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ABSTRACT 

Annual counts of migrating raptors (Accipitriformes, Falconiformes) are used as 

indices of population size.  Variation in the proportion of the raptor population counted 

may decrease precision of trend estimates, thereby reducing power of inference.  The 

proportion counted is the product of sample coverage and probability of detection.  It is 

possible to improve the power of trend analysis by the adoption of techniques, such as 

double-observer or distance sampling, which estimate the probability of detection.  I used 

a dependent double-observer method to estimate detectability at the annual fall raptor 

migration count at Lucky Peak, Idaho, in 2009 and 2010.  I used Huggins closed-capture 

removal models and information-theoretic multi-model inference to describe important 

factors affecting detectability.  The most parsimonious model included effects of observer 

identity, distance, wingspan, genus, and day of the season.  Competitive models also 

included wind-speed, cloud cover, and hour of the day.  These results demonstrate the 

importance of controlling observer effort and training at watch-sites, and the potential 

utility of adjusting daily counts to account for differences in flight distance.  I used 

model-averaging to account for selection-uncertainty in estimating coefficients, and used 

the resulting equation to simulate 30 years of counts of Sharp-shinned Hawks (Accipiter 

striatus) and Northern Harriers (Circus cyaneus) with heterogeneous detectability, a 

known population trend, and a degree of unexplained random variation in the number of 

available birds.  Imperfect detection did not substantially bias trend estimation, but did 

increase variance in counts, decreasing power.  Correcting for detectability did little to 
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improve power to detect long-term declines when there was a realistically high variation 

in the number of available raptors (CV ≥ 0.26).  Detectability-correction by means of 

double-observer or distance sampling may, in the case of raptor migration counts, not be 

warranted for the purpose of long-term population monitoring.  Efforts may be better 

focused on improving our understanding of mechanisms that cause changes in the 

number of migrants available to count.  
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INTRODUCTION 

What does it mean to monitor a population?  Ideally, we want to be able to 

estimate the number of individuals at a point in time, or estimate demographic rates such 

as fecundity or survival, so that we may predict the population size at some point in the 

future.  Representative samples are necessary to guarantee unbiased population estimates, 

but determining whether a sample is representative requires knowledge of the full extent 

of the population in space and time.  This is difficult for birds and other highly mobile 

species.  In the interest of reducing bias in estimation, wildlife biologists are strongly 

encouraged to consider probability of detection (Nichols et al. 2000, Buckland et al. 

2001, Thompson 2002, Alldredge et al. 2006, 2007a, 2007b).  In traditional survey design 

and analysis of monitoring data, detectability is assumed to be perfect (= 1), or at least 

perfectly consistent.  If such methods are applied when detectability is highly variable, 

estimates may be biased, even when the sampling design is sound (Thompson 2002). 

Alternatively, we may decide to only estimate the population trend.  To do this, a 

sample is treated as an index of abundance, an abstract number that changes 

proportionally to real change in the population (Johnson 2008).  This approach relaxes 

the requirement of a representative sample.  Nonetheless, change in detectability over 

time may violate the assumption of proportionality (Thompson 2002). 

Many continental-scale, multi-species monitoring efforts use an index approach.  

The North American Breeding Bird Survey (BBS) and the Audubon Christmas Bird 

Counts both attempt to monitor long-term trends in landbirds in the United States and 

Canada, and both have persisted for over thirty years thanks to an effective utilization of 
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a corps of skilled volunteers.  The BBS is often used in setting management priorities 

(e.g., Dunn 2002, Dunn et al. 2005), thanks to its more systematic survey design and 

relatively sophisticated analyses, which have been designed to account for some 

predictable sources of change in detectability (Sauer et al. 1994, Link and Sauer 1998).  

The BBS does, however, have some limitations.  To make effective use of a volunteer 

effort, the BBS is confined to latitudes with an extensive road network, leaving much of 

the boreal and arctic regions of Canada and Alaska uncovered (Dunn et al. 2005).  The 

BBS sampling scheme consists of numerous short-duration counts performed at widely-

spaced points (Sauer et al. 1994).  Because detectability declines with increasing distance 

from the observer, these “point counts” have the highest possible ratio of area with low 

detectability to area with high detectability (Buckland et al. 2001).  Therefore 

detectability can be presumed to be most consistent for species that tend to reside on 

relatively small, fixed home ranges, and provide abundant cues to the observer.  For this 

reason, it is not surprising that point-counting is the predominant survey method for 

monitoring breeding songbirds (Passeriformes) (Ralph et al. 1995).   

Many raptors (Accipitriformes and Falconiformes), however, are not well suited 

for BBS trend analysis (Dunn et al. 2005).  Being large-bodied and predatory, most 

species of raptors in North America have relatively large home-ranges in the breeding 

season (Fuller and Mosher 1981, 1987).  Many have large populations breeding in the 

boreal forest and tundra north of the limit of the surveyed region (Dunn et al. 2005).  The 

raptors problematic for the BBS tend to be long-distance migrants (Kerlinger 1989). 

The energetic demand of migration and the vagaries of weather cause migratory 

flights of many raptors to become concentrated at certain geographic features, known as 
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leading lines (where lift is improved) or diversion lines (where paths are redirected by 

neighboring regions of poor lift) (Bildstein 2006).  Because these lines are often 

predictable, raptor-watchers began (first in the Northeastern US) to annually attend fixed 

sites to count the numbers of raptors that pass.  Realizing the value of such counts for 

monitoring these species, later generations have improved the quality of data at existing 

sites and began many new watch-sites in the western and southern portions of North 

America to build a continental monitoring network (Zalles and Bildstein 2000, Bildstein 

2006, Bildstein et al. 2008).  Diverse origins, priorities, and protocols of watch-site 

managing entities have made progress from a loose collective of nonprofit organizations 

to a unified continental monitoring network difficult.  Building such a network requires 

first a widespread agreement on a satisfactory data-collection protocol, followed by the 

development of a sound method of trend analysis (Titus et al. 1989, Lewis and Gould 

2000, Farmer et al. 2007, Bildstein et al. 2008).   

Raptor migration counts are rightly considered indices rather than estimates of 

population size because the location of raptor migration watch-sites is neither systematic 

nor random, and the observed flight does not represent a complete coverage of the 

population (Kerlinger 1989, Farmer et al. 2007).  The a priori assumptions of traditional 

survey design do not apply.  However, sound statistical analysis of raptor migration 

counts may still be possible.  A conceptual framework for inference from a sample drawn 

from a previously selected sub-population is known in the statistical literature as a 

superpopulation model (Hartley and Sielken 1975). 

Raptor migration counts are an example of such a two-stage sampling procedure.  

First the raptors must migrate near a watch-site while the observers are present.  Second, 
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the observers must see, identify, and record those raptors.  The first stage is limited by 

sample coverage, and the second stage is limited by probability of detection (Nichols et 

al. 2009).  At each stage, sample bias is possible.  To improve the confidence with which 

managers might make decisions based on raptor migration counts, researchers should 

seek to quantify these biases, identify their causes, and mitigate their statistical 

consequences.  In this thesis, I present my research examining the causes and 

consequences of detection bias in raptor migration counts. 

In Chapter 1, I present an empirical study conducted at the Idaho Bird 

O servatory’s Lucky Peak watch-site, near Boise, Idaho during the fall counts in 2009 

and 2010.  The goal of this study was to quantify the magnitude and variance of 

detectability of migrating raptors at an inland leading line watch-site, using a double-

observer survey design (Nichols et al. 2000).  This was the first study of detectability at 

an elevated site far from a coastline, or outside of the Atlantic Flyway.  I modeled the 

relative effects of factors related to observers, flight line, species, and weather, with the 

goal of identifying the most important factors to consider in designing improved trend 

analyses or survey protocols for raptor watch-sites. 

In Chapter 2, I present computer simulations that utilized the empirical data and 

models from Chapter 1 to estimate the effect of heterogeneous, imperfect detectability on 

trend analyses of standardized raptor migration counts.  I estimated the expected 

variance, bias, and resulting loss of statistical power attributable to detectability.  I 

estimated the relative effect of varying sample coverage on power by comparing the 

simulated detectability-related variance with the total variance in 15 years of historical 

counts. 
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Finally, I assess the strengths and weaknesses of raptor migration counts as a tool 

for monitoring and conservation, and suggest some directions for research into mitigating 

extraneous variation in sample coverage and detectability.  By empirically verifying the 

theoretical basis for raptor migration counts as an index of population change, 

hypothesis-based research may improve the value of raptor migration counts as a 

technique for population monitoring. 
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CHAPTER 1: DETECTABILITY OF MIGRATING RAPTORS AT A WESTERN 

RIDGELINE WATCH-SITE 

Abstract 

Annual counts of migrating raptors are used as indices of population size. 

Heterogeneous detectability may cause the counted proportion of raptors to vary.  This 

variation may reduce the precision of population trend estimates.  I used a dependent 

double-observer method to estimate detectability at the annual fall raptor migration count 

at Lucky Peak, Idaho, in 2009 and 2010.  I used Huggins closed-capture removal models 

and information-theoretic multi-model inference to determine factors affecting 

detectability.  The most parsimonious model included effects of observer identity, 

distance, wingspan, genus, and day of the season.  Competitive models also included 

wind-speed, cloud cover, and hour of the day.  These results demonstrate the importance 

of controlling observer skill and effort and the potential utility of adjusting daily counts to 

account for differences in flight distance.  By employing methods that address the factors 

that affect detectability, raptor-observatory organizations may be able to produce trend 

assessments with greater statistical power, thereby better informing timely management 

decisions. 

Introduction 

Population monitoring is essential to avian conservation (Finch and Martin 1995, 

Dunn 2002).  The North American Breeding Bird Survey has proven to be an effective 

monitoring method for many species, but trend estimates for many raptors 
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(Accipitriformes, Falconiformes) are unreliable (Dunn et al. 2005).  Breeding season 

surveys of North American raptors can be difficult and costly because raptors breed at 

low densities over large ranges and many breed in the remote northern reaches of the 

continent not covered by the BBS (Fuller and Mosher 1981, Dunn et al. 2005).  Some 

species, such as those that breed in forests and do not confront intruders, are easier to 

observe on migration (Fuller and Mosher 1987).   

During migration, wind drift, leading lines, and diversion lines create 

concentrations of visible migrants at predictable locations (Zalles and Bildstein 2000, 

Bildstein 2006).  At such locations, termed watch-sites, observers record the numbers of 

each raptor species that pass (Zalles and Bildstein 2000, Bildstein et al. 2008).  In North 

America, over 117 watch-sites have engaged in long-term monitoring of raptor migration.  

Additionally, at least 58 monitoring watch-sites have been established elsewhere in the 

world (Zalles and Bildstein 2000).   

However, the relationships between raptor migration counts and biological 

populations are complicated and poorly understood, making inference difficult (Kerlinger 

1989, Dunn and Hussell 1995).  Migration counts are not a representative sampling of 

biological populations; however, changes in migration counts over time may be 

considered an index of change in population size (Farmer et al. 2007, Farmer and Hussell 

2008).  Precision of trend estimation is reduced by variation in the proportion of the 

population counted (Thompson 2002, Johnson 2008).  The proportion counted depends 

on the sample coverage and the probability of detection (Nichols et al. 2009). 

The probability of a raptor being available to be counted is the product of three 

constituent probabilities (Nichols et al. 2009): 1) The watch-site is on the raptor’s 
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migratory path (  ), 2) the raptor is present during the hours observers are present (  ), 

and 3) the raptor behaves in such a way as to not be invisible (  ) (Dunn and Hussell 

1995). 

The count of available raptors is limited by the probability of detection (  ) 

(Nichols et al. 2009).  Imperfect detection results in the count of available birds being 

lower than the actual value. Variation in detectability contributes to count variance, 

reducing statistical power to detect trends (Thompson 2002).  A trend in detectability 

over time may bias estimates of trends in the number of available birds (Thompson 2002, 

Johnson 2008). 

Two previous studies have examined the factors affecting detectability at raptor 

migration watch-sites.  First, Sattler and Bart (1984), working at the Derby Hill watch-

site on the shoreline of Lake Ontario in New York, found that detectability varied by 

observer attentiveness, flight density, flight visibility, and species.  Specifically, they 

found that higher birds were less visible and detectable than lower birds and that the 

observer was more attentive and detected raptors with greater efficiency during times of 

high flight density.   Furthermore, raptor species that typically soared were detected at 

higher rates than species that often did not soar.   

Second, Berthiaume et al. (2009), at the Observatoire d’oiseaux de Tadoussac, on 

the shoreline of the St. Lawrence estuary in Quebec, used a double-observer approach to 

assess the relative effects of flight behavior and weather.  Species affected detectability, 

with small species having lower detectability than large species.  For most species, birds 

at eye-level were most detectable, and detectability decreased with increasing altitude.  

Cloud cover increased the detectability of high-flying raptors while decreasing the 
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detectability of raptors at lower altitudes.  Additionally, the number of raptors migrating 

in a group had a significant positive effect on detectability.  Wind direction and speed, 

cloud cover, humidity, and hour of the day affected flight altitude, and thus affected 

detectability indirectly (Berthiaume et al. 2009). 

The detectability studies of Sattler and Bart (1984) and Berthiaume et al. (2009) 

were performed at watch-sites in the Northeast on shorelines and at sites where observers 

worked alone rather than in a team.  Neither study identified any differences in 

detectability between observers.  However, observer effects exist in avian point counts 

(Campbell and Francis 2011, Alldredge et al. 2007, Nichols et al. 2000, Cunningham et 

al. 1999, Kendall et al. 1996, Sauer et al. 1994), and are likely in raptor migration counts 

(Dunn and Hussell 1995, Dunn et al. 2008).  Furthermore, detectability may be affected 

by site-specific factors and the number of observers (Kochenberger and Dunne 1985).   

I used a double-observer sampling design to estimate the detectability of 

migrating raptors at a mountain-ridge site in the Western interior with paired observers.  I 

investigated the relative effects of observers, characteristics of the migratory flight, 

weather, and species in determining detectability.  My objective was to improve our 

understanding of statistical error in migration counts and suggest methodological and 

statistical applications that may improve the utility of migration counts for population 

monitoring. 

Methods 

Study Site 

The Lucky Peak Hawk-Watch is performed each fall by the Idaho Bird 

Observatory, a nonprofit research program of Boise State University.  At least two 
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observers count migrating raptors each day, from 25 August to 31 October, as weather 

permits.  Counts are suspended only in the event of electrical storms, or precipitation 

which reduces visibility substantially.  Lucky Peak is situated at the southern end of the 

Boise Ridge, on the western front of the Rocky Mountains overlooking the Snake River 

Plain and Boise, Idaho (43° 36’18.7” N, 116° 3’40.6” W) (Zalles and Bildstein 2000, 

Ruelas Inzunza 2008).  Owing to the elevation of the site (approx. 1000 m above the 

plain), visible migrant raptors are distributed both laterally and vertically.  Counts at this 

site from 1994 to 2005 were analyzed by Smith et al. (2008).  The watch-site also 

includes a raptor banding station on the west slope of the mountain, in sight of the 

observation point.  Captured raptors are reported to the migration observers via two-way 

radio.  The watch-site is open to the public, and observers provide interpretation for 

visitors. 

Experiment 

I conducted a double-observer sample (Nichols et al. 2000) during the autumn 

raptor migration count on Lucky Peak in 2009 and 2010.  Sampled days were 1 – 4 days 

apart (mean = 1.8, SD = 1.0) on 29 weekend days and 36 weekdays.  Four observers were 

grouped in teams of two.  One team, designated primary, was located at the traditional 

lookout positions and attempted to count all raptors passing the lookout.  The other team, 

designated secondary, was positioned approximately three meters behind the primary 

team.  The secondary observers recorded, on a separate sheet, only additional raptors that 

were not counted by the primary team.  The primary observers called out the 

identification and location of raptors they observed so the secondary observers could 

avoid double-recording raptors.  Secondary observers could ask the primary observers 
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questions to clarify which bird had been counted, but were quiet when identifying any 

birds the primary observers had missed.  Therefore, detection by the primary observers 

was assumed to be unaffected by the activities of the secondary observers, while 

detection by the secondary observers was conditional on non-detection by the primary 

observers.  Birds captured in nets and reported to the observers via radio were removed 

from the data.  I randomly assigned observers to teams for each day.  The observation 

teams remained consistent over the course of each day, except on four days in 2010 when 

an observer was substituted mid-day.  The teams switched between the primary and 

secondary roles at the end of each hour.   

For individual raptors, observers recorded species and, when possible, age, sex, 

and color morph, as well as a visibility-based distance and altitude category.  Observers 

assigned birds to one of three categories by altitude only when within the range of 

unaided vision (where differences in background color and viewing angle are greatest 

when altitude varies), and assigned birds to visibility-based distance categories without 

regard for altitude when they were more distant (definitions in Table 1a).  I chose this 

system because lateral distance affected apparent size in the same way as difference in 

altitude, so distance and altitude were difficult to measure separately, and their effects on 

detectability were likely to be similar enough to complicate model-fitting if they were to 

be considered independently.  Observers classified each bird based on its closest 

approach to the watch-site, even if it was detected farther away.   

At the midpoint of each hour, observers recorded weather conditions with a hand-

held weather station (Kestrel 4000
®

, Nielsen-Kellerman, Boothwyn, PA).  Observers 
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measured wind velocity in kilometers-per-hour, wind direction in degrees, ambient 

temperature in degrees Celsius, and visually estimated a cloud cover category (Table 1b). 

Statistical Analyses 

Detectability was estimated by fitting a closed-population mark-recapture model 

(closed-capture model) (Otis et al. 1978).  A closed-capture model, unlike simpler 

logistic-regression approaches, accounts for the presence of animals undetected in the 

survey.  Closed-capture models are based on three key assumptions:  1) each “capture” 

attempt, in this case the attempt of an observer team to detect migrant raptors, has access 

to the same pool of animals (a closed population), 2) animals are independent in their 

capture probabilities, and 3) there is no heterogeneity in capture and recapture 

probabilities among individual animals.   

One additional assumption is unavoidable with the dependent double-observer 

survey design, because observer-specific detectability is only estimable for the primary 

observers (Nichols et al. 2000):  The detection probability for an observer team is not 

affected by whether it is in the primary or secondary role. 

The available migrant raptors were considered a closed population because 

observer teams were positioned closely enough to view the same extent of sky and the 

two counts occurred simultaneously.  Predatory raptors at Lucky Peak were very seldom 

seen migrating in groups of > 4 birds (approximately 3% of observations), so detection of 

individuals was generally independent.  Turkey Vultures (Cathartes aura) typically were 

counted in large groups, so this species was excluded from analysis. 

Heterogeneity in detection probability among individual raptors has been shown 

in previous studies (Sattler and Bart 1984, Berthiaume et al. 2009).  To account for 
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individual differences I used the conditional likelihood approach developed by Huggins 

(1989, 1991).  Heterogeneity in detection probability was incorporated as a linear 

function of multiple covariates related to the observer, flight, weather, and species of 

each bird.   

I used an information-theoretic model-selection approach with Akaike’s 

information criterion corrected for small sample size (AICc) as the selection criterion to 

assess the relative effects of these factors.  I model-averaged models with ΔAICc < 2 to 

account for model-selection uncertainty in estimating effect sizes (Burnham and 

Anderson 2002).  Model-fitting was performed using the Huggins closed-capture data 

type in Program MARK (White and Burnham 1999).  I coded raptors recorded by the 

primary observers with encounter history “11,” and raptors recorded only by the 

secondary observers with encounter history “01.”  I fixed the value of the probability of 

recapture (c) equal to one because birds detected by the primary observers could not fail 

to be detected by the secondary observers.   

I measured several covariates related to each of the four hypothesized sources of 

variation in detectability: observers, migratory flight, weather, and species.  I examined 

independent measurable covariates for correlation and any with coefficients > ± 0.4 were 

not used the same model.  Initially, I fit all possible models representing each of the four 

hypothetical sources of variation, along with a null model with no covariates, and a 

model with only the effect of year (42 models).  For each source, I selected the model 

with the lowest AICc as representative of the working hypothesis.  I used the variables 

from these four models to construct a general model.  I then built, from subsets of 
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variables in the general model, a set of candidate models with all possible combinations 

(364 models).  In doing so, I kept sets of variables describing a single covariate together.   

I modeled the effects of observer teams (combinations of two individual 

observers) as dichotomous (dummy) variables.  Ten teams, representing pair-wise 

combinations of seven regular observers, participated under a representative range of 

conditions (> 7 days).  I pooled the 17 other observer teams with insufficient samples.  

The seven regular observers (symbolized by A – G in Tables 2 and 4) were all recent 

(2004 – 2010, median = 2009) university graduates with B.Sc. degrees from wildlife and 

natural resource programs.  All had prior professional experience assisting with field 

studies of wildlife (6 – 40 months, median = 15), but only one had any prior experience 

observing bird migration (5 months).  I used the number of days since the beginning of 

the season and the hour of the day as covariates to account for possible effects of practice 

or fatigue.  I also modeled a second-order effect of number of days since the beginning of 

the season to account for a non-linear effect of practice.   

I used the number of birds observed per hour (BPH), representing a naïve estimate 

of flight density, as a covariate for all birds observed in that hour.  I used the distance 

category (see Table 1a) as an individual covariate to model the effect of flight-line.  I also 

included a second-order effect of distance on detectability to account for non-linearity.  

Non-linearity was strongly suspected for two reasons: 1) Distance category was an 

ordinal variable, and units were likely to be unequal, and 2) non-linear distance-

detectability functions are common (Buckland et al. 2001). 

I included wind speed, ambient temperature, and cloud cover category as 

covariates.  As circular variables cannot be used in linear models, I used the cosine of 
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wind direction as a linear covariate. This number ranged from -1 (wind from the south, a 

headwind) to 1 (wind from the north, a tailwind).  I also used the product of the cosine of 

wind direction and the wind speed as a covariate. This number was highest for strong 

tailwinds, and lowest for strong headwinds, with lighter winds and crosswinds having 

intermediate values.  I chose these transformations because the resulting variables were 

likely to be correlated with the speed of migrating raptors.  I chose to limit the number of 

wind variable interactions to avoid co-linearity and make the effect of migration volume 

and flight line distinguishable from more proximate effects of wind. 

I hypothesized that detectability might vary among species because species were 

of different visible size or flew with different styles.  I used an approximate average 

wingspan for each species (Sibley 2000) as a variable to account for visible size.  The 

second-order effect of wingspan was also considered, in case detectability might increase 

non-linearly with size.  To account for differences in flight style among raptors of similar 

wingspan, I used a dichotomous variable for each genus of raptors observed, with the 

exception of Aquila and Haliaeetus (Eagles), which were pooled because of similarity of 

flight style and small sample sizes.   

Distributions of covariates were described with arithmetic means and standard 

deviations.  Tests of differences in covariates between years were performed with 

Pearson χ
2
 tests for dummy variables and Welch t tests for quantitative variables (H0: 

       , α = 0.05). Means of detectability estimates were calculated with weights of: 1 /  

                    , where     is the individual raptor’s estimated detectability for the 

primary observers and     is the individual raptor’s estimated detectability for the 

secondary observers.  The denominator is an estimate of the total probability of the 
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individual being detected by either of the observer teams.  Weighting observations by the 

inverse of the detection probability is necessary to correct for the sample bias caused by 

heterogeneous detectability (i.e., more-detectable birds get sampled disproportionately 

often) (Horvitz and Thompson 1952). 

 

Results 

Observers detected 6873 raptors in 390 hours on 65 days.  Secondary observers 

made 23% of detections (effective sample size = 1595).  Observer teams that participated 

on fewer than seven days made a far greater proportion of observations in 2010, and 

different observer teams participated in each year (Table 2).  We began double-observer 

data collection 12 days later in the season in 2010 than in 2009 (Table 2).  The distance 

category for observed raptors was higher on average in 2009 (Table 2).  Mean ambient 

temperature, wind-speed, and cosine of wind direction differed between years, but cloud 

cover did not (Table 2).  Comparison of AICc between the year-effect model and models 

representing other hypotheses suggested that the other covariates had superior 

explanatory value, and I did not consider year in any additional model-selection to avoid 

co-linearity.  Therefore, caution is necessary when interpreting model selection results 

(Table 3) and estimates of effect sizes (Table 4) for the covariates that differed between 

years. 

The most parsimonious model (evidence ratio to second model = 1.5) included the 

effects of observers, flight distance, species, and day of the season (Table 3).  Nine of the 

406 models in the candidate set had a ΔAICc < 2.0, all of which included every parameter 

in the top model (Table 3).   
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Detection probabilities differed among observer teams (Table 4).  Detectability 

increased with the number of days since the beginning of the season (Table 4), suggesting 

a positive effect of practice on detection probability (odds ratio of last day to first = 1.76).  

Detectability greatly decreased with distance beyond the range of unaided vision (Figure 

1).  Species with longer wingspans were more detectable, with the exception of Ospreys 

(Pandion haliaetus), which were unusually difficult to detect for their size (Figure 2).  

Otherwise, genus did not have a significant conditional effect on detectability.  Weather 

had little effect on detectability independent of species, flight, and observers (Cloud 

cover importance weight = 0.39, wind speed importance weight = 0.46). 

Estimated detectability of individual raptors observed ranged from 0.23 to 0.99 

for the two primary observers.  The weighted mean detectability with two observers was 

0.66 (SD = 0.14).  The weighted mean detectability with all four observers present was 

0.86 (SD = 0.10). 

Discussion 

Detectability of migrant raptors at Lucky Peak varied depending on the identities 

of the observers, the distance of the migratory flight, and species characteristics.  These 

results emphasize the importance of maintaining consistent levels of observer skill and 

morale, and the utility of collecting high-quality spatial data.  Differences in detectability 

among species may cause comparison of counts of different species at a watch-site to not 

accurately reflect their true relative abundance. 

Varying observer effects are well-known in point counts (Campbell and Francis 

2011, Nichols et al. 2000, Cunningham et al. 1999, Kendall et al. 1996, Sauer et al. 

1994), and have been suspected to occur in raptor migration counts (Dunn and Hussell 
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1995, Dunn et al. 2008).   My results confirm that observer effects are important in 

determining the detectability of migrating raptors, contradicting the conclusion of the 

previous double-observer study (Berthiaume et al. 2009).   

In my opinion, the prior double-observer raptor migration count study 

(Berthiaume et al. 2009) found no differences in detectability among observers because 

the experimental design was not adequate for detecting such differences.  The models 

incorporated an assumption that detection probabilities of primary and secondary 

observers were mutually independent (fixed c = p2).  However, the secondary observers 

were not prevented from viewing the activity of the primary observers (Berthiaume et al. 

2009).  Unintentional provision of visual cues by the primary observer may have violated 

the assumption of mutually independent detection (Alldredge et al. 2006).  If this 

occurred, comparison of the estimated detection probabilities of observers in the primary 

and secondary roles may not be valid.  In the same role, the prior study compared only 

two observers with similar levels of experience (Berthiaume et al. 2009).  The design of 

this study differed in key respects, and followed more closely the methods of Nichols et 

al. (2000), which may have made observer differences more apparent:  I used more 

observers, rotated observers between roles, treated secondary observers as non-

independent, and equalized recording burdens between roles. 

Apart from the observer effect, results were consistent with Berthiaume et al. 

(2009). Detectability was greatest for raptors within the range of unaided vision viewed 

against sky, lower for raptors viewed against the ground, and declined with increasing 

distance or altitude.  Likewise, smaller species were considerably less detectable than 

larger species.  Ospreys were an exception to this trend and were less detectable than 
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smaller Buteo species and Northern Harriers (Circus cyaneus).  The low detectability of 

Ospreys was more pronounced in this study than in Berthiaume et al. (2009), but was 

consistent with results from Sattler and Bart (1984).  Ospreys at Lucky Peak in 2009 and 

2010 were relatively uncommon (< 2% of raptors), and often flew along very different 

flight lines than the majority of migrants.  Observers seeking to detect the greatest 

proportion of migrants may pay more attention to heavily-populated flight lines than 

regions of the field of view with few raptors, making uncommon raptors with atypical 

migration strategies less detectable (Kochenberger and Dunne 1985).  Alternatively, the 

Osprey’s plumage may provide particularly effective camouflage against the sky. 

Comparing the results of this study with previously published results (Sattler and 

Bart 1984, Berthiaume et al. 2009), it appears some factors may predict detectability 

better at some sites than others.  Cloud cover was associated with greater detectability in 

all three studies, but the effect was of lesser predictive value at Lucky Peak than at 

Tadoussac (Berthiaume et al. 2009).  This might be expected since Lucky Peak is a 

mountaintop site where raptors are often detected near the horizon, whereas Tadoussac is 

a shoreline site close to sea level, and birds are likely detected at higher angles.  Sattler 

and Bart (1984) observed that cloud cover improved visibility at Derby Hill, another 

weakly-elevated shoreline watch-site.  At Derby Hill, flight density had a significant 

direct effect on detectability, whereas at Tadoussac and Lucky Peak flight density was of 

relatively little value in predicting detectability (Sattler and Bart 1984, Berthiaume et al. 

2009).  This difference may be attributable to the relatively high peak flight densities 

experienced at the Derby Hill watch-site (over 200 raptors in 30 minutes), or, because 
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only one o server’s efficiency was quantified, it may be an observer-specific effect 

(Sattler and Bart 1984). 

Double-observer techniques for estimating detectability may not be appropriate 

for all raptor species and watch-sites.  In particular, those species at watch-sites with 

flight densities high enough to cause most birds to  e detected in “kettles” or “clusters” 

(Berthiaume et al. 2009) are likely to pose challenges.  The method’s assumption of 

independent detection is problematic in such cases.  The method may be adapted to treat 

a cluster as the independently-detectable unit (Cook and Jacobson 1979, Buckland et al. 

2001), provided clusters are well-defined and their constituent birds are homogenous in 

detectability.  The latter condition is unlikely to be true for mixed-species assemblages. 

At sites where the majority of counted raptors are recorded from estimations of 

the sizes of very large groups, variance arising from imperfect estimation may be of far 

greater magnitude than variance arising from imperfect detection (Boyd 2000).  At such 

sites, the best options for assessing the relationship of the count to the number of 

available birds may be photography and radar, though each has limitations (Boyd 2000, 

Gauthreaux and Belser 2003).   

Berthiaume et al. (2009) and I both used simple visibility-based metrics to model 

effects of distance and both found similar effects.  This suggests that visibility-based 

distance and altitude codes, already in use at most watch-sites, may be useful covariates 

for adjusting counts to more accurately reflect the number of raptors present.  However, 

at most sites, the code is recorded hourly, and represents a poorly-defined central 

tendency among all the birds observed in that hour.  The hourly measure provides no 

information on the distribution of distances, or how flight lines differ among species.  A 
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visibility-based distance (or altitude) code for each individual raptor is a far superior 

format for a spatial covariate, which can be collected with little additional effort.  

Because distance affects detectability, and weather affects distance, collecting high-

quality distance data may provide a means to develop more accurate models of weather-

related count bias (Berthiaume et al. 2009).  Alternatively, distance sampling may be 

investigated as a means of partially correcting for heterogeneous detectability (Buckland 

et al. 2001). 
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Table 1a.  Ordinal scale used in estimating effects of distance and altitude on 

detectability.  Migratory flights at Lucky Peak are distributed laterally, with relatively 

few raptors flying high overhead.  Thus, altitude was only noted at close distances, where 

potential differences in background color and viewing angle were substantial, and altitude 

could be estimated with confidence.  I excluded all birds assigned to category 6 from my 

analyses, as they represent birds not within the standard search radius at this site, and not 

available to all observers since only one spotting scope was present.  The distance 

classification scheme is adapted from flight altitude codes on the data form published by 

the Hawk Migration Association of North America (2009). 

Distance category Definition 

0 Below level of the observers, within range of unaided vision. 

1 0 - 30m above observers, within range of unaided vision. 

2  30m above observers, within range of unaided vision. 

3 Difficult, but possible to see without binoculars. 

4 Visible only with aid of 10X binoculars (but clearly seen). 

5 Raptor sometimes fades out while viewing with 10X binoculars. 

6 Visible only with a  20X spotting scope. 

 

 

Table 1b.  Ordinal scale used in estimating effect of cloud cover on detectability.  

Categories correspond to a subset of sky condition codes on the HawkWatch 

International Flight Information and Weather Data Form. 

Cloud cover category Definition 

0 Clear:  0% to 15% cover 

1 Partly Cloudy:  16% to 50% cover 

2 Mostly Cloudy: 51% to 75% cover 

3 Overcast: 76% to 100% cover 
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Table 2.  Covariates used in models of individual heterogeneity in detectability.  

Columns show range, mean for each year, and mean for all observations.  Variables for 

Genus and Observers were dichotomous, and a value of 1 indicates the condition was 

true, so the mean is a ratio.  Continuous variables and discrete ordinal variables (which 

were treated in the same way) are shown with standard deviations.  Asterisks indicate 

significant differences between years (p < 0.05).

Variable Min. Max. 2009 (n = 4164) 2010 (n = 2709) All (n = 6873) 

Observers B&C 0 1 0.22 
   

0.13 
 

Observers C&F 0 1 0.19 
   

0.11 
 

Observers B&F 0 1 0.16 
   

0.09 
 

Observers B&D 0 1 0.15 
   

0.09 
 

Observers D&F 0 1 0.13 
   

0.08 
 

Observers C&D 0 1 0.12 
   

0.07 
 

Observers A&E 0 1 
  

0.22 
 

0.08 
 

Observers D&E 0 1 
  

0.12 
 

0.05 
 

Observers D&G 0 1 
  

0.10 
 

0.04 
 

Observers E&G 0 1 
  

0.10 
 

0.04 
 

Observers (Other) 0 1 0.05 
 

0.47 * 0.22 
 

Genus Accipiter 0 1 0.42 
 

0.49 
 

0.45 
 

Genus Buteo 0 1 0.25 
 

0.24 
 

0.24 
 

Genus Circus 0 1 0.05 
 

0.05 
 

0.05 
 

Genus Falco 0 1 0.25 
 

0.17 
 

0.22 
 

Genus Pandion 0 1 0.02 
 

0.02 
 

0.02 
 

Genus (Eagles) 0 1 0.01 
 

0.04 
 

0.02 
 

Wingspan (cm) 56 203 83.0 (30.9) 84.0 (30.4) 83.4 (30.7) 

Wind-speed (kph) 0 38.5 11.4 (5.8) 8.3 (5.0)* 10.2 (5.7) 

cos(Wind direction) -1 1 0.01 (0.61) -0.18 (0.57)* -0.06 (0.60) 

Temperature (°C) -3.6 39.1 18.7 (8.4) 21.3 (5.6)* 19.7 (7.5) 

Cloud Cover 0 3 0.6 (0.9) 0.9 (1.1) 0.7 (1.0) 

Distance 0 5 2.5 (2.3) 1.6 (1.7)* 2.4 (1.6) 

BPH 1 216 42.1 (30.8) 35.9 (23.6) 39.7 (28.3) 

Day 3 67 27.9 (14.6) 33.1 (12.1)* 30.0 (13.9) 

Hour 10 19 14.2 (2.0) 14.0 (1.9) 14.1 (2.0) 



 

 

 

 

Table 3.  Comparison of 406 candidate models estimating the detectability of migrating raptors in double-observer counts conducted 

at Lucky Peak in 2009 and 2010.  ΔAICC is the difference in AICC between the model and the model with the lowest AICC.  L is the 

model likelihood, and w is the AICC weight of evidence.  K is the number of parameters in the model.  The top nine models, with 

ΔAICC < 2.0, were model-averaged to estimate effect sizes for covariates. 

Rank Model ΔAICC
† w L K 

1 p (Team + Distance + Distance
2 

+ Wingspan + Genus + Day) 0.00 0.100 1 0 

2 p (Team + Distance + Distance
2 

+ Wingspan + Genus + Day + Hour + Windspeed) 0.82 0.067 0.664 2 

3 p (Team + Distance + Distance
2 

+ Wingspan + Genus + Day + Hour) 0.83 0.066 0.661 1 

4 p (Team + Distance + Distance
2 

+ Wingspan + Genus + Day + Windspeed) 0.91 0.064 0.634 1 

5 p (Team + Distance + Distance
2 

+ Wingspan + Genus + Day + Cloud Cover) 1.10 0.058 0.576 1 

6 p (Team + Distance + Distance
2 

+ Wingspan + Genus + Day + Cloud Cover + Windspeed + Hour) 1.27 0.053 0.529 3 

7 p (Team + Distance + Distance
2 

+ Wingspan + Genus + Day + Day_2) 1.68 0.043 0.433 1 

8 p (Team + Distance + Distance
2 

+ Wingspan + Genus + Day + Cloud Cover + Windspeed) 1.69 0.043 0.430 2 

9 p (Team + Distance + Distance
2 

+ Wingspan + Genus + Day + Cloud Cover + Hour) 1.81 0.041 0.404 2 

32 General model: Observers + Flight + Species + Weather 5.24 0.007 0.073 5 

145 Observers:    p (Team+Day+Day
2
+Hour) 95.70 0 0 4 

284 Flight:    p (Distance+Distance
2
+BPH) 179.09 0 0 4 

334 Species:     p (Wingspan+Genus) 215.42 0 0 7 

375 Year effect:    p (Year) 227.53 0 0 2 

378 Weather:    p (Cloud Cover + Windspeed) 231.16 0 0 3 

395 Constant:   p (.) 236.59 0 0 1 

†The lowest AICc value was 7212.48 2
9
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Table 4. Model-averaged estimates of coefficents       with standard errors (SE) and odds 

ratios (    ).  All covariates have been scaled to range from 0 to 1 to allow comparison of 

relative magnitudes of effects.  Asterisks indicate significant effects (H0:     ≠ 0, α = 0.05).  

Each unique observer letter represents an individual observer.  The letters were randomly 

assigned.  Reference categories are: Observers (Other) (17 teams that participated on < 7 

days) and Genus (Eagles) (Haliaeetus and Aquila pooled). 

Parameter     SE       
Intercept 0.836 0.497 2.310 

 
Observers B & C 0.558 0.136 1.750 * 

Observers B & F 0.462 0.155 1.590 * 

Observers E & G 0.139 0.156 1.150 
 

Observers A & E 0.038 0.109 1.040 
 

Observers D & G -0.162 0.152 0.850 
 

Observers C & F -0.278 0.138 0.760 * 

Observers C & D -0.308 0.131 0.730 * 

Observers D & E -0.433 0.125 0.650 * 

Observers D & F -0.486 0.120 0.620 * 

Observers B & D -0.616 0.141 0.540 * 

Distance 0.987 0.475 2.680 * 

Distance
 2

 -2.337 0.524 0.100 * 

Wingspan 1.593 0.649 4.920 * 

Genus Accipiter -0.025 0.437 0.980 
 

Genus Buteo -0.067 0.348 0.940 
 

Genus Circus -0.127 0.396 0.880 
 

Genus Falco 0.014 0.472 1.010 
 

Genus Pandion -1.033 0.491 0.360 * 

Cloud Cover 0.195 0.146 1.220 
 

Windspeed -0.405 0.313 0.670 
 

Day 0.566 0.286 1.760 * 

Day 
2
 0.543 0.878 1.720 

 
Hour 0.338 0.220 1.400 
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Figure 1.  Effect of relative distance and altitude on detectability.  For definitions of 

distance categories, see Table 1a.  Points are weighted mean detectability with bars of ± 1 

SD.  The dashed curve shows the model prediction for a hypothetical individual with 

average covariates.  The effect of ordinal distance category was modeled as a quadratic 

function (Table 4). 
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Figure 2.  Estimated mean detectability of selected species, ordered by increasing 

wingspan.  Points are weighted means with bars of ± 1 SD.  Species effects on 

detectability were modeled by additive effects of wingspan and genus (Table 4).  Species 

are: AK = American Kestrel (Falco sparverius), SS = Sharp-shinned Hawk (Accipiter 

striatus), ML = Merlin (Falco columbarius), CH = Cooper’s Hawk (Accipiter cooperii), 

BW = Broad-winged Hawk (Buteo platypterus), NG = Northern Goshawk (Accipiter 

gentilis), NH = Northern Harrier (Circus cyaneus), RT = Red-tailed Hawk (Buteo 

jamaicensis), SW = Swainson’s Hawk (Buteo swainsoni), OS = Osprey (Pandion 

haliaetus), and GE = Golden Eagle (Aquila chrysaetos).   
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CHAPTER 2: DOES IMPERFECT DETECTION OF MIGRATING RAPTORS 

AFFECT THE POWER OF POPULATION TREND ANALYSES? 

Abstract 

Power to detect trends may be decreased by unexplained variation in raptor 

migration count data.  Techniques such as double-observer or distance sampling, which 

estimate the probability of detecting birds that pass a watch-site, may reduce unexplained 

variation.  I conducted double-o server sampling at Idaho Bird O servatory’s Lucky 

Peak watch-site during the fall migration in 2009 and 2010, and estimated the effects of 

observers, species, flight distance, and weather on detectability.  I used the model in 

simulations of 30 years of Sharp-shinned Hawk (Accipiter striatus) and Northern Harrier 

(Circus cyaneus) counts with heterogeneous individual detectability, a population decline 

(λ = 0.964), and a degree of unexplained random variation in the number of available 

birds.  I ran ≥ 1000 iterations of each model parameterization.  I estimated the power of a 

regression to detect the true trend as the proportion of iterations where the null hypothesis 

λ < 1 was rejected.  Imperfect detection caused minimal bias in trend estimates   

      , but heterogeneity in detectability did increase variance in counts and reduced 

power.  Simulated counts with perfect detectability required < 11% fewer years to detect 

the decline with 80% power (H0: λ = 0, α = 0.1) when variance in annual numbers of 

raptors available to count was realistically high (CV ≥ 0.26).  Detectability correction by 

means of double-observer or distance sampling, in the case of raptor migration counts, 

may not be warranted for the purpose of long-term population monitoring.  Efforts may 
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be better focused on improving our understanding of mechanisms that cause changes in 

the number of migrants available to count. 

Introduction 

For many reasons, migration counts at fixed locations (watch-sites) are an 

appealing method for monitoring populations of many raptor species (Accipitriformes and 

Falconiformes) (Chapter 1).  However, the relationship of a count of migrating raptors to 

breeding or wintering populations is complicated by both the dynamic nature of 

migration and technological limitations (Fuller and Mosher 1981, 1987, Kerlinger 1989, 

Dunn and Hussell 1995).  Migration monitoring may be ineffective for monitoring 

populations because the relationship between the counted population and the total 

population is unknown, and because migration counts have more unexplained variability 

than breeding season counts (Svensson 1978, Fuller and Mosher 1981, Titus et al. 1989).  

Additionally, counts at watch-sites may be biased representations of the volume of the 

migratory flight, much of which may be at higher altitudes than can be detected visually, 

and may not follow leading lines (Kerlinger and Gauthreaux 1984, 1985, Kerlinger et al. 

1985, Kerlinger 1989).   

For these reasons, estimating the total number of migrating raptors at any 

particular watch-site is not a practical objective.  Instead, a raptor migration count is 

considered an index of abundance, based on the assumption that changes in the count are 

proportional to changes in the population (Farmer et al. 2007, Farmer and Hussell 2008).  

For the index to be useful for monitoring, analysis of trends should ideally be both 

accurate and powerful.  To be accurate, trends in the index must match the population 

trend in direction and magnitude.  To be powerful, the results of analyses must be 
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statistically significant at a desirable level of confidence, given a limited number of years 

of counts (Bart et al. 2004).  

Power in trend analysis is particularly important as a goal for conservation, as 

monitoring is typically undertaken to detect declines that require management action, and 

in such cases acting quickly may improve the probability of success (Bart et al. 2004).  

For trend analysis of index counts to be accurate and powerful, the proportion of the 

population of interest counted must not change over time (Thompson 2002).  If there is a 

progressive change in the proportion counted, accuracy is reduced, but even random 

variation can reduce power.   

The relationship of a count   to the super-population    from which it is sampled 

is determined by sample coverage and the probability of detection (Nichols et al. 2009).  

To be available to count, migrants must pass the watch-site within visible range while an 

observer is present.  Let    equal the probability of an individual raptor meeting this 

condition.  Only raptors available to count comprise the sample population N, that is:   

     

  

   

 

Secondly, the available raptors must be observed, identified, and recorded (i.e., detected).  

Let    equal the pro a ility of detection for an availa le individual [“  ” in Nichols et al. 

(2009)].  So:  

     

 

   

 

The mean probability of being available    = N/N*, and the mean detectability    = n/N, 

therefore           . 
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I have previously developed a model of detectability incorporating individual 

covariates based on double-observer data collected at the Lucky Peak watch-site near 

Boise, Idaho in 2009 and 2010 (Chapter 1).  The model parameters include effects of 

observers, species, distance, weather, and day of the season (Table 4).  A distance 

category was recorded at the individual level, contrary to standard practice where data are 

recorded in hourly tables (HMANA 2009).  With individual estimates of detectability 

(   ), the detectability-corrected count (  ) may be calculated with a Horvitz-Thompson 

(1952) estimator: 

    
 

   

 

   

 

Provided the number of present raptors accurately reflects the population trend, 

detectability-correction should cause trends in the count to more accurately reflect 

population trends.  Since detectability presumably varies independently of abundance, it 

may also reduce unexplained variance and improve the power of trend analysis.  

However, performing raptor migration counts in such a way as to make detectability 

estimable is non-traditional and may require more observers (Sattler and Bart 1984, Dunn 

et al. 2008, Berthiaume et al. 2009, Chapter 1).  The potential for improvement in 

accuracy and power should be weighed against the costs of adopting such methods.   

In this study, I used the migration count data and model to perform stochastic 

simulations of analyses of annual counts with known trends confounded by variation in 

sample coverage and detectability.  My objective was to investigate the potential for 

detectability-correction to improve statistical power in trend-analysis.  I chose a 50% 

decline in numbers of migrating raptors occurring over 20 years (λ = 0.964) as the 

benchmark trend, recommended by Bart et al. (2004) as a pragmatic balance of 
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conservation priorities and statistical precision.  The Raptor Population Index project 

adopted a similar benchmark trend (λ = 0.965) to evaluate power [“moderate precision 

threshold” in Farmer et al. (2008) and Smith et al. (2008)]. 

Methods 

I wrote a script for the R statistical environment (Revolution R Community 4.3 

build of R 2.12.2, Revolution Analytics, Palo Alto, California) to simulate a series of 

yearly counts of a sub-population with a given starting value and a logarithmic trend,  

random variation in the number of available migrants and individual-based imperfect 

detectability.   

I specified       and the population trend was determined by the geometric 

growth function                            0.964.  I simulated variation in the 

number of available raptors by generating a normally distributed pseudo-random 

deviance from the trend in each year (  ) with    , and             with     

being the simulation parameter determining the coefficient of variation of available birds.  

I simulated the number of available birds in each year   =         .  Therefore, in a 

linear regression of log(N) by year, the slope is an unbiased estimator of the true trend 

     , but power is limited by variation in sampling      .  

I used a modified version of the individual-based detectability model from 

Chapter 1 (Table 4) to generate    .  The simulation model included an annual observer 

effect, fixed species effects, and individual covariate effects for distance category, wind 

speed, cloud cover category, and day of the season (Appendix A).  I omitted the second-

order effect of day of the season and the effect of hour of the day to simplify the 

computation, because neither effect was significant. 
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I assumed that two trained observers would be present at all times and that 

observers would change every year, but remain throughout each season.  Hiring practices 

and established protocol at Lucky Peak generally support these assumptions.  I generated 

normally-distributed pseudo-random annual observer effects.  The mean of this 

distribution was the mean of the observer team effects estimated by the detectability 

model, and the standard deviation was 20% greater than the standard deviation of the 

estimated effects of the ten unique observer combinations.  I increased the simulated 

observer effect variance because the observers in the experiment in 2009 and 2010 were 

likely to be more similar in performance than all observers who might participate at 

Lucky Peak, on account of the atypical degree of supervision during the experiment 

(generally speaking, observers at Lucky Peak are not actively supervised).   

I chose a single species for each simulation, which determined the wingspan and 

genus effects.  I randomly sampled the data with replacement and assigned each bird in 

the available population a set of distance, weather, and day covariate values matching 

those of an observed bird of the species.  I weighted the covariate sampling by the inverse 

of the estimated detectability of each bird (under the actual conditions of data-collection, 

see Chapter 1) to avoid sample bias.  I calculated     by the detectability model (Appendix 

A), generated a pseudo-random number    from a uniform distribution in the range (0, 1), 

and determined available bird   to be detected when       .  The sum of detections was 

the count for the year (  ). 

I computed at least 1000 iterations of every simulation.  At the completion of each 

iteration of the simulation, I fit an ordinary least-squares linear regression of           

by year, and calculated a 90% confidence interval for the slope. The decline was detected 



39 

 

 

 

if the upper limit of the confidence interval was < 0, and undetected otherwise.  I 

estimated statistical power as the number of iterations in which the decline was detected 

as a proportion of the total number of iterations.  This analysis was performed with each 

sample size (number of years of counts) from 5 to 30, to determine the rate at which 

power increases. I repeated the analysis with a linear regression of           by year.   I 

estimated the loss of power caused by imperfect detection as the difference in power 

between the regressions of n and N. 

I chose the Sharp-shinned Hawk (Accipiter striatus) and the Northern Harrier 

(Circus cyaneus) as model species.  Both species were well-represented in my data set (n 

= 1,919 and n=332, respectively) and showed no tendency to flock at Lucky Peak.  Both 

species have been identified as high-priority species for alternative range-wide surveys 

by Partners in Flight (Dunn et al. 2005).  The two species differed substantially in 

estimated detectability in my dataset.  The average detectability of Sharp-shinned Hawks 

was 0.62 (SD = 0.13), and the average detectability of Northern Harriers was 0.73 (SD = 

0.12) (Chapter 1).  The two species also differed in abundance at Lucky Peak.  In annual 

Lucky Peak counts from 1994 to 2010 (IBO unpublished data), Sharp-shinned Hawks 

were relatively abundant (573 – 1,962 per year) compared with Northern Harriers (128 – 

438 per year).  Year-to-year variability in counts also differed between the two species 

(Sharp-shinned Hawk CV= 0.31, Northern Harrier CV= 0.38).  I calculated CV as simply 

the standard deviation divided by the mean, because neither species showed a significant 

linear trend in counts (trend < 1.4%, p  > 0.3).  At long distances, Sharp-shinned Hawks 

may sometimes only  e identified to genus,  ecause of the species’ visual similarity with 

the Cooper’s Hawk (Accipiter cooperi) (Hull et al. 2010).  In simulations of counts of 
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Sharp-shinned Hawks, I included all records of “unidentified Accipiter sp., small” and 

“unidentified Accipiter sp., si e undetermined” in the covariate dataset, to avoid under-

representing the frequency of distant Sharp-shinned Hawks. 

 I ran simulations of each species with no trend and a range of values for     

from 0.1 to 0.4 to estimate the total CV of counts (    ) according to the level of variation 

in the number of available raptors.  By comparing the      from these simulations with 

the observed CV, I chose a values for     in later simulations that may be realistic, 

assuming there was no population trend observed at Lucky Peak.      

I chose an       = 2,000 for Sharp-shinned Hawks and an       = 450 for 

Northern Harriers, which represent the species’ maximum annual counts at Lucky Peak, 

rounded up <5% to a multiple of 50.  Using a high number relative to the sample mean is 

reasonable since probability of detection is < 1, and thus the count can be presumed to be 

lower than the number of available birds.   

I estimated the historical CVN for Sharp-shinned Hawks to be 0.26, and the 

historical CVN for Northern Harriers to be 0.37 (Table 5).  I selected an additional level of 

CVN = 0.18 and an additional level of       = 100.  These values represent proportionally 

equal decreases, relative to the differences in the selected levels for the two species. 

I simulated all combinations of species and parameter levels to evaluate the 

relative effects of species, rarity, and extraneous variation in sample population on the 

effect of detectability on power.   

Results 

The bias in trend estimation introduced by imperfect detection was minimal in all 

simulations               .  Imperfect detection and heterogeneous detectability 
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affected power mainly by increasing count variance.  The relative effect of limited 

detectability on power is inversely related to variation in the number of raptors available 

(CVN) (Figures 3 and 4).   

The effect of heterogeneous detectability on power was minimal and accounted 

for ≤ 1 year difference in time to attain the 80% power benchmark with realistic 

parameters (Table 6).  The effect of detectability on power in both species increased with 

decreasing variation in availability and decreasing population size (Table 6, Figures 3 and 

4).  When species were compared in terms of the effect of detectability on power to 

detect trends with equal       and CVN values, detectability had a greater effect on 

power to detect trends in Sharp-shinned Hawks, the smaller and generally less perceptible 

species (Table 6, Figures 3 and 4). 

I estimated that Lucky Peak Hawk-Watch would require 19 consecutive annual 

counts to achieve 80% power to detect a -3.5% annual trend in Sharp-shinned Hawks 

with 90% confidence (Table 6).  Achieving 80% power to detect the same trend with the 

same analysis in Northern Harriers would require 25 years, because of the greater count 

variance and lower abundance of Northern Harriers, relative to Sharp-shinned Hawks 

(Table 6). 

Discussion 

Lewis and Gould (2000) estimated the power of trend analysis for seven watch-

sites and concluded that a CV of 30% or less was necessary to have 80% power (α = 0.1) 

to detect a 50% population decline in 25 years, provided the mean number of birds 

counted per year was at least 20.  At their seven watch-sites, among species counted in 

numbers > 20 per year, only 43% of species-by-site combinations had a CV that met this 
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standard.  This study appears to support the results of their power analysis.  Results from 

simulation of a more severe decline (-50% in 20 years) estimated that a CV ≤ 38% is 

necessary to attain 80% power in 25 years.  Detectability correction alone appears 

unlikely to increase the number of species or watch-sites from which reliable trend 

estimates may be obtained because detectability had little effect on CV when CV was ≥ 

30% (Table 6).   

The results of these simulations provide insight into the conditions in which 

detectability correction may be useful.  Detectability had a substantial effect on power 

when the number of available birds was consistent from year-to-year (    < 25%), the 

species was uncommon at the watch-site (20 to a few hundred each year), and individuals 

of the species were relatively difficult to detect.  Unfortunately, few combinations of 

species and watch-sites are likely to meet these qualifications.  Raptor migration counts 

may have rates of detection of 66% or higher (Berthiaume et al. 2009, Chapter 1), utilize 

an index approach (Dunn and Hussell 1995), and are primarily useful for long-term 

monitoring (Fuller and Mosher 1981, 1987), making detectability correction less 

potentially beneficial in this method than those methods used in shorter duration studies 

or situations where animals are less detectable. 

The accuracy of any simulation result is contingent on the realism of the model.  

These simulations depended on the assumption that observer ability varies randomly 

from year to year in a normal distribution.  If the observer combinations in 2009 and 

2010 were not a representative sample of all the observer teams who may be employed at 

Lucky Peak, or if the true observer skill distribution is skewed, these simulations may 

have underestimated the importance of detectability by overestimating the proportion of 
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variance attributable to availability.  These simulations did not allow trends in average 

detection probability over time.  If, for example, observers became more adept over time, 

as has occurred in the case of the North American Breeding Bird Survey (Sauer et al. 

1994, Link and Sauer 1998), bias in estimation of declines would be greater, and 

correcting for detectability would improve power more than shown here (Bart et al. 

2004).  There may be a tendency for the average number of observers to increase as 

watch-sites become more widely known as birdwatching destinations.  This would 

likewise affect the accuracy of trend estimates. 

Management Implications 

Watch-site managers should consider adopting staffing policies that ensure a 

symmetrical distribution of observer effects with low year-to-year variation to ensure 

detectability has little effect on power.  I concur with Dunn et al.’s (2008) 

recommendation to use teams of two or more observers and rotate a pool of equivalently 

trained observers from day to day, instead of employing only one or two observers each 

year who may be exceptionally skilled. 

The relative importance of factors affecting the number of raptors available to 

count is in need of further research, in light of the potential power of inference to be 

gained by accounting for variation in sample coverage.  Apart from survey effort, the 

proportion of the population available to count may be affected by changes in migration 

routes, distances, and timing, as well as rates of fecundity and survival.  Temporal data 

on the rate of passage of raptors at watch-sites are collected at an hourly scale at most 

watch-sites in North America, providing a rich source of information for availability 



44 

 

 

 

compensation in trend analyses (Farmer et al. 2007, Farmer and Hussell 2008).  

Collecting similarly useful spatial datasets should be a high priority. 
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Table 5. Estimating the coefficient of variation of annual numbers of available raptors at 

Lucky Peak.       is the estimated coefficient of variation of simulated annual counts.  In 

these simulations, the expected available population    ) remained constant, 

detectability varied stochastically for each species according to an individual-based 

model, and simulation parameter CVN (the square root of variance in the available 

population as a proportion of     ) was manipulated to determine a level that 

approximated the observed coefficient of variation at Lucky Peak (IBO unpublished 

data).   

Species      historical CV          SE 

Sharp-shinned Hawk 2000 0.31 0.18 0.23 0.0007 

   

0.26 0.30 0.0009 

  

  

0.37 0.40 0.0013 

Northern Harrier 450 0.38 0.18 0.21 0.0006 

   

0.26 0.28 0.0009 

  

  

0.37 0.38 0.0013 
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Table 6.  Simulation results:  Number of years of counts necessary to achieve 80% power 

to detect a -3.5% annual population trend (least-squares linear regression, two-tailed test, 

  0.1) with heterogeneous (p < 1) and perfect (p = 1) detectability.         specifies the 

expected number of available migrants in the first year.      (coefficient of variation in 

the available population) specifies the square root of variance in the number of available 

migrants as a proportion of      .   

Species           years (    ) years (   ) difference 

Sharp-shinned Hawk 0.37 2000 26 25 1 

  

450 25 24 1 

  

100 25 24 1 

 

0.26 2000 19 18 1 

  

450 19 17 2 

  

100 19 17 2 

 

0.18 2000 16 14 2 

  

450 16 13 3 

  

 

100 17 13 4 

Northern Harrier 0.37 2000 25 24 1 

  

450 25 25 0 

  

100 25 24 1 

 

0.26 2000 19 18 1 

  

450 19 18 1 

  

100 19 18 1 

 

0.18 2000 15 14 1 

  

450 15 14 1 

  

 

100 15 14 1 



49 

 

 

 

 

Figure 3.  Sharp-shinned Hawk trend analysis simulation results.  Estimated statistical 

power (α = 0.1, two-tailed test) to detect a significant declining trend (        ) by the 

number of years of study duration.  Dashed lines depict power in simulations with 

detectability = 1.  Solid lines depict power in simulations with heterogeneous 

detectability < 1.        is the expected available population in the first year, and CVN  is 

the square root of variance in the annual number of birds available as a proportion of N.  

The num er of iterations was ≥ 1000 for each scenario. 
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Figure 4.  Northern Harrier trend analysis simulation results.  Estimated statistical power 

(a=0.1, two-tailed test) to detect a significant declining trend (        ) by the number 

of years of study duration.  Dashed lines depict power in simulations with detectability = 

1.  Solid lines depict power in simulations with heterogeneous detectability < 1.  

Parameters are: E(N1), the expected available population in the first year, and CVN , the 

square root of variance in the annual number of raptors available as a proportion of N.  

Each simulated scenario was iterated 3000 times. 
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CONCLUSION 

While the difficulties of valid inference in non-representative sampling and 

analysis of indices are easy to see (Ellingson and Lukacs 2003), there are good reasons 

why indices are still used for most long-term monitoring programs (Link and Sauer 1998, 

Johnson 2008), and why raptor migration counts have continued in spite of this criticism. 

Raptor migration counts have a long history, and may potentially be continued for 

a long time, conditional on the sustained enthusiasm of a continually renewed corps of 

observers to collect data at low cost, and a consistent minimal level of funding (to 

maintain oversight, training, and coordination, thus ensuring relatively consistent, high-

quality data).  Long-term data sets are a rare commodity, and are very important for 

effective population monitoring. 

While much is made of new analytic techniques that estimate and correct 

imperfect detection, distance sampling and double-observer methods were developed as a 

solution to a problem inherent in surveys of animals present at low densities, or that are 

likely to be present but unobserved (Nichols et al. 2000, Buckland et al. 2001).  This 

problem is: How may we improve the likelihood of gathering enough information (from 

detections) to make reasonably precise estimates when our survey effort is constrained 

(Buckland et al. 2001)?  Raptor migration counts solve this problem with a priori 

knowledge of the locations and timing of high animal density and detectability (Bildstein 

2006).  The results of Chapter 1 and those of previous studies (Sattler and Bart 1984, 

Berthiaume et al. 2009) confirm that detectability is generally high at raptor migration 
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watch-sites.  The fact that detectability at raptor migration watch-sites is unusually high 

and not representative of the migrating population (Kerlinger et al. 1985) simply means 

that watch-site counts are likely an inaccurate representation of the migratory behavior of 

species.  From a monitoring standpoint, the high detectability and density of migrating 

raptors at watch-sites are strengths of the method, not justification for abandoning it. 

These two strengths of raptor migration counts for monitoring are partially offset 

by two corresponding weaknesses.  First, the continuation of raptor migration counts for 

the long, continuous spans of time necessary to make valuable inferences (generally ≥ 20 

years) frequently fails (Zalles and Bildstein 2000, HWI 2010).  Efforts to build public 

enthusiasm for raptor migration counts are advisable, in the interest of recruiting 

volunteer and student labor, thereby keeping costs low. 

Second, raptor migration counts often vary tremendously from day to day and 

year to year (Titus et al 1989, Lewis and Gould 2000).  Variance in counts and 

statistically derived indices remains high at many watch-sites for many species, in spite 

of continued attempts to develop appropriate methods (Bildstein et al. 2008).  This 

variation may not be the result of varying effort, but the result of variation in migration 

patterns, demographic rates, or detectability (Titus et al. 1989).  The results of the 

simulations in Chapter 2 and those of Berthiaume et al. (2009) suggest that detection 

probability is not the primary source of this extraneous variation.  However, the potential 

importance of observer effects is still uncertain, because I was not able to accurately 

assess the individual performance of observers, and the study’s sample of o server teams 

may not have represented the distribution of all possible observer effects.  Given these 
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results, I will suggest a few priorities for research into the improvement of count 

protocols and methods for analysis. 

Although the duration of standardized watch-site counts is one of the method’s 

greatest assets, fear of invalidating past data is not a satisfactory reason to forgo all 

opportunities to improve data quality now or in the future.  If a permanent improvement 

in methodology reduces variance in annual counts, the value of older data is 

undiminished, and power of analyses will increase more rapidly.  Should the mean annual 

count be affected, the older data will need to be transformed, resulting in a partial loss of 

information (Dunn et al. 2008).  However, because recent trends are of greater 

conservation importance than older ones, and statistical power increases logistically with 

increasing study duration (e.g. Figures 3 and 4), the importance of the information-loss 

declines over time.  Therefore, when managers can be reasonably certain a permanent 

change in protocol will substantially reduce variance in annual indices, the change should 

be made, provided such changes are made infrequently (Dunn et al. 2008). 

The models of detectability developed in Chapter 1 show individual observers 

may have a considerable influence on counts.  Estimating an effect size for each 

individual observer will probably not be feasible.  An alternative approach is to tolerate a 

certain amount of variation in observer effects, but mitigate the effect of any single 

observer on trends by using more observers, rotated at intervals of days, not years (Dunn 

et al. 2008).  Employing observers with particularly poor skills may skew the distribution 

of observer effects, reducing power (Chapter 2).  Managers should attempt to confirm the 

basic competency of every observer. 
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Distance of the flight from the watch-site affects both detectability (at the visible 

scale) and spatial survey coverage (at the regional scale) (Johnson 2008).  At present, the 

distance and direction of migrating raptors usually are estimated as central tendencies for 

the entire flight in each hour (HMANA 2009). These data provide no information on the 

dispersion or skew of the distribution of the migratory flight, and no information 

regarding differences in flight line between species.  With this approach, the lack of an 

identifiable dominant flight line in an hour results in loss of information. 

The alternative is to record distance data for individual raptors (Berthiaume et al. 

2009, Chapter 1).  In practice, recording distance estimations for individuals is not 

prohibitively difficult, even with dense flights, because a single datum can be recorded 

for a large group.  In light of the advantages of individual level data for modeling and 

inference, I recommend discontinuing the use of a tabular tally form for raptor migration 

counts and adopting a form with a line for each individual raptor or homogenous group.  

Recording of hourly variables should continue to be implemented in a separate table. 

At the regional scale, spatial variation in availability could potentially be 

differentiated from temporal variation by use of the extant public network of Doppler 

weather radar stations (Gauthreaux and Belser 2003, Gauthreaux et al. 2008, Van 

Gasteren et al. 2008, Buler and Diehl 2009) to estimate relative densities of the migratory 

flight across the landscape (Bildstein et al. 2008).  Accurate models of spatial and 

temporal variation in migration according to regional weather patterns are likely to 

provide insights into the autocorrelation of daily counts.  Accounting for autocorrelation 

may improve the power of analyses (Legendre et al. 2002). 
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Lastly, the role of demographic change on raptor migration counts is poorly 

understood and potentially problematic for the interpretation of trends.  Raptor migration 

counts performed during spring migration can show more precise long-term trends than 

autumn counts in the same region (Farmer and Smith 2010), as expected when annual 

reproduction varies and over-winter survival is density dependent.  Presently, the great 

majority of raptor migration counts are only performed in autumn.  By increasing the 

number of spring counts, researchers may be able to gain a better understanding of 

demographic effects on index trends (Bildstein et al. 2008). 

In finding that detectability is high at Lucky Peak, and failing to find any 

substantial bias in simulations of trend analysis, I believe my study supports the 

continuation of raptor migration counts, following the protocols of Dunn et al. (2008).  

The index calculation and trend analysis procedure currently in use (The Raptor 

Population Index (RPI); Farmer et al. 2007, Bildstein et al. 2008) accounts for varying 

survey effort, but not heterogeneous availability or detectability, by the use of ancillary 

data.  This thesis is at least the third study to show that detectability at hawk migration 

counts may be predicted by such covariates as distance, altitude, and species (Sattler and 

Bart 1984, Berthiaume et al 2009, Chapter 1).  Numerous other studies have shown that 

weather variables affect daily counts (Richardson 1978, Hall et al. 1992, Allen et al. 

1996, Maransky et al. 1997, Yates et al. 2001, Miller et al. 2002, Panuccio et al. 2010, 

Miller et al. 2011).  In the design of the present indices, the use of covariate-corrected 

annual totals was rejected out of hand in favor of using an adjusted annual mean of daily 

counts (Farmer et al. 2007).  The RPI project ought to reconsider this decision.  The 

enhanced performance of a mean as an index (compared to an annual total) is a result of 
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limiting the influence of uncommonly high and low-count days.  Using covariates to 

correct daily counts for known effects would have a similar effect on variance, but would 

be superior in terms of conserving information.  Days with very high counts provide 

more information about abundance than those days with very low counts, on account of 

the many potential factors unrelated to low abundance which may contribute to low 

counts (i.e. availability and detectability).  Thus, while the use of a geometric mean as an 

index appeared advantageous from a standpoint of variance reduction at some sites 

(Farmer et al 2007), it performed poorly at some high volume watch-sites where the 

distribution of daily counts was especially skewed (Bildstein et al. 2008). 
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APPENDIX  

Detectability Models Used in Simulations
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Detectability Models Used in Simulations 

Observer Effect: 

      N                       

Detectability of Sharp-shinned Hawks: 

                                             
                          

            

Detectability of Northern Harriers: 

                                             
                          

            

Where noted above, dist is the altitude/distance category (Table 1a, Table 2), 

cloud is the cloud cover category (Table 1b, Table 2), wind is the wind velocity in 

kilometers per hour (Table 2), and day is the number of days after August 24 (Table 2). 


