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1.  Introduction
Induced polarization (IP) is an electric field-stimulated phenomenon in materials, and it is usually observed 
as either a delayed voltage response in the time domain or an enhanced permittivity at low frequencies rela-
tive to the high-frequency dielectric permittivity. In exploration geophysics, the IP method has been commonly 
used in the search for metallic mineral deposits (e.g., Macnae & Hine, 2016; Nelson and Van Voorhis, 1983; 
Revil et  al.,  2022; Šumi,  1961; Wu et  al.,  2021) due to the strong electrochemical polarization occurred at 
the metal-electrolyte interface (Gurin et al., 2015; Revil et  al., 2015; Slater et al., 2006, 2007; Wong, 1979). 
In the last two decades, the IP method has been increasingly used in hydrology and environmental sciences 
(Kemna et al., 2012), for example, to estimate permeability (Attwa & Günther, 2013; Binley et al., 2005; Börner 
et al., 1996; Hördt et al., 2007; Revil & Florsch, 2010; Weller et al., 2015), characterize near-surface lithology 
(Gazoty et al., 2012), monitor microbial growth in porous media (Davis et al., 2006; Revil et al., 2012), delineate 
contaminant plumes (Deceuster & Kaufmann, 2012; Schwartz & Furman, 2012), and study clay, clay-rich rocks, 
and rock-water interactions (e.g., Okay et al., 2014; Mendieta et al., 2023; Halisch et al., 2018).

Abstract  Induced polarization (IP) has been frequently used in solid earth geophysics, hydrology, and 
environmental sciences. A mechanistic understanding of the IP responses of geological materials is crucial for 
correctly interpreting field IP measurements. In this study, the fully-coupled, nonlinear Nernst-Planck-Poisson 
equations are numerically solved to analyze the electrochemical mechanism of diffuse layer polarization 
around a spherical grain immersed in electrolytes. The numerical results show diffuse layer polarization is 
formed by the charge separation between counterions in the diffuse layer and charges on the grain surface. Both 
tangential and normal movements of counterions in the diffuse layer are involved in the polarization process, 
but their relative contributions are distinct. Although the normal flux of counterions outweighs the flux in the 
tangential direction, the latter exerts a much more profound effect on the enhanced permittivity than the former. 
As the salinity increases, more tangential fluxes are involved in the polarization, and a longer time is required 
to polarize the diffuse layer fully. Theoretical models considering either pure tangential or normal fluxes are 
not able to correctly describe diffuse layer polarization. The Fixman model, which considers fluxes in both 
directions, could accurately predict the IP responses of the grain-electrolyte system over a broad salinity range 
if the length parameter in the model is correctly chosen.

Plain Language Summary  Geoelectrical methods have been frequently used in geophysics 
and hydrology to characterize subsurface lithology and monitor dynamic processes, such as groundwater 
circulation. The key to geoelectrical field data interpretation is a physical understanding of the electrical 
properties of soils and rocks. In this study, computational simulations are used to understand the effect of 
mineral-fluid interface on geological material's ability to store electrical energy (permittivity). The simulation 
results show that the movement patterns of the excess charges at the mineral-fluid interface control the 
permittivity of geological materials at low frequencies. In general, as the ion concentration in the fluid 
increases, a larger fraction of excess charges at the interface will move circumferentially around a solid grain 
if compared to ions moving radially. The change in movement patterns will require more time for the grain to 
store external electric energy. An improved theoretical model is also suggested to incorporate the microscopic 
scale processes better. The new model can be used to aid the data interpretation of field geoelectrical 
measurements in many geoscience disciplines.
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The low-frequency (<kHz) IP response of geological materials (without metallic grains) is associated with 
the electrical double layer (EDL) formed at the mineral-electrolyte interface. Most rock/soil-forming minerals 
are charged on the surface (e.g., due to isomorphous substitution; Schroeder, 2018). Therefore, counterions in 
the electrolyte will accumulate at the mineral-electrolyte interface, forming a thin layer (i.e., EDL) to shield 
the  surface charges (e.g., Mitchell & Soga, 2005). Under an external electric field, the ionic fluxes in the EDL 
are not identical for cations and anions due to a higher concentration of counterions. This local-scale imbalance 
in ionic flux creates zones of ions accumulation and deficit (Chelidze & Gueguen, 1999), which manifest them-
selves as an enhanced effective permittivity of the material at low frequencies (e.g., Niu et al., 2020).

In general, the EDL-related IP responses of geological materials can be modeled with different assumptions 
of material microstructures (e.g., Bücker et al., 2019; Niu et al., 2020). The grain polarization model treats the 
materials as an assembly of discrete grains, and the induced ion deficit and accumulation zones are at the oppo-
site sides of the grain (e.g., Lyklema et al., 1983; Schwarz, 1962). This type of model has been widely used to 
describe the permittivity enhancement of colloids and granular materials (e.g., Leroy et al., 2008; Lesmes & 
Morgan, 2001). The pore polarization model assumes that the ion deficit and accumulation zones are at the two 
sides of a large pore body (e.g., Niu & Revil, 2016; Niu & Zhang, 2018). Although this pore (body) polarization 
concept has been frequently used in modeling the IP responses of sedimentary rocks (e.g., Revil et al., 2014; 
Zhang et al., 2017), no rigorous theory was developed; in practice, models developed for grain polarization (e.g., 
Schwarz, 1962) are simply applied to pore bodies without justifications. The third concept of IP in porous media 
is membrane polarization, which deals with the ion accumulation and deficit across a narrow pore throat (e.g., 
Bücker & Hördt, 2013; Marshall & Madden, 1959; Titov et  al.,  2002). Recently, membrane polarization has 
received increased attention and its contribution to the low-frequency permittivity of sedimentary rocks has been 
revisited (Bairlein et al., 2016; Bücker et al., 2019; Niu et al., 2020).

The EDL has two components, the Stern layer and diffuse layer. While counterions in the Stern layer are mainly 
adsorbed to the mineral surface, counterions in the outer layer are relatively free, moving away from the mineral 
surface into the bulk solution. These two layers respond differently during polarization. It is generally assumed 
that the counterions in the Stern layer only move tangentially under an external electric field, and the permittivity 
enhancement can be described by a Debye-type model (Schwarz, 1962). In the diffuse layer, the radial or normal 
movement of ions is possible, and many theories have also been developed to account for its contribution to 
EDL polarization. Examples include the Fixman model (Fixman, 1980) and the Dukhin-Shilov model (Shilov 
et al., 2001). Note that existing models of diffuse layer polarization give inconsistent results in terms of both 
relaxation time and enhanced permittivity. It is also unclear how ions in the diffuse layer respond and communi-
cate with bulk solutions under the external electric field. The effects of other factors, such as salinity and coions 
in the EDL, are also unknown for diffuse layer polarization.

The objectives of this study are (a) to better understand the ion movement during the diffuse layer polarization 
of spherical grains and (b) to reconcile different diffuse layer polarization models. It is challenging to theoreti-
cally analyze these problems because of the complex and coupled nature of the processes. Furthermore, direct 
experiment observation of ion movement may not be possible due to the small thickness (∼tens of nanometers or 
even less) of the diffuse layer. In this study, we propose to numerically solve the Nernst-Planck-Poisson equations 
(e.g., Brumleve & Buck, 1978) to analyze the diffuse layer polarization of a spherical grain. The Nernst-Plank-
Poisson equations can describe the spatial distributions of ion concentration and electric potential near a charged 
surface in a coupled fashion. Also, ionic movement in different directions in the EDL can be extracted from the 
numerical solutions, and thus ion dynamics during polarization can be easily tracked and quantified. Note that 
the ion dynamics in this study refer to a continuum-level description of ion movements here, and the movement 
of individual ions is not tracked. In addition, ion movement is not limited to the diffuse layer, and the exchange 
between EDL and the bulk solution can also be considered in the simulation. Given these advantages, using 
numerical solutions of Nernst-Planck-Poisson equations is an ideal means for studying the diffuse layer polariza-
tion mechanism. Recently, this numerical method has been used in rock physics, for example, to study electrode 
polarization (Bücker et al., 2018, 2019) and membrane polarization (Bücker et al., 2019). It should be addressed 
that these existing studies only solved the linearized Nernst-Planck-Poisson equation, which could lead to the 
oversimplification of ion dynamics in electrolytes. To better understand the polarization mechanism, it is critical 
to solve the fully coupled, nonlinear Nernst-Planck-Poisson equations in such pore-scale numerical simulations.

The paper is organized as follows. First, the theoretical background of diffuse layer polarization is briefly reviewed. 
The numerical approach used to solve the Nernst-Planck-Poisson equations is then verified by considering a 
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model with analytical solutions. Afterward, the diffuse layer polarization of a charged grain is numerically simu-
lated, and the associated IP responses are calculated and compared to existing theoretical models. Detailed infor-
mation on the local ion flux, charge separation, and induced dipole moment are provided to give insights into 
the pore-scale mechanism of diffuse layer polarization. Lastly, the mechanism of salinity effect on diffuse layer 
polarization is examined. Major conclusions are summarized at the end of this paper.

2. Theoretical Background
This section briefly reviews the concept model, governing equations, and analytical model of diffuse layer polar-
ization around a spherical grain under an external electric field.

2.1.  Conceptual Model

Diffuse layer polarization of a spherical grain in the electrolyte is an electrochemical process, which has been 
nicely summarized with a conceptual model in the review paper of Chelidze and Gueguen  (1999). Here, we 
briefly review the ion dynamics within and outside the diffuse layer in response to an external electric field. 
Consider a negatively charged spherical grain (Figure 1). For simplicity, only the diffuse layer of the grain is 
shown in Figure 1, and the Stern layer is absent. The cation concentration in the diffuse layer is much higher than 
that in the bulk solution to shield the surface charges. Consequently, the electrical potential in the diffuse layer is 
also different from that in the bulk solution. For a negatively charged surface (Figure 1a), the electrical potential 
in the diffuse layer is negative, and its magnitude decays exponentially with distance from the surface. The thick-
ness of the diffuse layer is usually characterized by the Debye length κ −1.

Figure 1.  Conceptual model of the diffuse layer polarization around a spherical grain with a negatively charged surface 
(Chelidze & Gueguen, 1999): (a) counterion distribution before applying an external electric field E0, (b) tangential 
movement of counterion and induced dipole moment during the polarization, (c) counterion distribution and induced dipole 
moment outside the diffuse layer (regions 1 and 2) after a short time interval in response to a non-equilibrium concentration 
of charges in the diffuse layer, and (d) diffusion and migration fluxes of counterions between regions 1 and 2 due to 
concentration (or salinity) difference (Bücker et al., 2019); at this stage, the electrolyte beyond the regions 1 and 2 is still 
neutral but their salinity has been increased (decreased) on the right (left) side of the grain. The start and end positions of the 
black arrow define the charge separation distance, and the thickness of the arrow shows the relative magnitude of the induced 
dipole moment. Tangential and normal movements of counterions are indicated by red and green arrows, respectively. 
Diffusion and migration fluxes of counterions are indicated by dashed and dotted lines, respectively. The grain radius is a, 
and the Debye length is κ −1.
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After applying an external electric field E0 (Figure 1b), both cations and anions in the diffuse layer will move 
(Figure 1b). First, tangential movement of counterions (and coions, not shown in Figure 1) around the grain will 
occur (red arrow in Figure 1b). Due to different transport numbers of cations and anions, a net ionic flux is gener-
ated, resulting in ion depletion at one side of the grain and ions enrichment on the other side of the grain. That 
said, the diffuse layer is deformed under the external electric field. This deformed diffuse layer (net in positive) 
and the surface charges (negative) then form a dipole moment, pointing from the center of the deformed diffuse 
layer to the center of the grain (black arrow in the grain in Figure 1b). This process has been modeled with 
Schwarz (1962) model.

Since the ion exchange between the diffuse layer and bulk solution is allowed (green arrow in Figure 1c), ions 
in the bulk solution right next to the diffuse layer will respond to the deformed diffuse layer (regions 1 and 2 in 
Figure 1c; Chelidze & Gueguen, 1999). For instance, at the left side of the grain, a cloud of cations and anions 
can be separated (region 2) due to the cation deficit on the left side of the diffuse layer. Similarly, charge sepa-
ration also develops in the bulk solution at the right side of the grain (region 1 in Figure 1c). In Chelidze and 
Gueguen (1999), developed clouds of cation and anion separations (regions 1 and 2 in Figure 1c) are termed as 
diffuse clouds. The driving force for their formation is the net charge in the EDL (Figure 1b). The exchange of 
ions between the diffuse layer and the bulk solution happens within a short time interval and is on the order of ∼1/
(κ 2D) (Chelidze & Gueguen, 1999). It is noted that this short-time process was missing from the most recent IP 
modeling, but, as will be shown later, the numerical simulation in this study does confirm its existence. It should 
be noted that at this stage, the electrolyte beyond the regions 1 and 2 is still neutral but their salinity has been 
increased (decreased) on the right (left) side of the grain in Figure 1d.

In a longer time interval, the diffusion and migration of ions between the two diffuse clouds (regions 1 and 2 
in Figure 1d) will happen and reach equilibrium. The characteristic time of this polarization is associated with 
the grain size and on the order of a 2/(2D), and it has been addressed in many IP modeling studies (e.g., Bücker 
et al., 2019; Lyklema et al., 1983). These tangential, normal, diffusion and migration fluxes of ions driven by an 
electric field and ion concentration gradient will eventually reach equilibrium, and a full polarization is realized 
(Figure 1d). As shown in Figure 1d, the induced dipole moments of at full polarization are associated with two 
length scales: one on the order of the grain size a and one close to the Debye length κ −1.

2.2.  Nernst-Planck-Poisson Equations

The ionic fluxes and electrical potential within and outside the diffuse layer during polarization can be described 
by the Nernst-Planck-Poisson equations. The total ionic flux density ji (mol m −2 s −1) of specie i has two compo-
nents: diffusion flux density 𝐴𝐴 𝐣𝐣𝑑𝑑

𝑖𝑖
 induced by ion concentration gradient ∇ci (mol m −4) and migration flux density 𝐴𝐴 𝐣𝐣m

𝑖𝑖

due to electric field E (V m −1) (or electrical potential gradient ∇ϕ). Thus, ji can be written as (e.g., Schwarz, 1962)

𝐣𝐣𝑖𝑖 = 𝐣𝐣d
𝑖𝑖
+ 𝐣𝐣m

𝑖𝑖
= −𝐷𝐷𝑖𝑖∇𝑐𝑐𝑖𝑖 −𝐷𝐷𝑖𝑖

𝑧𝑧𝑖𝑖𝑒𝑒

𝑘𝑘B𝑇𝑇
𝑐𝑐𝑖𝑖∇𝜙𝜙 (1)

where Di (m 2 s −1) and zi (-) are, respectively, the diffusion coefficient and charge number (positive for cations 
and negative for anions) of ion i, e is the elementary charge (1.6 × 10 −19 C), kB = 1.38 × 10 −23 m 2 kg s −2 K −1 is 
Boltzmann's constant, and T (K) is temperature. The above equation is known as the Nernst-Planck equation. The 
electrical potential ϕ (V) can be related to total charge density ρ (C m −3) by the Poisson equation,

∇
2
𝜙𝜙 = −

𝜌𝜌

𝜀𝜀
(2)

in which ε (F m −1) is the permittivity of the electrolyte. Equations 1 and 2 are the coupled, nonlinear Nernst-Planck-
Poisson equations. It is noted that some existing studies used the linearized form of these equations to study the 
electrochemical polarizations (e.g., Bücker et al., 2018, 2019), but this linearization may not correctly describe 
the ion dynamics in the electrolyte (e.g., Bazant et al., 2004).

Considering the continuity equation, we have the divergence of ionic flux equal to the time rate change of charge 
density ρi and source rate si (C m −3 s −1) of specie i, expressed as

∇ ⋅ 𝐣𝐣𝑖𝑖 =
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
+ 𝑠𝑠𝑖𝑖. (3)
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Assuming no charge is created or destroyed (i.e., no chemical reaction occurs), Equation 3 becomes

∇ ⋅ 𝐣𝐣𝑖𝑖 =
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
. (4)

Take the NaCl solution as an example. Equations 1 and 4 are applied to both Na + and Cl −, and then the total 
charge density ρ is the sum of individual species, expressed as

𝜌𝜌 =

∑

𝜌𝜌𝑖𝑖 =

∑

𝐹𝐹𝐹𝐹𝑖𝑖𝑧𝑧𝑖𝑖 (5)

where F is the Faraday constant (96,485 C mol −1). Of note, ci has the unit of mol m −3, and ρi has the unit of C m −3; 
thus, the Faraday constant is required to link ρi and ci.

2.3.  Fixman Model

For a spherical grain in the electrolyte, the effective complex conductivity 𝐴𝐴 𝐴𝐴
∗

eff
 (S m −1) of this grain-electrolyte system 

can be generally treated with Wagner's theory, having the following expression (e.g., de Lima and Sharma, 1992)

𝜎𝜎
∗

eff
= 𝜎𝜎

∗
w

[

2𝜎𝜎∗
w + 𝜎𝜎

∗

s − 2𝑝𝑝
(

𝜎𝜎
∗
w − 𝜎𝜎

∗

s

)

2𝜎𝜎∗
w + 𝜎𝜎

∗

s + 𝑝𝑝
(

𝜎𝜎
∗
w − 𝜎𝜎

∗

s

)

]

(6)

where p (-) is the volumetric fraction of the grain in the system, 𝐴𝐴 𝐴𝐴
∗
w (S m −1) is the complex conductivity of the 

electrolyte, and 𝐴𝐴 𝜎𝜎
∗

s is the apparent complex conductivity of the grain. In the absence of EDL polarization, 𝐴𝐴 𝜎𝜎
∗

s 
(S m −1) is simply the intrinsic complex conductivity of the grain 𝐴𝐴 𝐴𝐴

∗
s  . When the EDL is polarized, an additional 

term 𝐴𝐴 ∆𝜎𝜎∗
s  (S m −1) is incorporated into 𝐴𝐴 𝐴𝐴

∗
s  to account for the effect of EDL polarization. Thus, the grain has an 

apparent complex conductivity 𝐴𝐴 𝜎𝜎
∗

s = 𝜎𝜎
∗
s + ∆𝜎𝜎∗

s .

Assuming a thin diffuse layer, Fixman (1980) solved the Nernst-Planck-Poisson equations for a spherical grain 
with a surface charge density Qs (C m −2) under an oscillating external electric field with angular frequency ω 
(rad s −1). In Fixman's solution, 𝐴𝐴 𝜎𝜎

∗

s is embedded in the dipolar coefficient γp (-), which can be expressed as

𝛾𝛾p =
𝜎𝜎
∗

s − 𝜎𝜎
∗
w

𝜎𝜎
∗

s + 2𝜎𝜎∗
w

= −
1 − 𝛿𝛿(1 + 𝑌𝑌 )

2 + 𝛿𝛿(1 − 2𝑌𝑌 )
(7)

where δ = Qs/(ac0), c0 (mol m −3) being the ion concentration of the electrolyte and a (m) being the grain radius. 
The term Y in Equation 7 is expressed as

� = −[� (��) −�� (−��)]∕[�(��) −��(−��)] (8)

where the functions f(x), g(x), and H are respectively expressed as

𝑓𝑓 (𝑥𝑥) = (1 + 𝑥𝑥)𝑒𝑒
−𝑥𝑥
, (9)

𝑔𝑔(𝑥𝑥) =
(

2 + 2𝑥𝑥 + 𝑥𝑥
2
)

𝑒𝑒
−𝑥𝑥
, (10)

and

𝐻𝐻 = 𝑔𝑔(𝜆𝜆𝜆𝜆)∕𝑔𝑔(−𝜆𝜆𝜆𝜆). (11)

In the above equations, 𝐴𝐴 𝐴𝐴 = (1 + 𝑗𝑗)
√

𝜔𝜔∕(2𝐷𝐷) (D being the diffusion coefficient of counterions in the diffuse 
layer and j being the imaginary number) and R (m) refers to the distance from the grain center to the point where 
the electrical potential reduces to zero under unperturbed conditions. Note that de Lima and Sharma (1992) give 
a simplified expression for Y (see their Equation 8) by assuming an infinitely large R value. However, as will 
be shown later, the parameter R has a significant influence on both the shape and magnitude of 𝐴𝐴 𝜎𝜎

∗

s ; in general, 
it  should not be taken as an infinitely large value.

3. Validation of Numerical Approach
In this study, the Nernst-Planck-Poisson equations are numerically solved using the finite element method 
software Comsol Multiphysics (ver. 5.6, COMSOL, Inc., MA, USA). To validate the numerical approach, we 
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consider a parallel plate capacitor filled with NaCl solution (Figure S1 in Supporting Information S1). For this 1D 
model, the analytical solutions to the Poisson-Nernst-Planck equations are available under both static conditions 
(e.g., Gouy-Chapman theory) and dynamic conditions (e.g., Hashemi Amrei et al., 2020). The two plates have 
a distance of 2 μm and are negatively charged with a surface charge density Qs = −0.005 C m −2. The diffusion 
coefficient D is 1.3 × 10 −9 for Na + and 2.0 × 10 −9 m 2 s −1 for Cl −1 in both diffuse layer and bulk solution. The 
temperature is set as 20°C.

Under static conditions, the charged plates attract Na + to form the diffuse layer, within which both the ion concen-
tration c and electric potential ϕ deviate from those in the bulk solution. The Tertiary Current Distribution 
module of Comsol is used to calculate ϕ and c near the plate surface with two c0 values (1 and 10 mol m −3), 
and the numerical results are shown in Figure 2. Analytical solutions of ϕ and c of cations from Gouy-Chapman 
theory (e.g., Eliaz & Gileadi, 2019) are expressed as

𝜙𝜙(𝑥𝑥) =
2𝑁𝑁A𝑘𝑘B𝑇𝑇

𝐹𝐹
asinh

(

−𝜌𝜌0
√

8𝜀𝜀𝜀𝜀0𝑁𝑁𝐴𝐴𝑘𝑘B𝑇𝑇

)

exp

(

−
𝑥𝑥

𝜅𝜅−1

)

� (12)

and

𝑐𝑐(𝑥𝑥) = 𝑐𝑐0 exp

(

−𝜙𝜙(𝑥𝑥)𝐹𝐹

𝑁𝑁A𝑘𝑘B𝑇𝑇

)

� (13)

where x (m) is the distance from the surface, NA (mol −1) is Avogadro's constant, and κ −1 (m) is the Debye length. 
The analytical solutions from Equations 12 and 13 are also plotted in Figure 2 for comparison. As shown in the 
figures, numerical results from Comsol are nearly identical to the analytical solutions for both c0, proving the 
accuracy of the solver in Comsol for Nernst-Planck-Poisson equations at static conditions.

To simulate dynamic conditions, a sinusoidal electric field E0 with frequency f is applied to the parallel plate 
(Figure S1 in Supporting Information S1). The applied electrical potentials at the two plates have opposite signs, 
and each varies from −10 to 10 mV; thus, the maximum voltage difference is 20 mV across the plates. Under this 
electric field, ions in the diffuse layer and bulk solution will migrate, inducing ion concentration gradient, which 
in turn will drive diffusive ionic fluxes and affect the electrical potential. This dynamic, coupled process is simu-
lated by solving Nernst-Planck-Poisson equations with Comsol's Frequency Domain Perturbation solver. In the 
simulation, c0 is set as 1 mol m −3, and other properties are kept unchanged. The initial c and ϕ distributions near 
the plate surface use static solutions (e.g., Figure 1). The calculated perturbations in ϕ and c due to E0 are shown 
in Figure 3 for f = 10 2 and 10 6 Hz. The analytical solutions from Hashemi Amrei et al. (2020) are also plotted 

Figure 2.  Distribution of electrical potential ϕ and Na + concentration c near a charged plate at the static condition: (a) ϕ 
and (b) c. Numerical solutions are from Comsol, and analytical solutions are calculated from the Gouy-Chapman theory 
(Equations 12 and 13). Two ion concentrations c0 are considered for the NaCl solution.
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in Figure 3 for comparison. In Comsol, a Harmonic Perturbation subnode can be assigned to the two plates to 
apply the voltage amplitude perturbation. Since the perturbation analysis is conducted in the frequency domain, 
only the maximum voltage is needed to define the applied perturbation. Similarly, the output from the Frequency 
Domain Perturbation solver only gives the magnitude of the perturbation in concentration/potential at a given 
frequency. Thus, in this study, all the reported perturbations in ion concentration and electrical potential are the 
maximum perturbed values, and no phase information is provided.

For f = 10 6 Hz, ions near the plate surface do not have enough time to respond to the external field, and thus 
the Na + perturbation is very small (Figure 3a). In contrast, Na + has adequate time to react to E0 at f = 100 Hz, 
and the associated Na + perturbation is significant (Figure 3c), about an order higher than that at f = 10 6 Hz. The 
perturbed ϕ are also quite different for these two frequencies (Figures 3b and 3d). At f = 10 6 Hz, the changes in 
potential perturbation occur mainly in the bulk solution (e.g., κx > 10 in Figure 3b). Conversely, at f = 10 2 Hz, 
most of the changes in potential perturbation are within the diffuse layer (e.g., κx < 1 in Figure 3d). These distinct 
responses at high and low frequencies are well captured by the numerical solution, and the numerical results 
agree perfectly with the analytical solutions, as shown in Figure 3. These agreements indicate that the Frequency 
Domain Perturbation solver of Comsol can accurately solve the fully-coupled, nonlinear Nernst-Planck-Pois-
son equations under dynamic conditions. The linearized Nernst-Planck-Poisson equations are also solved using 
Comsol (Bücker et al., 2019) for this parallel plate model. The simulated ion concentration and potential deviate 

Figure 3.  Perturbations in Na + concentration and electrical potential near one plate under an oscillating electric field E0 
with frequency f: (a) Na + concentration perturbation at f = 10 6 Hz, (b) electric potential perturbation at f = 10 6 Hz, (c) 
concentration perturbation at f = 10 2 Hz, and (d) electric potential perturbation at f = 10 2 Hz. The distance x from the plate 
surface is normalized by Debye length κ −1. Analytical results are calculated using the perturbation solution in Hashemi Amrei 
et al. (2020).
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significantly from the analytical solution, and much information on ion dynamics near the plate is missing, espe-
cially at low frequencies (Figure S2 in Supporting Information S1).

4.  Revisiting Diffuse Layer Polarization
In this section, we revisit the mechanism of diffuse layer polarization by analyzing the macroscopic and micro-
scopic responses of the grain-electrolyte system calculated from numerical simulations.

4.1.  Numerical Model

We consider a non-conducting spherical grain immersed in NaCl electrolyte with c0 = 1 mol m −3. The grain 
is negatively charged on the surface with Qs = −0.02 C m −2 and has a radius a of 10 μm. In the simulation, a 
cylindrical domain with a height of 10a and a radius of 5a is considered, and the grain is put at the center of the 
domain (Figure S3 in Supporting Information S1). This geometric setup gives a grain volume fraction p = 0.5%, 
indicating a dilute condition. In the simulation, the diffusion coefficient D is set as 1.3 × 10 −9 m 2 s −1 for both 
Na + and Cl −; a sinusoidal electrical field E0 with magnitude 10 −8 V/m is applied along the axis of the cylinder. 
The numerical model is axially symmetric, and thus, the simulation can be set as a 2D axial symmetry problem to 
reduce computational costs. The boundary of the cylinder has a constant ion concentration of c0 so that no charge 
will accumulate at the model boundary.

The ion concentrations c (Na + and Cl −) and electrical potential ϕ of the grain-electrolyte system are calculated by 
solving the Nernst-Planck-Poisson equations with Comsol. The external electric field with different frequencies 
f is applied. For each f, the electrical potential at both top and bottom of the cylinder (ϕtop [V] and ϕbottom [V]) 
are determined; total current I (A) passing through the model (along the cylindrical axis) is determined as a sum 
of the conduction and displacement currents. By considering the geometry of the domain, the effective complex 
conductivity 𝐴𝐴 𝐴𝐴

∗

eff
 of the grain-electrolyte system can then be calculated as

𝜎𝜎
∗

eff
=

𝐿𝐿

𝐴𝐴

𝐼𝐼

𝜙𝜙top − 𝜙𝜙bottom

� (14)

where L (m) and A (m 2) are the length (height) and cross-section area of the cylinder, respectively.

4.2.  Macroscopic IP Responses

In the geophysical community, the IP responses are commonly quantified with two different but related parame-
ters: (a) imaginary conductivity 𝐴𝐴 𝐴𝐴

′′

ef f
= imag

(

𝜎𝜎
∗

eff

)

 and (b) permittivity 𝐴𝐴 𝐴𝐴eff = 𝜎𝜎
′′

ef f
∕𝜔𝜔 . The calculated 𝐴𝐴 𝐴𝐴

′′

ef f
 and εeff 

of the grain-electrolyte system are shown in Figure 4 for frequencies ranging from 10 −2 and 10 7 Hz. In the calcu-
lation, we have two treatments regarding the value of 𝐴𝐴 𝐴𝐴

∗
w . In Figures 4a and 4b, 𝐴𝐴 𝐴𝐴

∗
w is equal to σw + jωεw where εw 

is the permittivity of water contributed by the dipolar polarization of water molecules. Although this treatment 
gives a result consistent with experimental measurements (e.g., Leroy et al., 2008), the presence of dipolar polar-
ization of water in Figures 4a and 4b will mask the diffuse layer polarization at intermediate frequencies (around 
10 Hz). To better visualize the effect of diffuse layer polarization, the effect of dipolar polarization of water is 
removed and the results are shown in Figures 4c and 4d. For numerical simulation results, removing the influence 
of water dipolar polarization is realized by excluding the displacement current in calculating the total current 
density; for theoretical modeling, this is done by assigning 𝐴𝐴 𝐴𝐴

∗
w = 𝜎𝜎w in Equation 6.

The IP responses in Figure 4a (𝐴𝐴 𝐴𝐴
′′

ef f
 ) and Figure 4b (εeff) are typical to saturated granular materials (e.g., Leroy 

et al., 2008). At high frequencies (>10 3 Hz), the 𝐴𝐴 𝐴𝐴
′′

ef f
– 𝑓𝑓 curve is a straight line in a log-log plot (Figure 4a), 

indicating that diffuse layer polarization has yet contributed to 𝐴𝐴 𝐴𝐴
′′

ef f
 and εeff. Actually, during this frequency range 

(>10 3  Hz), it is the dipolar polarization of water that contributes to the calculated 𝐴𝐴 𝐴𝐴
′′

ef f
 and εeff. This can be 

seen in Figure 4b as a constant εeff that is close to water permittivity 80ε0 (ε0 being the vacuum permittivity). 
As the frequency decreases, the polarization of the diffuse layer starts to contribute to the IP responses of the 
grain-electrolyte system. It manifests itself as an increased εeff around 10 Hz in Figures 4b and 4a shift of the 

𝐴𝐴 𝐴𝐴
′′

ef f
– 𝑓𝑓 curve toward the lower frequency direction in Figure 4a. As the frequency further decreases (<10 −1 Hz), 

the diffuse layer has been fully polarized; the effective permittivity of the grain-electrolyte system becomes a 
constant (Figure 4b), and the 𝐴𝐴 𝐴𝐴

′′

ef f
– 𝑓𝑓 curve becomes a straight line again (Figure 4a). The presence of the diffuse 

layer polarization gives a permittivity increment of ∼2,500ε0 in the frequency range between 10 −1 and 10 3 Hz.
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In Figures 4c and 4d, since the dielectric properties of water are removed, the responses of 𝐴𝐴 𝐴𝐴
′′

ef f
 and εeff are only 

from the diffuse layer polarization. Figure 4c shows an important feature that was not revealed in Figure 4a. That 
is, 𝐴𝐴 𝐴𝐴

′′

ef f
 induced by diffuse layer polarization is not symmetric with respect to f in a log-log plot. This asymmetric 

𝐴𝐴 𝐴𝐴
′′

ef f
 response may not be described by the classic Cole-Cole model, which has been commonly used for various 

geological materials (e.g., Chen et al., 2008; Jougnot et al., 2010; Nordsiek & Weller, 2008). Additionally, it is 
easy to identify the characteristic frequency fc of diffuse layer polarization in Figures 4c and 4d. Of note, fc is 
defined as the frequency at which 𝐴𝐴 𝐴𝐴

′′

ef f
 reaches a maximum. For this grain-electrolyte system, fc is determined 

as  ∼10 Hz.

4.3.  Tangential Versus Normal Ionic Fluxes

Numerical solutions of Nernst-Planck-Poisson equations produce rich information on the ion dynamics within 
and near the diffuse layer. We use this microscopic information to analyze the relative importance of tangential 
(or circumferentially) and normal (or radial) ionic fluxes in diffuse layer polarization. To guide the analysis, we 
also plotted two limiting theories in Figure 4: the Schwarz model (Schwarz, 1962) and Dukhin-Shilov model. 
Due to length constraints, the mathematic equations of the two theories are not repeated here. Readers are referred 
to the original papers (Schwarz,  1962) or some recent studies (e.g., Bücker et  al.,  2019; Leroy et  al.,  2008). 
Here, we only summarize the general assumptions and related physical implications of the two limiting theories. 
While the Schwarz model assumes the ions in the EDL only move tangentially, the Dukhin-Shilov theory ignores 
the tangential movement of ions and only considers the normal ionic flux (see discussions in Fixman, 1980). 
The  tangential movement of ions in the EDL generally induces a larger dipole moment than normal ionic move-
ment. This is because tangential movement of ions is usually within the EDL, and thus more counterions are 
involved in the polarization than coions; in contrast, the normal movement of ions could be away from the 

Figure 4.  Induced polarization (IP) of a spherical grain (radius a = 10 −6 m) in NaCl solution (ion concentration c0 = 1 mol m −3). (a) and (c) Are the effective 
imaginary conductivity 𝐴𝐴 𝐴𝐴

′′

ef f
 ; and (b) and (d) are the effective permittivity εeff results, which are normalized by the vacuum permittivity ε0. For (a) and (b), the IP 

responses contain both the dipolar polarization of water and diffuse layer polarization. For (c) and (d), the effect of dipolar polarization of water is excluded for 
better visualization of the diffuse layer polarization. The upper and lower limits refer to Schwarz (1962) model and the Dukhin-Shilov model (Shilov et al., 2001), 
respectively.
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grain surface, thus involving a similar amount of counterions and coions. Considering a fixed charge separation 
distance, tangential movement is then associated with more net charges, which will give a higher polarizability 
(and thus enhanced permittivity) than that of the normal movement. Therefore, the Schwarz and Dukhin-Shilov 
models can be regarded as the upper and lower limits of the EDL polarization, respectively.

While using the Schwarz and Dukhin-Shilov models, the characteristic relaxation time τc = 1/(2πfc) is calcu-
lated as a 2/(2D) (Schwarz, 1962). Using the parameters a and D, we calculate τc = 0.038 s, which corresponds 
to a characteristic frequency of 4 Hz, close but lower than the value observed from simulated results (∼10 Hz; 
Figure 4c). Regarding the enhanced permittivity (Figure 4b), the simulated values are well-bounded by the upper 
and lower limits. While the pure tangential movement of ions in EDL (Schwarz model) gives a permittivity 
enhancement of ∼10 4ε0, pure normal ionic movement (Dukhin-Shilov model) only gives ∼40ε0. This highlights 
the importance of the tangential movement of ions in EDL polarization. It is also noted that the Schwartz model 
and Dukhin-Shilov model can only be regarded as the limits at low frequencies at which the EDL has been fully 
polarized. At higher frequencies, the Schwarz model may give a smaller enhanced permittivity (e.g., at 10 4 Hz 
in Figures 4c and 4d) because it is much more difficult to mobilize a tangential ionic movement than a normal 
movement with an external electric field. The relative easiness of normal flux over tangential flux is reflected in 
Figure 4c as the Dukhin-Shilov model having a broader 𝐴𝐴 𝐴𝐴

′′

ef f
 distribution than the Schwarz model.

The simulated IP responses are bounded by the upper and lower limits, implying that diffuse layer polarization 
involves both tangential and normal movements of ions. To demonstrate this, we use Na + and Cl − movements in 
the inner region of the diffuse layer (i.e., right next to the grain surface) as an example. For simplicity, only the data 
on the great circle parallel to the external electric field are used (highlighted as red in Figure 5b). The (arithmetic) 
average fluxes q of Na + and Cl − in both tangential and normal directions are calculated, and the results are plot-
ted in Figure 5 for different frequencies. It is shown that both Na + and Cl − move under the external electric field. 
Generally, the magnitude of Cl − flux (Figure 5b) is about 2 orders smaller than Na + fluxes (Figure 5a), indicating 
the diffuse layer polarization is dominantly contributed by counterions (Na +) fluxes. In Figure 5a, both normal and 
tangential ionic fluxes of Na + are significant, implying that fluxes in both directions contribute to polarization. 
Compared to tangential flux, the normal movement of ions, however, is much larger. For example, Na + flux in the 
tangential direction at 0.01 Hz (blue line in Figure 5a) is about 10 times smaller than that in the normal direction (red 
line in Figure 5a). Despite the small ionic flux in the tangential direction (Figure 5a) during diffuse layer polariza-
tion, its contribution to the permittivity enhancement is however dominant over normal flux (see Figures 4c and 4d).

4.4.  Polarization Outside of the Diffuse Layer

In addition to ions within the EDL, as shown in Figure 1, ions in the bulk solution may also polarize during 
the diffuse layer polarization by forming zones right next to EDL with charge accumulation and concentration 

Figure 5.  Tangential and normal fluxes q of ions in the diffuse layer during polarization: (a) Na + and (b) Cl −. “Tangential” and “normal” indicate the flux direction 
is tangential and normal to the grain surface, respectively. Note that the y-axis scales in (a) and (b) are different. All the flux data are positive in the above figures; the 
y-axis extends into negative for better visualization of the data points close to zero. The positions of flux data used in the calculation are highlighted in red in (b).
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gradients. Here we analyze the relative importance of this concentration gradient using the concentration data 
from numerical simulations. For demonstration purposes, only the data along the axis of symmetry are used in the 
analysis. The spatial distribution of perturbed ion concentration (∆ci) is shown in Figure 6 for different frequen-
cies. In the figure, the position of the Debye length κ −1 = 9.5 × 10 −9 m is also indicated to facilitate the discussion.

As shown in Figure 6, the external field-induced ∆ci are predominantly counterions (Na +) within the diffuse 
layer (i.e., distance smaller than the Debye length κ −1). For instance, at f = 10 −2 Hz, the Na + perturbation in 
the diffuse layer is roughly from 4 × 10 −10 to 8 × 10 −10 C m −3 (Figure 6a); in contrast, the Cl − perturbation is 
generally smaller than 2 × 10 −10 C m −3 (Figure 6b). Due to this perturbation, the center of Na + in the diffuse 
layer does not have the same location as the surface charges (Figure 1c). This induced charge separation creates a 
dipole moment (Figure 1c) and contributes to enhanced permittivity. Perturbations in Na + and Cl − concentrations 
also occurred in the bulk solution, for example, in regions from 10 −8 to 10 −5 m, as shown in Figure 6. It appears 
that perturbations in the bulk solution are comparable to those in the diffuse layer. If we consider the net charge 
(Figure 6c), the concentration in the bulk solution is, however, very small, about one order lower than the net 
charge concentration in the diffuse layer.

To compare ∆ci within (x < κ −1) and outside EDL (x > κ −1), we calculated two parameters for the perturbed ions 
around the grain surface (same as Figure 5) and along the axis of symmetry of the grain-electrolyte system (same 
as Figure 6): (a) the separation distance between the centers of perturbed Na + and Cl − and (b) the magnitude of 
induced dipole moment. For polarization within the diffuse layer, the perturbed ion along the great circle of the 
grain parallel to the external electric field (same as Figure 5) is used; the charge separation is from the center of 
negative surface charge (i.e., grain center) to the center of perturbed Na + (see Figure 1c). For ion clouds outside 
the diffuse layer, the perturbed ion along the axis of symmetry of the grain-electrolyte (same as Figure 6) is used; 
the charge separation is the distance between the centers of the perturbed Na + and Cl − in diffuse clouds. In the 
calculation, the distance 𝐴𝐴 𝐴𝐴

𝑐𝑐

𝑖𝑖
 of Na + (or Cl −) center to the grain surface is defined as the position that divides the 

total perturbed ions in this region into two equal halves. It can be calculated using the following equation

∫
𝑥𝑥
𝑐𝑐

𝑖𝑖

𝑥𝑥min

∆𝑐𝑐𝑖𝑖d𝑥𝑥 =
1

2 ∫
𝑥𝑥max

𝑥𝑥min

∆𝑐𝑐𝑖𝑖d𝑥𝑥� (15)

where xmin and xmax are the minimum and maximum distances from the grain surface considered in the calcula-
tion. The calculated charge separation distances are shown in Figure 7a for frequencies from 10 −2 to 10 7 Hz. The 
dipole moment is calculated as the product of charge separation distance and total (perturbed) charge quantity. 
Here, the total amount of charges 𝐴𝐴 𝐴𝐴

𝑡𝑡

𝑖𝑖
 (mol m −2) is calculated as the line integration of ∆ci (mol m −3), that is, 

𝐴𝐴 𝐴𝐴
𝑡𝑡

𝑖𝑖
= ∫ 𝑥𝑥max

𝑥𝑥min

∆𝑐𝑐𝑖𝑖d𝑥𝑥 , and thus the unit of dipole moment in Figure 7b is in mol m −1.

In Figure 7a, it is shown that the surface charge (negative) and counterions (Na +) have a constant separation 
distance, ∼4 × 10 −6 m, which is slightly smaller than the grain radius 10 × 10 −6 m. In contrast, the charge sepa-
ration between Na + and Cl − in the bulk solution right next to the diffuse layer is rather small, generally less than 
10 −8 m. This indicates the length scale of the concentration gradient formed outside the diffuse layer is close to 

Figure 6.  Perturbations in ion concentrations within the diffuse layer and in the bulk solution along the axis of symmetry of the grain-electrolyte system at different 
frequencies: (a) Na +, (b) Cl −, and (c) net charge. Debye length κ −1 in the figure is calculated using the Gouy-Chapman theory.
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the Debye length κ −1 = 9.5 × 10 −9 m (Chelidze & Gueguen, 1999). Figure 7b presents the dipole moment related 
to these two different ion concentration gradients (i.e., within the diffuse layer around the grain and in bulk 
solution right next to the diffuse layer). The dipole moment related to the former (i.e., deformed diffuse layer) 
is relatively large and varies mainly around 10 1 Hz, consistent with the macroscopic responses in Figures 4c 
and 4d. The dipole moment related to the latter (star in Figure 7b) is small but not zero, implying the concen-
tration gradient developed in the bulk solution also contributes to polarization. However, the dipole moment 
formed in the bulk solution is several orders lower than that formed in the diffuse layer, and thus, its contribution 
to the IP responses of the grain-electrolyte system is negligible. Note that there are some spikes in the calculated 
charge separation at high frequencies in Figure 7a. This variation is probably due to the small domain where the 
calculation was performed (i.e., the axis of symmetry of the grain-electrolyte system). The actual diffuse clouds 
occupy a much larger region (Figure 1d). Therefore, the charge separation/dipole moment calculation based on 
this selected domain here may have some noise.

5.  Modification to the Fixman Model
As mentioned in Section 2.3, the Fixman model incorporates both tangential and radial movements of ions in 
describing diffuse layer polarization. In this section, we compare the Fixman model to the simulation results to 
evaluate its performance. Note that the mostly-used Fixman model (e.g., in Lesmes & Morgan, 2001) was only 
a simplified version introduced by de Lima and Sharma (1992) by assuming the parameter R in Equation 11 as 
infinitely large. This simplification was suggested because R was defined as the distance from the grain center 
to the position where ϕ decays to zero (Fixman, 1980). We use R = +∞ to calculate the theoretical results of the 
Fixman model, and the results are shown in Figure 8 (dotted lines). It is clear that the theoretical results under-
estimate the macroscopic IP responses considerably. For instance, the permittivity enhancement at 10 −2 Hz from 
the theory is only ∼100ε0, much smaller than the simulated value ∼2,000ε0 (Figure 8b). Interesting to note that 
the shapes of 𝐴𝐴 𝐴𝐴

′′

ef f
 and εeff curves from the theory resemble the numerical results quite well.

Note that ϕ decays exponentially, and it could become negligibly small at a finite distance away from the grain 
surface. This implies that R does not need to be assigned as +∞, and a much smaller value should be sufficient. 
We estimate this finite distance from the spatial distribution of ion concentration perturbations shown in Figure 6. 
If we ignore the perturbed ci in the bulk solution, R can be easily estimated by extrapolating the perturbed ci in 
the diffuse layer into the bulk solution. Following this procedure, we estimate R = a + 10κ −1 from Figure 6a. The 
Fixman model is used again with this new R value to calculate 𝐴𝐴 𝐴𝐴

′′

ef f
 and εeff (dash lines in Figure 8). Interestingly, 

the modeled IP responses agree well with the simulated results at low frequencies (e.g., <1 Hz in Figure 8). 
Important to note that the grain-electrolyte system is fully polarized when f is smaller than 1 Hz. This means that 
the Fixman model with R = a + 10κ −1 gives a correct estimation of the maximum polarization intensity. It is 
also noticed that theoretical 𝐴𝐴 𝐴𝐴

′′

ef f
 and εeff deviate significantly from the simulation at high frequencies (>10 Hz), 

Figure 7.  Perturbed ions in the diffuse layer around the grain and in the bulk solution right next to the diffuse layer: (a) charge separation distance and (b) induced 
dipole moment.
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meaning that the polarization process (i.e., from the initiation of charge separation to a full polarization) was not 
correctly modeled with R = a + 10κ −1.

The influence of R on modeled IP responses shown in Figure 8 implies that R plays two different roles in the 
Fixman model. First, R defines the region where the normal movement of ions occurs during diffuse layer polar-
ization. A large R (e.g., +∞) ensures a free exchange of ions between the bulk solution and diffuse layer; conse-
quently, a large R will give the correct shape of macroscopic IP responses (dotted lines in Figure 8). In this 
regard, it is preferred to have a large R in order to better represent the dynamic polarization process. Second, R 
also defines the region where the complex surface conductance 𝐴𝐴 Σ∗

s induced by diffuse layer polarization is aver-
aged (or upscaled) to determine 𝐴𝐴 ∆𝜎𝜎∗

s  . For a spherical region with radius Π, this upscaling process is expressed as 
𝐴𝐴 ∆𝜎𝜎∗

s = 2Σ∗
s ∕Π (Niu, Prasad, et al., 2016). In order to correctly model the polarization magnitude, this upscaling 

process has to be properly treated; consequently, an R value that is close to the grain radius a but also includes the 
diffuse clouds is preferred. According to Figure 6c, R = a + 10κ −1 is selected here.

To reconcile the competing requirements of R values, we suggest using R = +∞ and a + 10κ −1 to respectively 
determine the shape of 𝐴𝐴 𝐴𝐴eff − 𝑓𝑓 (or 𝐴𝐴 𝐴𝐴

′′

ef f
− 𝑓𝑓 ) curve and the magnitude of IP (i.e., εeff at low frequency). This modi-

fication to the Fixman model (detailed equations are provided in Appendix A) is used to calculate 𝐴𝐴 𝐴𝐴
′′

ef f
 and εeff of 

the grain-electrolyte system, and the results are shown in Figure 8 as solid lines. As shown, the modified model 
takes advantage of both a large R and an R close to a, and excellent matches are observed for both the shape and 
magnitude of the IP responses induced by diffuse layer polarization. In the following section, we will also test the 
applicability of the modified model over a large salinity range.

In Figure 8, some discrepancies are observed between the modified Fixman model and the simulation, implying 
the existence of an additional polarization with a characteristic frequency of around 2.5 MHz. This polarization 
at high frequency (∼MHz) is clearly not captured by Schwarz, Dukhin-Shilov, and Modified Fixman models. It 
is postulated that this polarization at high frequency is related to the dipole moment formed in the diffuse clouds 
right next to the grain (regions 1 and 2 in Figure 1d). As mentioned, the length scale of this short-time polariza-
tion is related to the Debye length (κ −1 = 9.5 × 10 −9 m). From Figure 6c, the charge separation (or length scale) 
is about 3κ −1. Considering D = 1.3 × 10 −9 m 2 s −1, we can calculate the time constant τ is 3.2 × 10 −7 s, which 
corresponds to a frequency of 3.1 × 10 6 Hz, which is consistent with the location of the observed high-frequency 
polarization (Figure 8a). This relaxation time has been called “Debye time” or “time scale of charge relaxation” in 
some studies (e.g., Bücker et al., 2018). Therefore, it is argued here that the polarization outside the diffuse layer 
is related to a small length scale, about several Debye lengths.

6.  Mechanism and Modeling of Salinity Effect
Numerical simulations have also been conducted for the grain-electrolyte system with different fluid salinities. 
The simulation results will be used (a) to evaluate if the modified Fixman model works over a broader salinity 

Figure 8.  Comparison of simulated and modeled induced polarization (IP) responses of the grain-electrolyte system: (a) effective imaginary conductivity and (b) 
effective permittivity. Modeled IP responses (dash and dotted lines) were calculated using the Fixman model with two R values. The results from the modified Fixman 
model are also included (solid line). The vertical lines indicate the location of the characteristic frequency calculated using the Debye length as D/(3κ −1) 2 as described 
in the main text.
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range and (b) to analyze, from a microscopic point of view, how the diffuse layer polarization is affected by the 
fluid salinity.

6.1.  Modeling With the Modified Fixman Model

In total, nine salinities of the NaCl solution are considered in the numerical simulation. The range of ion concen-
tration c0 is between 0.01 and 100 mol m 3, and the associated fluid conductivity σw range is between 10 −4 and 
1 S m −1, a typical range for groundwater in practice. Other parameters of the system are unchanged. Figure 9 
summarizes the simulation results for four salinities (c0 = 0.01, 0.1, 1, and 10 mol m 3). To better visualize the 
diffuse layer polarization, the dipolar polarization of water is not considered. The results of the modified Fixman 
model are also plotted in Figure 9 for comparison. The original Fixman theory (Equations 6–11) with a single R 
value was also applied, but it failed to fit the simulated results; thus, their results were not reported in Figure 9.

Results in Figure 9 indicate that the modeled IP responses with the modified Fixman model agree remarkably 
well with simulations, showing that the modified model successfully captures both the dynamic process and 
magnitude of diffuse layer polarization. We also determined the enhanced permittivity ∆εeff and the characteristic 
time τc from both the simulated and modeled 𝐴𝐴 𝐴𝐴eff − 𝑓𝑓 and 𝐴𝐴 𝐴𝐴

′′

ef f
− 𝑓𝑓 curves, and the results are shown in Figure 10 

for all fluid salinities. It is clear that the variation trend of both ∆εeff and fc with c0 is consistent for simulation 
and theory. In addition, the absolute values match fairly well, as shown in Figure 10. This agreement provides 
additional evidence to support the applicability of the modified Fixman model.

Figure 9.  Simulated and modeled induced polarization responses of the grain-electrolyte system with different fluid salinity c0: (a) c0 = 0.01 mol m −3, (b) 
c0 = 0.1 mol m −3, (c) c0 = 1 mol m −3, and (d) c0 = 10 mol m −3. The modeled results are from the modified Fixman model (solid line), Schwartz model (dash line), and 
Dukhin-Shilov model (dotted line). The vertical lines indicate the location of the characteristic frequency calculated using the Debye length as D/(3κ −1) 2 as described in 
the main text.
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Similarly, we also observe some discrepancies between modeling and simulation at high frequencies (e.g., 
∼100 kHz in Figure 9a). As mentioned in Section 5, this polarization has a length scale of several Debye lengths. 
Assume the charge separation is similar to that shown in Figure 6c, that is, about 3κ −1. We calculate the charac-
teristic frequency of the polarization for all the salinities, and the results are shown in Figure 9 as vertical lines. 
It is found that the frequency of the simulated and calculated polarizations are consistent for c0 = 0.01, 0.1, and 
1 mol m −3. For c0 = 0.01, 0.1, and 1 mol m −3, the characteristic frequency is higher than 10 7 Hz and is thus 
not shown in the figure. In general, the characteristic frequency is much larger than the primary polarization 
(∼10 Hz), and it increases with the salinity (i.e., relaxation time τ ∝ 1/c0; Chelidze & Gueguen, 1999). The agree-
ment between simulation and modeling confirms that the polarization occurring outside the diffuse layer (regions 
1 and 2 in Figure 1d) has a length scale on the order of Debye length. Although the contribution of this short-time 
polarization to the permittivity increment is negligible (Figure 9a), it does occur and has a much smaller length 
scale if compared to the grain size.

6.2.  Mechanism of Salinity Effect

We explain the salinity effect of the enhanced permittivity ∆εeff and characteristic relaxation time τc using the 
local ion concentration perturbation information. Figure 10a shows that ∆εeff increases with salinity before reach-
ing a maximum. This trend can be explained by the perturbation in ion concentrations within the diffuse layer 
(Figure 11). While the salinity increases from c0 = 0.01 mol m −3 (Figure 11a) to c0 = 0.1 mol m −3 (Figure 11b), 
the perturbation in Na + concentration in the diffuse layer (i.e., x < κ −1) increases significantly as well. Given 
that the charge separation is constant (Figure 7a), the induced dipole moment will increase, leading to a higher 
degree of polarization and, thus, an increased ∆εeff (Figure 10a). However, when c0 increases from 1 mol m −3 to 
100 mol m −3, Na + concentration perturbation in the diffuse layer decreases, as shown in Figure 11. Moreover, Cl − 
concentrations perturbation also increases significantly. For instance, the concentration of Cl − in the diffuse layer 
is negligible at c0 = 1 mol m −3 (Figure 11b), but it increases to about one-third of Na + concentration perturbation. 
The presence of a significant amount of Cl − in the diffuse layer further decreases the net charge amount contrib-
uting to the induced dipole moment, resulting in a decreased ∆εeff for c0 > 1 mol m −3, as shown in Figure 10a.

The characteristic relaxation time τc of diffuse layer polarization shows a clear dependence on the salinity 
(Figure  10b). To guide our analysis, we also plot the theoretical relaxation time of two limiting models, the 
Schwarz model (pure tangential ion flux) and the Dukhin-Shilov model (pure normal ion flux). While the relaxa-
tion time τc in the Schwarz model is a 2/(2D), τc in the Dukhin-Shilov model is a 2S/(2D), where S is a coefficient 
that accounts for the effects of fluid conductivity and additional grain conductivity due to ions in the diffuse 
layer (see Equation 34 in Bücker et al., 2019). As discussed, radial movement of counterions (and anions) during 
diffuse layer polarization requires ions to travel a short distance (on the order of κ −1), but tangential ion move-
ment is much longer, which is on the order of the grain radius a. Therefore, the time required to fully polarize 

Figure 10.  Salinity influence on (a) enhanced permittivity and (b) characteristic relaxation time of the diffuse layer 
polarization. The modeled results are from the modified Fixman model. Relaxation times from two limiting scenarios (pure 
tangential or normal ion movement in the diffuse layer) are also plotted in (b). The characteristic relaxation time of pure 
normal flux is calculated from the Dukhin-Shilov model.
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the diffuse layer is longer for the case with pure tangential fluxes if compared to pure radial fluxes, as shown in 
Figure 10b.

At low salinities (e.g., c0 = 0.01 mol m −3), τc of diffuse layer polarization is close to the lower limit (Figure 10b), 
indicating the dominance of radial ion flux over tangential ion flux. To provide more evidence, we calculate both 
the tangential and normal Na + fluxes right next to the grain surface at 0.01 Hz (at which the diffuse layer has 
been fully polarized). The ratio of normal flux over tangential flux is plotted in Figure 12 for all the salinities. As 
shown in the figure, the ratio at c0 = 0.01 mol m −3 is ∼4,000, implying almost all Na + ions near the grain surface 
flow radially. This dominant normal flow gives a much shorter relaxation time, close to the lower limit calcu-
lated with the Dukhin-Shilov model (Figure 10b). The relaxation time τc increases with salinity until reaching a 
plateau (∼0.017 s) when c0 exceeds 10 mol m −3. The increase in τc with salinity is consistent with the increased 
contribution of tangential Na + flux revealed in Figure 12. For instance, as c0 increases from 0.01 to 10 mol m −3, 
the ratio of radial flux over tangential flux decreases significantly, from ∼4,000 to ∼100. Because tangential 
Na + flux is associated with a longer travel distance, the time required to realize full polarization increases, as 
shown in Figure 10b. However, it should be noted that the total amount of ions moving normally still outweighs 
ions moving tangentially, even at high salinities. This is why the characteristic time at high c0 is still much smaller 
than the limiting value calculated from the Schwarz model.

6.3.  Discussion

Many laboratory experimental data have shown that the imaginary conductiv-
ity of porous geological materials exhibits a non-monotonic variation with the 
pore fluid conductivity (Mendieta et al., 2021; Revil & Skold, 2011; Vinegar 
& Waxman, 1984; Weller et al., 2011). In general, the imaginary conductiv-
ity at a given frequency increases with the fluid conductivity (salinity) until 
reaching a maximum value; as the salinity further increases, the imaginary 
conductivity will decrease. This non-monotonic behavior has been observed 
in different types of materials such as clays (Mendieta et al., 2021; Vinegar 
& Waxman, 1984), sandstones (Revil & Skold, 2011; Weller et al., 2011), 
and unconsolidated sediments (Weller & Slater,  2012). These laboratory 
observations agree with the numerical results reported in Figure 10a. The 
observed increase in polarization with salinity at low water conductivity has 
been explained by the increased amount of counterions contributed to the 
EDL polarization (see Figures 10a and 10b or Niu, Revil, & Saidian, 2016; 
Revil & Skold, 2011). For the observed polarization decrease at high water 
conductivity, Mendieta et al.  (2021) suggested that, at a particular salinity 
threshold, some polarization mechanisms (possibly membrane polarization) 

Figure 12.  The ratio of the normal flux of Na + over the tangential flux of Na + 
in the diffuse layer right next to the grain surface. Overall, the normal flux of 
Na + dominates over tangential Na + flux, but its relative importance decreases 
with salinity.

Figure 11.  Perturbations in ion concentration within and outside of the diffuse layer of the grain-electrolyte system: (a) fluid salinity c0 = 0.01 mol m −3, (b) 
c0 = 1 mol m −3, and (c) c0 = 100 mol m −3. The Debye length κ −1 is also plotted in the figures.
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cease to act. Our microscopic analysis highlighted the importance of coions (e.g., Cl −) in EDL polarization 
at this high salinity range. Clearly, more work is still needed to better understand the mechanism behind this 
non-monotonic behavior.

The characteristic frequency or relaxation time of the EDL polarization has been found to depend weakly on 
the fluid salinity (e.g., Weller et al., 2011). Niu, Revil, and Saidian (2016) reported a general increase in relax-
ation time with salinity, which is consistent with the numerical results shown in Figure 10b. In Niu, Revil, and 
Saidian (2016), this salinity dependence was successfully modeled with a combination of Stern layer polarization 
and diffuse layer polarization (Lyklema et al., 1983; Niu & Revil, 2016); in essence, their modeling considers 
both tangential and radial movements of counterions as well as the exchanges between them. From this point of 
view, the theoretical modeling in Niu, Revil, and Saidian (2016) is consistent with our microscopic explanation 
in Figure 12. Both of them highlight the distinct contributions of tangential and radial ion movements to the 
relaxation time.

7.  Conclusions
Numerical solutions of the Nernst-Planck-Poisson equations are used to study diffuse layer polarization of a 
spherical grain in NaCl electrolyte. Results confirm that the diffuse layer polarization results from the spatial 
separation between counterions and grain surface charges caused by an external electric field. This charge sepa-
ration manifests itself as an enhanced permittivity if compared to the permittivity at high frequencies. Numerical 
results also show the radial movement of counterions outweighs tangential fluxes in the diffuse layer during the 
polarization. Though only a small fraction of counterions move tangentially, their contributions to the enhanced 
permittivity are much more significant than radial ion flux. This is because tangential ion flux in the diffuse 
layer induces a larger charge separation than the ion flux in the normal direction. The simulations also show 
that the ion concentration perturbations within the diffuse layer may also give rise to a concentration gradient in 
bulk solution right next to the diffuse layer. This concentration gradient, however, contributes negligibly to the 
enhanced permittivity.

Fluid salinity has a strong influence on diffuse layer polarization of the grain-electrolyte system. As salin-
ity increases from low to intermediate values (e.g., <1 mol m −3), the enhanced permittivity increases. This is 
because, at higher salinity, the external electric field could exert a larger perturbation in the counterion concen-
tration in the diffuse layer, which increases the induced dipole moment and enhances permittivity. However, if 
the salinity increases further (e.g., >1 mol m −3), perturbation in anion concentration in the diffuse layer becomes 
significant, canceling the effect of the perturbed counterion concentration. This results in a decreasing trend of 
induced dipole moment (and enhanced permittivity) with salinity. The fluid salinity also affects the time required 
to fully polarize the diffuse layer by changing the relative intensity of normal/tangential ion fluxes in the polari-
zation. In general, the tangential movement of ions during polarization requires more time due to a longer travel 
distance. As the salinity increases, the ratio of normal ion flux over tangential flux decreases, and thus the asso-
ciated relaxation time becomes longer.

The Schwarz model and the Dukhin-Shilvo model cannot accurately describe the IP responses of diffuse layer 
polarization because they only consider either the pure tangential or radial flux of counterions during polariza-
tion. Fixman model considers counterions movement in the diffuse layer along both directions, but it uses a single 
length parameter to define two disparate spatial regions (one for upscaling and one for ion exchange dynamics). 
The competing requirements of defining these two regions with this length parameter make the original Fixman 
model not suitable for modeling diffuse layer polarization. We modified the Fixman model to allow for two length 
parameters, and the proposed new model gives accurate predictions for both the shape and magnitude of the IP 
responses of the grain-electrolyte system over a broad salinity range.

Appendix A:  Equations of the Modified Fixman Model
According to the Fixman model, the apparent complex conductivity 𝐴𝐴 𝜎𝜎

∗

s of a charged sphere can be expressed 
as the function of its radius a (m), electrolyte concentration c0 (mol m −3), electrolyte conductivity σw (S m −1), 
surface charge density Qs (C m −2), ion diffusion coefficient D (m 2 s −1), and a length parameter R (m). If all the 
other parameters are given, 𝐴𝐴 𝜎𝜎

∗

s is only a function of R, expressed as
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𝜎𝜎
∗

s (𝑅𝑅) =
𝜎𝜎w

𝑎𝑎𝑎𝑎0

𝜌𝜌0

+

[

𝑓𝑓 (𝜆𝜆𝜆𝜆)−
𝑔𝑔(𝜆𝜆𝜆𝜆)

𝑔𝑔(−𝜆𝜆𝜆𝜆)
𝑓𝑓 (−𝜆𝜆𝜆𝜆)

]

𝑔𝑔(𝜆𝜆𝜆𝜆)−
𝑔𝑔(𝜆𝜆𝜆𝜆)

𝑔𝑔(−𝜆𝜆𝜆𝜆)
𝑔𝑔(−𝜆𝜆𝜆𝜆)

� (A1)

where the parameter 𝐴𝐴 𝐴𝐴 = (1 + 𝑗𝑗)
√

𝜔𝜔∕(2𝐷𝐷) and the functions f(x) and g(x) are expressed in Equations 9 and 10. 
The modified Fixman model for 𝐴𝐴 𝜎𝜎

∗

s is then expressed as

𝜎𝜎
∗

s = 𝜎𝜎
∗

s (+∞)
max

{

imag
[

𝜎𝜎
∗

s (𝑎𝑎 + Δ)
]}

max
{

imag
[

𝜎𝜎
∗

s (+∞)
]}� (A2)

where the small distance ∆ (m) characterizes the region beyond the spherical grain that is used to upscale the 
complex surface conductance 𝐴𝐴 Σ∗

s (S) for determining the additional term 𝐴𝐴 ∆𝜎𝜎∗
s  in apparent grain conductivity (Niu, 

Prasad, et al., 2016). In this study, ∆ = 10κ −1 was used in the modeling.

Data Availability Statement
All the data used in this study are generated from Comsol models (Niu, 2022), which can be downloaded from 
https://doi.org/10.5281/zenodo.7261911.
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