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Abstract

Upon exhumation and cooling, contrasting compressibilities and thermal
expansivities induce differential strains (volume mismatches) between a host
crystal and its inclusions.These strains can be quantified in situ using Raman
spectroscopy or X-ray diffraction. Knowing equations of state and elastic
properties of minerals, elastic thermobarometry inverts measured strains to
calculate the pressure-temperature conditions under which the stress state
was uniform in the host and inclusion. These are commonly interpreted
to represent the conditions of inclusion entrapment. Modeling and exper-
iments quantify corrections for inclusion shape, proximity to surfaces, and
(most importantly) crystal-axis anisotropy, and they permit accurate appli-
cation of the more common elastic thermobarometers. New research is
exploring the conditions of crystal growth, reaction overstepping, and the
magnitudes of differential stresses, as well as inelastic resetting of inclusion
and host strain, and potential new thermobarometers for lower-symmetry
minerals.

■ A physics-based method is revolutionizing calculations of metamor-
phic pressures and temperatures.

■ Inclusion shape, crystal anisotropy, and proximity to boundaries affect
calculations but can be corrected for.

■ New results are leading petrologists to reconsider pressure-
temperature conditions, differential stresses, and thermodynamic
equilibrium.
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INTRODUCTION

We do not know when humans first began to care about inclusions of one mineral inside another,
but it must have been long ago because middle Paleolithic (c. 50–300 ka) humans were prefer-
entially selecting inclusion-free quartz crystals to fabricate stone tools (e.g., see Wurz 2013, and
references therein; see also Reher and Frison 1991). With the dawn of modern science, Pliny the
Elder (1855) reported mineral inclusions in his Natural History (c. 77 AD), whereas Steno (1669)
first interpreted inclusions to represent crystals that formed either before or during crystalliza-
tion of the host phase. By the 1800s, fractures and unusual optical black crosses were reported
around inclusions in diamond and a few other minerals and correctly interpreted to reflect local
differential stresses between inclusion and host (Brewster 1820, Sorby & Butler 1869) (Figure 1).
Sorby & Butler’s (1869) sesquicentennial interpretation forms the basis of elastic thermobarome-
try. Conceptually, when a host crystal entraps an inclusion, there is no differential stress or strain
(the volume of the inclusion exactly matches the volume of the void space or hole in the host).
However, as pressure-temperature (P-T) conditions change, e.g., during exhumation, the volumes
of host and inclusion change differently because they have different thermal expansivities and
compressibilities. These differential volume changes cause either compressive or tensile stresses.

Figure 1

Evidence for development of stress between inclusions and host crystals, from either birefringent haloes (elastic strain) or fractures
(plastic strain). (a,b) Sketches of birefringent haloes around inclusions (unidentified) in diamond and ruby (Sorby & Butler 1869).
(c,d) Photomicrographs of birefringent haloes in garnet around zircon and coesite (Campomenosi et al. 2018). (e) Sketch of fractures in
spinel around solid inclusion (Sorby & Butler 1869). ( f ) Photomicrograph of fractures in garnet around former coesite (yellow circles).
(g) Photomicrograph of fractures in olivine around chrome-spinel. Panels a, b, and e reproduced with permission from Sorby & Butler
(1869).
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Quantification of these local stresses allows calculation of entrapment P-T conditions, giving rise
to the field of elastic thermobarometry.

Elastic thermobarometry differs fundamentally from conventional thermobarometry. Al-
though both methods seek to interpret P-T conditions of mineral formation, conventional
thermobarometry relies on thermodynamic inversion of chemical compositions of minerals.
In contrast, elastic thermobarometry relies on elastic inversion of the physical properties of
minerals. That is, conventional thermobarometry is based on chemical measurements; elastic
thermobarometry is based on physical measurements.

How does elastic thermobarometry work? At its heart lies each mineral’s elastic properties
and its equation of state (EoS) (P-T dependence of its volume) (see the sidebar titled Elastic
Thermobarometry Terms). Rosenfeld & Chase (1961) recognized that, because two minerals
have different thermal expansivities and compressibilities, local stresses around an inclusion could
be eliminated by subjecting the host-inclusion system to elevated P or T (Figure 2). That is, for
the excess stress on an inclusion today, there is some other P-T condition at which the mismatch
in volume between the inclusion and the hole in the host crystal exactly disappears. This would
eliminate the differential compressive or tensile stress between the inclusion and surrounding
host. In fact, because volumes depend on both pressure and temperature, a line in P-T space
satisfies this condition (Figure 2). If the host crystal has not relaxed or fractured around the
inclusion, the P-T condition of inclusion entrapment must occur somewhere along this line.
Various terms have been used for the lines, including null curve (Rosenfeld & Chase 1961), zero
volume difference (Izraeli et al. 1999), or isovolume locus (Barron 2003), but most researchers
now use the term isomeke [Greek for equal length (Adams et al. 1975)]. Different mineral
inclusions in the same host crystal will have different orientations and spacings of isomekes [e.g.,
quartz-in-garnet (QuiG) and zircon-in-garnet (ZiG)] (Figure 2). In principle, the intersection of
isomekes for different inclusions from the same portion of a crystal can yield the P-T conditions
of entrapment (Figure 2), while inclusions in different parts of a crystal can yield a P-T path.

This simple concept of isomekes and elastic thermobarometry receives significant experimen-
tal and empirical support, but recent research also reveals numerous complications. Local stresses
can be affected by inclusion shape, proximity to other inclusions or surfaces, anisotropic expansiv-
ities and compressibilities (for noncubic crystals), and inelastic processes. In this review, we first
describe how stresses are determined and develop the basic theory. We then discuss theoretical
refinements to account for geometry, anisotropy, and inelastic processes that can reset stresses.
Finally, after presenting examples, we offer thoughts on future research.

HOW DO WE DETERMINE STRESS?

Stress cannot be measured directly; rather, we measure strain and, knowing the elastic properties
of minerals, calculate stress. Strain falls into three categories: elastic, viscous, and plastic. Elastic
strain is completely recoverable and is the basis for elastic thermobarometry. For example, if
an inclusion with only elastic strain is removed from its host, it will recover its standard-state
(1 bar, 298 K) volume and will not retain any permanent strain. Viscous and plastic deformations
are permanent strains. Viscous strain occurs continuously and reflects the relaxation of a crystal
to stress gradients. Viscous strain rate depends exponentially on temperature. If temperature is
high enough, any differential stress between host and inclusion causes the host crystal to relax,
relieving the stress. In that case, the original entrapment P-T condition is not recoverable. How-
ever, during cooling, the host crystal transitions from dominantly viscous behavior to dominantly
elastic. Below the temperature at which that occurs—the host mineral’s mechanical closure
temperature—differential stresses can build up. In that case, elastic thermobarometry allows
calculation of a closure isomeke, rather than an entrapment isomeke. Plastic strain is a threshold
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ELASTIC THERMOBAROMETRY TERMS

α: thermal expansivity
β: compressibility
Elastic relaxation: (a) the theoretical elastic response of an inclusion and host in response to a pressure step (Angel
et al. 2014b, 2017b) and also called elastic interaction; (b) the relaxation of elastic strain due to viscous response in
the host (Moulas et al. 2020)
EntraPT: online software that converts strains to Pinc and Pinc to isomekes (Mazzucchelli et al. 2021); duplicates
some functionality of EosFitPinc
EosFitPinc: standalone software that calculates isomekes and Pinc using equations of state for host and inclusion
(Angel et al. 2017b)
Equation of state (EoS): the functional dependence of a mineral’s molar volume on pressure and temperature,
expressed in terms of thermal expansivity (α) and compressibility (β); can be expressed either volumetrically (volume
EoS) or along crystallographic axes (axial EoS)
G, Ghost: shear modulus of the host
Grüneisen tensor: tensor that relates Raman peak shifts to strains
Host: a crystal that contains inclusions of other minerals
Inclusion: a crystal of one mineral enclosed (entrapped) inside another mineral
Isomeke: a line through P-T space for which any fractional change in volume of an inclusion exactly matches
the fractional change in the void space in the host; no differential pressure occurs between the host and inclusion
along the isomeke; the isomeke for an inclusion-host pair is commonly interpreted to constrain P-T conditions of
entrapment, although it can represent a mechanical closure isomeke
K: bulk modulus (= 1/β)
Mechanical closure temperature: the temperature at which a host crystal transitions from viscous to elastic
response to stress
Pfoot: the stress (pressure) of the entrapment isomeke at standard-state temperature; can be either positive
(compressive stress) or negative (tensile stress)
Phost: the external pressure on the host; at standard measurement conditions, it is 1 bar
Pinc: the stress (pressure) on an inclusion; can be either positive (compressive stress) or negative (tensile stress)
Pref, Tref: reference pressure and temperature
Ptrap, Ttrap: the pressure and temperature at which an inclusion was entrapped in a host
QuiG, QuiZ, ZiG, etc.: acronyms for quartz-in-garnet, quartz-in-zircon, zircon-in-garnet, etc.
Reference conditions (Pref, Tref ): whatever P-T conditions measurements are made; most measurements are
made at standard state, although slight variations in laboratory temperature are possible, and in some studies
measurements are made at elevated P or T
Residual stress, residual strain: the stress or strain on an inclusion after the rock is exhumed; Pinc is the negative
of the mean of the normal components of the residual stress
Standard state: 1 bar and 25°C (298 K)
stRAinMAN: standalone software that calculates strains from Raman shifts and vice versa (Angel et al. 2019)

response. If stresses surpass a critical threshold, the mineral deforms permanently. Cracking
represents a common form of plastic strain (Figure 1e,f ), although slip and twinning are other
mechanisms. Typically, if cracks intersect an inclusion, no differential stress occurs between in-
clusion and host (the inclusion will reequilibrate to ambient conditions), and neither entrapment
nor closure P-T conditions are recoverable. Raman spectroscopy, X-ray diffraction, and electron
backscatter diffraction record different characteristics of strain that are relevant to interpretations.
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Figure 2

Pressure versus temperature diagram, contoured with isomekes for quartz-in-garnet (QuiG) and zircon-in-
garnet (ZiG) to illustrate the concept of elastic thermobarometry. Contour numbers represent the pressure
in kilobar that would be measured at standard state (1 bar, 298 K) for an inclusion that was entrapped along
the isomeke (negative values indicate tensile stresses). For example, a garnet might contain quartz and zircon
inclusions with compressive stresses of 8 and 3 kbar, respectively (schematic illustrations of birefringent
haloes at room P-T; compare with Figure 1a–d). Quartz is more compressible than garnet, so increasing
pressure to c. 14.2 kbar (at 25°C) reduces the volume of quartz more than the volume of garnet and exactly
eliminates differential stress (schematic illustration without birefringent halo). The line of zero differential
stress passing through this point—the entrapment isomeke—represents possible entrapment conditions that
would give rise to a quartz inclusion with compressive stress of 8 kbar. Zircon has lower thermal expansivity
than garnet, so increasing temperature to c. 388°C at 1 atm increases the volume of garnet more than zircon,
eliminates its differential stress, and represents one point on the zircon entrapment isomeke. The
intersection of the QuiG and ZiG entrapment isomekes yields the entrapment P-T condition (Ptrap, Ttrap).
Isomeke calculations are based on equations of state for almandine garnet (Angel et al. 2022b), quartz (Angel
et al. 2017a), and zircon (Holland Powell 2011), and assume simplified spherical geometry, endmember
compositions, and no elastic anisotropy.

Raman Spectroscopy

For several key reasons, Raman spectroscopy is the most common technique used to measure elas-
tic strain on inclusions. First, confocal laser capabilities allow spectral measurement at micrometer
resolution (good for small inclusions) below the surface of the host crystal. Subsurface analysis is
crucial because inclusions will release their elastic strain if exposed to a free surface, such as cracks
or the top or bottom of a thin section. Second, analysis is rapid, typically tens of seconds to a couple
minutes. Third, analytical errors propagate to small uncertainties in isomeke placement. Fourth,
instrumentation is relatively inexpensive. Last, training time is commonly reduced because most
geologists already know how to locate inclusions using petrographic microscopes.

The principles of Raman spectroscopy are covered elsewhere; for example, Chou & Wang
(2017) provide an overview, and Dubessy et al. (2012) provide comprehensive treatment for the
Earth sciences. Nonetheless, some practical concepts provide context for later discussion. Raman
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Figure 3

(a) Raman spectra for quartz at standard temperature and pressure (standard) and for a quartz inclusion in eclogitic garnet (sample)
modified from Endo et al. (2012). The increases in peak positions and decrease in spacing between 464 and 206 peaks (1ω) indicate the
inclusion is under compression. A1 and E refer to types of motions among atoms. In quartz, these represent symmetric stretching and
symmetric bending, respectively, in the SiO4 subunit. (b) Correlation between pressure and peak position, showing different sensitivities
for different vibrational frequencies (quartz and zircon) and effect of composition on peak position (zircon versus hafnon; double arrow).
Data are from Knittle & Williams (1993), Hoskin & Rodgers (1996), and Schmidt et al. (2013). (c,d) Peak position reproducibilities for
quartz at standard temperature and pressure (Cizina et al. 2023), showing good reproducibility for stable laboratory conditions (c) but
abrupt shifts in peak positions for less controlled laboratory conditions (d). If a 532-nm laser source is used, shifts can be monitored and
partially corrected by simultaneous measurement of an artificial ∼484-cm−1 Hg-emission line introduced with a fluorescent lamp.
Minimum analytical reproducibility propagates to uncertainties in P (at assumed T) of less than 50 bars, comparable to propagated
analytical uncertainties arising from chemical measurements and conventional thermobarometry (Kohn & Spear 1991).

spectroscopy samples vibrational frequencies, and spectra are reported in frequency units of cm−1

(= waves/cm) (Figure 3). Each mineral possesses characteristic frequencies that correspond to
fundamental vibrations of bonded atoms in the crystal (Figure 3a). For example, the A1 mode in
quartz corresponds with symmetric stretching of the SiO4 subunit (expansion and contraction of
oxygen atoms around a central Si; peaks at ∼206 and 464 cm−1), whereas the E mode corresponds
with symmetric bending (peak at ∼128 cm−1). Frequencies vary depending on bonding state
(crystal structure), strain (bond length and angle, which depend on temperature and stress), and
composition. Thus, spectra will differ depending on crystal structure (e.g., quartz versus coesite),
strain state [e.g., compressed versus expanded quartz (Figure 3a,b)], or chemical composition [e.g.,
zircon versus hafnon (Figure 3b)]. Elastic thermobarometry typically ignores signal intensities
because they depend on numerous factors, including the laser frequency, depth of inclusion be-
low the surface, transparency/absorption of the host (which depends on mineralogy and chemical
composition), orientation of the inclusion (if it is structurally anisotropic), and fluorescence.

Under homogeneous compression, bonds normally shorten, frequencies increase, and
Raman peak positions shift upward (Figure 3a,b). Under expansion, the reverse occurs. Thus,
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simplistically, the magnitude of the upward or downward shift in peak positions, relative to a
standard-state (1 bar, 298 K) measurement of the same material, must correlate with strain that
in turn correlates with stress (Figure 3b). Recognizing this, Parkinson & Katayama (1999),
Parkinson (2000), and Sobolev et al. (2000) first used the position of the characteristic ∼521-cm−1

Raman peak for coesite inclusions inside garnet and diamond to calculate in situ pressures.
Because different peaks for a mineral can show different pressure sensitivities, the differential
shift between peaks (widening versus narrowing) has also been proposed as a stress sensor
(Enami et al. 2007). The latter approach is less sensitive to instrument drift or calibration of
a reference spectrum. Although some instrumentation in a controlled laboratory environment
(e.g., temperature, humidity, voltage, etc.) can be extremely stable over long analytical sessions
[c. ±0.03 cm−1 (Figure 3c)], conferring high precision in inferred isomeke position (<±50 bars),
less well-controlled laboratory conditions can lead to abrupt shifts in peak positions [c. 1 cm−1

(Figure 3d)] and larger errors [±1 kbar (Cizina et al. 2023)].
Single- or paired-peak calculations of stress are fully accurate only for spherical, isotropic in-

clusions inside isotropic hosts, a condition that fewmineral systems approximate outside of garnet,
spinel (group), and diamond. The ubiquity of anisotropic systems, especially nonspherical inclu-
sions of quartz (hexagonal crystal system) and zircon (tetragonal crystal system) in other minerals,
has prompted research on the effects of other geometries and on noncubic crystal-system inclu-
sions and hosts. Very generally, the simple correspondence between Raman peak position and
pressure (Figure 3b) breaks down for these systems and can require more complicated inversion
of the stiffness tensor of the mineral to recover crystal-axis-specific strains. In practice, this is
accomplished by using density functional theory (DFT) to calculate a Grüneisen tensor (Murri
et al. 2018, Angel et al. 2019, Stangarone et al. 2019), which interrelates phonon mode (Raman
wavenumber shift) and axis-specific strains. The programs stRAinMAN (Angel et al. 2019) and
EntraPT (Mazzucchelli et al. 2021) convert Raman shifts to axial strains for common host-
inclusion pairs. The axial strains are then used to determine axial stresses, which are averaged to
recover average stress or pressure across an inclusion (Pinc). EntraPT alsomakes these calculations.

X-Ray Diffraction and Electron Backscattered Diffraction

Reliable, accurate, and precise Raman spectroscopy measurements on inclusions are relatively
simple. A small beam size, fixed sample position, and good optics allow users to avoid complex
edges, corners, clusters of inclusions, etc. (see the following discussion on system geometry). X-
ray diffraction provides an alternative and complementary method to measure residual strains on
inclusions (e.g., Nestola et al. 2011), but this is technically more difficult.

Initial X-ray studies were first performed on inclusions in diamond because its optical trans-
parency and low X-ray absorbance simplified targeting inclusions and permitted relatively low
radiation energies available to conventional X-ray laboratory sources (data were collected on
film cameras) (Mitchell & Giardini 1953, Futergendler & Frank-Kamenetsky 1961, Harris et al.
1970). As with Raman spectroscopy, X-ray diffraction does not directly measure an inclusion’s
stress state; instead, the stress state is inferred from the difference between the values of the
unit-cell parameters measured for the inclusion (average strains) relative to a crystal of the same
material at room conditions, assuming the pressure dependencies of the unit-cell parameters for
that crystal are known.

X-ray diffraction measurements are difficult for two reasons. Measurement precision repre-
sents the first hurdle. Ideally, we wish to calculate Pinc to within ∼10 MPa, but stiffness in crystals
is typically of the order of 100 GPa. Thus, measurement of cell parameters (axial strains) requires
precisions of ∼1 part in 10,000 (= 10 MPa/100 GPa). Such precise measurements can require
hours for laboratory conditions, albeit only a few minutes for high-intensity sources at large-scale
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Figure 4

Wavenumber shifts (1ω) for the 464- and 696-cm−1 modes across a faceted inclusion of quartz-in-pyrope.
High values indicate stress concentration near corners. X-ray diffraction allows calculation of average strain
across inclusion, which can be inverted using the mode Grüneisen tensor to calculate the average shift
(dashed lines). Figure adapted with permission from Murri et al. (2018).

facilities. Sample centering represents a second significant hurdle.X-ray diffractionmeasurements
require sample rotation during data collection, and to maintain focus, the inclusion must be posi-
tioned within a few microns of the goniometer center (center of rotation of all the diffractometer
axes). Even in the early 1950s scientists recognized that centering the inclusion represented a large
source of error, and special protocols are necessary (Angel et al. 1997, 2022a).

Because X-ray beams are typically more than 100 µm wide, most single-spot analyses encom-
pass the entire inclusion (and a significant portion of the host) and determine an average strain
(Murri et al. 2018, Angel et al. 2022a). Although strain is homogeneous for a spherical inclusion
(Eshelby 1957), irrespective of the symmetry of the host or inclusion crystals, stresses and strains
concentrate at edges and corners of faceted inclusions. Consequently, whereas Raman measure-
ments can reveal strain gradients across a shaped inclusion (e.g., Enami et al. 2007; Zhukov &
Korsakov 2015, Campomenosi et al. 2018, Murri et al. 2018), X-ray measurements show an aver-
age strain (Figure 4). In general, for complex geometries both X-ray and Raman measurements
should be preferred in combination with numerical simulation on the exact shape of the inclusion
(e.g.,Mazzucchelli et al. 2018).X-ray diffraction also provides precise crystallographic orientations
of inclusion and host, which are important when working with elastically anisotropic mineral pairs
(Gonzalez et al. 2021). Calculated orientations are not sensitive to small offsets of the crystal from
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the center of the diffractometer (Nimis et al. 2019). Relative peak intensities in Raman spectra can
also indicate crystal orientation (Hopkins & Farrow 1986; Zhong et al. 2021b), but uncertainties
are much larger than for X-ray measurements.

High angular resolution electron backscatter diffraction can be used to map crystallographic
texture, grain orientation, grain shape, and local strain across an exposed polished surface (e.g.,
Wallis et al. 2019). Using crystal-axis-specific stiffness coefficients, strain maps can be inverted to
infer distributions of stress, which are rarely uniform across crystals (Wallis et al. 2019). Because
electrons penetrate only 1–2 µm for typical accelerating voltages, analysis is essentially limited
to surfaces, and investigation of buried inclusions is not possible. However, measurement across
partially exposed inclusions can determine their orientation with respect to their hosts, distinguish
types of strain, and quantify densities of geometrically necessary dislocations (Wallis et al. 2019).

FOUNDATIONAL MODEL: PURELY ELASTIC, SPHERICAL,
AND ISOTROPIC

As will be seen, elastic thermobarometry relies on quantitative modeling of Pinc, but qualitatively,
what determines its magnitude? In an elastic system, the residual pressure of the inclusion is con-
trolled primarily by the contrast in how the host and inclusion respond to stress and temperature.
We assume that at entrapment (Ptrap,Ttrap) the inclusion fits perfectly within the cavity of the host
and that the pressure of the inclusion (Pinc), the pressure of the host (Phost), and the external pres-
sure (Ptrap) are all equal.When the external pressure and the temperature change after entrapment,
the two minerals will attempt to expand or shrink according to their EoSs (Rosenfeld & Chase
1961). Although compressibilities and expansivities are nearly constant, they do depend slightly
on pressure and temperature, and these dependencies should be accounted for.

If an inclusion and host have identical thermoelastic properties, they will not experience any
differential change tomolar volumes during exhumation and cooling, andPinc will not deviate from
Phost, regardless of Ptrap,Ttrap. Although no two minerals have identical EoSs, some are sufficiently
similar (e.g., kyanite and garnet) that Pinc will never be sensitive to Ptrap,Ttrap. Similarly, if Ptrap and
Ttrap happen to fall along an isomeke that includes the measurement P-T conditions, measured
Pinc must again be the same as Phost (= Pref ). This is because the isomeke is defined as a line
along which the change in volume of the cavity (host) and of the inclusion are equal. This latter
condition implies that P-T space is divided into two different domains—a region within which Pinc

is positive (inclusion is under compression) and another within which Pinc is negative (inclusion is
under tension).

When the host and the inclusion have different thermoelastic properties, Pinc ̸= Phost for all
P-T conditions that do not fall along the entrapment isomeke. Whenever Pinc ̸= Phost (e.g., the
rock follows a P-T path that deviates from the entrapment isomeke), the host and inclusion vol-
umes change differentially, and an elastic interaction occurs between the host and the inclusion
to maintain mechanical equilibrium. The magnitude of the resulting strain on the inclusion de-
pends on how large the potential volume differences are between host and inclusion (the contrast
in their EoSs), the relative compressibilities of host and inclusion (the magnitude of their elastic
interaction), and the shear modulus of the host (Goodier 1933, Eshelby 1957). Large differences
in compressibilities or expansivities between host and inclusion and large values of Khost lead to
large absolute values of Pinc. The interaction also modifies the stress field in the system such that
the radial and tangential components of the stress in the host are no longer equal (Figure 5).

Goodier (1933) and Eshelby (1957) laid the foundation of the analytical description of the
elastic interaction, which begins with a simple model of a spherical, isotropic inclusion entrapped
inside an infinite isotropic host (see also Mura 1987). Assume the inclusion is far from any in-
terfaces, such as cracks or crystal surfaces, and that entrapment P-T conditions were such that
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Figure 5

Stress versus distance normalized to inclusion radius, assuming Pinc = 1 kbar. Stresses in the host decrease
rapidly as 1/r3, so that at radial distances of ∼3 · Rinc, stresses in the host are nearly zero.

the inclusion is now under compressional stress, so its volume is less than that of a free crystal
at standard state. Under these conditions, the spherical (or in general ellipsoidal) inclusion has
a homogeneous compressional stress and strain distribution across it (Eshelby 1957). The host
experiences an identical compressional radial stress at the interface with the inclusion, but its ex-
ternal surface is at standard state. Consequently, stress and strain must decrease outward from the
inclusion. Several studies have derived the stress distribution in a spherical host around a centered
spherical inclusion (e.g., Eshelby 1957, Tait 1992, Zhang 1998, Bower 2010) (Figure 5) (here
compressive stress is taken as positive and Rinc ≤ r ≤ Rhost):

σradial = (Pinc − Phost ) · R3
host · R3

inc

(R3
host − R3

inc ) · r3
− Pinc · R3

inc − Phost · R3
host

R3
host − R3

inc
, 1a.

where Pinc is inclusion pressure, Phost is host pressure, Rinc is inclusion radius, and Rhost is host
radius. The tangential stress distribution (here negative; radial compression induces tangential
extension in two orthogonal directions) (Figure 5) is

σtangential = − (Pinc − Phost ) · R3
host · R3

inc

2 · (R3
host − R3

inc ) · r3
− Pinc · R3

inc − Phost · R3
host

R3
host − R3

inc
. 1b.

For small inclusions inside large crystals (Rinc ≪ Rhost) and for a negligible reference pressure
(Pinc ≫ Phost ∼ 0), these equations simplify to

σradial ≈ Pinc · R3
inc

r3
2a.

and

σtangential ≈ −Pinc · R3
inc

2 · r3 . 2b.
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Because differential stress decreases as 1/r3 away from an inclusion, differential stresses and
stress gradients become negligible at distances ∼3 times the inclusion radius (Figure 5). This
distance gives rise to the 3x rule (Kohn 2014; Mazzucchelli et al. 2018), which provides a rough
guide for identifying inclusions that are sufficiently isolated to be readily modeled—their surfaces
should be at least ∼3 times the inclusion radius from other crystal surfaces (including the host
crystal and other inclusions) and from any sample surfaces (e.g., the top or bottom of a thin sec-
tion). Depending on analytical location in an inclusion and stiffness of the host, this distance can
be smaller (Zhong et al. 2020b, 2021a).

The 3x rule has two important implications. First, standard thin section thicknesses of 30 µm
would limit analysis to inclusions that are centered toward the middle of the section and no more
than 7.5 µm in diameter. Because inclusions are commonly larger or not well-centered, most
analysts make measurements on either grain mounts or polished thick sections, typically 75–
100-µm thick. Second, elastic thermobarometry is not capable of providing P-T estimates for
the rims of crystals. Thus, exact comparison of elastic versus conventional thermobarometry is
not always possible.

Several quantitative solutions based on continuum mechanics have been suggested in the ge-
ological literature to predict the residual pressure of an isotropic inclusion after cooling and
decompression of the host along an arbitrary P-T path (van der Molen & van Roermund 1986,
Zhang 1998, Izraeli et al. 1999, Guiraud & Powell 2006, Angel et al. 2014b, 2017b). Some of
these solutions assume linear elasticity [constant thermoelastic properties (e.g., van der Molen &
van Roermund 1986, Zhang 1998)], which allows simple inversion of Pinc to calculate entrapment
isomekes. Moulas et al. (2020) have shown that, for Ptrap < 20 kbar, calculations for QuiG that
assume constant elasticity are accurate to within 10%.However, the variation of elastic properties
of minerals at high pressures and temperature and/or near phase transitions can lead to larger dis-
crepancies. Therefore, other solutions have been developed to account for material nonlinearities
(Guiraud & Powell 2006, Angel et al. 2014b, 2017b). Such models adopt a small strain approx-
imation (Zhong et al. 2020a, Angel et al. 2020) and are solved with iterative methods. Because
the formulations of Guiraud & Powell (2006) and Angel et al. (2017b) are based on different ap-
proximations, they lead to different calculated entrapment pressures, although discrepancies are
usually within ∼1% for common host-inclusion systems (e.g., QuiG, ZiG) (Zhong et al. 2020b).
Relaxing the small strain assumption leads to only small discrepancies with respect to models with
small strain approximations (Moulas et al. 2020, 2023).

Elasticity is by definition reversible and path independent; therefore, all paths from the en-
trapment to the final conditions should give equivalent Pinc. In this context, the approach of Angel
et al. (2014b, 2017b) provides a computationally simple and thermodynamically rigorous solu-
tion for Pinc, especially for complex EoSs (Figure 6). In the Angel et al. (2014b, 2017b) model,
the path of the host-inclusion system is considered in two steps. First, the inclusion and host are
cooled along the isomeke to the standard-state temperature (Figure 6a). The isomeke can be cal-
culated numerically from the EoSs of the inclusion and host and can account for any functional
complexity—compressibility and thermal expansivity do not need to be constant. Specifically, the
slope of the isomeke is given by (Rosenfeld & Chase 1961, Adams et al. 1975)

∂P
∂T

= 1α

1β
, 3.

where α is thermal expansivity and β is isothermal compressibility at the P and T of interest. Angel
et al. (2014b) refer to the resulting pressure at standard-state temperature as Pfoot. At this point,
both the host and inclusion have the same pressure (Figure 6a,b). The pressure on the host is
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Figure 6

Concept for interrelating Ptrap, Ttrap and Pinc. (a) P-T diagram showing P-T paths and pressure steps in calculation. The host crystal
and rock follow an actual P-T path from Ptrap, Ttrap to Pref, Tref (standard state). Inclusion follows a P-T path from Ptrap, Ttrap to Pinc,
Tref. The P-T path used for calculation follows the entrapment isomeke (thick green curve) to Pfoot, Tref. The host pressure is then
reduced to Pref. This causes a decrease in inclusion pressure to P∗. Stress relaxation is calculated between inclusion and host numerically
to determine Pinc. (b) Condition at Pfoot: Inclusion and host have homogeneous pressure equal to Pfoot. Temperature is Tref. (c) Host
pressure is decreased to uniform Pref. Inclusion expands and lowers pressure to P∗. (d) Pinc is calculated numerically via Equation 4,
which further expands inclusion. Pressure gradient develops in host (although this is not directly calculated).

then changed to Pref, inducing a change in the volume of the host (Figure 6a,c). For example, if
Pfoot > 1 (i.e., inclusion is under compression, and Pinc > Phost), the drop in pressure expands the
hole in the host; this expansion also expands the inclusion and decreases its pressure, here denoted
P∗ (Figure 6a,c). If Pfoot < 1 (inclusion is under tension), the reverse is true. Because P∗ differs
from Pref, the resulting pressure step between inclusion and host (Figure 6c) will induce additional
strain due to the elastic interaction1 between the two minerals (Figure 6d). The corresponding

1Some authors call this interaction elastic relaxation (e.g., Angel et al. 2014b, 2015, 2017b; Mazzucchelli et al.
2018, Gonzalez et al. 2021), but others use the term relaxation to describe only viscous stress release (e.g.,
Moulas et al. 2020).
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strain can be calculated from the expression

εinc = εhost + 3(Pinc − Pref )
4Ghost

, 4.

where ε is volume strain calculated relative to Pfoot and Ghost is the shear modulus of the host.
For the host, εhost = Vfoot/Vref, and for the inclusion εinc = Vfoot/VPinc. The volume strain in the
inclusion must be calculated numerically, for example iterating between assumed values of Pinc

and εinc (Angel et al. 2017b). These calculations are commonly performed using the programs
EosFit (Angel et al. 2014a), EosFitPinc (Angel et al. 2017b), or EntraPT (Mazzucchelli et al. 2021).
Because volume strain is relative, Equation 4 indicates that Pinc is independent of inclusion size.
Consequently, inclusions of a particular mineral that are entrapped at the same Ptrap, Ttrap must
have the same Pinc, regardless of size (assuming they satisfy the 3x rule).

Whether a host-inclusion pair is useful for thermometry or barometry depends on how com-
mon the assemblage is, relative differences among expansivities versus compressibilities, and the
shear modulus of the host. Larger differences in α and β translate into more closely spaced
isomekes and greater sensitivity to either P (large 1β) or T (large 1α). For example, quartz and
many ortho-, soro-, and chain-silicates have very different compressibilities (quartz is soft), so
QuiG serves as a robust barometer (Rosenfeld & Chase 1961, Adams et al. 1975, Enami et al.
2007), as do many other quartz-in-mineral equilibria, such as quartz-in-zircon (QuiZ), quartz-
in-lawsonite, etc. (Kohn 2014, Cisneros & Befus 2020). Zircon and garnet have more similar
compressibilities but rather different thermal expansivities, making ZiG a useful thermometer
(Kohn 2014, 2016, Zhong et al. 2019a, Campomenosi et al. 2021).

Which mineral serves as host versus inclusion also affects isomekes. For example, diamond can
occur as inclusions in garnet and vice versa. Slopes for both combinations are identical because
the absolute differences in compressibilities and expansivities are identical (Figure 7). However,
isomekes for diamond-in-garnet are more widely spaced, and the separation of P-T space into
positive Pinc and negative Pinc is reversed (Figure 7a,b). The spacing depends on not only the
EoSs but also the shear modulus of the host (Ghost in Equation 4). Diamond and garnet have
different Ghost (diamond is much stiffer than garnet), so isomeke spacings differ. The reversal in
sign reflects the differential volume response of each mineral to pressure and temperature.Garnet
has higher values of compressibility and thermal expansivity than diamond. Thus, for high Ptrap,
low Ttrap (upper left of the P-T diagrams in Figure 7a), an inclusion of garnet in diamond will
attempt to expandmore than the diamond host upon exhumation.Because the volume of the cavity
is constrained by the diamond host, garnet will remain compressed to high Pinc (Figure 7a). In the
reverse situation (diamond-in-garnet), the garnet host (cavity) will expand more than the diamond
inclusion. If the diamond inclusion remains attached to the walls of the cavity, it will be stretched
and therefore under tension (negative Pinc) (Figure 7b).

MODEL REFINEMENT 1: ACCOUNTING FOR GEOMETRY

The models above assume that the host and inclusion are elastically isotropic, and the inclusion
is both spherical and located far from any boundaries. None of these conditions apply in natural
systems: minerals are not elastically isotropic, inclusions are often close to grain boundaries or
other inclusions, and they are not spherical. Recent numerical models have investigated howmuch
the residual strain, stress, and pressure developed in inclusions in nonideal systems deviate from
the predictions of simple models (e.g., Mazzucchelli et al. 2018, 2019; Campomenosi et al. 2018;
Zhong et al. 2019b, 2021a; Morganti et al. 2020). These studies show that analytical solutions
adequately describe these effects for simple cases, while numerical solutions are required for more
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Figure 7

(a) Isomekes for garnet-in-diamond showing narrow spacing and positive values at higher pressure. (b) Isomekes for diamond-in-garnet
showing wider spacing and negative values at higher pressure (the reverse of garnet-in-diamond). The slopes of the isomekes are
identical (compare zero isomekes) because 1α and 1β are identical at the same P-T condition but reversed in sign. Values are for Pinc
in kbar.

complex combinations of geometries and anisotropy of elastic properties. Relatively few studies
have directly measured the effect of geometry and anisotropy on the residual strain and stress (but
see Murri et al. 2018, Campomenosi et al. 2018).

Inclusion Morphology

Exact analytical solutions exist for an ellipsoidal, elastically anisotropic inclusion entrapped in an
infinite isotropic host (e.g., Eshelby 1957, Mura 1987, Zhong et al. 2021a). In this case, stress and
strain are homogeneous across the inclusion. Fully accurate representation of faceted inclusions,
anisotropic hosts, and/or more complex geometries require numerical calculations. Mazzucchelli
et al. (2018) investigated how the morphology of the inclusion affects Pinc, assuming that both the
host and the inclusion are elastically isotropic and that the host is infinite.Theymodeled spheroids,
cylinders, and prisms with various aspect ratios to evaluate the effects of nonspherical shapes,
corners, and edges. Zhong et al. (2021a) expanded models using both analytical and numerical
methods to include elastically anisotropic ellipsoidal and faceted inclusions (quartz, zircon, apatite,
rutile) in an infinite isotropic host (almandine). They also calculated Pinc for volume averages
(relevant to X-ray diffraction measurements) and for centroid measurements (relevant to a single,
centered Raman measurement). Results are presented in terms of the deviation of the residual
pressure of each morphology compared to that of a spherical inclusion (Figure 8).
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Figure 8

Deviation of residual pressure for several morphologies of an inclusion plotted versus the normalized aspect
ratio. The deviation of residual pressure is quantified as (Pnonspherical/Pspherical − 1). The normalized aspect
ratio is calculated with the unique axis as the denominator (e.g., the prolate ellipsoid 2:1:1 becomes ½ = 0.5).
For a soft inclusion in a stiffer host (e.g., quartz-in-garnet), the deviation is negative, and therefore
Pnonspherical < Pspherical. The opposite occurs for a stiff inclusion in a softer host (e.g., diamond-in-pyrope;
Pnonspherical > Pspherical). Figure adapted with permission from Mazzucchelli et al. (2018) and Zhong et al.
(2021a) (CC BY 4.0).

Aspect ratio most strongly controls the deviation of residual pressure, with the largest devia-
tions expected for platy inclusions (Figure 8). Edges and corners further enhance deviations. In
general, morphology is less important when the inclusion is softer than the host. For QuiG, or
pyrope-in-diamond with aspect ratios less than 1:2:2, deviations induced by shape are typically
less than 5% (Figure 8). For a stiff inclusion with the same shape in a soft host, the deviation is
much larger (e.g., ∼20% for diamond-in-pyrope) and of the opposite sign. Approximating irreg-
ular inclusion shapes with 3D ellipsoids and calculating the stress of the resulting ellipsoid using
the analytical Eshelby solution (Eshelby 1957) is accurate to ∼2% (Zhong et al. 2021a) and makes
numerical modeling unnecessary for most applications. However, the geometry of the inclusion
and its crystallographic orientation are still required.

These results provide a simple corrective procedure for nonspherical inclusions (Mazzucchelli
et al. 2018). For example, if geometry introduces a 5% decrease in Pinc [e.g., a pyrope crystal
with aspect ratio of 2.0 included in diamond (Figure 8)], measured Pinc is increased by a factor of
1.0/0.95 and calculations proceed as for a spherical inclusion (Equations 3 and 4). More accurate
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calculations require 3D models of the host-inclusion system (e.g., Anzolini et al. 2019, Alvaro
et al. 2020, Zhong et al. 2021a). This approach accommodates all fundamental characteristics of
the system, including any elastic anisotropy of the host and the inclusion, the relative orientation of
the crystallographic axes of the host and the inclusion, the position of the inclusion with respect to
other inclusions and to the external walls of the host, and the exact morphology of the inclusion
and its orientation with respect to the crystallographic axes. Such models return the stress and
strain fields in both the host and the inclusion, and their gradients, and are best suited for detailed
studies where the strain state and the relative crystallographic orientation of the inclusion are
known (e.g., Alvaro et al. 2020).

Proximity to Free Surfaces and Other Inclusions

The size of the inclusion and its proximity to the external surfaces can strongly affect the stress
and strain distribution within and around an inclusion and thus the calculation of entrapment
conditions (Rosenfeld & Chase 1961, Zhang 1998, Enami et al. 2007, Mazzucchelli et al. 2018,
Zhong et al. 2020b). For small inclusions withRhost/Rinc > 4,Pinc is within 1%of the value expected
for an infinite host, especially when the inclusion is relatively soft (e.g., QuiG), but deviations
rapidly exceed 10% for Rhost/Rinc < 2 (Mazzucchelli et al. 2018). The proximity of the inclusion
to the external surface of the host is particularly crucial for high-pressuremetamorphic rocks (high
Pinc) that are investigated on less than 100-µm-thick sections.Pinc for a deeply embedded inclusion
decreases as the distance from the specimen surface decreases (e.g., during grinding or polishing
a thin section), although the pressure release is less for soft inclusions such as QuiG or garnet-
in-diamond (Figure 9). To minimize pressure release in the entire inclusion (<3%), the inclusion
depth (Dinc) normalized over its radius (Rinc) should exceed 2–2.5; stiffer inclusions (e.g., garnet-
in-quartz or ZiG) should be buried deeper (Dinc/Rinc ≥ ∼4) (Mazzucchelli et al. 2018, Zhong
et al. 2020b) (Figure 9). Nearly exposed inclusions develop large pressure and strain gradients,

Figure 9

Numerical models of pressure distribution across an inclusion versus distance (Dinc) from a thin section surface, normalized to initial
(homogeneous) inclusion pressure (Pinit) and inclusion radius (Rinc). The top versus bottom of the inclusion are highly sensitive versus
insensitive to proximity. Proximity matters less for stiffer hosts (garnet) than for softer hosts (quartz). Figure adapted with permission
from Zhong et al. (2020b) (CC BY 4.0).
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so analytical placement matters. For example, Pinc at the bottom of a nearly exposed inclusion
(Dinc/Rinc = 1.2) is still within 5% of a deeply buried inclusion (Mazzucchelli et al. 2018, Zhong
et al. 2020b).

Experiments support these models but also reveal discrepancies. Campomenosi et al. (2018)
collected Raman spectra on zircon inclusions initially entrapped in garnet at the center of a thick
section during several steps of polishing to expose the inclusion. As expected, the Raman shift
(and therefore the strain and stress) of the inclusion decreased as the external surface of the sec-
tion approached the inclusion.However, even when the inclusion was exposed at the surface, it still
exhibited a peak shift compared to a free crystal, implying the residual strain and stress were not
completely released. This result accords with electron backscatter diffraction measurements on
olivine and quartz that also indicate residual stresses, even for fully exposed crystals (Wallis et al.
2019). In consequence, Campomenosi et al. (2018) recommend against using exposed crystals
in a thin section as supposed strain- and stress-free standards. Instead, free, unstrained, polished
crystals (e.g., Herkimer quartz, Mud Tank zircon, synthetic crystals, etc.) are preferred. Com-
prehensive numerical simulations of the experiment (Campomenosi et al. 2018) further showed
that anisotropic elastic properties, geometry, and crystallographic orientation of the inclusion all
strongly influence stress release. However, nonelastic processes also contributed to stress release
as the polished surface intersected the inclusion. In particular, the high differential stress in the
host around the inclusion (Figure 9) localized plastic yield and further released the pressure of
the inclusion.

Little work has yet been published on the effect of mutual proximity of inclusions, but stress
interactions can occur if inclusions are closely crowded and/or of unequal size (Zhong et al. 2021a;
M.L. Mazzucchelli, unpublished modeling). Inclusions with similar radii show little stress inter-
action unless they are separated by a small fraction of the inclusion radius (Zhong et al. 2021a).
More generally, modeling the effects of free surfaces (Mazzucchelli et al. 2018, Campomenosi
et al. 2018, Zhong et al. 2020b) suggests distances between the centers of two inclusions should
be at least 2–4 times the radius of the larger inclusion; otherwise, stress interactions are likely.
Exact analytical placement matters, however, and portions of an inclusion farthest removed from
surfaces or other inclusions are more likely to retain undisturbed Pinc (Mazzucchelli et al. 2018;
Zhong et al. 2020b, 2021a) (Figure 9).

MODEL REFINEMENT 2: ACCOUNTING FOR ELASTIC ANISOTROPY

The strain and stress fields in a crystal reflect both the stress distribution from the surrounding
environment and the crystal’s elastic properties. For example, if a crystal is immersed in a liquid, it
will experience hydrostatic stress and the crystal (inclusion) will develop isotropic or anisotropic
strains depending on its symmetry and its elastic properties. The response of a crystal to hydro-
static stress is governed simply by its second-rank compressibility tensor (Nye 1985). However,
if the crystal (inclusion) is entrapped within another solid material (host), it will be subjected to
strains arising not only from the external stress conditions but also from the elastic properties of
the host material. In this case, the stress response of the inclusion is governed by its fourth-rank
stiffness tensor. Figure 10 shows a simplified geometrical interpretation of the behavior of an
elastic host-inclusion system with different combinations of elastic anisotropy of its minerals. To
simplify discussion, we assume the inclusion is spherical when entrapped, the host is infinite, and
the external stress is homogeneous and hydrostatic both at entrapment and at room pressure.Now
we remove the inclusion from the host and bring both the host and inclusion to room conditions.
Both crystals will expand according to the behavior of free crystals under hydrostatic pressure. If
both crystals are elastically isotropic or cubic, both the cavity in the host and the inclusion remain
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Figure 10

Schematic illustration of stresses on an originally spherical inclusion after exhumation of the host from entrapment to room conditions.
(a) If the host is isotropic or cubic, the spherical cavity remains spherical after exhumation. The stress required to force an inclusion
into the cavity is isotropic for an elastically isotropic inclusion (upper left) but anisotropic for an elastically anisotropic inclusion (upper
right). (b) If the host is elastically anisotropic, the shape of the cavity changes upon exhumation. In this case, the stress required to push
the inclusion back into the cavity is anisotropic, even when the inclusion is elastically isotropic. Figure adapted with permission from
Mazzucchelli et al. (2019).

spherical, and an isotropic stress (i.e., a hydrostatic pressure) is required to force the crystal back
into the cavity (Figure 10a). The inclusion must therefore experience hydrostatic stress. If the
inclusion is anisotropic, however, it will expand more in one direction than another and become
ellipsoidal at room pressure (Figure 10a). An anisotropic stress is then required to fit the inclusion
into the spherical cavity of the cubic host. Although elastic interaction between host and inclusion
will deform the cavity so that it is no longer spherical, stresses will nonetheless be anisotropic
around andwithin the trapped inclusion.For an anisotropic host, an isotropic inclusionwill remain
spherical when recovered to room conditions but will require anisotropic stress to force it into
the ellipsoidal cavity developed on exhumation (Figure 10b). When both phases are anisotropic,
the stress required (Figure 10b) depends on the mutual crystallographic orientation of the
host and inclusion. In this case the strains developed may decrease (break) the symmetry of the
inclusion.

The residual strain and stress of anisotropic inclusions can be calculated if Ptrap,Ttrap, the elastic
properties of host and inclusion, and the geometry of the system are known (Mazzucchelli et al.
2019; Zhong et al. 2019b, 2021a; Morganti et al. 2020; Gonzalez et al. 2021). First, the lattice
strains of the host and inclusion at Ptrap, Ttrap are calculated. Second, the host is brought to ref-
erence conditions, the shape of the cavity is calculated, and the inclusion is stressed to fit into
the cavity. At this point, mechanical equilibrium has not been achieved because the inclusion is
stressed to match the geometry of the cavity, while the host itself is stress free. This condition
is comparable to Figure 6c, except that the magnitude of the stress step may vary with location
along the inclusion-host boundary [anisotropic cases (Figure 10)]. Finally, elastic interaction is
calculated (comparable to Figure 6d), changing the stress and strain states of both the host and
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the inclusion. In this step, the shape of the inclusion must be accounted for. The strain and stress
obtained after this calculation represent the final residual strain and stress of the inclusion.

Two different approaches have been proposed for the first steps in the calculation (prior to
elastic interaction). Zhong et al. (2019b, 2021a) used the elastic stiffness tensor to determine the
stress and strain state of the host and inclusion. This approach permits either a hydrostatic or
nonhydrostatic external stress field, but it also requires knowledge of the stiffness tensors for the
host and inclusion, as well as their stress (or at least pressure) and temperature dependencies. This
information is rarely available, especially for the P-T ranges required for elastic barometry calcula-
tions. Calculations so far have assumed constant elastic properties determined at room conditions
(Zhong et al. 2019b, 2021a). Mazzucchelli et al. (2019) calculated strains prior to elastic interac-
tion using the volume and axial EoSs of the two minerals. For minerals belonging to the cubic
crystal system, a single-volume EoS is sufficient for modeling hydrostatic conditions because the
compressibility and thermal expansion tensors are isotropic.Uniaxial crystals (tetragonal, trigonal,
hexagonal systems) have two independent lattice parameters, so two EoSs are required to describe
their strains. More EoSs are required for crystals with lower symmetry (Angel et al. 2021). The
advantage of models based on the volume and axial EoS is that the lattice strain can be calcu-
lated at geologically relevant P and T using a fully parameterized and experimentally validated
model (the EoS). However, calculations are limited to a hydrostatic external stress field. Gonzalez
et al. (2021) showed how axial and volume EoS in anisotropic elastic calculations can be applied
to lower crystallographic symmetries by using the concept of a deformation gradient tensor, but
calculations still require hydrostatic external stress.

The elastic interaction (final calculation) is essentially an eigenstrain problem. If the host
is elastically isotropic and the inclusion is ellipsoidal, Eshelby’s equivalent inclusion method
(Eshelby 1957) can be used to calculate the deformation of the inclusion analytically. The cal-
culation is based on the Eshelby tensor, which depends on the shape of the inclusion, the elastic
properties of the isotropic host, and the elastic properties of the inclusion, which may be elastically
anisotropic (Eshelby 1957, Mura 1987). In fact, analytical solutions that describe the effect of the
morphology of the inclusion (Zhong et al. 2021a) (Figure 8) are all based on Eshelby’s equivalent
inclusion method. However, the host mineral cannot be perfectly elastically isotropic (even cubic
minerals exhibit different stiffnesses in different crystallographic directions, e.g., along <1 1 1>
versus <1 0 0>), and the inclusion may not be an isolated ellipsoid. Consequently, complete pre-
dictive accuracy requires a full numerical mechanical calculation (e.g., Mazzucchelli et al. 2019,
Morganti et al. 2020, Zhong et al. 2021a), which can then include the elastic anisotropies of the
twominerals, their relative crystallographic orientations, and the inclusion shape.While very flex-
ible, this approach requires a new calculation whenever any one parameter is changed, i.e., every
specific initial entrapment condition would require a new calculation. To relieve the need for nu-
merical simulations,Mazzucchelli et al. (2019) andMorganti et al. (2020) introduced the so-called
relaxation tensor, which transforms the unrelaxed strain into relaxed strain (and vice versa). The
components of the relaxation tensor are calculated numerically for the specific elastic properties,
geometry, and relative orientation of a host-inclusion pair (e.g., QuiG, assuming spherical geom-
etry). Once calculated, the relaxation tensor can be applied to calculate the elastic interaction for
that system for any entrapment conditions, with no need for further numerical modeling.

Isotropic Host, Anisotropic Inclusion

Strictly speaking, all minerals are elastically anisotropic (Nye 1985), but practically speaking, cubic
minerals can usually be approximated as quasi-isotropic (Mazzucchelli et al. 2019). Strict calcula-
tions show that the residual strain and stress in the inclusion are isotropic when the following three
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conditions are met: (a) both the host and inclusion are crystallographically cubic, (b) the inclusion
is spherical, and (c) the external stress is hydrostatic (Mazzucchelli et al. 2018, 2019). Increasing
axial anisotropy results in increasingly anisotropic residual strains and stresses, with differential
stresses (along different crystallographic axes) reaching a few kilobars (Mazzucchelli et al. 2018,
2019; Zhong et al. 2018, 2021a). For garnet hosts, and assuming a simple geometry of the sys-
tem, the anisotropic model and the isotropic model predict similar residual volume strains and
Pinc. The differences between the predictions of isotropic versus anisotropic models are usually
comparable to the typical propagated measurement uncertainties arising from X-ray diffraction
or Raman spectroscopy.Moreover, when the host is quasi-isotropic, the strain of a spherical inclu-
sion does not change with the relative crystallographic orientation as demonstrated for inclusions
with a wide range of stiffness and anisotropy in garnet (Mazzucchelli et al. 2018, 2019; Zhong
et al. 2021a). Therefore, for isolated quasi-spherical inclusions in garnet, diamond, or other cubic
crystals, relative orientation is not necessary to constrain entrapment conditions. However, rela-
tive crystallographic orientation should be determined when modeling irregular, highly stretched,
or highly flattened inclusions (Zhong et al. 2021a,c).

Alvaro et al. (2020) showed that the anisotropic model can, in principle, be inverted to estimate
unique conditions of either entrapment or mechanical closure. The individual axis-specific strains
are measured for an inclusion using X-ray diffraction or Raman spectroscopy, and the effect of the
elastic interaction is computed with a numerical model that includes the specific geometry of the
inclusion and the elastic anisotropy and crystallographic orientation of the minerals in the system.
The strain state of the inclusion corrected for the elastic interaction is then used together with the
volume and axial EoS to calculate axial (axis-specific) isomekes, one for each independent crystal-
lographic direction in the crystal. Each axial isomeke represents the P and T conditions at which
the strains of the host and inclusion, as calculated along a specific crystallographic direction, are
equal. For QuiG without symmetry breaking there are two independent directions, correspond-
ing to the a- and c-crystallographic axes in quartz, and therefore two P-T lines are calculated. The
intersection of these two lines provides a unique possible P and T of entrapment or mechanical
closure for each inclusion. The method does assume that external stress is hydrostatic.

As applied to an eclogite xenolith from theMir kimberlite (Yakutia,Russia), themethod returns
P-T conditions of ∼900°C, ∼30 kbar (Alvaro et al. 2020) (Figure 11). This P-T condition falls
toward the low P-T end of xenoliths from theMir kimberlite (Ashchepkov et al. 2010) but is much
higher than expected for prograde growth of garnet along the subduction path of a crustal pro-
tolith and is generally hotter than typical subduction geotherms (Penniston-Dorland et al. 2015)
(Figure 11). At 900°C, garnet viscously relaxes on timescales of ∼1 to 1,000 years (Zhong et al.
2020b), so this P-T condition likely represents postentrapment reequilibration of quartz inclu-
sions via viscous flow near the peak of metamorphism. Within uncertainty, the rock could have
remained in the quartz stability field (Osborne et al. 2019). Subsequent eruption of the kimberlite
was sufficiently rapid [kimberlites can ascend 200 km in ∼1 h (Russell et al. 2019)] to prevent
further significant resetting of the inclusion stress state.

Anisotropic Host and Inclusion

Mineral inclusions are often contained within significantly anisotropic host minerals, in which case
nonhydrostatic residual stressesmay develop in the inclusion (Figure 10b).Often, simple isotropic
models have been applied to nonisotropic host minerals, such as quartz-in-epidote (Cisneros et al.
2020), apatite-in-zircon (Guo et al. 2021), and coesite-in-kyanite (Taguchi et al. 2019).Thesemod-
els implicitly assume that elastic anisotropy and relative orientation are negligible. Gonzalez et al.
(2021) tested this assumption for QuiZ by using volumetric and axial EoS for both the host and
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Figure 11

(a) Raman spectra measured on four quartz inclusions entrapped in garnet host from an eclogite xenolith, Mir kimberlite pipe (Yakutia,
Russia). (b) Residual strains (a/a0 and c/c0) along a- and c-axes (squares and circles, respectively) are isotropic within estimated standard
deviations after correcting for anisotropic elastic relaxation. Dashed lines represent hydrostatic equations of state for a- and c-axes of
quartz. Two boundary values of inclusion pressure correspond with V/V0 value. (c) P-T plot with axial isomekes for the a-axis (solid lines)
and c-axis (dashed lines). Shading represents uncertainties on measurements. Intersection between axial isomekes represents the unique
P-T condition of elastic equilibration, assuming hydrostatic conditions. Ellipsoids represent 2σ uncertainties in intersection position.
Calculations for inclusion i3 (gray) are indistinguishable from inclusion i5 (green). Figure adapted with permission from Alvaro et al.
(2020). The coesite-quartz boundaries are from Bose & Ganguly (1995) and Osborne et al. (2019).

the inclusion to evaluate how their lattice parameters change during exhumation. Elastic interac-
tion was evaluated numerically for diverse orientations using the concept of a relaxation tensor.
Their results showed that the strain developed in the inclusion upon exhumation is anisotropic,
and the value of the individual components is a function of both the entrapment conditions and
relative crystallographic orientations. If the c-axes of both minerals are aligned, the residual strain
developed in the quartz inclusion preserves its trigonal symmetry. However, all other orientations
induce shear strains that reduce the symmetry of the quartz inclusion to triclinic. Orientation
also affects the volume strain and the residual pressure in the inclusion. Nonetheless, the max-
imum discrepancy between isotropic and fully anisotropic models is less than 600 bars for both
Ptrap (22 kbar; Figure 12, shown explicitly) and Pinc (∼8 kbar; not illustrated), suggesting that the
isotropic elastic model for QuiZ is accurate to within a few percent. However, axial deviations can
reach nearly 2 kbar, depending on which Raman modes are used (Murri et al. 2022), and may be
larger for more elastically discrepant host-inclusion pairs.Models for minerals with lower symme-
try (orthorhombic, monoclinic, triclinic) have not been developed and could potentially compare
less favorably with isotropic models.
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Figure 12

Entrapment isomeke for quartz-in-zircon calculated using the isotropic model together with the residual
strain of a quartz inclusion in a zircon host. The residual strain was calculated with an anisotropic calculation
taking as entrapment conditions 22 kbar and 600°C (red dot). The maximum discrepancy on the entrapment
pressure is less than 600 bars. Figure adapted with permission from Gonzalez et al. (2021).

How Anisotropy Breaks Crystallographic Symmetry

As discussed previously, the Grüneisen tensor is used to calculate axial strains from Raman
peak shifts. As a second-rank symmetric property tensor, the Grüneisen tensor is subject to
the symmetry of the crystal (Ziman 1960, Angel et al. 2019). Symmetry is preserved when
the inclusion is spherical, the host is elastically isotropic, and the external stress acting on the
host is hydrostatic. However, when the host-inclusion system is fully anisotropic (e.g., QuiZ),
the symmetry of the inclusion can be broken upon exhumation, modifying the phonon modes
(Raman peak positions). Murri et al. (2022) used DFT and elastic calculations to investigate
the QuiZ system, for which symmetry-breaking residual strains are expected in the inclusion.
Specifically, they tested whether significant errors in strains and mean stresses arise when using
the unbroken (incorrect) phonon-mode Grüneisen tensor of trigonal α-quartz to calculate the
inclusion strains (Figure 13). Their results show that the changes in Raman peak positions for
real quartz inclusions in zircon are similar to expectations if the quartz inclusions remained truly
trigonal in symmetry. Very large symmetry-breaking strains induce peak broadening or even
splitting (for E modes). For small strains, the simple trigonal Grüneisen tensor can be used to
calculate the average inclusion pressures with errors ranging from 3% to 10%. However, the
trigonal Grüneisen tensor introduces significant errors for axial strains and placement of axial
isomekes (Figure 13). Application of the approach of Alvaro et al. (2020) often results in axial
isomekes that do not intersect and cannot recover a unique Ptrap, Ttrap (Figure 13b).

Does Anisotropy Matter?

Elastically anisotropic minerals dominate Earth, so inclusion strains should commonly be
anisotropic and stresses nonhydrostatic. For QuiG, application of simple hydrostatic calibrations
to calculate Pinc from Raman shifts to a single peak (e.g., equations from Schmidt & Ziemann
2000, Enami et al. 2007, Ashley et al. 2014, Kohn 2014, Thomas & Spear 2018, etc.) can lead to
errors in back-calculated entrapment pressures that exceed 10 kbar for experiments up to 30 kbar
(Bonazzi et al. 2019), although many errors are smaller (c. 1 kbar). Accounting for strain and
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Figure 13

Axial and volume isomekes calculated based on the residual strain of a quartz inclusion in zircon for a model eclogite. Axial isomekes are
calculated using the anisotropic model of Alvaro et al. (2020) and Gonzalez et al. (2021) for the directions of the a-, b-, and c-axes of the
zircon host and their corresponding directions in the quartz inclusion. The isotropic isomeke is calculated from the volume strain of
the inclusion using the isotropic model. (a) Entrapment isomekes using the true symmetry-broken (triclinic) strains intersect at Ptrap,
Ttrap. (b) Entrapment isomekes using strains calculated from the (incorrect) trigonal Grüneisen phonon-mode tensor do not intersect at
Ptrap, Ttrap. Figure adapted with permission from Murri et al. (2022).

stress anisotropy to determine Pinc reproduces experiments, even when stresses are nonhydro-
static (Bonazzi et al. 2019), and is most accurate. Ab initio DFT calculations (Murri et al. 2022)
further show that, at least for quartz inclusions, the measured Raman shifts can be used to calculate
Pinc, even when the inclusion is subjected to symmetry-breaking strains. Once Pinc is determined,
however, the differences between isotropic versus anisotropic calculations are typically compara-
ble to uncertainties on the measurements of strain in natural inclusions with X-ray diffraction or
Raman spectroscopy. Discrepancies are also small (typically less than 1 kbar) for the fully
anisotropic QuiZ system.

Anisotropy is especially crucial to the method of Alvaro et al. (2020) to determine Ptrap, Ttrap

from a single inclusion. These calculations require consideration of elastic anisotropy (also inclu-
sion shape and orientation), and rely on the axial and volume EoS of the minerals to describe how
unit-cell parameters change with temperature and hydrostatic pressure. Calculations must there-
fore assume entrapment or mechanical closure occurred at hydrostatic conditions. The lack of
the full anisotropic elastic properties and their variation with stress and temperature at conditions
relevant for metamorphic rocks currently prevent calculations for nonhydrostatic stresses.

INELASTIC PROCESSES

As a residual pressure develops in an inclusion, gradients in radial and tangential stresses develop
in the host (Equations 1 and 2; Figure 5) and can drive plastic yield, fracturing, and viscous creep.
All these processes can modify the value of Pinc compared to purely elastic models. Although
elastic strain disappears after stress is removed, plastic yield, fracturing, and viscous relaxation are
irreversible. Therefore, the strain developed in a visco-elasto-plastic system is path dependent—it
depends not only on the initial (entrapment) and the final P-T conditions but also on the entire
stress-strain-temperature history (e.g., Zhong et al. 2018).
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Following the mechanical literature, we distinguish time-independent plastic yield and frac-
turing from time-dependent viscous creep (Zhang 1998; Zhong et al. 2018, 2020b). Plastic
deformation of the host occurs whenever the differential stress exceeds a threshold, called the
yield strength (e.g., Zhang 1998). Using the Tresca criterion, plastic yield occurs when∣∣σtangential − σradial

∣∣ ≥ Yhost, 5.

where |σtangential − σradial| is the differential stress in the host around the inclusion (see Figure 5),
andYhost is the yield strength of the host mineral.The yield criterionmight be reached if a pressure
differential already exists between host and inclusion and temperature increases (decreasing Yhost)
and/or if pressure differential increases along a P-T path. Plastic strain in the host then occurs,
which limits the magnitude of the differential stress in the host and, ultimately, the inclusion
pressure. Plastic deformation stops as soon as the differential stress falls under the threshold limit.
This process does not completely relax the stress, but Pinc no longer conforms to an elastic model
of entrapment.

Mode I fractures propagate when the stress intensity factor at the tip of a crack, which is related
to the pressure difference |Pinc − Phost|, exceeds the host fracture toughness (Zhang 1998,Whitney
et al. 2000). Crack propagation increases the volume of the cavity and decreases the pressure in
the inclusion (e.g., van der Molen & van Roermund 1986, Puhan 2021). Positive (compressive)
residual stresses drive radial fracturing, e.g., around coesite inclusions in garnet partially retro-
gressed to quartz (Chopin 1984) (Figure 1f ), quartz inclusions in pyroxene (van der Molen & van
Roermund 1986), and olivine and sulfide inclusions in diamond (e.g.,Harris 1972).Tensile stresses
drive tangential fracturing [e.g., olivine in feldspar (van der Molen & van Roermund 1986)].

Viscous creep responds to differential stress in the host mineral and is a function of time. In
an infinite amount of time, all residual pressure would vanish and become equal to the far-field
pressure acting on the host. Effective viscosity represents a key parameter to describe this viscous
relaxation (Dabrowski et al. 2015, Zhong et al. 2020b):

ηhost = A|τrr|1−n, 6.

where τrr is the radial component of the deviatoric stress, A is an exponentially temperature-
dependent prefactor, and n is the stress exponent. In the simplest case of a spherical inclusion
and linear (Newtonian) viscoelasticity (i.e., n = 1 in Equation 6), the time-dependent relaxation
of Pinc is (Dabrowski et al. 2015)

Pinc (t ) = Phost + (Pinc,0 − Phost ) e

(
− 3Kinc

4ηhost
t
)
, 7.

where Pinc,0 is the initial pressure of the inclusion at time t = 0, Phost is the far-field pressure on the
host, ηhost is the viscosity of the host, and Kinc is the bulk modulus of the inclusion. The character-
istic relaxation time is 4ηhost

3Kinc
(Zhang 1998, Dabrowski et al. 2015). Importantly, relaxation is scale

independent, so all inclusions with the same Pinc,0 in a host will relax at the same rate, regardless of
inclusion size.When n > 1 in Equation 7 (non-Newtonianmaterial), pressure relaxation generally
slows, but response remains scale independent (Dabrowski et al. 2015, Zhong et al. 2020b). The
rate of relaxation depends strongly on |Pinc − Phost|, however, and for QuiG, a 10-kbar differential
stress relaxes 1,000 times faster than a 1-kbar differential stress (Zhong et al. 2020b).

In a 1D visco-elasto-plasticmechanical model of a spherical inclusion in an infinite host (Zhong
et al. 2020b), nondimensionalization reveals two particularly useful parameters. The Deborah
number (De) is a dimensionless time that ratios the characteristic viscous relaxation time of the
host with the model duration (analogous to the characteristic time at elevated temperature for a
natural system). Dimensionless yield strength (C∗) ratios yield strength of the host with Pinc to
determine the resistance of the host to plastic yielding. For QuiG at constant temperature and
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Figure 14

Simple models of relaxation assuming constant initial Pinc, Phost, and temperature, depicted on a plot of dimensionless time (Deborah
number,De) versus dimensionless yield strength (C∗). Results are colored according to predicted final Pinc divided by the pressure
expected for purely elastic behavior (Pelastic), and contoured for the ratio of the radius of the plastic yield region to inclusion radius
(white and gray lines). The thick gray line represents the onset of plastic yield. Three regimes are evident: (1) elastic (De ≫ 1, C∗ > 1);
(2) viscous (De< ∼1 and C∗ to the right of the gray line); and (3) plastic (to the left of the gray line; lighter shading). (a) n= 1 in Equation 6
(effective viscosity expression). (b) n = 3 in Equation 6. Figure adapted with permission from Zhong et al. (2020b) (CC BY 4.0).

Phost = 1 bar, three regimes can be mapped onto De versus C∗ space (Figure 14). An elastic rheol-
ogy prevails (elastic in Figure 14) when De ≫ 1 and C∗ > 1. Pinc does not relax by viscous creep
or plastic yield and retains a value predicted for purely elastic behavior (Pelastic). A viscous regime
dominates when De < 1, and C∗ exceeds the onset of plastic yield. In this region, Pinc decreases
because of viscous creep. Larger stress exponents (n ∼ 3 for most rock and mineral deformation
experiments) reduce the extent of the viscous regime. A plastic regime prevails at low C∗ and high
De (to the left of the gray curves in Figure 14), and Pinc decreases because of plastic yield.

The viscosity of minerals decreases at high temperature. At low temperatures, the character-
istic viscous relaxation time (and, as a consequence, De) increases, preventing viscous relaxation.
Therefore, plastic yielding is more likely than creep at low temperatures.However,many common
host minerals such as garnet and diamond have high yield strength at ambient conditions, which
limits the amount of plastic relaxation. For example, observations of Whitney et al. (2007) imply
a yield strength of garnet between 4.4 and 5 GPa at ambient conditions. A high residual inclusion
pressure of 10 kbar leads to C∗ ∼ 4.4–5, outside the plastic yield region (Figure 14). Therefore,
plastic yield should not be expected for garnet and diamond hosts, unless high differential stress
develops locally, e.g., around the corners of faceted inclusions or during polymorphic transitions
with large volume changes, such as quartz-coesite (Figure 1f ).

Longer durations at higher temperatures decrease De and promote viscous relaxation. For ex-
ample, Pinc for a quartz inclusion entrapped in garnet at 700°C within the eclogite facies might
be lower by ∼10% if exhumation requires 1 Myr and 20% for 10 Myr (Zhong et al. 2020b; see
also Dabrowski et al. 2015). Increasing temperature to 800°C would reduce final Pinc by 30–35%
(Zhong et al. 2020b). If an elastic model is used to interpret the reduced Pinc, apparent Ptrap or
Ttrap will be miscalculated (underestimated for inclusions with positive Pinc). Some studies indeed
show that Pinc for inclusions entrapped in metamorphic garnets at T > 650°C are less than elas-
tic models predict (e.g., Korsakov et al. 2009; Campomenosi et al. 2021). However, rapid cooling
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(high De) promotes preservation of Pinc, even for high-temperature entrapment, as confirmed
theoretically (e.g., Zhong et al. 2018), empirically for xenoliths (Alvaro et al. 2020), and
experimentally (Thomas & Spear 2018; Bonazzi et al. 2019).

Inelastic relaxation along a metamorphic P-T path can be complicated. As P-T conditions
change, Pinc attempts to approach the external pressure, but depending on the exact history, Pinc

may be only partially or completely relaxed (Zhong et al. 2020b, Campomenosi et al. 2023). Plas-
tic or viscous relaxation can occur on both the prograde and retrograde paths, either partially or
completely to a mechanical closure temperature. Therefore, an elastic interpretation of Pinc might
overestimate or underestimate either the true entrapment conditions or the metamorphic peak
conditions (or both). Unlike diffusion-controlled closure, which depends almost exclusively on
temperature, reequilibration and mechanical closure of inclusions depend additionally on rates of
change in Pinc, its magnitude, and its sign (Zhong et al. 2020b, Campomenosi et al. 2023). For
example, two rocks that reached ∼745 and 880°C at 12 kbar record near-peak ZiG temperatures
(Kohn 2016,Gilio et al. 2021), whereas ZiG temperatures were reset from∼725 to 600–650°C for
an ultra-high-pressure (UHP) rock that equilibrated at 30–40 kbar (Campomenosi et al. 2021).
These differences likely reflect exhumation P-T paths, which produced tensile stresses around
UHP inclusions but compressional stresses for the lower-pressure rocks (Campomenosi et al.
2023). Discrepancies inferred from elastic barometry versus phase equilibria arising from inelastic
relaxation of inclusion pressures might be misinterpreted as thermal overstepping of crystal nucle-
ation (Moulas et al. 2020, Zhong et al. 2020b) if chemistry is less affected at elevated temperature
(e.g., if garnets are large).

EXAMPLES AND IMPLICATIONS

Thermobarometry

How accurate are past conventional thermobarometric estimates of P-T conditions and the meth-
ods we use to determine them? Although much work has considered the internal consistency
of different thermodynamically based methods, a truly independent assessment has been lack-
ing. Thus, one of the simplest but most important applications of elastic thermobarometry is in
comparison with conventional, thermodynamically based thermobarometry.

In many cases, correspondence between calculated P-T conditions falls within the error of
both methods (Figure 15). Early work by Endo et al. (2012) represents the first comprehen-
sive comparison and showed overlapping pressures at an assumed temperature using multiple
thermodynamic methods and QuiG geobarometry (Figure 15a). Kohn (2016) also showed good
correspondence between pressures estimated using QuiG barometry (also ZiG thermometry) and
thermodynamicmethods (Figure 15b). Although these older studies used simple models that have
been superseded, recalculation nevertheless yields similar results, and more recent work byWolfe
& Spear (2020; also unpublished work from the authors) generally shows good correspondence
(Figure 15b). However, many estimates of garnet nucleation pressure from inclusions in cores of
garnets are inconsistent with thermodynamic models (Figure 15b), which has been interpreted to
reflect chemical disequilibrium during garnet nucleation (Spear et al. 2014, Castro & Spear 2017).
Rocks that exceeded 800°C show major reequilibration, both texturally (faceted inclusions) and
in Pinc (Figure 15b), and are interpreted to reflect thermally induced grain-boundary diffusion
and viscous relaxation (Cesare et al. 2021). These discrepancies have promoted new research on
nucleation energetics and reequilibration.

Reaction Overstepping

Discrepancies between thermodynamically versus elastically calculated pressures (using QuiG)
for garnet cores led Spear and coworkers to propose that garnet nucleation is often overstepped
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Figure 15

Comparison of pressures calculated using elastic thermobarometry versus thermodynamic methods (both thermobarometry and
whole-rock chemical modeling). (a) Thermobarometric analysis of Endo et al. (2012) for eclogites from Guatemala, showing good
correspondence between thermodynamic methods (Grt-Cpx-Ph equilibria; red star for thermodynamic modeling of whole-rock
assemblages and mineral compositions) and elastic thermobarometry [quartz-in-garnet (QuiG)]. Preferred temperatures are from
Raman spectroscopy of carbonaceous material (RSCM). (b) Many rocks yield similar results, but positive and negative barometric
disparities in studies by Spear et al. (2014) and Castro & Spear (2017) have led to interpretations that garnet nucleation is substantially
overstepped. In these cases, pressure determined using elastic thermobarometry is interpreted to be correct, and thermodynamically
calculated pressure is interpreted to reflect chemical disequilibrium (see also Figure 16). QuiG also reequilibrates for high-temperature
rocks (T > 800°C) (Cesare et al. 2021). Elastic pressure by Kohn (2016) has been recalculated using more recent methods.

(Spear et al. 2014, Castro & Spear 2017,Wolfe & Spear 2020).We do not discuss the energetic re-
quirements for nucleation in detail here (see Gaidies et al. 2011, Pattison et al. 2011), but basically
contribution of surface free energy displaces mineral nucleation to higher pressures or tempera-
tures than the equilibrium isograd. Overstepping is required to overcome this surface free energy
contribution, but the magnitude of overstepping, which directly translates into the volume of a
mineral core that grows out of thermodynamic equilibrium with the matrix, remains unknown.
Unfortunately, the sense of chemical zoning cannot generally distinguish whether a crystal has
grown via overstepping or in equilibrium (Spear 2017).

Castro & Spear (2017) provide the strongest evidence for garnet nucleation overstepping.
Their work on the Cyclades subduction complex shows major discrepancies among equilib-
rium thermodynamic models, petrography, and independent thermobarometry. For example
(Figure 16), inclusions in one rock imply the pregarnet assemblage containedmuscovite, clinoam-
phibole, paragonite, and clinopyroxene, and that garnet nucleated at P-T conditions of∼12.5 kbar
and ∼475°C (based on QuiG barometry and Zr-in-rutile thermometry, recalculated according to
combined calibration of Kohn 2020; Castro & Spear 2017) (Figure 16). However, an equilib-
rium thermodynamic model (Figure 16a), which assumes no surface free energy contribution to
garnet, implies garnet nucleated at ∼11 kbar and ∼600°C, at least 50°C and 5 kbar higher than
the predicted garnet isograd (red curve with maximum P-T conditions of ∼530°C and 6 kbar,
Figure 16a), and far removed from thermobarometric results. An alternate overstepping model
(Figure 16b) predicts assemblages in the absence of garnet and then calculates the P-T location of
the garnet isograd assuming different amounts of surface free energy (green curves,Figure 16b). A
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Figure 16

Comparison of equilibrium versus overstepping thermodynamic models for blueschist from Sifnos, Greece. (a) Equilibrium
thermodynamic model. The star represents the garnet core nucleation condition that would be inferred chemically. This P-T condition
differs markedly from the garnet isograd (red curve) determined from the whole-rock composition and from intersection of the QuiG
barometer and Zr-in-rutile thermometer (recalculated using Kohn 2020, combined calibration). The inferred assemblage prior to
garnet growth (lavender field of Ms+Cam+Pg+Cpx+Chl) does not overlap the star. (b) Overstepping thermodynamic model. Green
curves represent potential garnet isograds corresponding with different assumed surface free energies from 1,900 to 2,700 J/mol·O. A
surface free energy value of ∼2,100 J/mol·O reconciles garnet isograd, inclusion assemblage, QuiG barometry, and Zr-in-rutile
thermometry. The gray star and light red curve duplicate the dark gray star and red curve from panel a for comparison. Figure adapted
from Castro & Spear (2017). Abbreviations: Bt, biotite; Cam, clinoamphibole; Chl, chlorite; Cld, chloritoid; Cpx, clinopyroxene; Grt,
garnet; Lws, lawsonite; Ms, muscovite; Pg, paragonite; Pl, plagioclase; QuiG, quartz-in-garnet; Sil, sillimanite; Zo, zoisite; Zr,
zirconium.

surface free energy of∼2,100 J/mol·O reconciles the thermodynamic model with thermobarome-
try (red hexagon, Figure 16b) and inferred pregarnet assemblage (lavender field, Figure 16b) but
also implies garnet nucleated far from equilibrium and that its core chemistry cannot be used to
infer nucleation conditions or a P-T path. Zhong et al. (2020b) suggested that viscous relaxation
might affect QuiG pressures and spuriously imply overstepping. Although theoretically possible,
peak temperatures are too low (all less than 600°C; most less than 550°C) for viscous relaxation to
be likely for samples considered by Spear et al. (2014) and Castro & Spear (2017). Overall, some
studies imply garnet nucleates far from equilibrium (e.g., hexagon versus star in Figure 16b),
whereas other studies imply simultaneous chemical and mechanical equilibrium (Figure 15b).
The conditions under which equilibrium versus disequilibrium occur remain an area of active
research.

Seismic Cycles

Many quartz inclusions in garnet show variation in Pinc and Ptrap that do not distribute regularly
with radial position or garnet chemistry (e.g., Figure 17). Because viscous or plastic deformation
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Figure 17

(a) Quartz-in-garnet results from blueschist-eclogite block at Ring Mountain, California (Franciscan Formation), showing a range of
values that does not simply correlate with location in garnet. Dots are color-coded according to wavelength shift of the A1g peak
(nominally ∼465 cm−1). Pressures are calculated for quartz-in-almandine (properties from Angel et al. 2017a, 2022b). (b–d) Mn and Ca
X-ray maps for garnet-5 with high-Mn annulus (light blue band). The white box in panel b outlines the region in panels c and d that
contains two quartz inclusions with very different wavelength shifts despite indistinguishable garnet chemistry. These variations and
oscillations in major element chemistry are interpreted to reflect pressure pulses that dissolve and regrow garnet. Figure adapted from
Viete et al. (2018).

can readily release elastic strain, many researchers rely on the maximum Ptrap value at any ra-
dial position to represent Ptrap. Cracking is not always visible to justify this assumption, however.
In contrast, Viete et al. (2018) argued that the variation represents pressure oscillations related
to pressure pulses. In their model, fluid-mediated overpressures build up, and then seismic waves
trigger release of fluid and pressure. Because garnet typically grows with increasing pressure, these
pressure cycles not only produce variation in QuiG pressures but also dissolve and regrow garnets,
explaining oscillations in major elements. For example, dissolution should cause a buildup of Mn
on garnet rims while regrowth should deplete Mn, resulting in a high-Mn annulus. García-Casco
et al. (2002) similarly argued for more than a dozen P-T oscillations, based on compositional os-
cillations in an eclogitic garnet from the Northern Serpentinite Melange, Cuba. Cyclic variations
in pressure might also form in melange zones via repeated formation and release of force chains
among interacting blocks, again related to seismic cycles (Beall et al. 2019).

Many other QuiG data sets, measured via Raman spectroscopy, also show nonsystematic varia-
tions in Pinc and Ptrap among inclusions, in both subduction and collisional settings (e.g., Spear et al.
2014, Wolfe & Spear 2020, Zhong et al. 2021c, Harvey et al. 2021). Some of this variation might
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reflect idiosyncrasies of measurements across inclusions with stress gradients [if they are faceted
(Figure 4)], but otherwise this observation could imply many garnets in diverse tectonic settings
also record seismic cycles. Most garnets do not show major element oscillations, however, so the
link between chemistry and elastic thermobarometry is less clear. Compositional oscillations can
also form via changes in the rate of P-T increases, rather than via P-T oscillations, if intergranular
transport is relatively slow (Kohn 2004). The large pressure drops of several kilobars indicated by
QuiG (Figure 17a) imply shear stresses on the order of several kilobars in subduction zones, at
least at pressures of 15–20 kbar. Such shear stresses are much higher than typically inferred from
rock mechanics (e.g., see Agard et al. 2016) and might help explain why exhumed subducted rocks
record higher temperatures than inferred from models that assume little or no shear heating (e.g.,
Penniston-Dorland et al. 2015, Kohn et al. 2018). Based on pressure differences between QuiG
and thermodynamic modeling, Zhong et al. (2021c) also inferred differential stresses up to 10 kbar
in eclogitized granulites from the Bergen Arcs, Norway, that are cut by pseudotachylites.

FUTURE RESEARCH

From the most simplified to the most sophisticated models, being able to extend elastic geother-
mobarometry to more than just a few host-inclusion pairs will require the joint efforts of diverse
research communities. A surprisingly major obstacle is the lack of availability of elastic prop-
erties at P and T! Even for simple and very common minerals such as quartz, we still do not
have reliable measurements of the elastic properties at simultaneous high T and P above 3 kbar.
Elastic properties represent the base of any calculation for host-inclusion systems. From sim-
pler X-ray diffraction to more complex and time-consuming Brillouin spectroscopy, data from
high P-T experiments are not commonly available and often restricted to high-symmetry crys-
tals. Research on elastic properties has progressively emphasized minerals that form at extreme
P-T conditions, overlooking opportunities for substantial development offered by shallower
(lower-pressure) materials, such as most of the host-inclusion systems relevant to metamorphic
research.

Also surprisingly lacking are calibrations of Raman shifts with pressure. These are of pivotal
importance because they provide fundamental insight into the behavior of host-inclusion pairs and
for characterizing and interpreting Pinc. These experiments are typically performed in diamond
anvil cells, which require specialized preparation skills, but are otherwise relatively simple and fast
(e.g., a calibration can be performed in less than a month). Yet calibrations are not available for
many common mineral inclusions, such as pyrrhotite, ilmenite, hydroxyl-apatite, titanite, amphi-
boles, and some pyroxenes (e.g., jadeite), let alone more exotic minerals. Simple EoSs have been
applied to diverse mineral pairs to predict their thermometric and barometric value (Kohn 2014,
Cisneros & Befus 2020), and these predictions could help define future research efforts, especially
for minerals with lower symmetry.

Widespread enthusiasm engendered with the recognition that Raman measurements are suf-
ficiently precise for widespread application of QuiG, ZiG, and other elastic thermobarometers
(Enami et al. 2007, Endo et al. 2012, Ashley et al. 2014, Kohn 2014, Spear et al. 2014) has been
tempered as subsequent research showed how simple elastic models do not always explain the be-
havior of host-inclusion systems (Campomenosi et al. 2018, 2021; Mazzucchelli et al. 2018, 2019;
Murri et al. 2018, 2022; Alvaro et al. 2020; Zhong et al. 2020b, 2021a; Gonzalez et al. 2021). Yet,
whereas sophisticated models have now been developed for elastic systems, even more complex
models are needed to model inelastic processes. Constraining these models will require more ex-
periments and experimental strategies, both to determine the properties of minerals and to test
the fundamental hypotheses behind the models. Computational modeling at different scales (e.g.,
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atomistic simulations combined with continuum mechanics) is needed to predict the behavior of
minerals under conditions that are difficult to reproduce with experiments. Finally, nature has
conducted diverse experiments in the form of exhumed rocks, and these provide opportunity to
further test models and develop new concepts. Elastic thermobarometry is an inverse problem
with numerous variables. Not all variables are equally important or resolvable, so [the results of
Alvaro et al. (2020) notwithstanding] a single inclusion may not provide accurate P-T informa-
tion if interpreted alone. However, patterns may emerge when numerous inclusions are carefully
interpreted together and further help us decipher the evolution of rocks.
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