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ABSTRACT 

The structural and electronic properties of pure and Cs-doped cubic zinc-blende 

silicon carbide (3C-SiC) were modeled by density functional theory in the plane-wave 

pseudo-potential formalism as implemented in the Quantum-ESPRESSO package. The 

equilibrium properties including lattice constant, bulk modulus, cohesive energy, and the 

indirect band gap energy were calculated for pure 3C-SiC. These values were compared 

with the experimental and theoretical values reported in the literature, and there was 

generally excellent agreement.  

The influence of Cs on SiC in two structural configurations were modeled, 

including bulk SiC and a Σ3 grain boundary. The present investigation mainly focused on 

the neutral defects. To understand the stability of Cs in bulk SiC, the formation energies 

of isolated Cs defects and vacancy clusters were calculated. For the study of Cs in the 

grain boundary of SiC, only isolated Cs defects were modeled. Following the charge 

density and density of states calculations, the electronic structure of isolated Cs defects in 

bulk SiC was investigated. Relevant intrinsic SiC defect formation energies were also 

calculated. From the defect formation energies, it was predicted that the most probable 

stable state for neutral Cs in bulk SiC is for Cs to substitute for a Si atom with an 

associated C vacancy, CsSi-VC. In the case of Cs migrating to a Σ3 grain boundary in SiC, 

it is predicted that the most probable state for neutral Cs is for Cs to sit on a Si site at the 

boundary without an associated defect.  
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CHAPTER 1: INTRODUCTION 

1.1: Motivation 

The fractional release of radioactive fission products through the SiC boundary 

layer in the Tristructural-Isotropic (TRISO) fuel particles has become a critical issue 

during the operation process of the very high temperature gas cooled reactors [1]. Each 

TRISO particle has a nucleus, which usually consists of uranium dioxide, uranium carbon 

oxide (UCO), or uranium di-carbide, which is surrounded by layers of porous carbon, 

pyro-carbon (PyC), and silicon carbide [1]. The SiC layer is a main constituent in the 

TRISO particle due to its high chemical and thermal stability, and excellent resistance to 

corrosion and neutron radiation damage [2]. To achieve good fuel performance, it is 

important to choose a high quality SiC material. The SiC layer provides structural support 

and serves as the main barrier to retain metallic fission products (e.g., Ag and Cs whose 

half-lives are 253 days and 30 years (137Cs), respectively) released by the fuel kernel 

during reactor operation [3]. However, SiC has been found less effective in containing Cs 

and Ag ions than was expected [1]. Studies have shown a large amount of Cs and Ag 

released into the reactor under the operation of TRISO fuel [1]. Having radioactive 

fission products in the coolant can be a great potential threat to the environment and 

society [4]. In addition, Cs is an explosive and radioactive material, which makes it an 

external hazard (i.e., a hazard even without being taken into the body) [5]. In order to 

reduce the rate and understand the causes of Cs release from TRISO fuel, the theoretical 

study of the thermodynamics and kinetics of Cs in SiC will provide more solid evidence 
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on what effects Cs has on the material structure and properties of SiC and what possible 

diffusion mechanisms of Cs could be in SiC. In addition, understanding the 

thermodynamics and kinetics of Cs in SiC allows the process parameters of producing 

SiC such as temperature, alloy composition, and layer thickness to be adjusted to 

optimum values under certain service conditions, which will improve the performance of 

SiC in TRISO fuel [6].  

1.2: Objectives 

The objective of the thesis was to develop a simulation model and carry out a 

variety of calculations such as the total ground state energy, the density of states, the 

band structure, and the valence electron density. The model allows an investigation of the 

material properties in bulk 3C-SiC and what changes Cs brings to SiC when Cs is in 

different defects configurations such as interstitial, substitution, and at grain boundary 

sites. In addition, because the intrinsic defects play an important role in mediating the 

diffusion of impurities, silicon and carbon vacancies were also studied in the bulk and in 

the grain boundary of SiC. Due to the requirement of long computational time, only 

neutral Cs defects were studied in this project in order to determine the most stable 

impurity that requires the lowest defect formation energy. In this project, computational 

integration-based DFT was used to predict the influences of Cs in bulk and along or 

across a Σ3-grain boundary of SiC. 
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CHAPTER 2: BACKGROUND  

2.1:  Density Functional Theory 

Over the past decade, due to the rapid development of modern materials and 

devices, the study and characterization of materials at the atomistic level, from synthesis 

to assembly, have been great challenges. As the laws of quantum mechanics govern the 

interaction between atoms and electrons [7], a quantum mechanical analysis technique is 

required to solve a basic quantum mechanical equation for complex many-atom, many-

electron systems [7]. In 1964, Walter Kohn and his co-workers developed density 

functional theory (DFT), which allowed an analytical solution to the Schrodinger 

equation for many-atom, many-electron systems [7]. DFT has opened a new door for 

research in physics, materials science, chemistry, nanotechnology, and even earth 

sciences and molecular biology [7]. 

2.1.1: The Impacts of DFT on Materials Research  

Density functional theory is one of the most common methods for ground state 

electronic structure calculations in quantum chemistry and solid state physics [8]. Density 

functional theory allows for solution of the Schrӧdinger equation for many-atom or 

many-electron systems as a function of charge density, rather than solving the wave 

function. In many-electron (many-body) systems, the self-interactions, also known as 

exchange-correlation relations, cause electrons to be indistinguishable, leading to the fact 

that energy and forces are impossible to be solved analytically. DFT provides a balance 
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between computational cost and accuracy that allows quantitative data to be computed for 

any material model (up to thousands of atoms) [9]. Therefore, the computational work 

based on DFT is well suited to a variety of material science applications such as surface 

science and catalysis, structural metals and earth sciences, semiconductors, 

nanotechnology, and biomaterials [7]. 

The applications of DFT, through various computational techniques, to accelerate 

the design processes and enhance material properties are used widely in numerous 

structural materials such as steels, aluminum cast alloys, and titanium alloys [7]. In 2004, 

Csanyi et al. used a molecular dynamics approach in combination with classical force-

field embedded quantum-mechanical models to study crack propagation in silicon [10]. 

In this study, they used a model containing about 200,000 atoms, which shows that DFT 

calculations can be done on a large material model with the support of a high-speed 

computer system [10]. DFT is also being used in surface science to understand the 

atomic-scale mechanisms of chemical reactions on surfaces as well as to describe the 

rates of heterogeneous catalysts reactions [7].  

In other fields such as biomaterials, DFT plays an important role in studying the 

complex process of biological materials [7]. Besides that, DFT has been used widely in 

the studies of semiconductors, where electronic properties such as band gaps and defect 

states can be performed for unary and binary systems [7]. In addition, DFT has proven to 

be a powerful method for studying defects in solids [11]. DFT provides a standard tool to 

investigate the defects concentration in solids in thermal equilibrium, the defects 

interactions, and their vibration modes, which are all associated with the ground state of 

the defect [11]. Overall, DFT yields a comprehensive description of materials from 
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crystal structure to phase stability, from mechanical properties to electrical properties, 

and from dielectric to magnetic properties [7]. Hence, DFT has become robust and has 

enabled many tasks to be performed automatically. With the increasing speed of 

computers nowadays, DFT opens a way toward high-throughput computation for various 

materials research fields.  

2.1.2:  Physical Aspects of DFT 

An atom consists of a positive nucleus and electrons moving around it. The 

motion of electrons and their behaviors determine the chemical properties of an atom 

such as the interaction with other atoms, the formation of molecules, electrical 

conductivity, and others. In a quantum mechanics model, the Schrӧdinger equation 

determines the probability of finding an electron as a function of space and time. 

However, it is impossible to solve for more than a few electrons because each electron 

not only interacts with the nucleus, but also with other electrons. As more electrons are 

added to a material, solving the problem becomes more difficult for even a computer to 

handle. In 1964, Kohn and Hohenberg developed DFT [12]. In DFT, the interactions of 

the electrons and the nucleus can be obtained by a model called electron density. Electron 

density is the probability of finding an electron in space. Basically, electron density 

depends only on three spatial coordinates, while many-body wave functions depend on 

all spatial coordinates of all electrons [13]. Therefore, electron density provides a simple 

method to solve the Schrӧdinger equation and it is a desirable computational property of 

DFT. An illiustration of how electrons are treated in the DFT perspective compared to 

their complex interactions in many-body system is shown in Figure 1. In the DFT 
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perspective, all electron-electron interactions are treated through the electron density, 

which holds atomic ions together inside a molecule or a solid [13]. 

 

Figure 1 Difference perspective of the density functional theory versus the 
reality for the many-body system.  

 

The key justification of DFT rests on two fundamental mathematical theorems 

proved by Hohenberg and Kohn [12]. The first theorem states that the total ground state 

energy, E0, from the Schrӧdinger equation is a unique functional of the ground state 

charge density, n0(r), which can be described as the following function: 

E0 = E [no(r)]                                         [2.1] 

The second theorem states that the ground state energy can be found by the 

minimization of the overall functional above with respect to the electron density, which 

corresponds to the full solution of the Hamiltonian equation:  

E! =
!  ![! ! ]
!  !(!)

|!!!! ! = !!|! !!
!! !!

           [2.2] 
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where E[n(r)] is the energy functional of charge density, n(r), H is the Hamiltonian 

operator, and Ψo is the probability of finding the electron at its ground state energy. Notice 

that Ψo is a function of the coordinates of all electrons, while n(r) is a function of three 

spatial coordinates only. The energy functional, E [n(r)], can be written in the form of 

single-electron wave functions, 𝜓!(r), which define the electron density n(r): 

n(r) = 2   𝜓!∗! 𝑟 𝜓!(𝑟)                           [2.3] 

E ψ! = E!"#$ ψ! + E!"[ ψ! ]      [2.4] 

where E!"#$ ψ!   includes four analytical contributions that can be analytically 

calculated: 

E!"#$ ψ! =   −
h!

m ψ!∗

!

∇!ψ!d!(r)

+ V r n r d!(r)+
e!

2
n r n r!

r− r! d! r   d! r! + E!"# 

The terms on the right-hand side represent the electron kinetic energies, the 

Coulomb interaction between the electrons and the nuclei, the Coulomb interactions of 

electrons pairs, and Coulomb interactions between pairs of nuclei, respectively. In Eq. 

(2.4), E!"[ ψ! ] is an exchange correlation energy, which is defined to include the entire 

quantum mechanical effects that are not included in  E!"#$ ψ! . Therefore, E!"[ ψ! ] is 

not exactly determined and needs to be meaningfully approximated. In order to find the 

right electron density that can minimize the energy functional of Eq. (2.4), the set of one-

particle equations, called Kohn-Sham equations, were developed with an additional 

correction to the effective potential: 
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− !
!
∇!! + v!"" r ψ! r = ε!ψ!(r)                         [2.5] 

v!"" r = v r + ! !!

!!!!
d r! + v!"(r)              [2.6] 

           n r′ = |ψ! r! |!!
!!!                                     [2.7] 

where in Eq. (2.5), − !
!
∇!! represents the kinetic energy of electron, v!"" r  is the effective 

potential (defined in Eq. (2.6)), and ε! is the ground state Eigen value. On the right side of 

Eq. (2.6), the term v(r) is the potential defining the interaction between electrons and the 

collection of the nuclei, called the atomic potential. The second term is the Hartree 

potential and the last term, v!" r   , can be defined as a functional derivative of the 

exchange-correlation energy [9, 12, 14]. 

v!" r = !!!" !
!"(!)

                          [2.8] 

All the Kohn-Sham equations must be solved self-consistently. A schematic flow 

chart in Figure 2 shows the typical computational procedure for any DFT-based 

calculation. The procedure requires an input, which is a geometrical arrangement of 

atoms determining the overall atomic potential v(r), and the atomic number Z. It also 

requires an initial guess for the electron charge density, from which the exchange-

correlation potential and the Hartree potential can be calculated [15]. The self-consistent 

loop solves the Kohn-Sham equations using numerical schemes. A typical self-

consistency is achieved when the generated charge density is smaller than the chosen 

values [15]. 
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Figure 2 A typical computational procedure of calculating the total ground 
state energy and related quantities. 

2.1.3: Exchange-Correlation Functional Approximation Methods 

DFT has two practical limitations. One is the need to approximate the exchange-

correlation functional. The other is that properties calculated by DFT need to be 

formulated as a function of electron density. In addition, various numerical 

approximations will also affect the results [13]. The Kohn-Sham equations reformulate 

the many-body Schrӧdinger equation as a set of one-electron equations, where all of the 

many-body interactions are contained in the exchange-correlation functional,E!"[ ψ! ]. 

As mentioned above, the exact form of this functional is unknown and an approximation 

must be used. Several approximations were developed by Perdew [12]. The most 

common framework of DFT is the local density approximation (LDA), where the 

exchange-correlation potential at each position is set to be the known exchange-

correlation of the infinite homogeneous electron gas with the same electron density. 

Construct)input)v(r))

Pick)a)cutoff)energy)for)plane8wave)func:on)

Calculate)veff)(r),)Eq.)2.6)

Solving)Kohn8Sham)equa:on,)Eq.)2.5)

Calculate))n(r’),)Eq.)2.7)

Self8consistent?)

Pick)a)trial)charge)density)n(r))

Compute)
total)energy)

Yes)No)
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                                    E!" 𝑟 = 𝐸!"
!"!#$%&'  !"# 𝑛 𝑟 = 𝜀!" 𝑛 𝑟   𝑛 𝑟 𝑑!𝑟             [2.9] 

where 𝜀!" 𝑛 𝑟   represents the exchange-correlation energy per electron. The local 

density functional approximation uses only the local electron density to approximate the 

exchange-correlation, which is not the true exchange-correlation functional [12]. 

Therefore, the results of the Kohn-Sham equations do not exactly solve the true 

Schrӧdinger equation. Another choice of exchange-correlation is the generalized gradient 

approximation, which uses the local electron density and the local gradient in the electron 

density. Therefore, the generalized gradient approximation should be more accurate than 

the local density approximation functional. However, this is not always true [9]. In GGA, 

there are different ways to include the information from the gradient of the electron 

density. The most two common functions are the Perdew-Wang functional (PW91) and 

the Perdew-Burke-Ernzerhof functional (PBE) [9]. Many more GGA functionals have 

been developed and used such as the Meta-GGA functional (an addition variable of the 

kinetic energy density is used) or the Hyper-GGA functional [9]. Each function gives a 

different result for a particular atomic configuration, even though the difference can be 

very small. Therefore, it is necessary to specify what functional was used in a calculation 

rather than just “a DFT calculation” [7]. 

2.1.4: Reciprocal Space (Brillouin Zone) and k-Points 

In materials research, DFT is used for calculations in a system with periodic 

atoms in space. The cell, containing these atoms, which is repeated periodically, is called 

the super cell. The super cell is defined by the lattice vectors a1, a2, and a3. In order to 

solve the Schrӧdinger equation for a periodic system, the solution must satisfy Bloch’s 

theorem, in which the solution can be expressed as: 
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𝜙! 𝑟 = 𝑒!"#𝑢!(𝑟) 

where k is a wave vector confined to the first Brilliouin zone, r is a position vector that 

defined a point in space, and  𝑢! 𝑟 =𝑢!(𝑟 + 𝑛!𝑎! + 𝑛!𝑎! + 𝑛!𝑎!) for any integers n1, 

n2, and n3 is a periodic function that is periodic in space with the same periodicity as the 

super cell. Bloch’s theorem indicates that the Schrӧdinger equation can be solved 

independently for any value of k. Many parts of the mathematical problems posed by 

DFT are easier to solve in terms of k rather than r [12]. Because the expansion of 𝑒!!" 

expresses the original plane waves, the calculations based on this equation are defined as 

plane-wave calculations. Plane waves allow for taking advantage of the fast Fourier 

transformation (FFT), hence it is the most numerically convenient basis set that can be 

used in DFT. The space with respect to vector r is called real space, and to vector k is 

called reciprocal space (or k space) [12].  

In k space, a primitive cell is the minimum volume containing all of the 

information of the material. The concept of the primitive cell in k space follows the 

Wigner-Seitz cell, in which the reciprocal lattice vectors can be defined as easily as it can 

be in real space. The cell in k space is often called the Brillouin zone, which contains 

several k-points with special significance of symmetry. These points are given individual 

names. The most important point is called the gamma point (Γ point), which is the center 

of the reciprocal space (i.e., k=0 at the Γ point) [12]. 

DFT calculations require significant computational effort; therefore, integration of 

the mathematical equations cannot take place over the entire k space. Monkhorst and 

Pack [12] developed a solution, wherein a grid of points in k space is considered. For a 

super cell that has the same length in all directions (e.g., a cubic lattice), the same number 
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of k-points is used in each direction. The calculation is then labeled as using M×M×M k-

points. In general, it is expected that using M will give more accurate results than N, if 

M>N. However, in practice, to decide how many k-points will be used depends on the 

material system. If the calculated total energy is almost independent of the number of k-

points, then one can expect that all calculations in k space are well-converged, and thus 

there is no need to use a large set of k-points [12]. More details on the use of k-point will 

be discussed in Section 3.2.2. 

2.1.5: Pseudo-Potential 

The atomic potential v(r) in Eq. (2.6) describes the electrostatic interaction of the 

nucleus with the surrounding electrons. While each atom contains core electrons and 

valence electrons, only the valence electrons contribute to the chemical bonding of that 

atom. In order to reduce the cost of the computational calculations, a method of handling 

only valence electrons is developed, which is called the pseudo-potential approach [16]. 

In this method, the “fixed” core electrons are eliminated. Inside the core region, the 

valence electron wave function, due to the orthogonality to the core electron wave 

function, is described by a smooth node-less wave function while it is matched with the 

true wave function outside the core region [17]. A calculation without the frozen core is 

called an all-electron calculation. An illustration of matching wave functions in a pseudo-

potential approach is shown in Figure 3. The arrows indicate the cutoff radius of the wave 

functions, where the left of the arrow is fixed as the “frozen core” and the wave function 

is replaced by a smooth node-less function (e.g., green replaces red for the 6s state). To 

the right of the arrow (outside the core), the pseudo-wave function matches the all-

electron wave function. The same behavior is shown for the 5s state, where the cutoff 
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radius is set at a different value. This indicates that each valence state is set with a 

specific cutoff radius in the pseudo-potential approach. In this approach, the wave 

function that is smooth both inside and outside the core is the so-called pseudo-wave 

function.  

The pseudo-potential approach makes a big impact on improving the performance 

of DFT because the smooth functions can be expanded easily in plane wave calculations 

[12]. Moreover, the pseudo-potential helps reduce the computational cost due to the 

elimination of the interactions from the core electrons. Some useful reviews on the 

pseudo-potential approach and full-electrons augmented wave methods can be found in 

Refs. [18-19]. 

 

Figure 3 The all electron (AE) and pseudo (PS) wave functions for the valence 
energy states of cesium atom. The matching occurs beyond the cutoff radius. 
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2.2: Structure and Performances of TRISO Fuel 

TRISO fuel is typically made in the form of rods or spheres (also known as 

pebbles) consisting of a graphite matrix and coated with a graphite layer [1]. Figure 4 

shows a fuel sphere is made up of a 60 mm diameter sphere of graphite matrix and with a 

5 mm thick-coated graphite layer. Each sphere contains thousands of TRISO coated 

particles and each coated particle usually contains a kernel of UO2 (fuel produced by 

Germany), UCO, or UC2 (fuel produced by the US) [20]. Figure 4 also shows a buffer 

layer of carbon and three other layers of carbide that coat the particle: an inner PyC, SiC, 

and then an outer PyC layer. Each particular layer provides certain structural support to 

the TRISO particle to sustain irradiation during the fission process. Among the coatings, 

the SiC layer plays an important role in capturing any fission products emitted by the 

nucleus. Therefore, the quality of SiC is vital to the performance of the TRISO coated 

particle [21]. The material properties of SiC will be discussed in more detailed in Section 

2.3.  

  



15 
 

 

 

Figure 4 Structure of the coated TRISO particle 
 

TRISO fuel is widely used in high temperature gas-cooled reactors (HTGRs) due 

to the stable structure of the fuel particles under the extreme operating environment [22]. 

Using TRISO fuel for HTGRs in nuclear plants will reduce the use of fossil fuel such as 

oil and natural gases, which will help improve overall energy security in the U.S. by 

reducing dependence on foreign fuels and reducing CO2 emissions [6]. However, many 

studies have shown that materials degradation in a nuclear power plant has become a 

critical issue due to the harsh environment (i.e., high temperature gradient, corrosion, 

neutron radiation) where materials have to endure during the lifetime of a nuclear power 

system. Currently, the lifetime is expected to be from 40 to 60 years [23]. During service, 

the materials experience a corrosive environment, steep temperature gradients, and high-

energy particles released during fission. The fuel that provides power to the reactor 

usually has a much shorter lifetime than the structural components, but is also subjected 
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to the same harsh environment [6]. Therefore, it is a challenge to study the material 

failures of many fuels, including TRISO fuel. 

As discussed in Section 1.1, the SiC layer plays an important role in determining 

the performance of TRISO fuel; there have been many studies focused on the failure of 

the SiC layer [1, 22, 24]. It has been proven that the failure of SiC occurred under 

extreme high temperature conditions and primarily depended on the thermal properties of 

the TRISO coatings [1, 24]. In addition, the studies showed that the fission product 

retention depended primarily on the properties of the TRISO coatings [1]. Therefore, 

failure of the SiC layer at high temperature will increase the diffusion rate of fission 

products [1]. Figure 5 shows that as the particles are heated up to very high temperatures, 

the release rate of fission products such as Ag, Cs and Kr is much higher [1]. At an 

elevated temperature (>1373K), the release rate of Ag, Cs, and Kr from the fuel increased 

rapidly [1]. Among the fission products, 137Cs is one of the most hazardous and 

dangerous radioisotopes [25]. To reduce the release of Cs from the fuel particle, it is 

critical to have good quality coating materials, especially SiC [1]. By understanding the 

interaction of fission products within the SiC layer, a better material that exhibits low 

failure rates can be designed. 
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Figure 5 Typical fission products release profile during linear temperature 
ramp up [1]. 

2.3: Silicon Carbide 

SiC has more than 250 polytypes resulting from the wide variety of stacking 

sequences of Si-C atomic planes. The most common polytypes are 3C, 4H, 6H, and 15R, 

where C, H, and R represent cubic, hexagonal, and rhombohedral crystals, respectively. 

The 3C-SiC crystal is known as β-SiC, which is also the only Si-C stacking sequence that 

shows cubic symmetry. All other polytypes that show non-cubic symmetry are specified 

as α-SiC [26]. The stoichiometric cubic SiC (β-SiC) is found to be more stable than the 

hexagonal structure at temperatures below 2373 K (~2100oC). The experimental lattice 

parameter and density of β-SiC are 4.358 Å and 3.21 g/cm3, respectively [2, 26].  

The β-SiC has a zinc-blende crystal structure, where C atoms are located at the 

tetrahedral sites. With a close-packed structure, SiC has a higher specific heat as well as 

melting temperature compared to other refractory carbides or nitrides [2]. The atomic 
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structure of a 1×1×1 SiC unit cell is shown in Figure 6, which shows the face-centered 

arrangement of silicon atoms with carbon atoms in half the tetrahedral sites.  

 

Figure 6 Crystal Structure of 3C-SiC 

 

The Si-C bonds in 3C-SiC are not only covalent but also have a slight ionic 

character [2, 26]. Due to the difference of electro-negativity between Si and C, 1.9 and 

2.55 respectively [27], it is expected that some electrons will be transferred from silicon 

to carbon. In addition, 3C-SiC has wide electronic band gap, ~2.4 eV, high thermal 

conductivity (~350 W/m K), and thermal expansion coefficient (~ 4.4 *10-6/K) [2, 26]. 

Therefore, SiC is used as a structural material for a variety of high-temperature 

applications, high power devices, and in the nuclear industry [28]. Along with high 

chemical and thermal stability, and good resistance to neutron radiation damage, SiC 

became a great choice of material for TRISO fuel in gas-cooled nuclear fission and fusion 

reactors [29]. However, under the extreme radioactive environment, the SiC layer is 

found to be less effective in retaining the fission products such as Cs and Ag in TRISO 

fuel [3, 30]. Several studies performed phase change analysis on SiC at high temperatures 

[1]. The studies showed that the transition of β-SiC to α-SiC occurred in the temperature 
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range from 1973 K to 2473 K [1]. Fission product release rates were found to be 

consistent with the consequence of the failure mechanism initiated by a β-SiC phase 

transition to α-SiC [1]. The phase transition at high temperatures essentially increases the 

percentage of porosity, disorder, and complete thermal decomposition of SiC material in 

TRISO particles, which could potentially be the cause of material failures. As a result, 

fission products could be released due to these failures [1].  

The SiC layer used in TRISO-coated fuel particles is normally produced at 

1500oC- 1650oC via fluidized bed chemical vapor deposition of methyl-trichloro-silane 

(CH3SiCl3) using hydrogen as the fluidizing gas [31]. In order to retain the fission 

products, SiC must have a density closed to ~3.21 g/cm3 [32]. It is difficult to reproduce 

SiC with the same material properties (i.e., density, hardness, tensile strength) because 

under different laboratories and process parameters such as deposition rates, 

temperatures, and fluidizing bed condition, SiC will have different properties [32].  

2.4: Diffusion of Fission Products in TRISO Fuels 

Several works have studied the fundamental mechanism of Cs, Ag, and Pd 

transport through the SiC layer [1, 32-33]. Within these studies, three methods were used 

to determine the effective diffusion coefficients of metallic fission products. Amian and 

Stover [32] studied the fractional release of Ag and Cs from irradiated silicon-carbide-

layered coated particles using an integrated release method. The particles were annealed 

between 1273 K and 1773 K for several time periods. Their procedure begins with 

measuring the content of fission products of each particle (137Cs and 110Ag) using anti-

Compton gamma spectrometry with a central Ge(Li) detector. The particles are then 

annealed and the released fission products were collected on the water-cooled copper 
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plates [32]. The effective diffusion coefficients were derived by fitting the diffusion 

model to the overall integrated release data obtained from a batch of TRISO fuel 

particles. The effective diffusion coefficients follow an Arrhenius relation [3, 32]: 

𝐷!"" = 𝐷!(  𝑚!𝑠!!) ∗ 𝐸𝑥𝑝   !!  (!".!"#!!)
!!!

         [2.1] 

where kb is the Boltzmann constant, Do is the constant pre-factor, and Q is the activation 

energy of the diffusion mechanism. In their investigation, the effective diffusion 

coefficients are evaluated by simulating Fickian diffusion through the TRISO coating and 

by adjusting the diffusion coefficients to match the observed fission product release [32]. 

The second method measured the effective diffusion coefficient via ion-implanted 

cubic 3C-SiC samples. Only SiC and the fission product were involved using this 

method. Therefore, the experiments performed on TRISO-coated particles were more 

straightforward and easier to interpret than the integral release (IR) method [33-34]. The 

third method used a diffusion couple, where the fission products are in direct contact with 

SiC and their diffusion into SiC can be studied under different annealing conditions [34]. 

Table 1 shows the experimentally determined diffusion coefficients and the 

activation energies (Q) for Ag and Cs diffusion in SiC from various references, including 

the temperature range and the method by which the works were carried out. For Cs 

diffusion, the data show a significant change in diffusion mechanism at temperatures 

around 1673 K. At temperatures below 1673 K, the activation energy ranges from 1.3 to 

2.5 eV; above 1673K, the activation energy is greater than 5 eV [1, 32]. The rapid change 

in activation energies indicates a change in diffusion mechanism. It suggests at low 

temperature, grain boundary diffusion is a dominant mechanism in SiC, while bulk 
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diffusion dominates at high temperature [3]. For Ag, there is no evidence of a sudden 

change in activation energy, and the certainty about diffusion mechanisms was unclear. 

The variation in diffusion coefficients between the similar integral release measurements, 

which were done with different SiC microstructures, suggests that the SiC microstructure 

plays an important role in Ag diffusion [30]. In general, Table 1 also shows the variation 

in the diffusion coefficients and the activation energies values; this indicates the 

uncertainty among the experiments. Therefore, theoretical studies must be done to 

provide more solid results. 

Table 1 Summary of Cs and Ag diffusion coefficients in SiC 

Reference Fission 
product Do (m2/s) Q 

(eV/atom) 
Temperature 

(K) 
Measurement 

method 

[1] Cs 5.50×10-14 1.30 1073-1673 IR 

[32] Cs 3.50×10-9 2.45 1273-1773 IR 

[35] Cs 1.17×10-11 1.82 1273-1873 - 

[1] Cs 1.60×10-2 5.33 1673-1973 IR 

[36] Cs 2.50×10-2 5.21 1873-1973 IR 

[1] Ag 4.50×10-9 2.26 1273-1773 IR 

[37] Ag 6.76×10-9 2.21 1073-1773 IR 

[38] Ag 5.00×10-10 1.89 1273-1773 IR 

[38] Ag 3.5×10-10 2.21 1473-2573 IR 

[33] Ag 4.30×10-12 2.50 1473-1673 Ion-implant 

[34] Ag D<5.0×10-21 - 1773 Ion-implant 

 

To obtain a better understanding of diffusion mechanisms of Ag and/or Cs in SiC, 

over the past few years, ab initio modeling of Ag and Cs defects and their mobility in 

bulk and grain boundary SiC were studied by Shrader et al. [3, 30] and Khalil et al. [39]. 
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Their studies involved the diffusion of Ag in both the bulk and the grain boundaries of 

SiC. They also investigated the diffusion of Cs in bulk 3C-SiC.  

For Ag diffusion in bulk SiC, defect formation energies were calculated for 

intrinsic defects such as Si vacancies (VSi), C vacancies (VC), and Si substitution of C 

(SiC). The structure and stability of charged Ag and Ag vacancy clusters in SiC were then 

investigated. The most stable Ag defect in SiC was found to be a silver atom substituting 

on the silicon sub-lattice and bound to a C vacancy (AgSi-VC) [30]. The Ag interstitial 

impurity was found to have the lowest activation energy of ~7.9 eV [30]. The calculated 

activation energies were high compared to the values from the experimental data and this 

would cause Ag to diffuse slowly in the bulk SiC. As a result, Ag transport in SiC can be 

through an alternative mechanism such as grain boundary diffusion [30]. 

In order to prove that the hypothesis of Ag release from TRISO fuel might occur 

through grain boundary diffusion, Khalil et al. [39] also studied different point defects of 

Ag in SiC grain boundary [39]. The most energetically stable atomic configuration of Σ3-

GB was determined by molecular dynamics (MD) simulations based on an empirical 

potential. A detailed description on the structure of Σ3-GB SiC is discussed in Section 

3.1. The results of defect formation energies indicated that the Ag defects at the grain 

boundaries of SiC were approximately 2 to 4 eV lower than that in the bulk. It was found 

that Ag diffuses faster along the grain boundaries than through the bulk [39]. Also, at 

temperatures around 1873 K, Ag diffusion coefficients in grain boundary were found to 

be significantly higher than in the bulk, 3.7× 10-18 m2/s and 3.9 × 10-29 m2/s, respectively 

[39]. Even though this diffusion coefficient in Σ3-grain boundary at 1873 K was about 

two orders of magnitude lower than that estimated from the IR measurements (show in 
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Table 1), the values were close enough to indicate that grain boundary diffusion was a 

possible diffusion mechanism of Ag release from SiC coating [39].  

Shrader et al. [3] studied the diffusion of Cs atoms in bulk 3C-SiC. The most 

stable Cs defects in SiC, under n-type doping conditions, was found to be a negatively 

charged Cs atom substituting for a C atom and bound to two Si vacancies, CsC-2VSi
-3 [3]. 

The CsC-2VSi
-3 defect was found to have the lowest overall activation energy of roughly 

5.14 eV, which agreed well with the values obtained from high temperature integral 

release experiments [1, 36]. It supports the hypothesis of bulk diffusion occurring at high 

temperatures, while grain boundary diffusion occurrs at lower temperatures [3]. In the 

present work, the diffusion of Cs at the ∑3-grain boundaries of SiC was investigated. The 

goal is to calculate Cs defect formation energies along the grain boundaries, which can 

then be used to calculate the activation energy and diffusion coefficient. By comparing 

the defect formation energies of Cs in the bulk and at the grain boundaries of SiC, the 

activation energies can be quantitatively predicted. 



24 
 

 

CHAPTER 3: COMPUTATIONAL DETAILS 

3.1: Theoretical Approach 

The total energies of the defected and un-defected SiC systems, using density 

functional theory calculations, were determined in the pseudo-potential formalism as 

implemented in Quantum ESPRESSO (open-Source Package for Research in Electronic 

Structure, Simulation, and Optimization) version CVS [40]. The generalized gradient 

approximation (GGA), parameterized by Perdew, Burke, and Ernzerhof (PBE), was used 

for estimating the exchange-correlation functional. There are two different material 

systems studied in this thesis: the bulk 3C-SiC and a SiC Σ3-grain boundary. The 

ultrasoft pseudo-potentials, generated using Vandebilt codes, were applied for carbon and 

silicon atoms in both systems [41]. For Cs, the pseudo-potential was generated as a norm-

conserving pseudo-potential using Troulllier-Martins recipe. The pseudo-potentials for C 

and Si have 4 valence electrons in the 2s2 2p2 and 3s2 3p2 orbitals, respectively. The Cs’s 

pseudo-potential has 0.6 electrons total in the valence states (6s0.5 5d0.05 6p0.05) [41].  

For calculations in bulk SiC, a wave function cutoff of 30 Ry and a charge density 

cutoff of 240 Ry were determined based on the convergence tests, which are shown in the 

next sections. A grid of Monkhorst-Pack 10×10×10 k-point mesh was used to sample the 

full Brillouin zone. These computational parameters yielded 4.381 Å (8.28 Bohr) and 210 

GPa for the equilibrium lattice constant and the bulk modulus, respectively, which are in 

excellent agreement with the experimental values of 4.359 Å (8.24 Bohr) and 225 GPa 



25 
 

 

[42-43]. The relaxation calculations of the structure (e.g., lattice constant) and atomic 

positions were also carried out in order to obtain more optimized data of the total 

energies. All Cs defect calculations were done at the neutral charge state. To minimize 

the defect-defect interactions, a 2×2×2 super cell of the conventional un-defected SiC 

system containing 64 atoms was used in all calculations. 

For investigating Cs in Σ3-grain boundary of SiC, a wave function cutoff of 44 

Ry and a charge density cutoff of 352 Ry were applied for all calculations as proposed by 

Khalil et al. [39]. The atomic structure of the GB was generated using molecular 

dynamics simulations from the LAMMPS software package [39]. The grain boundaries 

were examined in a bicrystal configuration; the Σ3-grain boundary lies in the [ ] 

plane and its tilt axis is aligned with the  direction [39]. Figure 7 shows the XZ 

cross-sectional structure of the most stable Σ3-grain boundary, where it consists of 5-, 6-, 

and 7-membered rings. These rings are labeled in the figure as I, II, and III, respectively 

[39]. Also, in Figure 7, the Y direction of the Σ3-grain boundary is parallel to the tilt axis 

, while the X and the Z directions are [111] and [ ], respectively [39].  

211

]110[

[011] 211
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Figure 7 The XZ cross-sectional structure of the bi-crystal grain boundary 
model. The red line represents the grain boundary plane separating the grain 1 (G1) 
and grain 2 (G2). Only one layer of atoms is shown here while the others are into the 
page. 

 

The lattice sites, overlapping between the two grains, form a periodic structure 

within the grain boundary plane, which is considered as a coincidence site lattice (CSL). 

The size of the CSL unit cell is 7.55 Å in X, 3.08 Å in Y [39]. The size of the whole grain 

boundary structure is 15.2 Å in X, 12.3 Å in Y, and 18 Å in Z directions [39]. An 

approximate thickness of 5 Å centered at the GB contains the atoms that form the GB 

rings. Other atoms, outside of this region, belong to the crystalline (bulk) SiC [39]. The 

dimensions are chosen in such a way that a reasonable number of bulk-like atomic layers 

could be incorporated around the grain boundary [39]. Applying the same grain boundary 
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structure given from Khalil et al. into this investigation, but using different integrating 

software (e.g., Quantum-ESPRESSO vs. VASP), it is required to obtain a new 

convergence with respect to the k-point mesh. The convergence test yielded a suitable 

4×4×4 k-mesh for the calculations in the grain boundary of SiC. The Σ3-grain boundary 

calculations were computationally expensive (i.e., in time and memory) because it is a 

large system consisting of 256 atoms (128 Si and 128 C). Therefore, the relaxation of 

only atomic positions was done while its volume was fixed (e.g., fixed lattice constants). 

Similar to the bulk SiC calculations, defect formation energies were only studied with the 

neutral defects. 

3.2: Defect Formation Energy  

The defect energies of neutral Cs in two structural configurations of SiC were 

calculated using the following equation [30, 44]: 

𝐸! = 𝐸!"# − 𝐸!"#$% + ∆𝑛!   𝜇!!                [3.1] 

where 𝐸!"# corresponds to the calculated total energy of the defected SiC system, 𝐸!"#$% 

is the calculated total energy of the un-defected cell, ∆𝑛! is the difference in the number 

of atoms of species i between the perfect cell (defect free) to the defected cell, and 𝜇! is 

the chemical potential of species i [44]. 

The cohesive (or binding) energies were calculated via the total energies and 

further applied for the calculation of the defect energies. There were a total of 64, 2, and 

4 atoms in the systems of bulk SiC, Si crystal, and C (graphite), respectively. The 

cohesive energies were calculated for SiC, Si, and C using the following equations: 

                                                          𝐸!"!! 𝑆𝑖𝐶 = !!"! !"#!"#$ !!"  ×!(!"!"#)!!"  ×!(!!"#)
!"

                   [3.2] 
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                              𝐸!"!! 𝑆𝑖 = !!"! !"!"#$ !!×!(!"!"#)
!

                          [3.3] 

                                  𝐸!"!! 𝐶 = !!"! !!"#$ !!×!(!!"#)
!

                          [3.4] 

where 𝐸!"!! 𝑆𝑖𝐶 , 𝐸!"!! 𝑆𝑖 , and 𝐸!"!! 𝐶  are the cohesive energies per atom (superscript 

a) of bulk SiC, Si, and C crystal. Etot(SiC), Etot(Sibulk), and Etot(Cbulk) are the calculated 

total energies of the SiC, Si, and C bulk systems. Etot(Sigas) and Etot(Cgas) are the total 

energy contributions resulting from isolated Si and C atoms [45], which were calculated 

as Si and C in their gas phase (e.g., in the present work, the calculations were performed 

using simple cubic structure with the lattice constant of 40 Bohr for both cases). The 

cohesive energies are used into the chemical potential calculation, which is important for 

defects that change the composition of the system. In pure SiC, the chemical potential of 

a Si-C pair in bulk SiC is denoted by µSiC. At equilibrium, µSiC is the binding energy (per 

pair of atoms) of SiC, which is equal to [45]: 

  𝐸!"# = 2×𝐸!"!! 𝑆𝑖𝐶 = 𝜇!" + 𝜇!=𝜇!"!"#$ + 𝜇!!"#$ + ∆Η𝑓        [3.5] 

where 𝜇!"!"#$   and 𝜇!!"#$   are the chemical potential of atoms in bulk Si and C (graphite) at 

equilibrium. ∆Η𝑓 is the heat of formation for the SiC compound. 𝜇!"!"#$   and 𝜇!!"#$   were 

considered under two extreme boundary conditions: C-rich and Si-rich [45]. The 

following procedure was used in order to obtain 𝜇!" and  𝜇! . For the Si-rich condition, 𝜇!" 

is at a maximum and equal to the energy of a Si crystal: 

                                                𝜇!" = 𝜇!"!"#$ = 𝐸!"!! 𝑆𝑖                                     [3.6] 

whereas    𝜇!  is at a minimum and equal to the chemical potential of C in the SiC 

compound [45]: 
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𝜇! = 𝜇!!"#$ + ∆Η𝑓 = 𝐸!"# − 𝜇!"!"#$   =   2×𝐸!"!! 𝑆𝑖𝐶 − 𝐸!"!! 𝑆𝑖      [3.7] 

Similarly, for the C-rich condition, 𝜇!  is at a maximum and equal to the energy of bulk C 

(graphite): 

                                                            𝜇! = 𝜇!!"#$ = 𝐸!"!! 𝐶                                         [3.8] 

whereas 𝜇!" is at a minimum and equal to the chemical potential of Si in the SiC 

compound [30, 44]: 

𝜇!" = 𝜇!"!"#$ + ∆Η𝑓 = 𝐸!"# − 𝜇!!"#$ = 2×𝐸!"!! 𝑆𝑖𝐶 − 𝐸!"!! 𝐶       [3.9] 

Along with calculating Cs defect formation energies, the intrinsic defect 

formation energies of Si and C vacancy in SiC systems were also calculated using the 

2×2×2 conventional SiC super cell. The following equations were used in this thesis to 

determine the defect formation energy of a single vacancy in bulk SiC. They were 

consistent with the formula used by Posselt et al. [45]. For a single Si-vacancy: 

𝐸!(𝑉!") = 𝐸!"# − 𝐸!"#$% − 𝐸!"!! 𝑆𝑖𝐶 + 𝐸 𝑆𝑖!"# + !

! !!"!
! !" !!!"!

! !
     [3.10] 

For a single C-vacancy: 

𝐸!(𝑉!) = 𝐸!"# − 𝐸!"#$% − 𝐸!"!! 𝑆𝑖𝐶 + 𝐸(𝐶!"#)+
!

! !!"!
! ! !!!"!

! !"
       [3.11] 

Note that the signs can be alternatively changed depending on whether the applied 

cohesive energy values are positive or negative.  

In addition, the band structure and the density of states of bulk SiC were studied 

yielding band gap energy compatible with other computational works. The generalized 

gradient approximation exchange-correlation functional was used for these calculations. 
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The band structure was calculated and plotted for the primitive SiC system containing 8 

atoms. The density of states calculations were done on the 2×2×2 conventional SiC unit 

cell containing 64 atoms. For all calculations of intrinsic and extrinsic defects in bulk 

SiC, a 2×2×2 conventional unit cell was used in order to reduce the interaction between 

defects and their periodic images. 

3.3: Testing Convergence 

3.3.1: Lattice Parameter and k-Point Convergence 

In order to test the convergence of the lattice constant, k-point mesh, and the 

plane-wave cutoff energy for the accuracy of the SiC model and the software, several sets 

of self-consistent field calculations were done on the SiC conventional cell (8 atoms/cell) 

with various Monkhorst-pack k-point meshes including 2×2×2, 4×4×4, 8×8×8, 

10×10×10, and 12×12×12. Throughout each k-point calculation set, the initial kinetic 

energy cutoff for plane wave function was used at 30 Ry, as proposed by Roma for SiC 

system [28]. The lattice constant was varied from 7.7 to 9.0 Bohr with 0.1 Bohr 

increments, which contained the experimental lattice constant of 3C-SiC (i.e., 8.24 Bohr). 

A typical result from calculating the total energy of 3C-SiC as a function of lattice 

constant is shown in Figure 8. The shape of the curve is quadratic and has a single 

minimum at a value of a, which is called ao. Because materials always seek to minimize 

their total energy, DFT calculations predict that 3C-SiC has a minimum energy at lattice 

constant ao.  
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Figure 8 Total energy, of zinc-blend 3C-SiC structure, as a function of lattice 
parameter. The solid curve corresponds to the fit of DFT data. The plot was 
obtained using the Mathematica 8 program. 

 

To extract the values of minimum total energy and ao, the data were fitted using 

the NonlinearModelFit function of the Wolfram Mathematica program. The fit model 

was then solved for the minimum point, from which ao can be determined. Alternatively, 

the Quantum-ESPRESSO package can calculate the bulk modulus, in which the 

minimum total energy and ao can be obtained using the Murnaghan equation of state.  

Each set of k-point calculations produced one value of ao and a minimum total energy. 

The data from each k-point calculation is given in the Table 2. First, looking at the 

energies listed in this table and plotted in Figure 9, when M is larger than 10, the total 

energy is almost independent of the number of k-points. More specifically, the variation 

in the energy (for M>10) is less than about 0.00001 Ry (~0.0001 eV). Similar behavior is 

seen for the lattice constants listed in the table and plotted in Figure 10. The variation in 

lattice constant is almost zero (due to rounding) as M approaches 10. These data indicate 
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that the calculations are numerically well converged at 10×10×10 k-points mesh when ao 

equals to 8.281 Bohr.  

The last column in Table 2 lists an average of the total computational time taken 

for the total energy calculations. It shows that getting a converged result, in a calculation 

that contains 47 k-points (M=10), takes approximately 4 times longer than the calculation 

involving just 3 k-points (M=2). The number of k-points in each k-mesh indicates the 

symmetries that exist in a perfect zinc-blend structure. The calculations take full 

advantage of these symmetries because the integrals in reciprocal space can be evaluated 

in a reduced portion of the Brilliouin Zone (i.e., the irreducible Brilliouin zone) instead of 

the entire zone [12]. For a very symmetric material such as cubic SiC, using just the 

irreducible Brilliouin zone would greatly reduce the numerical effort required to perform 

calculations. 

Table 2 The results of the total energies and lattice constant computed with 
M×M×M k-points. 

M Etotal (Ry) ao (Bohr) 
No. of k Points 
in irreducible 

Brilliouin zone 

Total CPU 
Time (s) 

2 -20.84046 8.392 3 ~2.12 

4 -21.01203 8.285 8 ~2.52 

8 -21.02115 8.281 29 ~4.79 

10 -21.02123 8.281 47 ~6.78 

12 -21.02124 8.281 72 ~9.49 
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Figure 9 Total energy of SiC (as described in Table 2) plotted as a function of 
M for calculations using M×M×M k-points. 

 

 

Figure 10 Lattice constant, as described in Table 2, plotted as a function of M 
for calculations using M×M×M k-points. 

3.3.2: Kinetic Energy Cutoff for Plane Wave Function  

The cutoff energy value was 30 Ry for all converging tests of k-points and lattice 

constants for SiC, as proposed by Roma [28]. However, for the purpose of consistency 

and accuracy, a convergence test for the kinetic energy cutoff was also performed in this 

thesis. With the k-point mesh of 10×10×10 and ao of 8.281 Bohr, obtained from Table 2 

and the figures above, the calculation was done using different cutoff values, from 20 to 

40 Ry. The result is shown in Figure 11, in which the variation of the total energy 
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becomes very small after the cutoff value reaches 30 Ry. The figure indicates that 30 Ry 

is a reasonable choice for the energy cutoff value in SiC calculations. As a result, all 

further calculations of the bulk SiC were done using 30 Ry as the cutoff energy. 

 

Figure 11 The total energy of the bulk SiC calculated as a function of kinetic 
cutoff energy. 

 

After the suitable k-points, the lattice constant, and the energy cutoff data were 

optimized for the calculations in bulk SiC system containing 8 atoms per cell, 

calculations of the larger SiC system were performed using the super cell, which contains 

64 atoms. The 2×2×2 bulk SiC super cell was used for defect calculations to prevent the 

contribution of defect-defect interaction from the calculation of formation energy.  

For the calculations in the grain boundary SiC, the convergence test was done 

only for the k-points, because the lattice parameters and the kinetic energy cutoff were 

used as previously determined by Khalil et al. [39]. Using these parameters for the 

calculations with different k-points, the result of the total energies plotted as a function of 

k-points is shown in Figure 12. In this system, the energy becomes almost independent of 
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the k-points (M×M×M) as M reaches 4. Hence, the mesh of 4×4×4 k-points was used for 

all further calculations of grain boundary SiC. 

 

Figure 12 The total energy of grain boundary SiC plotted as a function of k-
points. 
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CHAPTER 4: RESULTS AND DISCUSSION 

The ultimate goal of this thesis is to understand the diffusion mechanism for Cs in 

SiC, whether the diffusion occurs in the bulk or at the grain boundaries. In order to 

achieve the end result, many challenges have to be overcome. One challenge is to 

understand the fundamental concepts of density functional theory before implementing it 

into simulations. Another is to perform baseline calculations using the Quantum-

ESPRESSO software package, including the determination of the total ground state 

energy, the density of states, the band structure, and the charge density. This investigation 

was begun with several neutral Cs point defects such as interstitial, substitution, and the 

combination of vacancy plus substitution, before gradually moving into more complex 

charged defects. 

4.1: Bulk 3C-SiC 

Once the lattice constant, the kinetic energy cutoff, and the k-point mesh were 

determined for bulk SiC system, these parameters could be applied for all of the bulk SiC 

calculations. The primary parameters used in this thesis are listed in Table 3. However, to 

gain more confidence on using these data on the calculations, several different material 

properties such as the bulk modulus and the cohesive energy of bulk SiC were also 

studied. The results of bulk modulus and cohesive energy are shown in Table 4. The 

experimental data and data from other simulation works are also listed in Table 4 for the 

convenience of comparison.  
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Table 3 Primary parameters for calculations in bulk 3C-SiC with 1×1×1 and 
2×2×2 super cells 

SiC system 
Wave function 
cutoff energy 

(Ry) 

Charge 
density cutoff 
energy (Ry) 

Lattice 
constant 
(Bohr) 

k-point 

8 atoms/cell 30 240 8.28 10×10×10 

64 atoms/cell 30 240 16.56 5×5×5 

 

Table 3 shows that the values of kinetic energy cutoff for plane wave function and 

charge density are constant whether it is the 1×1×1 SiC unit cell or it is a 2×2×2 SiC 

super cell. The value of the charge density cutoff energy was used as 8 times the value of 

the wave function cutoff energy for any calculations that used the ultra-soft pseudo 

potentials, as proposed by Paolo Giannozzi [46]. The lattice constant of the SiC super cell 

was double the value found for the simple unit cell. The M k-points were also determined 

as 5×5×5 for the SiC super cell based on the data obtained from simple unit cell 

calculations. 

Table 4 shows that the values obtained from this thesis are in good agreement 

with the previous calculations as well as the experimental data. The variation among 

different calculations can be due to the difference of exchange-correlation functional 

approximation, the lattice constants, k-point, the kinetic energy cutoff values, and the 

simulation software. The calculated SiC properties yielded a great confidence for 

applying the parameters determined in Table 3 and gave more assurance on the accuracy 

of the SiC future calculations. 
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Table 4 Equilibrium lattice constant, Bulk modulus, and cohesive energy with 
respect to the calculation method and k-points 

Reference Present 
work Exp.[43] [47] [29] [48] [49] [43] [50] [51] 

ao (Bohr) 8.28 8.24 8.24 8.28 8.28 8.27 - 8.21 8.22 

Bulk 
Modulus 

(GPa) 
210 225 210 - 222 213 227 222 224 

E-coh 
(eV/atom) 

7.51 6.34 - 7.32 6.58 - 7.55 - - 

 

Next, the electronic band structure of 3C-SiC was also investigated at the high 

symmetry points of the zinc blende Brilliouin zone. The result in Table 5 shows that the 

electronic band gap energy for SiC in zinc-blende crystal structure in this present work 

was found to be 1.40 eV, which is comparable with other theoretical data that used a 

similar computational approach (i.e., 1.37 eV and 1.53 eV [50, 52]). In addition, Figure 

13 illustrates an indirect band gap from the Γ-point (000) to the X-point (100), which 

agreed with the experimental data [53]. Figure 13 also shows the Fermi level at zero, 

which had been normalized by subtracting the energy with the Fermi energy value to 

make it a reference energy level. The conduction and the valence bands are defined as the 

nearest energy states above and below the Fermi level, respectively. The band gap energy 

was measured from the top of the valence band, at the zone center (Γ point), to the 

bottom of the conduction band at the X-axis. 
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Table 5 Band gap energy of 3C-SiC based on density functional theory 
calculations in comparison with the experimental data 

 Present 
work [50] [52] [30] [54] [55] Exp.[26] 

E-gap 
(eV) 1.40 1.37 1.53 1.07 1.501 1.32 2.39 

 

 

Figure 13 Band structure of 3C-SiC calculated at the equilibrium volume. The 
Fermi level is taken as the zero of energy. 

 

The band gap energy of 1.40 eV calculated for 3C-SiC was in good agreement 

with other calculations, but was low compared to the experimental data. The tendency of 

density functional theory to underestimate the electron-electron interactions causes DFT 

calculations (of different exchange-correlation functional) to suffer a self-interaction 

error, resulting in lower electrical band gap energy than the actual value [11]. There are 

several band gap correction methods that can improve the performance of DFT 
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calculations on determining the band gap energy of materials. A great review on these 

correction methods can be found in Ref. [56]. According to Gali [11], the band gap error 

in wide-band-gap semiconductors, like 3C-SiC, was quantitatively analyzed as roughly 

1.0 eV [11]. Therefore, the energy band gap of 1.40 eV found in this was not only 

consistent with other calculations but also in good agreement with the experimental data. 

Moreover, the results imply that the parameters used for bulk SiC calculations were 

reliable.  

4.2: Cs in Bulk 3C-SiC 

As proposed by Shrader et al. [3] and Roma [28], the SiC 2×2×2 super cell was 

used for all defect calculations to prevent the defect-defect interaction. Three Cs point 

defects, including Cs interstitial at the octahedral site, and Cs substitution on the Si (or C) 

sub-lattice, were chosen as the initial calculations. The crystal structures of different Cs 

point defects in SiC are shown in Figure 14. Due to the large atomic size of Cs (atomic 

radius of 2.67 Å (5.05 Bohr)) in comparison with Si and C (atomic radii of 1.32 Å (2.50 

Bohr) and 0.91 Å (1.72 Bohr), respectively), a significant distortion in the lattice 

surrounding the Cs defect would cause the lattice constant of the bulk SiC to change.  In 

this investigation, to ensure that the lattice distortion was considered in each defect 

calculation, several sets of self-consistent field calculation were done within a lattice 

constant ranging from 15.5 Bohr to 17.5 Bohr. This range includes the 16.56 Bohr of the 

equilibrium lattice constant for the bulk SiC 2×2×2 super cell (Table 3).  

For each defect, the new equilibrium lattice constant was then determined by 

fitting the total energy versus lattice constants to the Murnaghan equation of state. The 

data in Table 6 indicates that the equilibrium lattice constant of bulk SiC increased as a 
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result of Cs impurities.  Additionally, among the defects, Cs substituting for C caused the 

least distortion in the lattice (0.24 Bohr from the equilibrium bulk lattice constant), which 

may suggest that Cs prefers the C sites over the Si and the interstitial sites, as its large 

atomic size is easier to be accommodated. However, more evidence from the defect 

formation energies is needed to validate this hypothesis. Due to the lattice distortion, all 

Cs defect calculations were then performed with the new equilibrium lattice constant 

depending on the defect type. At the same time, the variable cell relaxation method of 

calculations, in which the atomic positions and the lattice parameter(s) were both relaxed, 

were used to further reduce the ground state total energy for SiC system.  

Table 6 Theoretical lattice constants of 3C-SiC with and without Cs point 
defects 

Material system ao (Bohr) 

bulk 3C-SiC 16.56 

Cs substitution C 16.80 

Cs substitution Si 16.96 

Cs interstitial 16.98 
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Figure 14 Crystal structure of Cs interstitial at the octahedral site (a), Cs 
substitution C site (b), and Cs substitution Si site (c). 

4.2.1: Charge Distribution 

In order to predict the probability of finding the location where the electron 

density will be the highest, the charge density calculations were carried out for both 

defect-free and defected SiC systems. From these calculations, the amount of charge 

being transferred from one atom to another can also be determined. The charge 

distributions were only taken in the (110) plane, which contains the most information of 

different Cs defect types. For the defect-free SiC, the charge distribution is shown in 

Figure 15. The partial density of states output file showed that there were roughly 1.00 

electrons being transferred from the Si to the C atoms. The Si-C bond in 3C-SiC is sp3 

hybridized. In this case, the electronegativity of C is much higher than that of Si (2.55 

and 1.90 respectively), and electro-negativity is the tendency of an atom to attract an 

electron to its nucleus. This difference caused the transfer of charge from Si to C to 

(b)$

(c)$

(a)$



43 
 

 

occur. Figure 15 shows an uneven charge distribution in the Si-C bond along the (110) 

plane. The result verified, as expected, what has been reported on the bonding 

characteristic of Si and C atoms in 3C-SiC [2, 43, 51]. Additionally, Figure 15 shows 

almost no interaction of the C and the Si atoms in between the layers (separated as red). 

The charge transfer between the atoms can also be described based on Coulomb’s law 

[57], which defines the attraction force between the two atoms as follow: 

                   𝐹 = !  !!!!
!!

                [4.1] 

where F is the attraction force, q1 and q2 are the charges of the atoms, and d is the 

distance between the atoms. With that being said, the distance between the C and Si 

atoms were too far away, roughly 3.64 Å (6.88 Bohr) (Figure 15), thus almost no 

electrons were being transferred from Si to C atoms between different layers.  

 

Figure 15 Charge density of bulk 3C-SiC along the (110) plane. 

 

Once the charge density along the (110) plane was established for the defect-free 

3C-SiC system, similar calculations were done with several Cs point defects.  Shown in 
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Figure 16 is the charge density along (110) plane for Cs sitting on the C site (a), Cs 

sitting on the Si site (b), and Cs sitting on the interstitial site (c). The vertical direction of 

Figure 16c was taken as [002] instead of [001] in the z direction so that a full observation 

of charge distribution around the Cs atom can be seen. 

 

Figure 16 The charge density along the (110) plane of the Cs point defects in 3C-
SiC system: CsC (a), CsSi (b), and Csi (c). 

 

The images show that there are interactions between Cs with its surrounding Si 

and C atoms. For example, in CsC defect (Figure 16a), at the region where there was no 

sign of interaction (e.g., zero charge density) in the defect-free SiC (Figure 15), it is now 

showing some charges accumulated around the Cs atom. In comparison to the defect-free 

SiC charge distribution, the C-Si bond length and Cs-Si bond length between different 

layers (separated as red in the figures) are very close in both cases (3.64 Å (6.88 Bohr) 

and 3.68 Å (6.95 Bohr) in Figure 15 and 16, respectively), but Cs is a much larger atom 

than C, thus the nuclear effective charge on the valence electrons are weak and they can 
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easily interact with other surrounding atoms. Normally, it is expected that the atom with 

higher electronegativity will attract an electron to its nucleus. For example, Si (or C) will 

pull electrons from Cs to their side because Cs has much lower electro-negativity (e.g., 

0.569). However, the results from charge density calculations of Cs defects showed an 

opposite behavior in this investigation. The valence electron configuration used for the 

pseudo-potential of Cs atom was 6s0.5 5d0.05 6p0.05, and the charge density output 

indicated a large amount of electrons being transferred from Si (or C) atoms to Cs in all 

cases. In the case of CsC, this behavior can be explained due to the dangling bond around 

Si when C was replaced with Cs. One of the Si bonds was unfulfilled, while the other 

three were bonded with C atoms. Because Si and C have 4 electrons in their valence, in 

the absence of a C atom, Si had one broken bond, which needed another electron to 

generate a single stable bond. When Cs was present with a low number of valence 

electrons (0.6 electrons) and empty energy states, the Si atom gave away its electron to 

fulfill the empty states of Cs, instead of taking 0.6 electrons from Cs. Therefore, the Si-

Cs bond behaved like an ionic bond. Similar result can also be observed for C-Cs bond 

when Cs replacing Si atom. From the partial density of states output file, a summary of 

the charge transfer data to the Cs atom with respect to the s, p, and d orbitals and the 

overall charge gained to Cs are reported in Table 7. The initial charge configuration of Cs 

(containing the initial charge of 0.6 electrons) is also listed in Table 7. 
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Table 7 Data of electrons gained to the s, p, and d orbitals of Cs atom in each 
defect type. 

Defect 
System 

Cs initial 
electron 

configuration 
s orbital p orbital d orbital 

Total 
electrons 
gained to 
Cs atom 

CsC [6s0.55d0.056p0.05] 0.268 0.617 4.28 ~5.16 

CsSi [6s0.55d0.056p0.05] 0.225 0.649 2.72 ~3.59 

Csi [6s0.55d0.056p0.05] 0.336 0.638 3.72 ~4.69 

 

From Table 7, the overall charge values of Cs indicate that Cs gained electrons 

from its surrounding Si and/or C atoms depending on the defect type. Based on the data 

collected, the electrons mainly resided in the 5d energy states. Table 7 also shows some 

loss of electrons in the s orbital. The electrons are believed to be transferred into a more 

localized 5d orbital resulting from the 6s to 5d hybridization in Cs atom [58]. The 

unoccupied 5d orbital of Cs was strongly hybridized resulting in more energy states 

generated within the band gap of SiC. More information on the hybridization in Cs atoms 

can be found in [59] and [60]. In addition, the calculations for the density of states were 

performed showing the hybridization process of the Cs atom’s 5d orbital with the 

conduction band minimum and valence band maximum energy states. 

4.2.2: Density of States 

As discussed in Section 4.2.1 regarding the simulation process of charge 

distribution, a similar approach was taken for the density of states calculations, where the 

density of states of the defect-free SiC was performed prior to the defected SiC. The plot 

of bulk 3C-SiC density of states as a function of energy is shown in Figure 17. The Fermi 

level was normalized at zero. The conduction band minimum and the valence band 
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maximum were then determined based on this zero reference point. The band gap, 1.40 

eV, obtained from the plot of the density of states was consistent with what was found 

from the band structure (Figure 13). 

 

Figure 17 Density of states as a function of energy for bulk 3C-SiC. The band 
gap energy is indicated as E-gap and the Fermi level is at zero. 

 

The calculations for the density of states of three different Cs point defects were 

performed. The results are shown in Figure 18. The density of states of the bulk 3C-SiC 

was also shown along with the density of states of the defects including CsC, CsSi, and Csi 

in parts (a), (b), and (c), respectively. In Figure 18a, there is an additional peak within the 

band gap at 0 eV when Cs was introduced into SiC at the C site. Furthermore, the partial 

density of states for the 5d orbital of Cs was also collected and plotted against the total 

density of states for the bulk and Cs-defected SiC. In Figure 19a, the 5d orbital of Cs also 

exhibits a matching peak at 0 eV similar to the peak shown in the defect’s density of 
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states. This peak was broadened due to the hybridization the 5d orbital of Cs with the 

conduction band minimum and valance band maximum causing additional energy states 

to form in the SiC band gap. New energy states allow electrons to easily migrate from the 

valence band to the conduction band, resulting in a potential enhancement of the 

electrical conductivity in SiC. 

The valence electron configuration model of 6s0.5 5d0.05 6p0.05 used for the pseudo-

potential of Cs worked well for the CsC defect. Therefore, it is expected that an additional 

peak will occur and will also match with a peak resulting from the partial density of states 

of the 5d orbital of the Cs atom in the other two defects. However, for CsSi and Csi, 

shown in Figure 18b and 18c, respectively, the plots indicate a different behavior as in 

the CsC defect. In Figure 18b, the partial density of states of the 5d orbital of Cs shows a 

peak at roughly 4 eV while the total density of states of the defected SiC has a peak 

around -0.5 eV within the band gap. Similarly, in Figure 18c, the partial density of states 

of the 5d orbital of Cs shows a peak at roughly 1 eV, where the total density of states 

does not show any additional peak within the band gap. Based on these results, the 

current model of electron configuration used in Cs pseudo-potential may need to include 

some additional inner states to provide more valence electrons. 
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Figure 18 Total density of states of 3C-SiC with and without Cs defects along 
with the partial density of state of Cs’s 5d orbital, where (a) is CsC, (b) is CsSi, and 
(c) is Csi. 

(a) 

(b) 

(c) 
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4.2.3: Defect Formation Energy 

In this subsection, the defect formation energies of isolated Cs impurities in 3C-

SiC were calculated. Following the calculation approach as proposed by Shrader et al. 

[3], Cs point defects in bulk SiC are considered for three single and five complex defects. 

The single defects are Cs interstitial and substitutional impurities. The complex defects 

are formed by a Cs substitution in association with one to three vacancies of either C or 

Si atoms. Before evaluating the defect energies, the chemical potentials of Si and C were 

calculated in the bulk and in the SiC compound environments.  

4.2.3.1: Chemical Potential of Si and C 

In a material system, many defect reactions involve exchanging atoms or 

electrons with an external resource, which is stabilized and governed by a chemical 

potential [30]. Therefore, for the study in SiC, the defect formation energy depends upon 

the external chemical potential of Si and C (incorporated in Eq. 3.1). The Si and C 

chemical potential cannot be higher than the values of the bulk phases (bulk silicon and 

graphite, or Si-rich and C-rich); otherwise, these bulk phases will form spontaneously and 

will reduce the chemical potential [30]. In thermodynamic equilibrium, the chemical 

potential of Si and C are related to the chemical potential of the SiC crystal (discussed in 

Section 3.1). These are the constraints that provide the upper and lower bounds on the Si 

and C chemical potential [30]. Furthermore, the Si- and C-rich conditions are the bounds 

by which the formation energies of defects are allowed to vary. In the present study, the 

relevant binding energies of Si, C, and SiC were used for calculating the chemical 

potential of Si and C with respect to the chemical potential of SiC. These binding 

energies are shown in Table 8, which were calculated using Eq. 3.2, Eq. 3.3, and Eq. 3.4. 
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The values were consistent with a previous study, which used a similar DFT calculation 

method (general gradient approximation) [43]. The results of chemical potential in Si- 

and C-rich conditions are reported in Table 9 and were consistent with the data reported 

by Shrader et al. [30].  

Table 8 The binding energy of Si, C, and SiC compound 

 Binding energy (eV) 

Si 5.398 

 C (graphite) 9.233 

SiC (per pair of atoms) 15.02 

 

Table 9 Chemical potential of Si and C atoms in Si-rich and C-rich conditions 
compare with data reported from Shrader et al.  

 Present work [30] 

 µSi (eV) µC (eV) µSi (eV) µC (eV) 

Si-rich -5.39 -9.63 -5.44 -9.65 

C-rich -5.79 -9.23 -5.89 -9.20 

 

4.2.3.2: Defect Formation Energy Calculation 

The intrinsic defects are the common defects in most materials, and diffusion 

processes for impurities are often mediated by vacancies.  It is useful to understand the 

properties of the host material itself. Therefore, in this investigation, the intrinsic defects 

in SiC were first investigated. At the same time, by comparing the results in this study 

with the existing literature will give more confidence in the methodology used in the 

present work (e.g., the pseudo-potentials, the Quantum-ESPRESSO codes, and other 

parameters discussed in Section 3.3). The calculations for the total ground state energy of 
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3C-SiC with a single vacancy of Si and C atoms were performed. The total energies were 

then used in Eq. [3.10] and Eq. [3.11] to calculate the vacancy formation energies. The 

results are given in Table 10. Relevant theoretical data from other works are also shown 

in Table 10, and are generally in good agreement with the present results. The data shows 

that it requires more energy to create a single Si vacancy than a single C vacancy in 3C-

SiC, as expected, because Si has larger atomic size than a C atom causing greater 

distortion upon its removal. This can also lead to higher formation energy for CsSi than 

for CsC. This was indeed observed from the results of Cs defect formation energies 

(Table 11).  

Table 10 Intrinsic defect formation energies (eV) for Si and C vacancy in 3C-
SiC 

Intrinsic 
defect 

Present 
work [48] [49] [61] [62] [30] 

VSi 7.62 7.62 6.64 7.48 7.01 7.63 

VC 4.38 3.47 5.48 3.63 4.89 4.13 

 

The calculations of Cs defects in SiC were performed with the atomic and 

structural relaxation. The total energies for three neutral Cs point defects including Cs 

interstitial, Cs substitution for Si atom, and Cs substitution for C atom were first 

obtained. For calculating the defect formation energies (Eq. 3.1), Edef energy 

corresponding to the relaxed cell (Table 6) were used (i.e., the different lattice constant 

was used for different defects). The results are listed in Table 11. It shows that Cs 

substituting at C requires lower energy than Cs substituting Si. It is now verified that Cs 

prefers to sit at the C site. Interestingly, Cs interstitial at the octahedral site has much 

higher defect formation energy than Cs substitutional defects, indicating that Cs sitting at 
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the interstitial site is not energetically favorable. Table 11 also listed the calculated defect 

energies for neutral Cs-vacancy clusters in bulk SiC. The data of similar Cs neutral 

defects reported by Shrader et al. [3] are also given in Table 11. The results were 

generally in good agreement and the trend in defect formation energies of all defects is 

the same in between the works. The difference between the two data sets is due to the 

difference in pseudo-potentials and other parameters used in calculations.  

In both studies, the exchange-correlation was treated in the Generalized Gradient 

Approximation (GGA) parameterized by Perdew, Burke, and Ernzerhof (PBE). However, 

in the present study, the pseudo-potential formalism was used for all calculation, while 

Shrader et al. [3] used the projector-augmented plane-wave (PAW) formalism. In Ref. 

[3], the PAW potential of Cs were used with valance electronic configurations 5s2 5p6 

6s1, while the norm-conserving pseudo-potential of Cs contained only 0.6 valence 

electrons in the configuration of [6s0.5 5d0.05 6p0.05], which is used in the present 

investigation. There was only one Cs pseudo-potential available from the pseudo library 

of the Quantum-ESPRESSO. Meanwhile, a lot of work is required to generate a Cs 

pseudo-potential with different valence electron configuration. In fact, it was generated 

during this research, but in comparison with the calculations using the Cs pseudo-

potential from the Quantum-ESPRESSO package, the testing result for the Cs bulk 

modulus was not as accurate as expected. As a result, the available pseudo-potential from 

the Quantum-ESPRESSO package was used in this investigation, which contains 0.6 

valence electrons [6s0.5 5d0.05 6p0.05].  

In addition, for the work in Ref. [3], the Brillouin Zone was sampled using the 

Monkhorst-Pack k-points mesh of 6×6×6 for an 8-atom conventional SiC cell (1×1×1 
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unit cell), and the Fourier space k-points density was used for different cells (e.g., 6×6×6 

k-mesh in 1×1×1 unit cell will be converted to 3×3×3 k-mesh in 2×2×2 super-cell). The 

kinetic energy cutoff for wave functions was set to 600 eV (~44 Ry) for all of their 

calculations [3]. In this study, the 10×10×10 k-points was used for the calculations of the 

unit cell containing 8 atoms and the 5×5×5 k-points was used for the super cell containing 

64 atoms. Also, the kinetic cutoff energy in this study was set to ~408 eV (30 Ry).  

Nevertheless, there is a good agreement in the trends for defect energies between 

the two investigations. Both studies predicted that the most stable neutral Cs defect was 

the Cs substituting Si site in association with a C vacancy (bold values). Thus, despite 

some differences in the calculated defect energies, the results from the present work 

provided enough confidence for the future investigations of Cs at the grain boundary in 

SiC. 

Table 11 Defect formation energies of neutral Cs defects in bulk 3C-SiC under 
the two boundary conditions of the chemical potential: Si-rich and C-rich. 

Cs defect 

Chemical 
potential 
boundary 
condition 

Present 
work 
(eV) 

Shrader et 
al. for Cs 
defect [3] 

(eV) 

Ag defect 
Shrader et 
al. for Ag 
defect [30] 

CsSi 
Si-rich 14.58 12.71 

AgSi 
6.60 

C-rich 14.19 12.27 6.16 

CsC 
Si-rich 12.07 12.50 

AgC 
7.39 

C-rich 12.46 12.94 7.83 

Csi 
Si-rich 26.55 23.46 

Agi 
10.49 

C-rich 26.55 23.46 10.49 

CsSi-VC 
Si-rich 11.97 10.93 

AgSi-VC 
5.32 

C-rich 11.97 10.93 5.32 

CsSi-2VC 
Si-rich 12.37 11.39 

AgSi-2VC 
6.44 

C-rich 12.76 11.84 6.88 
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CsC-2VSi 
Si-rich 13.87 13.59 

AgC-2VSi 
11.40 

C-rich 13.48 13.15 10.96 

CsSi-VC-CSi 
Si-rich 13.81 12.95 AgSi-VC-

CSi 
8.56 

C-rich 14.59 12.07 7.67 

CsC-VSi-SiC 
Si-rich 16.76 13.74 

- 
- 

C-rich 15.98 14.62 - 

 

Table 11 also shows the formation energies of similar neutral Ag defects in bulk 

3C-SiC, which were calculated by Shrader et al. [30]. Notice that the last Ag defect is not 

listed in Table 11 because it was not studied in their work. Looking at defect formation 

energies of Cs in the present work and of Ag from Ref. [30], both show that the defect 

cluster of Cs (Ag) substituting a Si atom in association with a C vacancy has the lowest 

values. It indicates that the most probable stable state of neutral Cs and Ag defects in 

bulk SiC is this defect cluster.  Also, at the interstitial site, both Cs and Ag defects have 

very high formation energies suggesting that it is not energetically favorable for Cs and 

Ag to sit at the interstitial in bulk SiC. In general, the formation energies of Ag defects 

are smaller than Cs defects. Because Ag is much smaller than a Cs atom (1.44 Å (2.72 

Bohr) and 2.67 Å (5.21 Bohr), respectively), it is easier to transport with less disruption 

to the structure of the host material, bulk SiC. Therefore, it would require less energy to 

form Ag defects in SiC because with smaller size Ag is more compatible with the SiC 

than Cs. 

4.3: Cs at Σ3-Grain Boundary SiC 

Table 1 containing the experimental data of Cs diffusion in SiC indicates a change 

in the mechanism of Cs diffusion in SiC at temperatures around 1673 K. Shrader et al. 
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studied Cs diffusion in bulk 3C-SiC for different neutral and charged defects [3]. They 

also hypothesized that Cs is more likely to diffuse through the grain boundaries of SiC at 

the temperatures below 1673 K [3]. Even though the activation energies predicted by 

Shrader et al. were consistent with the high-temperature release measurements, the 

formation energies indicated an extremely low Cs solubility [3] in bulk SiC. Therefore, 

Shrader et al. proposed that other diffusion mechanisms must be investigated to provide a 

better understanding on the solubility of Cs in SiC [3]. However, there has been no 

investigation to support the hypothesis until this present work, where all calculations at 

the grain boundary were obtained by using the relaxation method. The formation energies 

were first calculated for the intrinsic defects along the grain boundary of SiC to verify the 

theoretical data from Khalil et al. [39]. Then, the calculations of neutral Cs substitutions 

in place of the intrinsic defects were performed for their ground state total energies. Due 

to the small difference of the Si (C) chemical potential in the Si-rich and C-rich 

conditions (~0.39 eV), only the chemical potential in the Si-rich condition is being used 

for defect formation energies calculation. 

4.3.1: Intrinsic SiC Defect Energies 

There were a total of six single vacancies studied in this research. These defects 

include a vacancy at the grain boundary plane, a vacancy in grain 1 (above the grain 

boundary plane), and a vacancy in grain 2 (below the grain boundary plane) for both C 

and Si. Figures 19 and 20 show the single C and Si vacancies in the crystal structure of 

the Σ3-grain boundary of SiC. The intrinsic defect formation energies are reported in 

Table 12 and are in good agreement with those from Ref. [39]. The values were 

calculated using Eq. 3.1 and only the chemical potential of Si and C in Si-rich were 
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considered for the data in Table 12. The Si and C vacancy defect formation energies in 

bulk SiC are also listed. 

Looking at the intrinsic defect formation energies in the grain boundary, the C 

vacancies required less energy to form than the vacancies of Si. The similar behavior of 

lower formation energies in C vacancy is also found for the intrinsic defects in the bulk. 

Due to the smaller atomic radius of C, it requires less energy to form a C vacancy than a 

Si vacancy. In addition, because the bi-crystal grain boundary model indicates that grain 

1 and grain 2 are asymmetrical with a different orientation of the adjoining crystal and 

the grain boundary plane (Figure 7), different formation energies for similar defect types 

from both data sets were obtained. 
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Figure 19 Crystal structure of single C vacancies in GB SiC includes: the 
complete GB SiC structure with three original C atoms (top left), C vacancy at GB 
plane (top right), C vacancy at G1 (above the GB plane) (bottom left), and C 
vacancy at G2 (below the GB plane) (bottom right). 
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Figure 20 Crystal structure of single Si vacancies in GB SiC includes: the 
complete structure of GB SiC with three original Si atoms (top left), Si vacancy at 
GB plane (top right), Si vacancy at G1 (bottom left), and Si vacancy at G2 (bottom 
right). 
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Table 12 Results of formation energies for intrinsic defects in the bulk and at 
the grain boundary of SiC 

System 
Present work 

(eV) 
[30, 39] (eV) 

VC in bulk SiC 4.38 4.13 

 VC in GB plane 3.08 2.78 

VC in grain 1 2.20 1.97 

VC in grain 2 2.18 1.32 

VSi in bulk SiC 7.62 7.63 

VSi in GB plane 4.89 4.13 

VSi in grain 1 5.71 5.81 

VSi in grain 2 5.26 4.52 

 

Data from Table 12 indicates that the formation energies of C and Si vacancies in 

the bulk are higher than that for C and Si vacancies in the grain boundary of SiC. In the 

crystalline 3C-SiC structure, it is thermodynamically stable when 4 nearest neighbor 

atoms are surrounding C and Si. Therefore, it will take a large amount of energy to 

disrupt the lattice to generate a vacancy of C or Si. On the other hand, along the grain 

boundary of SiC, some C and Si sites are thermodynamically stable with only 3 nearest 

neighbors. Thus, the formation energies for Si and C vacancies at the grain boundaries 

are lower than in the bulk SiC because it takes less energy to break the bonds. The high 

values of vacancy formation energies for C and Si (4.28 eV and 7.62 eV, respectively) 

prevent substitutional diffusion in the bulk. In Σ3-grain boundary, formation energies of 

C and Si vacancies are reduced to 2.18 eV and 4.89 eV, respectively. Therefore, Cs will 

be enriched along the grain boundaries rather than in the bulk of SiC. 
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4.3.2: Cs Point Defects in the Grain Boundary of SiC 

The formation energies of neutral Cs point defects in a Σ3-grain boundary are 

listed in Table 13. Overall, the lowest formation energy corresponds to Cs substituting Si 

sites along the grain boundary plane. Due to the large amount of computational time and 

resources needed, calculations for complex defects of Cs vacancy clusters and charged 

defects in the grain boundary of SiC were beyond the permitted time frame of this 

research. The formation energy of neutral Cs substituted defects in bulk SiC (Table 11) is 

roughly three times more than that of the neutral Cs substituted defects at grain boundary 

SiC shown in Table 13. In comparison, data from Table 11 indicates that the Cs 

substituting Si site in association with one C vacancy is the most stable state of Cs in bulk 

SiC. However, data in Table 13 shows that the Cs substituting Si site along the grain 

boundary plane is much more energetically favorable even without an additional vacancy. 

Furthermore, in comparison to the data for Cs defects in bulk SiC, the lower defect 

formation energies indicate that Cs has higher solubility when it is at the grain boundary. 

It is known that the grain boundaries provide an easy path for matter transport, leading to 

a faster diffusion at the grain boundaries than in the bulk [63]. In addition, atoms 

diffusing along the grain boundary can penetrate deeper into the material than atoms that 

are only diffusing through the bulk due to a lower migration barrier at grain boundaries 

[63]. Therefore, with lower defect formation energies, Cs has a strong tendency to 

segregate to the grain boundaries of SiC. 

The formation energies of Ag substitution defects in grain boundary, studied by 

Khalil et al. [39], are also shown in Table 13. According to the data in Table 13, the most 

stable state for Cs in grain boundary of SiC is Cs substituting Si in the grain boundary 
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plane. However, the most stable state for Ag in grain boundary of SiC is Ag substituting 

C in grain 1. On the other hand, both Cs and Ag substituting Si in grain 1 have the 

highest formation energies. 

Table 13 Results for neutral Cs substitution defect formation energies in GB 
SiC 

 

In general, both data sets in Table 13 show the lower defect formation energies in 

the grain boundaries than in the bulk SiC. In the grain boundary of SiC, the values for Cs 

and Ag defect formation energies are quite close to each other, while they are 

distinctively different in the bulk (Table 11) with higher formation energies for Cs 

defects. This is due to the disrupt structure in the grain boundary of SiC, leading to some 

large spaces around the Si and C atoms. When the substitutions occur, Cs with larger 

atomic size than Ag would fill in those big gaps and create less strain on its surrounding 

than Ag. Therefore, some Cs substitution defects even have lower formation energies 

than Ag defects along the grain boundaries.  

In addition, Khalil et al. found that Ag diffusion along the grain boundary of SiC 

is much faster than diffusion in the bulk [39]. However, comparing data for Ag defects 

between Table 11 and Table 13, the differences in formation energies of some Ag defects 

System 
Present work 

(eV) 
System Khalil et al. [39](eV) 

CsC in GB plane 4.72 AgC in GB plane 5.60 

CsC in grain 1 3.70 AgC in grain 1 3.63 

CsC in grain 2 5.00 AgC in grain 2 4.22 

CsSi in GB plane 2.67 AgSi in GB plane 4.01 

CsSi in grain 1 6.76 AgSi in grain 1 6.15 

CsSi in grain 2 5.08 AgSi in grain 2 5.18 
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in the bulk and grain boundary of SiC are not significant. It indicates that Ag fission 

products will be found in the bulk and well as at the grain boundaries of SiC. Whereas, 

for Cs, the defect formation energies in the bulk and the grain boundaries are very 

different, indicating that Cs fission products will mostly be found at the grain boundaries 

than in the bulk SiC. 
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CHAPTER 5: SUMMARY AND FUTURE WORK 

The plane-wave pseudo-potential approach based on density functional theory 

with the generalized gradient approximation has been used to determine the material 

properties of pure SiC and to investigate the structural stability of Cs in two different SiC 

systems, the bulk and the Σ3-grain boundary SiC. Specific observations include the 

following: 

• From the calculations in pure SiC, the equilibrium lattice constant, bulk 

modulus, and cohesive energy were calculated to be 4.38 Å (8.28 Bohr), 210 

MPa, and 7.51 eV/atom, respectively. These baseline calculations for 3C-

SiC are in excellent agreement with experimental data (4.36 Å (8.24 Bohr), 

225 MPa, and 6.34 eV/atom, respectively, [43]) and theoretical data (227 

MPa, 7.55 eV/atom [43]) reported in the literature (Table 4).  For pure SiC, 

the projected wave function calculation of the charge distribution verified, 

as expected, that the Si-C bond in 3C-SiC has an ionic characteristic with 

approximately 1.0 electron transferred from Si to C. This also agrees well 

with previous work (0.98 electrons, [2, 51]). These agreements for pure SiC 

provided the confidence that the current simulation model was capable of 

calculating reliable and robust physical and chemical properties of Cs-doped 

SiC.   
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• The calculated formation energies of neutral Cs defects in bulk SiC were 

comparable with the data reported by Shrader et al., where the most 

probable stable state of neutral Cs in SiC is for Cs to sit at a Si site in 

association with a C vacancy. The formation energies of neutral Cs defects 

at the SiC grain boundary were found to be much lower than that in the bulk 

SiC. This suggests that Cs has a greater solubility at the grain boundary than 

in the bulk. As a result, Cs diffusion through the SiC layer in TRISO fuel 

will most likely be found along the grain boundaries. 

• Although the defect energies calculated in this investigation suggest that Cs 

may diffuse through SiC along the grain boundaries, the data only contained 

results for neutral Cs defects and did not reveal enough information of what 

the exact diffusion mechanism Cs would take at the grain boundary SiC. 

Therefore, a further investigation on the charged defects, diffusion 

coefficients, and the migration barrier (e.g., activation energy) of Cs along 

the grain boundary is needed to provide a more solid conclusion for how Cs 

diffuses in SiC. 
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