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A B S T R A C T   

The transition from the middle to late Permian (Guadalupian–Lopingian) is claimed to record one or more 
extinction events that rival the ‘Big Five’ in terms of depletion of biological diversity and reorganization of 
ecosystem structure. Yet many questions remain as to whether the events recorded in separate regions were 
synchronous, causally related, or were of a magnitude rivaling other major crises in Earth’s history. In this paper, 
we survey some major unresolved issues related to the Guadalupian–Lopingian transition and offer a multidis-
ciplinary approach to advance understanding of this under-appreciated biotic crisis by utilizing records in 
Southern Hemisphere high-palaeolatitude settings. We focus on the Bowen-Gunnedah-Sydney Basin System 
(BGSBS) as a prime site for analyses of biotic and physical environmental change at high palaeolatitudes in the 
middle and terminal Capitanian. Preliminary data suggest the likely position of the mid-Capitanian event is 
recorded in regressive deposits at the base of the Tomago Coal Measures (northern Sydney Basin) and around the 
contact between the Broughton Formation and the disconformably overlying Pheasants Nest Formation 
(southern Sydney Basin). Initial data suggest that the end-Capitanian event roughly correlates to the trans-
gressive “Kulnura Marine Tongue” in the middle of the Tomago Coal Measures (northern Sydney Basin) and 
strata bearing dispersed, ice-rafted gravel in the Erins Vale Formation (southern Sydney Basin). Preliminary 
observations suggest that few plant genera or species disappeared in the transition from the Guadalupian to 
Lopingian, and the latter interval saw an increase in floristic diversity.   

1. The end-Guadalupian mass extinction 

The end-Permian extinction (EPE, c. 252 million years ago, Burgess 
et al., 2014) was the most severe biotic crisis of the Phanerozoic Eon 
(Wignall, 2001; Erwin et al., 2002; Stanley, 2016) with more than 60% 
of marine and terrestrial genera going extinct. The traditional view of 
the EPE was that it represented a singular global extinction event, but it 
is now generally recognized that the late Permian was in fact charac-
terized by a series of global disruptions leading up to the main marine 
kill interval close to the Permian-Triassic boundary, along with 

subsequent events that delayed biotic recovery in the Early Triassic 
(Chen et al., 2022). Jin et al. (1994) and Stanley and Yang (1994) 
recognized an earlier marine extinction event at the middle 
(Guadalupian)–upper (Lopingian) Permian boundary (herein called the 
end-Guadalupian Extinction: EGE, c. 259 million years ago), which may 
in fact represent the first major global disruption leading up to the EPE. 
Although less prominent than the EPE, the EGE is considered to have 
entailed major biodiversity loss by some researchers (e.g., Stanley, 2016; 
Rampino and Shen, 2019) and was ecologically disruptive (Muscente 
et al., 2018; Day and Rubidge, 2021). Furthermore, some researchers 
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have also postulated an even earlier, mid-Capitanian extinction event 
(MCE; e.g., Bond et al., 2010a; Arefifard and Payne, 2020). This begs the 
question as to whether the late Permian Earth system was teetering on 
the brink of planet-wide ecological disruption, its resiliency challenged 
by the closely spaced preceding extinction events and in effect, “primed” 
for global collapse. Conversely, since the late Permian biosphere con-
sisted of hardened EGE survivor groups, the severity of EPE ecosystem 
collapse may have been even worse if not for the EGE. What were the 
tipping points that triggered the EGE and preceded the EPE, the largest 
extinction in Earth history? 

Currently, considerable uncertainty exists as to whether the EGE 
represents a global extinction event, and if it entailed one or more crises. 
The severity, timing and ultimate cause(s) of the EGE and associated 
perturbations are also disputed. Putative links to global cooling and 
southern hemisphere glaciation remain unresolved (Isozaki et al., 
2007a, 2007b). 

Analyses accounting for variable sampling rates over time suggest 
that global Guadalupian extinction rates among marine taxa are well 
within background rates for the Phanerozoic (Foote, 2007; Alroy, 2008). 
Sampling-standardized analyses by Clapham et al. (2009) suggested that 

the EGE may have been driven by suppressed origination rather than by 
elevated extinction, or was a ‘depletion event’ (sensu Stigall, 2019). 
Regardless of extinction rates, the EGE was one of the most severe 
ecological crises of the Phanerozoic (Stanley, 2016) and likely altered 
ecosystem structure and distribution to a greater degree than did some 
larger extinction (or depletion) events (McGhee et al., 2013; Muscente 
et al., 2018; Rampino and Shen, 2019). Raup and Sepkoski (1982) 
initially placed the onset of the EPE well within the Guadalupian. 

In the well-constrained Guadalupian-Lopingian Global Stratotype 
Section and Point (GSSP) in south China, major losses in both marine 
macro- and microfauna occurred, but this was during the mid- 
Capitanian, well before the end-Guadalupian (Shen and Shi, 2009; 
Wignall et al., 2009a,2009b; Bond et al., 2010a, 2010b). The terrestrial 
fossil record in South China (Shen, 1995) shows a major overturn in 
palaeoflora in the Capitanian, consistent with the timing based on ma-
rine fossils, although the stratigraphic sampling resolution remains 
coarse. Thus, Bond et al. (2010a) argued for a “Capitanian Extinction”. 
Subsequent work established evidence for a second, later extinction 
event at the Guadalupian-Lopingian boundary at this site and elsewhere 
(Bond et al., 2015; Huang et al., 2019; Zhong et al., 2020; Song et al., 

Fig. 1. Stratigraphic framework for the middle–late Permian record of the Bowen-Gunnedah-Sydney Basin System (BGSBS), showing available age (red circles) and 
other data, and major geological events (modified after Fielding et al., 2022). Horizontal yellow bars denote times of interpreted biotic crises from the literature. 
Vertical red bars denote time ranges of major LIPs (Burgess and Bowring, 2015; Chen and Xu, 2021). Horizontal pink bars denote clusters of tuff ages within the 
BGSBS succession (Nicoll, pers. comm.). Stratigraphic data from various sources including Metcalfe et al. (2015), Laurie et al. (2016), Fielding et al. (2019, 2021), 
and Mays et al. (2020). P3 and P4 are glaciations after Fielding et al. (2023). CapCIE refers to the mid-Capitanian Carbon Isotope Excursion (Zhang et al., 2021), and 
Kamura CIE to the Kamura event of Isozaki et al. (2007a, b, 2011). MCE – Mid-Capitanian Extinction, EGE – End-Guadalupian Extinction, EPE(M) – End-Permian 
Extinction (marine), EPE(C) – End-Permian Extinction (continental). Red capital letters denote some prominent tuff beds; A – Awaba, N – Nobbys, P – Platypus, Y – 
Yarrabee. Geochemical trends are from PHK Bunnerong-1, published by Fielding et al. (2019, 2023). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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2023). Retallack et al. (2006) argued for a palaeofloral extinction event 
at the end-Guadalupian in Antarctica and South Africa, but issues persist 
over the veracity of both the data used to formulate this interpretation 
and the timing of events (Bond et al., 2010a: p. 111). 

Conflicting interpretations of the extent of extinction during the EGE 
may point to taxonomic heterogeneity in the effects of the EGE. Analysis 
of Chinese data by Fan et al. (2020) suggested that depletion at the EGE 
(from extinction or suppressed origination) was restricted to corals and 
foraminifera, with a possible correlative loss of plant and terrestrial 
vertebrate communities (Bond et al., 2010a; Marchetti et al., 2022). Day 
et al. (2015) found evidence for a major turnover of tetrapods in the 
Karoo Basin of South Africa at about 260 Ma. Notably, all these groups 
were key organisms in mid-Permian ecosystems. Bond et al. (2010a, 
2015), Isozaki et al. (2007a, b, 2011, their “Kamura Event”), Huang 
et al. (2019), and Arefifard and Payne (2020) further suggested addi-
tional extinction pulses for marine taxa in the mid-Capitanian in records 
from China, Svalbard, Iran, Japan, and Croatia, converging on c. 262 Ma 
(Fig. 1). Zhang et al. (2021) found evidence for palaeoceanographic 
disturbances coincident with the mid-Capitanian faunal turnover at 
261.6 ± 1.6 Ma. The balance of evidence suggests that more than one 
extinction event affecting both marine and terrestrial ecosystems 
occurred during the Guadalupian–Lopingian transition. Their pattern 
and relative timing are well-constrained in the area of the GSSP in South 
China, but not elsewhere. Whether these die-offs were triggered by 
warming, cooling or other factors remains unresolved. 

Numerous plausible drivers of extinction and ecosystem alteration 
coincide with the EGE, including: Emeishan Large Igneous Province 
(ELIP) magmatic activity, circum-Gondwanan explosive volcanism, 
regression and loss of marine habitat, long-term cooling, ocean anoxia, 
catastrophic methane outbursts, combustion of terrestrial biomass and 
shoaling of sulfidic waters (e.g., Wignall et al., 2009a; Zhang et al., 2015; 
Chapman et al., 2022; Song et al., 2023; Kaiho et al., 2023). Coincidence 
of all these factors with the ELIP has led to a broad consensus that, like 
most other global extinction events, environmental perturbations asso-
ciated with large-volume volcanic eruptions were the principal driver 
for the EGE (Wignall, 2001; Wignall et al., 2009b; Bond et al., 2010a; 
Sun et al., 2010; Shellnutt et al., 2012, 2020; Zhong et al., 2020). This is 
because continental large igneous provinces are exceptional intraplate 
igneous events in Earth’s history and are the only known terrestrial 
phenomena that can trigger global mass extinction events on land and in 
the oceans (Bryan and Ferrari, 2013). 

Large-scale ecosystem perturbations in the mid-Capitanian predate 
the main eruptive phase of the ELIP (Chen and Xu, 2021). If an early 
intrusive phase and associated outgassing in the ELIP occurred (Liu 
et al., 2021), this may have led to the large-scale emission of significant 
greenhouse gases and particulates and could have triggered the 
mid-Capitanian crisis. If the mid-Capitanian timing of this intrusive 
phase is correct, it would coincide with the close of the P3 glaciation in 
eastern Australia (Fielding et al., 2008, 2023) (Fig. 1), suggesting that 
the mid-Capitanian was characterized by global warming. Nonetheless, 
there are conflicting interpretations of this event, with Bond et al. 
(2010a) and Zhang et al. (2021) documenting a negative carbon isotope 
excursion that they interpreted to record warming, whereas Isozaki et al. 
(2007a, b, 2011, their “Kamura Event”) reported a positive carbon 
isotope excursion that they considered to record cooling (Fig. 1). 

The end-Guadalupian (end-Capitanian) extinction (EGE) coincides 
with the end of the main eruptive phase of the ELIP (Chen and Xu, 2021), 
and again may have been triggered by release of greenhouse gases and 
toxic aerosols. However, the EGE also coincides with the early phase of 
the eastern Australian P4 glaciation (Fielding et al., 2008, 2023) (Fig. 1), 
suggesting a causal link with global cooling. Yang et al. (2018) proposed 
that the P4 glaciation in eastern Australia and the potentially global 
cooling event were caused by the terminal phase of ELIP volcanism and 
weathering of lavas. Although a timing overlap is observed, generally 
little evidence exists for the occurrence of large-scale and intense 
weathering during the emplacement of flood basalt provinces as a viable 

mechanism to drive relatively rapid global cooling (Bryan, 2021). 
Available geochronological constraints (Fig. 1) suggest there may be an 
antithetic relationship between the timing of eastern Australian glacia-
tions P3 and P4 and that of the Emeishan and Siberian Traps LIPs. 
Nonetheless, uncertainties persist, not least because Emeishan in 
southwest China and northern Vietnam were in the palaeotropics during 
the Permian, hence strata in those regions were unaffected by the alpine 
(valley-confined) nature of the P4 glaciation recorded in the high 
palaeolatitudes of eastern Australia. Furthermore, continuous sections 
through the Guadalupian-Lopingian boundary are sparse, in part due to 
an interpreted global sea-level lowstand at that time (Haq and Schutter, 
2008). 

2. Deciphering regional vs. global patterns 

The causes, effects, and timeline of the MCE and EGE have not been 
resolved satisfactorily. Furthermore, since a potentially worldwide 
cooling event is coeval with the EGE, detailed examination of a site that 
lay in the high southern palaeolatitudes, where a direct record of cold 
conditions is preserved, is crucial to an improved understanding of the 
EGE. We posit that the Bowen-Gunnedah-Sydney Basin System (BGSBS) 
in eastern Australia (Fig. 2) is the ideal site for resolving these un-
certainties. The BGSBS was a retroarc foreland basin during the middle 
and late Permian that accumulated a thick, stratigraphically complete 
succession along a palaeo-continental margin, spanning the 
Guadalupian-Lopingian transition (Fielding et al., 2001). Unlike sites in 
China (equatorial and proximal to Emeishan volcanism) and 
mid-latitude Svalbard, the Australian record represents high southern 
palaeolatitudes (40–70◦S) that may have been more sensitive to climate 
changes than lower-latitude locations (Fig. 2D). Our ongoing work aims 
to: 1. Determine whether the EGE was linked to cooling of marine and 
lowland continental habitats, 2. Elucidate its ultimate cause, and 3. 
Determine the extent to which both basin-marginal and distant volcanic 
activity played a role in this event at high southern latitudes. 

A large inventory of new, high-precision, absolute age data from 
primary volcanic deposits allows unprecedented insight into the timing 
and pacing of events through the Permian succession of the BGSBS (e.g., 
Metcalfe et al., 2015; Laurie et al., 2016; Fielding et al., 2019, 2021). 
New geochronological data have provided the basis for a highly resolved 
upper Permian stratigraphic framework (Fig. 1), which by means of a 
refined palynostratigraphic scheme (Laurie et al., 2016; Mays et al., 
2020), can be tied to near- and offshore marine successions of Western 
Australia and Asia. This is a key advancement because a paucity of 
ammonoid and conodont faunas in Australia had previously hindered 
correlation of the Australian Permian with the rest of the world. Despite 
recent efforts targeting principally the late Permian record, however, 
comparatively few new ages are available to constrain the middle 
Permian and the Guadalupian-Lopingian boundary (Fig. 1). Timing is 
key to understanding the relationships of regional and global events 
through the middle–late Permian. Additional high-precision geochro-
nological anchor points are needed in order to better constrain the 
timing of key events in the BGSBS, and we have targeted a series of thick 
tuffaceous beds for U-Pb CA-IDTIMS dating that bracket the target 
intervals. 

The most stratigraphically complete middle–upper Permian succes-
sion occurs in the Sydney Basin, which accumulated c. 2000 m of pre-
dominantly siliciclastic sediments in the foredeep axis preserved in 
coastal New South Wales (NSW) between the cities of Sydney and 
Newcastle (Figs. 1 and 2B). The correlative succession in the Gunnedah 
Basin in northern NSW is also informative, whereas biostratigraphic 
data in the absence of absolute age controls suggest that the equivalent 
interval is missing from the Bowen Basin in Queensland (Figs. 1 and 2). 
Our work thus far has focused on the foredeep of the Sydney Basin, 
where the most continuous record is likely to be preserved. Here, we 
have examined intervals from the lower Capitanian Mulbring Siltstone 
through the Capitanian to Wuchiapingian Tomago Coal Measures and 
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their lateral equivalents. Available surface exposures of those units in 
the Newcastle coalfield area provide limited samples of the full succes-
sion but allow detailed observations on stratal geometry and other 
features. Strategically located drillcores, on the other hand, provide 
continuous coverage of the entire succession with minimal lateral 
dimension. Logging of these drillcores informs a facies analysis of the 
target succession, which is then used to interpret depositional environ-
ments and their changes through time. 

Correlation of the interpreted timing of mid- and end-Capitanian 
events with the eastern Australian Permian stratigraphy (Fig. 1) sug-
gests that the former should occur in the basal part of the Tomago Coal 

Measures and equivalents, and the latter should broadly correlate with 
the “Kulnura Marine Tongue”, a marine interval that separates the lower 
from the upper Tomago Coal Measures (Fig. 2C). In DM Stockton DDH-3, 
the contact between the Mulbring Siltstone and overlying lower Tomago 
Coal Measures coincides with the uppermost occurrence of dispersed 
gravel and is interpreted to record the end of eastern Australian glaci-
ation P3 in that locality. The base of the lower Tomago Coal Measures is 
an abrupt contact between offshore marine and coastal plain facies, and 
may represent a sequence boundary. The time-equivalent contact be-
tween the Broughton Formation and overlying basal Pheasants Nest 
Formation in AGL Bootleg-8 is also disconformable on a similar basis, 

Fig. 2. A) Map showing the location of preserved Permian-Triassic sedimentary basins in eastern Australia. Inset box shows the location of part B. B) Geological map 
of the Sydney Basin in coastal New South Wales, Australia, showing the location of boreholes mentioned herein. Note that the present-day synclinal axis of the 
Sydney Basin (NW-SE) is at an acute angle to that of the original retroarc foredeep (broadly N-S) as informed by unit isopachs (Mayne et al., 1974). C) Core image 
showing a candidate interval for the end-Guadalupian crisis, the “Kulnura Marine Tongue” within the Tomago Coal Measures (Fig. 1) in PG Stratford DDH1. Note the 
presence of a low diversity trace fossil suite and dispersed gravel in sandy mudrocks, indicative of a stressed shallow marine environment and glacimarine conditions, 
respectively. D) Palaeogeographic map of Pangea in the late Permian, showing the location of the study area (Sydney Basin) in high southern palaeolatitudes of 
southeast Pangea, and those of the Emeishan Large Igneous Province (LIP) and Siberian Traps LIP (map based on Blakey, 2016). 
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and the lowermost part of this formation appears to record a highly 
stressed coastal plain setting (as indicated by the low-diversity, 
sporadically distributed trace fossil suite dominated by small individ-
ual traces). In PG Stratford-1 and AGL Bootleg-8, the Kulnura Marine 
Tongue and equivalent Erins Vale Formation record a major marine 
transgression and contain abundant dispersed gravel indicating the 
onset of eastern Australian glaciation P4 (Fig. 2C). The trace fossil 
assemblage in this unit is restricted in diversity and contains small in-
dividual traces, both indicators of environmental stress, and the top of 
the marine interval is marked by a pronounced disconformity with 
coastal plain strata erosionally overlying shoreface deposits. The exact 
implications of these patterns await the results of other analyses. 

3. A multidisciplinary approach 

Given the complexity of such key events in Earth’s history, we 
contend that a multidisciplinary approach is essential for identifying and 
integrating the patterns of biotic turnover and changes in the physical 
environment during the middle–late Permian. We have sampled well- 
preserved lithologies from two drillcores for petrography (sandstones), 
and for major and minor element geochemistry, sulphur content and 
isotopes, mercury concentrations and isotopes, stable isotopes of carbon 
and oxygen, biomarkers, and palynology (mudrocks). We have surveyed 
the drillcores cited above for plant macro- and meso-fossils, and have 
carried out exhaustive surveys of both marine invertebrate and plant 
fossils held in collections at the Australian Museum and the Geological 
Survey of NSW. Terrestrial vertebrate and invertebrate fossils are 
strikingly sparse in eastern Australia during this interval but enhanced 
palynostratigraphic controls and radiogenic-isotope dating ought to 
provide improved correlation with the fauna-rich successions of the 
Karoo Basin, South Africa (Prevec et al., 2009, 2022; Smith et al., 2020; 
Gastaldo and Bamford, 2023; Rochín-Bañaga et al., 2023). In addition, 
quantitative studies of herbivore damage features on fossil leaves and 
wood provide a gauge of insect feeding guild success through time. 
Quantitative palynology will reveal compositional and productivity 
changes in terrestrial and aquatic primary producer communities 
(plants, algae/acritarchs), and attendant signatures of ecological stress 
(e.g., enhanced wildfire activity, microbial blooms). Geochemical and 
biofacies data can be evaluated against the core logs and compared with 
evidence for palaeoenvironmental change derived from sedimentolog-
ical data. Mercury, together with sulphur abundances and isotopic 
values, will be used to evaluate possible roles of both regional (related to 
the contemporaneous Hunter-Bowen Orogeny) and distant (related 
potentially to the ELIP) volcanic activity in palaeoenvironmental 
disturbances. 

The broad distribution of eastern Australian volcanic activity over 
time is plotted on Fig. 1. This is important, because Chapman et al. 
(2022) proposed that volcanic activity temporally overlapping with the 
Hunter-Bowen Orogeny may have played a significant role in the 
somewhat later, and devastating, end-Permian biotic crisis in eastern 
Australia. Concentrations of volcanic tephra occur at times that may 
correlate with palaeoenvironmental disturbance (Fig. 1), but this has yet 
to be evaluated fully. The end-Permian biotic crisis in this region is 
associated with a negative excursion in 13Corg values, transient changes 
in the Chemical Index of Alteration and evidence for increased season-
ality and increased surface temperatures, complete loss of the Glossop-
teris flora and of coal, and spikes in the abundances of microbes, fungi, 
and charcoal (Fielding et al., 2019; Vajda et al., 2020; Mays et al., 2021; 
Frank et al., 2021; Mays and McLoughlin, 2022). Evidence from the late 
Permian succession as a whole suggests that while palaeoenvironmental 
conditions deteriorated in perhaps a stepwise fashion, the major decline 
in conditions occurred over the last 1 m.y. or less of the Permian Peri-
od—an interval during which explosive volcanism was waning in the 
region (Frank et al., 2021; Fielding et al., 2022; Kerrison, 2022; Mays 
and McLoughlin, 2022). Similar timespans are indicated for mid- and 
end-Capitanian events from the research literature (Fig. 1). Retallack 

et al. (2011) proposed a series of short-lived “greenhouse crises” through 
the middle and late Permian of the Sydney Basin including a “mid--
Capitanian Mass Extinction”, but this hypothesis has not yet been 
rigorously tested. 

4. Conclusions and future work 

The nature, timing, and even existence of palaeoenvironmental dis-
turbances at the mid- and end-Capitanian (or end-Guadalupian) are 
surrounded by uncertainty. Resolution of these uncertainties would 
represent a major step forward in understanding the cataclysmic 
changes at the close of the Palaeozoic Era and, by integrating geological, 
geochemical and palaeontological data into palaeoclimate models, 
would provide potentially useful information for managing and miti-
gating present and future climate change. Records from various parts of 
the world currently leave a confusing picture as to when (or even if) 
faunal and floral extinctions took place in the Capitanian, and none of 
the existing records is capable of assessing the full range of possible 
drivers for palaeoenvironmental change. The thick, stratigraphically 
complete, age-constrained, middle and upper Permian successions of the 
eastern Australian margin, which lay in high southern palaeolatitudes at 
the time, offer a unique opportunity to resolve these issues. Such near- 
polar locations are more likely to record climatic changes faithfully, 
and they also preserve a clear record of the final cold intervals of the late 
Palaeozoic Ice Age, allowing evaluation of the role of icehouse condi-
tions in Capitanian palaeoenvironmental changes. A comprehensive 
evaluation of the palaeontological and geological signals of the EGE and 
related events in this region is now underway. Preliminary results sug-
gest that the mid-Capitanian event is recorded in the basal Tomago Coal 
Measures in the northern Sydney Basin and around the contact between 
the Broughton Formation and the overlying Pheasants Nest Formation in 
the southern Sydney Basin. Similar data suggest that the end-Capitanian 
event roughly correlates with the “Kulnura Marine Tongue” in the 
middle of the Tomago Coal Measures (northern Sydney Basin) and the 
Erins Vale Formation (southern Sydney Basin). We encourage similar 
multidisciplinary approaches in other parts of the world to resolve the 
global patterns and causes of this enigmatic biotic crisis. 
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