER” pathway (29 DEGs, Suppl. Fig. 5B), “ubiquitin protein 

ligase binding” pathways (GO: 0031625, Suppl. Fig. 9B), and the “endoplasmic-reticulum-

associated-protein degradation” pathway (GO: 0036503, Suppl. Fig. 11 B). Interestingly in EAE-

FOL, the “ubiquitin-like-protein ligase binding” pathway (18 DEGs) (GO:0031625) was 

downregulated when compared to the healthy (Naïve) group (Suppl. Fig. 8C). Other ER/oxidative 
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stress pathways showed downregulation of gene expression: “Endoplasmic-reticulum-associated 

protein degradation” (ERAD) pathway (10 DEGs, Suppl. Fig. 11B) and “Heat Shock Response” 

pathway. Heat shock factors (HSF) are regulated by heat shock proteins (HSP) and function to 

help with protein folding or signal for degradation [39]. The “cellular stress response” (Fig. 3A) 

and the “cellular response to heat stress” pathways were both downregulated in FOL-treated mice 

(Fig. 3B). The cofactor Hspa5 and Chord1 were downregulated, comparable to healthy (Naïve) 

levels (Fig 5A). Finally, genes of the “N-glycan trimming in the ER and Calnexin/Calreticulin 

response” pathway, a key pathway that ensures proper protein folding [40], were also 

downregulated in FOL-treated mice (Fig. 3A). 

Taken together, the treatment with FOL reduced the expression of pathways associated with 

oxidative, heat-induced stress and genes linked to protein misfolding, upregulated in EAE brains. 

Our findings suggest an effect of FOL attenuating oxidative stress during EAE. 

3.3.3. FOL impacts cancer-associated pathways 

Several studies have established the anti-cancer properties of FOL [9,41]. A recent study 

found that MS patients had higher prostate, colorectal/anal, and lung cancer risks than population 

controls [42]. We performed a more in-depth analysis of the cellular pathways associated with 

cancer-associated DEGs impacted by FOL treatment. KEGG analysis revealed a downregulation 

of several “pathways in cancer” genes (Suppl. Fig. 5B), a downregulation of “Longevity regulating 

pathway” genes (Suppl. Fig. 5B), and a downregulation of genes of the “apoptosis-related network 

due to altered Notch3 in ovarian cancer” pathway (not shown). Downregulation of “pathways in 

cancer” and “longevity regulating pathway” genes was not observed in the EAE-Veh group when 

compared to the untreated EAE group (Suppl. Fig. 5A). This suggests that the effect of FOL on 

cancer-related pathways is specific to FOL and independent from corn oil, its vehicle. 
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3.3.4. FOL impacts genome regulation/repair mechanism pathways in EAE Brains 

GO analysis revealed that 36 DEGs associated with the “negative regulation of transcription 

from RNA polymerase II promoter” pathway were downregulated by FOL (Suppl Fig 9B). 

Interestingly, the treatment with FOL impacted the expression of 2 genes (downregulation of Mtf2 

and upregulation of Mga, Fig 2B), two genes implicated in regulating the activity of RNA 

polymerase II and DNA transcription [43,44]. FOL also downregulated several genes of the 

“negative regulation of transcription, DNA templated” pathway (GO: 0000122 & 0045892; Suppl. 

Fig. 11B), with 15 DEGs not related in both pathways and upregulated several genes of the “Y-

form DNA binding” pathway (GO: 0000403; Suppl Fig. 9B). An upregulation was also seen with 

Cdkn2aip (Fig 4B), a gene implicated in DNA damage responses, apoptosis and cell proliferation 

[45]. Last, FOL changed the expression of DEGs associated with chromosome 

repair/maintenance (upregulation of Kntc1 and chromatin condenser Ncor1 and downregulation 

of Suz12; Fig. 4B). 

FOL treatment impacted several other pathways implicated in genome regulation and repair 

mechanisms. Upregulation was observed for “U2-type spliceosomal complex” (GO: 0005684) and 

“U2-type pre-spliceosome” (GO: 0005684, Suppl. Fig. 6C). In contrast, the following were 

downregulated: “RNA splicing, via transesterification reactions with bulged adenosines as 

nucleophiles” (GO: 0000377, Supp Fig 11C), “spliceosome” pathway (KEGG analysis, Supp Fig 

5C), “U6 snRNA binding” (GO: 0017070, Supp Fig 9C), “mRNA splicing, via spliceosome” (Suppl 

Fig 11C), “mRNA splicing – Major pathway” and “processing of capped intron-containing pre-

mRNA” (Suppl Fig 3B).  

4. Discussion 
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  Our previous work shows that daily oral FOL administration delayed the onset and 

significantly attenuated the clinical severity of murine experimental autoimmune encephalitis 

(EAE). EAE is a well-established model of multiple sclerosis characterized by the crossing of 

immune cells through the blood-brain barrier and profound neuroinflammation [13]. FOL reduced 

the infiltration of immune cells to spinal cord parenchyma while modifying the composition of the 

gut microbiome [13]. While the anti-inflammatory and neuroprotective activities of FOL had 

previously been reported [9,12], the molecular basis of these activities, especially in the EAE 

brain, had not been investigated. To fill this knowledge gap, we performed a transcriptomics 

analysis (RNA-seq) of the brains of EAE mice treated with FOL. The data were compared to 

relevant control transcriptomics profiles, namely those of brains collected from untreated EAE and 

vehicle (corn oil)-treated mice and healthy mice. The data show that oral FOL treatment 

ameliorated pathways associated with an immune response and pathways associated with 

protein misfolding in the brain. Additionally, we found an upregulation of positive immune cell 

regulation in the brain. Compared to untreated EAE animals, which showed upregulation of 

various pathways associated with immune cell activity/activation.  

The brain of FOL-treated EAE mice showed downregulation of pathways associated with 

“cellular stress response” and “unfolded protein response” (Suppl. Fig 11B). A recent study 

showed that dietary supplementation with FOL protected a  Parkinson’s mouse model (CamK-

PARIS) [46]. Dietary treatment with FOL increased in approximately 50% the amounts of the 

isoprenoid in the brain compared to untreated controls. FOL treatment reduced hydrogen 

peroxide concentrations and prevented dopaminergic neuron loss in vivo [46]. Our RNA-seq study 

shows that the oral treatment with FOL resulted in the downregulation of the “parkin-ubiquitin 

proteasomal system pathway” (DEGs associated: Hspa8, Hspa5, Tubb3, Siah2, Stub1, Tuba4a, 

Hspa1b) when compared to untreated EAE mice. FOL treatment increased the expression of 

Sod2 in EAE-FOL compared to EAE and EAE-Veh (Fig 5B). In addition, Sfpq expression was 
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comparable to naïve levels with FOL treatment (Fig. 5A). Another study found that FOL 

ameliorated Charcot-Marie-Tooth disease (C22 mice), caused by degeneration of the peripheral 

axon or demyelination of Schwann cells; With mutations in Hsp22/27 also being reported [47]. 

FOL treatment in vitro/in vivo improved the integrity of Schwann cells, myelination defects, and 

overall increased locomotor function [47]. Our data indicate that FOL treatment downregulates 

the “cellular response to heat stress” pathway (Fig. 3A) and associated cofactors Hspa5 and 

Chord1 (Fig. 5A) compared to untreated EAE.  

We observed that the relative abundances of antigen-presenting cells and CD4+ T cells 

infiltrating the CNS of EAE mice treated with FOL were significantly reduced compared to 

untreated EAE mice and vehicle-treated EAE mice [13]. Interestingly, while FOL treatment 

reduced the abundance of infiltrated CD4+ T cells, an increase in Foxp3+Tregs was observed in 

the spinal cords. Our study suggests that FOL treatment could promote immunoregulation in the 

context of neuroinflammation. No study has determined whether FOL has immunosuppressive 

effects on pro-inflammatory Th17 cells as Th1 cells. However, the exposure of immature dendritic 

cells (DCs) to FOL results in dysfunctional function, causing a failure of Th1 activation and a lack 

of Th1-promoting cytokines, such as IL-12, in vitro. Interestingly, although FOL activated innate 

immune cells in this study, the responses triggered could not help mount adaptive immunity 

efficiently; instead, the responses induced immunosuppression [33].  Our results support this, with 

EAE-FOL showing downregulation of “antigen processing and presentation” (Supp Fig 5B). A 

FOL-infused chow diet was also used for an asthma mouse model (OVA-challenged mice) to find 

that the FOL diet slightly (not significant) decreased IL-4 cytokine levels in the spleen of mice [48]. 

In our RNA-seq analysis, we observed a significant downregulation of IL-4 DEGs in the brains of 

FOL-treated EAE mice, strengthening the idea that FOL treatment results in overall inflammatory 

response reductions and FOL’s potential as a neurotherapeutic for neuroinflammatory 

conditions.  
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FOL is a known intermediate of the mevalonate pathway [49]. The treatment with pitavastatin, 

a known inhibitor of HMG-CoA reductase in the mevalonate pathway, reduced EAE severity with 

a significant downregulation of Il17a, Csf2, Il21, Il23, Il1b, Il6, and Ccr2 expression in spinal cords 

[50]. Though we did not find a downregulation of Ccr2 specifically, we observed the 

downregulation of Ccr5 after FOL treatment. Both genes (Ccr2 and Ccr5) are reported to be 

upregulated in Th17 and downregulated in Tregs in pediatric MS patients [51]. Another study 

found that when Hmgcs1 expression was promoted in astrocytes, it reduced inflammatory 

infiltration and demyelination [52]—showing that cholesterol synthesis/regulation is a critical factor 

in neuroinflammatory disease. Our RNA-seq results support that oral FOL treatment ameliorates 

multiple immune response pathways in the brain. In addition, FOL treatment reduced the MAPK 

pathway cytokine pathways associated with autoreactive immune cells targeted to the brain. 

FOL significantly impacted several genes implicated in regulating the cholesterol synthesis 

pathway, which is impaired in the EAE brain [49]. However, FOL did not fully restore the 

expression of cholesterol synthesis genes to the level observed in naïve/healthy animals, thus 

raising the possibility that higher daily doses are needed to normalize cholesterol synthesis 

transcriptomics fully. It is also well-established that HMGCR inhibition reduces the viability of 

many cell types. A study done with PC-12 cells showed that FOL had a protective effect against 

atorvastatin-dependent cytotoxicity (ATR), a cytotoxicity model of Alzheimer’s disease. Their 

results showed farnesol reversed ATR and MβCD-toxicity of AβPP-sw cells to their control levels. 

Farnesyl transferase inhibitor reduced the cell viability to statin treatment levels [53]. To date, little 

data support evidence for a direct effect of farnesol on neurons. However, the study by Roullet 

and colleagues showed that farnesol is a potent blocker of neuronal N- and L-type Ca2+ channels, 

channels that are implicated in neurotransmission but also in brain calcium overload and ensuing 

neuronal death [10,28]. CNS calcium overload has been proposed as a pathogenic factor in MS 

[54], and the therapeutic benefits of manipulating calcium channel blockers in MS have been 
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reported [55,56]. With this, it is tempting to speculate that the neuroprotective activity of FOL in 

EAE is partly the consequence of FOL action on CNS voltage-gated calcium channels. 

Corn oil was used as a vehicle by solubilizing FOL and facilitating oral administration, as 

previously done by others [57]. We observed significant differences in the average clinical scores 

between FOL and vehicle treatments [13]. However, a vehicle effect was also observed, and corn-

oil treatment also reduced the severity of EAE [13]. Interestingly, vehicle and FOL treatments 

resulted in the downregulation of “response to unfolded protein” (GO: 0006986) (Suppl Fig 11B). 

The p-value for EAE-FOL (p = 6e-14) was lower than EAE-Veh (p = 6e-09). Another study also 

supported that exogenous FOL increases transcription of small heat shock proteins of Candida 

auris in vitro, supporting that this effect is farnesol induced [58]. This was also supported in our 

findings, with FOL-treated mice showing downregulation of “unfolded protein response,” “cellular 

response to stress,” and “cellular response to heat stress” (Fig. 3A/B).  

Our published work showed how FOL treatment modifies the composition of the gut 

microbiome, significantly impacting the Firmicutes:Bacteroidetes ratio [13]. FOL is a quorum-

sensing molecule reported to regulate microbial biofilm formation. It has also been reported to be 

an antimicrobial agent, specifically for gram-positive bacteria such as Staphylococcus aureus [59] 

[60]. Multiple recent studies suggest MS favors a dysbiotic microbiome [61]. However, the 

molecular mechanisms by which the microbiome could regulate neuroinflammatory/autoimmune 

diseases remain to be elucidated. Our previous works have demonstrated that the interactions 

between the gut microbiota and CNS inflammatory demyelination occur in both directions [62,63]. 

The present study indicates that EAE activates major inflammatory pathways, including TNF 

signaling. TNF- is a significant regulator of epithelial barrier integrity, including in the intestine 

[64]. EAE upregulation of TNF signaling pathways could result in increased intestinal barrier 

disruption, an effect that has been previously published [65]. It is possible that EAE’s impact on 
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the intestinal barrier could result in the microbiota changes observed during the disease. Further 

studies will address our hypothesis. 

Supporting the concept of the bidirectional nature of inflammatory pathways associated with 

EAE and the inflammation triggered by microbes, it was previously shown that peptidoglycan, a 

main component of the bacterial cell wall, aggregates to MS lesions and is associated with the 

activation of innate immune response genes [66]. Brain presence of bacterial lipopolysaccharide 

has also been found to impact EAE severity [67]. Our study describes specific immune-related 

pathways that are affected by EAE. When comparing the transcriptomic profile of EAE-FOL and 

EAE brains, a significant downregulation of “Vibrio cholerae infection Homo sapiens” was found 

(Supp. Fig, 4C and 5B). Although the direct impact of microbes and microbial products on the 

CNS is a possible mechanism by which the gut could regulate disease, immunomodulation 

triggered in response to gut microbes is also possible. For example, polysaccharide A (PSA) 

produced by Bacteroides fragilis promotes immunoregulatory responses that protect against EAE 

[68–71]. Our findings suggest that oral farnesol attenuates neuroinflammation in EAE through 

several mechanisms, including activation and modulation of immune pathways in the brain and 

modification of the gut microbiome. 

It is also possible that farnesol impacted immune cells in the EAE spleen. Interestingly, oral 

administration of Berberine (BB), a quaternary ammonium salt which, like farnesol has quorum-

sensing and immunomodulatory activities, was shown to reduce the severity of experimental 

autoimmune uveitis, an animal model of human endogenous uveitis [72]. These studies further 

showed, using RNA-seq, that BB downregulated the “antigen processing and presentation” 

pathways [72]. This pathway is also downregulated in FOL-treated EAE mice (Suppl Fig 5B) 

together with the “MAPK targets/Nuclear events mediated by MAP kinases” pathway (Fig 4A) and 

Akt2, a key gene implicated in TNF signaling [73]. These two pathways and the Akt gene are also 

downregulated in the spleen of mice treated orally with Tiepishihu Xiyangshen, a traditional 
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Chinese medicine with immunomodulatory activity [74,75].  Overall, we can surmise that the 

transcriptomics profile of peripheral immune cells will be comparable to what we found in the 

brain, with downregulation of pathways/DEGs associated with immune cell activation/pro-

inflammatory responses. However, this hypothesis must be confirmed in future studies specifically 

designed to assess the functional effects of FOL treatment on circulating and tissue immune cell 

subpopulations in EAE mice. 

Our transcriptomics findings were not validated with complementary quantitative PCR and 

protein expression analyses. Unfortunately, we no longer have access to the samples, and such 

validations will have to be performed in future studies. As discussed in the previous paragraph, 

the characterization of the transcriptomics profile of peripheral immune cells would have provided 

information critical to the understanding of the immunomodulatory activity of FOL. In our previous 

work [13], We reported that FOL did not significantly affect the splenic T cell subpopulations. In 

contrast, we observed a significant reduction in the proportion of T cells in the CNS and an 

increase in Tregs frequencies [13]. Based on these findings, we focused on the brain instead of 

the spleen to perform transcriptomics investigations. Last, we did not analyze FOL’s 

pharmacokinetic-pharmacodynamic properties. Future studies will measure brain FOL levels and 

correlate these levels with clinical efficacy and gene expression.  

Notwithstanding these limitations, our transcriptomics study stands out as the first 

comprehensive investigation of the immunomodulatory activity of oral FOL in experimental 

multiple sclerosis. It also confirms the involvement of several immune/neurological pathways and 

genes in EAE pathogenesis reported by others and thus provides not only a molecular 

understanding of the disease but also a molecular roadmap to developing targeted therapies. 

Our initial report of the preventive activity of FOL in EAE highlighted how daily farnesol 

gavage significantly changed the gut microbiome [13]. However, it also confirmed the 
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neuroprotective activity of vegetable oils (the FOL vehicle in our study) in this model reported by 

others [76,77]. Our transcriptomics analysis provides molecular clues to the therapeutic activity 

of these oils (see Figs. 5, and Suppl. Figs. 5, 7, 9, and 11) and calls for studies to delineate the 

role of FOL and that of the vehicle in preventing EAE onset. Such studies would require using a 

biologically neutral vehicle for oral administration or investigating the efficacy of other routes of 

FOL delivery. These issues have begun to be addressed, and reports of using FOL-infused chow 

or vehicle-free intranasal administration have recently been published [46,78].  

Testing the efficacy of non-oral routes of FOL delivery is important and needed. However, 

the efficacy of the oral route demonstrated in our earlier report raises the possibility of an 

interaction of FOL with the gut microbiota [13], an interaction which secondarily would impact the 

brain. Hence, future studies will be needed need to investigate if the observed FOL-induced 

changes in the brain transcriptomics are replicated using non-oral routes of administration and 

test the hypothesis of a gut-brain axis-mediated mechanism of action for FOL. 

Conclusion 

In our whole-brain transcriptomics analysis performed in EAE mice at the peak of disease, 

we observed that FOL treatment alters transcriptional and pre-translational pathways. Our data 

highlight that the effects of FOL treatment are not restricted to one part of genome regulation. 

Farnesol alters various immune pathways, alleviates cellular stress signals, and increases the 

expression of genome repair pathways/mechanisms. 

Data Sharing 

The data discussed in this publication are accessible through GEO Series accession number 

GSE233583 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE233583).  
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Tables 

Table 1. Analysis of the Variance of gene counts downregulated in EAE mice vs healthy (naïve) 

by Kruskal-Wallis, followed by multiple comparisons between all groups (Adjusted p values)*. 

 

All 

groups 

Naïve 

vs. 

EAE 

Naïve 

vs.           

EAE – 

Veh 

Naïve 

vs.           

EAE – 

FOL 

EAE 

vs.                  

EAE – 

Veh 

EAE 

vs.               

EAE – 

FOL 

EAE – 

Veh vs. 

EAE – 

FOL 

Lars2 1.18E-04 3.27E-02 5.30E-02 1.96E-01 9.96E-01 4.27E-05 8.27E-05 

Dnajc18 1.82E-04 2.89E-07 6.65E-06 4.72E-04 6.30E-01 2.62E-02 3.11E-01 

Gm23935 2.25E-04 4.68E-02 5.82E-02 2.28E-01 1.00E+00 9.04E-05 1.22E-04 

Sod2 2.64E-04 8.62E-07 2.50E-07 1.32E-03 9.63E-01 2.86E-02 8.48E-03 

Ankrd34c 2.75E-04 1.01E-05 5.05E-06 1.40E-03 9.93E-01 2.04E-01 1.23E-01 

Dpysl3 3.03E-04 1.10E-07 1.78E-06 6.02E-06 7.03E-01 3.25E-01 9.24E-01 

Cyp51 3.48E-04 5.03E-06 9.80E-05 1.10E-07 6.81E-01 5.51E-01 8.33E-02 

Gnl3l 3.95E-04 3.71E-08 7.33E-08 2.77E-06 9.93E-01 2.57E-01 3.93E-01 

Dhcr7 4.24E-04 6.54E-08 4.95E-07 6.74E-09 8.56E-01 8.80E-01 4.17E-01 

Itm2a 4.64E-04 1.26E-06 2.06E-05 3.44E-05 7.16E-01 4.99E-01 9.87E-01 

Sema3c 5.06E-04 1.49E-06 1.12E-07 4.20E-08 7.47E-01 6.05E-01 9.97E-01 

Fabp7 5.09E-04 2.49E-02 1.85E-03 4.14E-06 7.06E-01 1.14E-02 1.38E-01 



 

 31 

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at Clinical 

Immunology, published by Elsevier. Copyright restrictions may apply. https://doi.org/10.1016/j.clim.2023.109752. 

Gabra2 6.72E-04 2.56E-04 2.29E-06 5.85E-05 3.02E-01 9.70E-01 5.20E-01 

Copg2 7.86E-04 1.96E-06 1.92E-05 9.50E-04 8.24E-01 7.90E-02 3.83E-01 

Sqle 8.05E-04 3.36E-07 1.35E-06 6.55E-08 9.49E-01 9.64E-01 7.35E-01 

Pcdh20 9.17E-04 8.19E-07 7.42E-06 1.85E-06 8.35E-01 9.63E-01 9.81E-01 

Olfml2a 1.09E-03 1.53E-06 4.91E-05 2.33E-06 5.63E-01 9.88E-01 7.36E-01 

Gm22009 1.09E-03 1.55E-03 1.61E-02 9.90E-01 7.75E-01 2.08E-04 3.13E-03 

Gabrg2 2.27E-03 3.37E-04 1.45E-02 1.49E-02 4.51E-01 3.78E-01 1.00E+00 

Gabbr2 4.22E-03 2.97E-01 1.20E-02 3.53E-03 3.79E-01 1.77E-01 9.73E-01 

Gabrb3 5.65E-03 1.69E-01 6.84E-03 1.92E-02 4.44E-01 7.37E-01 9.52E-01 

Gabrg1 6.67E-03 4.68E-04 4.37E-02 9.56E-02 2.62E-01 1.04E-01 9.68E-01 

Gabra3 1.17E-02 3.60E-02 3.97E-03 5.40E-03 7.83E-01 8.76E-01 9.96E-01 

Gabra5 3.58E-02 3.48E-01 4.02E-02 1.24E-01 6.31E-01 9.32E-01 9.20E-01 

Gabre 4.19E-02 2.60E-02 2.64E-02 1.57E-01 1.00E+00 7.67E-01 7.72E-01 

*, Adjusted p values shown, by Tukey’s multiple comparisons (in red font) 
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Table 2. Analysis of the Variance of gene counts upregulated in EAE mice vs. healthy (naïve) 

by Kruskal-Wallis, followed by multiple comparisons between all groups (Adjusted p values)*. 

 

All 

groups 

Naïve 

vs. 

EAE 

Naïve 

vs.          

EAE – 

Veh 

Naïve 

vs.         

EAE – 

FOL 

EAE 

vs.                  

EAE – 

Veh 

EAE 

vs.               

EAE – 

FOL 

EAE – 

Veh vs. 

EAE – 

FOL 

Hnrnpm 2.24E-05 1.86E-09 4.01E-09 5.51E-05 9.88E-01 9.01E-04 2.25E-03 

Creld2 8.58E-05 5.94E-07 6.92E-02 7.82E-01 3.58E-04 1.55E-06 2.91E-01 

Gm43860 2.14E-04 3.21E-06 4.52E-02 5.28E-03 3.71E-03 2.62E-02 8.21E-01 

Fas 2.88E-04 3.43E-06 2.44E-05 6.29E-04 8.80E-01 1.67E-01 5.29E-01 

Ythdc1 2.99E-04 3.75E-06 8.31E-04 3.72E-02 1.95E-01 3.59E-03 3.50E-01 

Sfpq 3.07E-04 1.03E-05 1.87E-02 7.08E-01 3.09E-02 5.39E-05 1.24E-01 

Hspa5 3.59E-04 8.20E-06 6.09E-01 9.79E-01 1.09E-04 4.98E-07 3.02E-01 

Cep135 3.70E-04 2.43E-05 1.82E-05 2.44E-07 1.00E+00 3.78E-01 4.40E-01 

Chordc1 4.83E-04 8.88E-05 6.24E-02 1.52E-01 5.54E-02 1.34E-02 9.51E-01 

Pfkfb3 5.25E-04 1.55E-05 1.28E-01 1.43E-01 4.45E-03 2.52E-03 9.99E-01 

Sbno2 8.83E-04 1.02E-08 2.05E-08 1.97E-08 9.92E-01 9.64E-01 9.98E-01 

Itih4 1.04E-03 2.71E-04 1.23E-03 2.90E-04 9.37E-01 9.99E-01 9.68E-01 

Plaur 1.30E-03 2.67E-03 1.31E-03 2.87E-02 9.92E-01 6.95E-01 5.20E-01 

Zc3h11a 2.40E-03 2.16E-03 2.35E-04 6.42E-03 8.28E-01 9.49E-01 5.01E-01 
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ADAM17 1.45E-02 8.23E-02 8.66E-02 2.29E-01 1.00E+00 9.20E-01 9.29E-01 

Fabp4 1.79E-02 6.18E-03 1.20E-01 9.43E-02 5.32E-01 5.56E-01 1.00E+00 

Gabrr3 2.41E-02 6.36E-01 1.00E+00 3.45E-02 5.72E-01 3.03E-01 2.00E-02 

Gabrr2 3.00E-02 2.19E-01 1.77E-01 8.27E-03 9.99E-01 4.25E-01 5.02E-01 

*, Adjusted p values shown, by Tukey’s multiple comparisons (in red font) 
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Figure legends: 

Figure 1. Differential gene expression analysis from normalized reads of whole brain RNA-seq 

analysis of healthy (Naïve; N), untreated EAE (EAE), and EAE mice treated with farnesol (EAE-

FOL), at the peak of disease (17 days post-induction). A) Differential expression by heatmap that 

displays gene expression for each sample.  Rows represent each gene organized by clusters of 

genes, while the columns are organized by sample IDs clustered by treatment. Each cell displays 

normalized gene expression values. B) Venn diagram indicating the number of genes overlapping 

among treatments. C) Principal Component Analysis results showing a three-dimensional scatter 

plot of the first three Principal Components (PCs).  D) Volcano Plots showing the log2-fold 

changes and statistical significance of genes, with red points indicating significantly upregulated 

genes and blue points indicating significantly downregulated genes.  Sample size (mice): N = 8; 

EAE = 9; EAE-Veh = 8; EAE-FOL = 10. 

Figure 2. EAE and the treatment with farnesol (FOL) modifies the profile of transcription factors 

identified in brains. Pathway Enrichment Analysis by comparison of normalized reads to the ChEA 

(experimentally validated targets (ChEA), experimentally validated targets (ENCODE) and co-

expressed genes (ARCHS4) databases. A) Bar charts with pathway enrichment analysis of EAE 

vs. healthy (naïve). B) Bar charts with pathway enrichment analysis of EAE – FOL versus EAE. 

The x-axis shows the -log10(P-value) for each pathway. In red, comparisons show statistical 

significance (with adjusted p values < 0.05). 

Figure 3. EAE induction promotes the up- and-downregulation of biological pathways in mouse 

brains. Pathway Enrichment Analysis by comparison of normalized reads to the Reactome 

database and genes associated with most significant pathways. A) Bar charts with pathway 

enrichment analysis of EAE vs. healthy (Naïve). The x-axis shows the -log10(P-value) for each 

pathway. Pathways show statistical significance (with adjusted p values < 0.05) in red.  B) 
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Histograms showing enriched pathways in the columns and genes associated in the rows 

organized by p value. 

Figure 4. Treatment with farnesol (FOL) up-and downregulation of biological pathways in EAE 

brains. Pathway Enrichment Analysis by comparison of normalized reads to the Reactome 

database and genes associated with most significant pathways. A) Bar charts with pathway 

enrichment analysis of EAE – FOL versus EAE. The x-axis shows the -log10(P-value) for each 

pathway. Pathways show statistical significance (with adjusted p values < 0.05) in red.  B) 

Histograms showing enriched pathways in the columns and genes associated in the rows 

organized by p value. 

Figure 5. Farnesol treatment regulates some genes up- or downregulated after EAE induction. 

Fragments Per Kilobase of transcript sequence per Millions base pairs sequenced (FPKM) up-

regulated (A) and down-regulated (B) in EAE mice vs. naïve. Significant adjusted p values after 

Tukey’s comparisons indicated with asterisks (Tables 1-2 for values). *, Adj p < 0.05; **, Adj p < 

0.01; ***, Adj p < 0.001. 

 

  



 

 36 

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at Clinical 

Immunology, published by Elsevier. Copyright restrictions may apply. https://doi.org/10.1016/j.clim.2023.109752. 

Supplementary figures 

Supplementary figure 1. Analysis of correlation between samples by Pearson’s analysis. 

Highlighted within a red box, sample EV (EAE – Veh) 4 (EV4) discarded for analysis due to low 

correlation with other samples. The brain from EV4 was obtained from a moribund mouse. 

Supplementary Figure 2. Pathway Enrichment Analysis by comparison of normalized reads to 

the Reactome database. A) Brains of EAE mice treated with vehicle (corn oil) (EAE – Veh) and 

healthy (naïve) brains. B) Brains of EAE mice treated with farnesol (EAE – FOL) and healthy 

(Naïve) brains. The x-axis shows the -log10(P-value) for each pathway.  Pathways show 

statistical significance (with adjusted p values < 0.05) in red. 

Supplementary Figure 3. Pathway Enrichment Analysis by comparison of normalized reads to 

the Reactome database. A) Brains of EAE mice treated with vehicle (corn oil) (EAE – Veh) and 

EAE brains. B) Brains of EAE mice treated with farnesol (EAE – FOL) and EAE - Veh brains.  The 

x-axis shows the -log10(P-value) for each pathway.  Pathways show statistical significance (with 

adjusted p values < 0.05) in red. 

Supplementary Figure 4. Pathway Enrichment Analysis by comparison of normalized reads to 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. A) Brains of EAE mice treated 

with vehicle (corn oil) (EAE – Veh) and healthy (Naïve) brains. B) Brains of EAE mice treated with 

vehicle (corn oil) (EAE – Veh) and naive brains C) Brains of EAE mice treated with farnesol (EAE 

– FOL) and naive brains.  The x-axis shows the -log10(P-value) for each pathway.  Pathways 

show statistical significance (with adjusted p values < 0.05) in red. 

Supplementary Figure 5. Pathway Enrichment Analysis by comparison of normalized reads to 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. A) Brains of EAE mice treated 

with vehicle (corn oil) (EAE – Veh) and EAE brains. B)  Brains of EAE mice treated with farnesol 
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(EAE – FOL) and EAE brains.   C)  Brains of EAE mice treated with farnesol (EAE – FOL) and 

EAE - Veh brains. The x-axis shows the -log10(P-value) for each pathway.  Pathways show 

statistical significance (with adjusted p values < 0.05) in red. 

Supplementary Figure 6.  Gene Ontology (GO) enrichment analysis of cellular components. A) 

Brains of EAE mice treated with vehicle (corn oil) (EAE – Veh) and healthy (Naïve) brains. B) 

Brains of EAE mice treated with vehicle (corn oil) (EAE – Veh) and naive brains C) Brains of EAE 

mice treated with farnesol (EAE – FOL) and naive brains.  The x-axis shows the -log10(P-value) 

for each pathway.  Pathways show statistical significance (with adjusted p values < 0.05) in red. 

Supplementary Figure 7.  Gene Ontology (GO) enrichment analysis of cellular components.  A) 

Brains of EAE mice treated with vehicle (corn oil) (EAE – Veh) and EAE brains. B)  Brains of EAE 

mice treated with farnesol (EAE – FOL) and EAE brains.  C)  Brains of EAE mice treated with 

farnesol (EAE – FOL) and EAE - Veh brains. The x-axis shows the -log10(P-value) for each 

pathway.  Pathways show statistical significance (with adjusted p values < 0.05) in red. 

Supplementary Figure 8.  Gene Ontology (GO) enrichment analysis of molecular functions. A) 

Brains of EAE mice treated with vehicle (corn oil) (EAE – Veh) and healthy (Naïve) brains. B) 

Brains of EAE mice treated with vehicle (corn oil) (EAE – Veh) and naive brains C) Brains of EAE 

mice treated with farnesol (EAE – FOL) and naive brains.  The x-axis shows the -log10(P-value) 

for each pathway.  Pathways show statistical significance (with adjusted p values < 0.05) in red. 

Supplementary Figure 9.  Gene Ontology (GO) enrichment analysis of molecular functions.  A) 

Brains of EAE mice treated with vehicle (corn oil) (EAE – Veh) and EAE brains. B) Brains of EAE 

mice treated with farnesol (EAE – FOL) and EAE brains.   C)  Brains of EAE mice treated with 

farnesol (EAE – FOL) and EAE - Veh brains. The x-axis shows the -log10(P-value) for each 

pathway.  Pathways show statistical significance (with adjusted p values < 0.05) in red. 
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Supplementary Figure 10.  Gene Ontology (GO) enrichment analysis of biological processes. 

A) Brains of EAE mice treated with vehicle (corn oil) (EAE – Veh) and healthy (Naïve) brains. B) 

Brains of EAE mice treated with vehicle (corn oil) (EAE – Veh) and naive brains C) Brains of EAE 

mice treated with farnesol (EAE – FOL) and naive brains.  The x-axis shows the -log10(P-value) 

for each pathway.  Pathways show statistical significance (with adjusted p values < 0.05) in red. 

Supplementary Figure 11.  Gene Ontology (GO) enrichment analysis of biological 

processes.  A) Brains of EAE mice treated with vehicle (corn oil) (EAE – Veh) and EAE brains. B) 

Brains of EAE mice treated with farnesol (EAE – FOL) and EAE brains.   C)  Brains of EAE mice 

treated with farnesol (EAE – FOL) and EAE - Veh brains. The x-axis shows the -log10(P-value) 

for each pathway.  Pathways show statistical significance (with adjusted p values < 0.05) in red. 

Supplementary Figure 12. Genes upregulated after EAE induction that are not affected by 

vehicle or farnesol treatments. Fragments Per Kilobase of transcript sequence per Millions of 

base pairs sequenced (FPKM) upregulated in EAE mice vs. naïve. Significant adjusted p values 

after Tukey’s comparisons are indicated with asterisks (Tables 1-2 for values). *, Adj p < 0.05; **, 

Adj p < 0.01; ***, Adj p < 0.001. 

Supplementary Figure 13. Genes downregulated after EAE induction that is not affected by 

vehicle or farnesol treatments. Fragments Per Kilobase of transcript sequence per Millions of 

base pairs sequenced (FPKM) downregulated in EAE mice vs. naïve. Significant adjusted p 

values after Tukey’s comparisons are indicated with asterisks (Tables 1-2 for values). *, Adj p < 

0.05; **, Adj p < 0.01; ***, Adj p < 0.001. 
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