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Abstract
Field-based transplant gardens, including common and reciprocal garden experi-
ments, are a powerful tool for studying genetic variation and gene-by-environment 
interactions. These experiments assume that individuals within the garden represent 
independent replicates growing in a homogenous environment. Plant neighborhood 
interactions are pervasive across plant populations and could violate assumptions 
of transplant garden experiments. We demonstrate how spatially explicit models 
for plant–plant interactions can provide novel insights on genotypes' performance 
in field-transplant garden designs. We used individual-based models, based on data 
from a sagebrush (Artemisia spp.) common garden, to simulate the impact of spatial 
plant–plant interactions on between-group differences in plant growth. We found 
that planting densities within the range of those used in many common gardens can 
bias experimental outcomes. Our results demonstrate that higher planting densities 
can lead to inflated group differences and may confound genotypes' competitive abil-
ity and genetically underpinned variation. Synthesis. We propose that spatially explicit 
models can help avoid biased results by informing the design and analysis of field-
based transplant garden experiments. Alternately, including neighborhood effects in 
post hoc analyses of transplant garden experiments is likely to provide novel insights 
into the roles of biotic factors and density dependence in genetic differentiation.
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common garden, density dependence, gene-by-environment interaction, local adaptation, 
quantitative genetics, transplant garden
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Resumen
Los experimentos de trasplante de especies en parcelas de campo experimentales, 
tanto bajo condiciones ambientales comunes (“common gardens”) como diferentes 
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1  |  INTRODUC TION

How environmental variation leads to genetic differences and, ul-
timately, to local adaptation is a fundamental question in ecology 
and evolution with broad implications for conservation (Aitken 
& Bemmels, 2016; Breed et al.,  2019; Weigel & Nordborg, 2015). 
However, quantifying genetically underpinned differences between 
populations is complicated by phenotypic plasticity and environ-
mental heterogeneity, necessitating carefully designed experiments. 
Transplant gardens, including common and reciprocal transplant 
experiments, provide a way to isolate genetic variation from phe-
notypic plasticity by growing individuals from different populations 
in the same environment (Cheplick,  2015; Johnson et al.,  2022; 
Kawecki & Ebert,  2004; but see Galloway,  1995). By quantifying 
genetic variation, transplant garden experiments have resulted in 
transformative insights, from drivers of genetic differentiation to ef-
fective conservation policies in the face of climate change (Aitken & 
Bemmels, 2016; Ariza & Tielbörger, 2011).

Appropriate experimental design is key to inference on genetic 
variation from transplant gardens, including the assumption of in-
dependent replicates. Consequently, minimizing spatial variation 
that could violate experimental assumptions is paramount. Spatial 
variation can exist before planting due to environmental, that is, abi-
otic, heterogeneity. For example, variable soil fertility can alter plant 

fitness outcomes in planting experiments, potentially leading to bi-
ased results (Wijesinghe & Hutchings, 1997). Considerable effort has 
focused on minimizing the impacts of environmental heterogeneity 
by carefully selecting experimental sites and using block designs that 
account for spatial autocorrelation, for example, α-lattice incomplete 
block experimental designs (Borges et al., 2019). Spatially structured 
variation can also emerge during the experiment due to dynamic in-
teractions between growing plants (Urza et al., 2019). The ideal way 
to control for plant–plant interactions in transplant garden experi-
ments is to choose a planting distance that ensures plants are spaced 
far enough to minimize any possible interactions. However, the spa-
tial extent of plant–plant interactions is highly variable, depending 
on neighboring plant species and life stages (Goldberg et al., 2001; 
Urza et al., 2019). As a result, planting densities are rarely based on 
quantitative estimates of the spatial scale at which plants may inter-
act (but see Sandquist & Ehleringer, 1997).

Inappropriately high planting densities could undermine analy-
ses of transplant garden experiments that assume plants are inde-
pendent. Decades of research from experimental and observational 
studies demonstrate that spatial interactions are a significant source 
of variation in plant performance (Adams et al., 2013; Goldberg & 
Fleetwood,  1987; Parachnowitsch et al.,  2014). Examples of eco-
logical mechanisms that contribute to spatial plant–plant interac-
tions include asymmetric competition, community defense against 

(“reciprocal gardens”), son una poderosa herramienta que permite estudiar la 
variación genética y la interacción entre el genoma y el medio ambiente. Dichos 
experimentos asumen que los individuos dentro de una misma parcela representan 
réplicas independientes creciendo bajo condiciones ambientales homogéneas. 
Las interacciones entre plantas vecinas están omnipresentes en las dinámicas 
poblaciones y pueden suponer una violación de dichas asunciones. Sin embargo, 
enfoques cuantitativos que permitan evaluar la adecuación del diseño experimental 
son escasos. Nosotros demostramos cómo los modelos espacialmente explícitos 
para las interacciones planta-planta pueden proporcionar nuevos hallazgos sobre 
el rendimiento genotípico en el diseño de experimentos de trasplante. Utilizamos 
modelos basados en individuos, junto con datos de “artemisa” (Artemisia spp.) 
procedentes de un “common garden,” para simular el impacto de las interacciones 
planta-planta sobre las diferencias de crecimiento entre grupos. Encontramos que la 
densidad de siembra utilizada con frecuencia en muchos “common gardens” puede 
sesgar la estimación de la variación entre grupos. Nuestros resultados demuestran 
que una mayor densidad de siembra puede inflar las diferencias entre grupos, 
confundir la habilidad competitiva de los genomas y la variabilidad sustentada 
genéticamente, introduciendo así un sesgo en el experimento. Proponemos que los 
modelos espacialmente explícitos pueden ayudar a evitar el sesgo en los resultados 
mediante el apoyo en el diseño y análisis de experimentos de trasplante. Incluir 
efectos de vecindad en el análisis a posteriori de experimentos puede proporcionar 
nuevos hallazgos sobre el papel de los factores bióticos y densidad-dependientes en 
la diferenciación genética.
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herbivory, hydraulic redistribution, and effects of plant volatile 
compounds (Karban & Shiojiri,  2009; Neumann & Cardon,  2013; 
Ninkovic et al.,  2016; Schwinning & Weiner,  1998). Pairwise in-
teractions between neighboring plants determine the strength of 
spatial plant–plant interactions and depend both on distance be-
tween neighbors and their relative size (Adler et al., 2010; Barber 
et al., 2022). Quantifying these interactions and their consequences 
for plant population dynamics remains an active area of research, 
in part because demographic outcomes of plant–plant interactions 
are not always obvious (Bolker & Pacala,  1997; Law et al.,  2003; 
Miriti,  2006). For example, weak interactions between large, es-
tablished individuals may have equal or greater importance for 
population growth rates than strong interactions between seed-
lings (Caughlin et al., 2015). Despite the foundational importance of 
plant–plant interactions in ecology and evolution, a gap remains be-
tween quantitative models for these interactions, which are often fit 
using observational data, and transplant garden experiments, which 
often do not consider potential neighborhood effects.

This research gap is problematic as persistent effects of 
plant–plant interactions can lead to varying population fitness 
and local adaptation that transplant garden experiments aim to 
measure (Grassein et al., 2014; Liancourt et al.,  2013; Liancourt 
& Tielbörger,  2009). Interactions between neighboring plants 
could differentially contribute to phenotypic variation of tested 
genotypes in transplant garden experiments (Fridley et al., 2007; 
Willis et al., 2010). As a result, differences in fitness that result 
from intraspecific interactions could be falsely attributed to ge-
netic variation, potentially increasing Type I error in the statisti-
cal analysis; or, register as unaccounted variation in the observed 
data, increasing experimental error and Type II statistical error. 
Potential biases due to intraspecific interactions are particularly 
unpredictable in artificial combinations of plant genotypes that 
would not co-occur in natural settings, for example, in common 
and transplant gardens.

Spatial models could aid inference on transplant garden experi-
ments by providing quantitative information on the strength and scale 
of plant–plant interactions. Spatially explicit models for plant–plant 
interactions are widely used to analyze observational data on plant 
demography, including inter- versus intraspecific competition (Adler 
et al., 2010; Chu & Adler, 2015), the role of functional strategies in 
spatial interactions (Muscarella et al., 2018), and spatial clustering of 
genetic diversity (Shao et al., 2018). These spatially explicit models 
typically quantify spatial decay of competitive effects as a function 
of distance to neighbors, providing estimates that could directly 
inform the design and analysis of transplant garden experiments. 
Analogously, large-scale yield experiments increasingly incorporate 
models for spatial autocorrelation caused by environmental heteroge-
neity (Burgueño, 2018). Models for spatial autocorrelation can allocate 
treatments before the experiment begins (“spatial designs”) or supple-
ment analyses after the experiment ends by accounting for potential 
biases in results (Coelho et al., 2021; Hoefler et al., 2020; Williams & 
Piepho, 2013). Given the increasing interest and need to include biotic 
factors in genome to phenome studies (Johnson et al., 2022; Urban 

et al., 2016), we propose that similar spatially explicit models will be 
critical to isolate and account for biotic neighborhood effects.

Motivated by the theory and empirical evidence of spatial 
plant interactions across ecological systems (Adler et al.,  2018; 
Caughlin et al., 2015; Law et al., 2003), our paper showcases the 
risks of ignoring plant–plant interactions when interpreting trans-
plant garden experiments and provides model-based solutions to 
mitigate these risks. Our spatially explicit, individual-based mod-
eling (IBM) approach was informed by data from a common gar-
den study of big sagebrush (Artemisia tridentata), a species with 
high genetic diversity (Richardson et al., 2012). Using the parame-
ters obtained from the common garden experiment, we evaluated 
the potential for biological interactions among individual plants to 
alter inference on genetic contributions to plant growth. We re-
produced the spatial planting design, including distance between 
focal plants and their crown size, of this common garden to inves-
tigate two questions:

1.	 To what extent do intraspecific neighbor interactions contribute
to observed population differences in plant growth?

2.	 How can spatial models for plant–plant interactions aid experi-
mental design to inform appropriate planting densities?

While our case study focuses on a single species, our models are 
generalizable across many different species. Given the pervasive im-
portance of plant–plant interactions for plant fitness, our approach 
demonstrates how spatial models could improve the design, imple-
mentation, and analysis of transplant garden experiments.

2  |  METHODS

2.1  |  Description of the common garden

To demonstrate how intraspecific density dependence affects 
quantitative plant traits, we parametrized the IBM based on a com-
mon garden located in central Utah, USA (Majors Flat, 39.3391, 
−111.5201). In this garden, big sagebrush (Artemisia tridentata Nutt.)
source seeds were collected across the western US and outplanted
in 2010 (Chaney et al.,  2017). The size of the plants was moni-
tored during the first 2 years after outplanting (Chaney et al., 2017;
Richardson et al., 2021), and in our study, we used growth estimates
from the second year of the experiment, calculated as the difference
in crown volume between 2012 and 2011. The experimental design
included 470 plants from 55 source populations randomly arranged
into a grid with spacing among plants at 1 and 1.5 m on two axes.
These 55 source populations represent range-wide genetic diversity
of A.  tridentata. The experiment included three commonly recog-
nized subspecies of A. tridentata, two of which differ in ploidy level,
resulting in five subspecies-cytotypes categories: A. t. tridentata-2x, 
A. t. tridentata-4x, A. t. vaseyana-2x, A. t. vaseyana-4x, A. t. wyomin-
gensis-4x. Akin to the language in common statistical analyses of
variance, we refer to these intraspecific categories as groups in all
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subsequent analyses. Beside A. tridentata plants, there was also one 
source population of A. arbuscula included in the experiment.

2.2  |  Growth models

We explored the effect of intraspecific biotic interactions on plant 
growth in a series of spatially explicit simulations. The workflow in-
cluded three steps. First, we retrieved estimated plant growth and 
the magnitude of spatial interactions from the models (detailed 
below) fit with the common garden data. Second, we used the IBM 
to model plant growth in simulated common gardens with varying 
distances between outplants. Finally, we quantified the magnitude 
of differences in growth among populations that could be attributed 
to spatial proximity among individual plants. To do that, we applied 
analysis of variance (ANOVA), a commonly used technique in com-
mon garden studies (Blanquart et al., 2013), using a model without 
the spatial term as a baseline (detailed below).

Growth model parameters were based on the subspecies-
cytotype group differences in growth rate and plant tolerance 
to neighborhood crowding proposed by Zaiats et al.  (2021). 
Neighborhood crowding represents a cumulative measure of per 
capita effect on a quantitative trait from the immediate set of neigh-
bors, corresponding to a measure of competition response by target 
plants (Chu & Adler, 2015; Goldberg & Fleetwood, 1987). The sta-
tistical growth model quantified intrinsic growth rate and crowding 
effect following Equations  1 and 3 (detailed below), and we refer 
readers to Zaiats et al. (2021) for further details on parameter esti-
mation. Briefly, the common garden design allows for 11 distance-
to-focal plant treatments within a 4 m neighborhood radius, while 
the non-linear crowding kernel can accommodate a range of spa-
tial neighbor effects, from a sharp to gradual declines in neighbor 
effect with distance. Models for plant demography in this common 
garden indicated different responses to neighborhood density based 
on subspecies identity and ploidy (i.e., cytotype) variation (Zaiats 
et al.,  2021). Specifically, tetraploid variants demonstrated more 
conservative growth and greater tolerance to neighbors than their 
diploid variants.

2.3  |  Individual-based modeling simulations

We ran the simulations using R software version 4.0.4 (R Core 
Team, 2021), and the R scripts are available from the Zenodo re-
pository (https://doi.org/10.5281/zenodo.7411125); the Overview, 
Design concepts, and Details (ODD) description of the IBM (Railsback 
& Grimm,  2019) is provided in the Supporting Information 
(Appendix S1). Simulations of plant growth were based on the iden-
tical spatial arrangement as that in the Majors Flat common gar-
den (i.e., the qualitative composition of plant neighborhoods), but 
with varying pairwise distances among individuals. We simulated 
15 distance scenarios ranging from 0.5 to 4 m and propagated the 
uncertainty in parameter estimates (2000 posterior samples) to 

simulation output, resulting in 30,000 simulations. We conducted 
the simulations in two hypothetical scenarios: simulations that in-
cluded neighbor interactions and those that did not (hereafter, full 
and base models; Equations 1 and 2, respectively), based on the fol-
lowing terms: intrinsic growth rate (i.e., the intercept, �), the effect 
of plant size at the beginning of the census (�), and a neighborhood 
crowding effect (γ). The crowding index (�) represents a cumulative 
measure of neighbor crown size weighted by distance (D) from the 
target plant, where c, b are estimated parameters determining the 
strength of spatial neighbor effects. We included plant size, � Sizei, 
as a covariate to account for initial size differences between plants 
and differences in growth forms among intraspecific groups (Merow 
et al., 2014).

where � is the predicted growth of plant i belonging to group s with k 
neighbors, with the superscripts (F) and (B) corresponding to the full 
and base models, respectively, and � is the unexplained variation. The 
parameters c and b in Equation 3 determine the shape of the neighbor-
hood effect, from sharply to gradually declining with distances, which 
was empirically estimated to near negligible effect beyond the dis-
tance of 2.5 m away from the plant (Zaiats et al., 2021). Similar models 

(1)μ(F) i,s ∼ normal
(

�[s] + �[s]Sizei + � [s]ϕi ,�
2
)

(2)μ(B) i,s ∼ normal
(

�[s] + �[s]Sizei ,σ
2
)

(3)�i,s =

k
∑

j=1,j≠i

c[s]Sizej,s

exp
(

bD2
j

)

F I G U R E  1 Group variation in Artemisia tridentata due to 
spatial interactions as a function of distance among plants (m) 
in a simulated common garden plot. The F-statistic is calculated 
using the difference between the predicted outcomes of the full 
(including spatial interactions) and the base models (no spatial 
interactions) as an input for ANOVA. The obtained F-statistic was 
relativized by the average F-value of the base model, that is, the 
gray dashed line indicates an F-statistic due to the spatial effects 
that is comparable to the group differences generated by the 
intrinsic growth rates. The black dashed line indicates the mean 
F-statistic, while the darker and lighter shadows show 68% and
95% percentiles of the F-statistic values in the simulated growth
realizations.
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are widely used to quantify the effect of spatial interactions on plant 
fitness (Adler et al., 2010; Hülsmann et al., 2020).

To check for the potential impact of a spatial pattern already ex-
istent at the time of the census (i.e., different growth and survival 
of individuals prior to data acquisition), we spatially perturbed the 
arrangement of plants and conducted an analysis of variance follow-
ing the same steps as detailed above. This analysis resulted in similar 
estimates to those obtained using the observed starting conditions 
(results not shown).

2.4  |  Spatial biotic interactions

To address our first question, to what extent do intraspecific neigh-
bor interactions contribute to group differences in plant growth, 

we conducted an analysis of variance using predicted growth from 
Equations 1 and 2 and intraspecific taxa as an independent variable. 
To isolate the spatial effect, we conducted this analysis on the dif-
ference between the full and base models (μ(F)-μ(B)), quantifying the 
magnitude of change in F-statistic relative to the base model that 
is explained by taxonomic groups, F(�

(full) − �(base))
F(�(base))

, where F(.) is an 
F-statistic of the ANOVA test performed on the response variable
specified inside the parentheses. By design, this difference con-
verges to zero when the outcomes of the base and full models are
equivalent (μ(F) = μ(B)) due to increasingly large distances (D) in the
denominator of Equation  3. Additionally, we calculated Pearson's 
correlation coefficient (r) between the simulation outcomes as a 
function of distance among plants. Pearson's correlation represents 
the agreement between the two predicted scenarios, that is, in-
cluding and not including neighbor interactions. For the correlation 
analysis, we set �2=0 in Equations 1 and 2 to propagate uncertainty 
only through the mean, isolating the deterministic outcomes of the 
simulations and varying only distance among plants. To address our 
second question, how can spatial models aid experimental design, 
we explored the spatial arrangement that would minimize the ef-
fect of biotic interactions. We calculated the scenario under which 
the 95% credibility interval (CI) correlation Pearson's coefficient was 
r > .99, indicating that impacts from spatial interactions among plants 
are unlikely to impact inference on mean group differences. The em-
pirical estimates of plant growth using spatial and non-spatial mod-
els are detailed in Zaiats et al. (2021) and Richardson et al. (2021).

3  |  RESULTS

The data from the common garden included 448 live plants at the 
time of last demographic census. We used the arrangement and size 
distribution from the second year after outplanting (2011) as start-
ing conditions in the simulations. Before our demographic censuses 
in 2011 and 2012, 22 plants had died, and thus, gaps in the regular 
grid pattern existed. However, our spatial perturbation randomly re-
arranged the relative locations of live and dead individuals, thereby 
negating potential priority effects. The observed plant growth var-
ied by the taxonomic identity of the populations, F5,442 = 44.223, 
p < .001. Specifically, populations of A. t. tridentata and A. arbuscula 
had the highest and lowest growth rate (i.e., change in crown vol-
ume), respectively, while populations of A. t. vaseyana and A. t. wyo-
mingensis had intermediate growth.

As expected, the results from the simulation showed that among-
group variation in the full and base models had considerable differ-
ences (Figure  1), particularly for simulation scenarios when plants 
were closely arranged. The number of individual plants did not 
change over time, making the outcomes from the full and base models 
comparable. The spatial term introduced a substantial change in the 
simulated plant growth, and the magnitude of this change showed 
a strong negative relationship with distance (Figures 1 and 3). For 
additional details on model parameters, see Zaiats et al. (2021). The 
F-statistic based on the difference between the full and base model

F I G U R E  2 Pearson's correlation coefficient between predicted 
mean growth of a full (including spatial interactions) and base (no 
spatial interactions) models as a function of distance (m) among 
plants. The black dashed line indicates the average correlation 
coefficient, while darker- and lighter-colored shades correspond to 
68% and 95% error of the mean, respectively. The vertical dashed 
line shows the threshold where the 68% uncertainty is within 
Pearson's correlation > .99.
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F I G U R E  3 Mean differences between intraspecific groups of 
Artemisia tridentata in terms of growth. The plot shows predicted 
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outcomes (μ(F)−μ(B)) for the planting scenario with maximum density 
(pairwise distance of 0.5 m) was 32.4% greater than the base model 
(F5,442 = 128.8, 95%CI: 16.7, 254.8). The among-group differences 
due to spatial interactions became negligible (i.e., converged to zero) 
as the spacing among plants increased.

The simulation outcomes from the full and base models showed 
increasing positive correlation as the distance between plants in-
creased. The average correlation coefficient was lowest under the 
densest spatial arrangement (r = .5, 95%CI: −0.19, 0.99) but rapidly 
converged to r > .99 for distances greater than 1.25 m. For the 1 
SD uncertainty around the average correlation, the r values var-
ied between −.74 and .90 for the densest arrangement at 0.5 m 
interspaces. At this uncertainty level, the lower bound of the cor-
relation uncertainty converged to r > .99 at greater than 2 m inter-
spaces between the plants (Figure 2). When we directly compared 
the predicted growth for each intraspecific group under the two 
extreme distance scenarios, we found evidence that neighborhood 
interactions altered the relative performance between groups 
(Figures 1 and 3). These simulation results demonstrate how neigh-
borhood interactions can change the ranking of mean performance 
among groups.

4  |  DISCUSSION

We have shown how spatial interactions can bias estimates of the 
relative performance of plant genotypes in a common garden ex-
periment. Our simulation models reveal the dangers of assuming 
environmental homogeneity within transplant gardens when plants 
are close enough to interact with one another. In genetically diverse 
transplant gardens, spatial biotic interactions can create winners and 
losers among populations, because genotypes more vulnerable to 
competition should have lower performance relative to genotypes 
more tolerant of competition (Fridley et al.,  2007). Demographic 
stochasticity may exacerbate these differences as some plants grow 
larger due to random events and become superior competitors (Hart 
et al., 2016). Together, our results support the need to interpret phe-
notypic variation in plant performance in the context of dynamic bi-
otic conditions that evolve over time (Coleman et al., 1994).

Our work demonstrates how spatial models can identify appro-
priate planting distances for transplant gardens. For our focal species, 
big sagebrush, planting distances >1.25 m apart may be required to 
avoid spatial biotic interactions, even during relatively early stages of 
establishment (2 years after outplanting). As plants increase in size, 
spatial biotic interactions are likely to continue to affect the expres-
sion of demographic and functional traits of the tested genotypes (B. 
Richardson, unpublished data). A non-exhaustive review of planting 
densities in highly cited transplant garden experiments reveals that 
spacing between plants varies markedly (n = 20, mean: 1.17 m, SD: 
1.27 m; Table S1), including several studies with planting distances 
<0.1 m. While the distance required to minimize the effects of bi-
otic interactions on plant performance will depend on a plant's size 
and growth rate, a quantitative approach to predict potential spatial 
interactions is needed. Among the 20 reviewed studies, few based 

planting densities on the measured spatial scale of plant–plant inter-
actions or an explicit assumption for the relationship between plant 
size and biotic interactions. The motivation for minimizing plant–
plant interactions via planting distances is that widely spaced plant-
ings increase the maintenance costs of the garden, including weed 
suppression. However, ignoring neighborhood interactions can alter 
inference on the magnitude of group-level differences.

Model-based designs provide a way to select appropriate plant-
ing density and plant arrangement in transplant gardens. Ecologists 
and evolutionary biologists implementing transplant garden exper-
iments could take inspiration from yield experiments in agronomy, 
where model-based solutions to spatial autocorrelation have been 
thoroughly explored (Borges et al., 2019). Specifically, study designs 
that spatially stratify populations across potential confounding fac-
tors show superior performance compared to random plantings. In 
addition to abiotic spatial heterogeneity, accounting for biotic inter-
actions using spatially explicit models provides a way to quantify 
neighborhood effects in existing populations across different life 
stages and spatial plant arrangements (Barber et al., 2022). The util-
ity of a model-based approach is to quantify intrinsic demographic 
rates and neighborhood effects, effectively separating abiotic and 
biotic drivers of variation in the tested genotypes (Adler et al., 2010; 
Zaiats et al., 2021). It is worth noting that experimental and model-
based estimates of neighborhood effects and intrinsic demographic 
rates may differ (Adler et al.,  2018). Nevertheless, spatial models 
for neighborhood effects are relevant to transplant garden exper-
iments, with utility to strengthen experimental inference while 
expanding the range of future research questions (Galloway, 1995; 
Wijesinghe & Hutchings, 1997).

An ideal way to avoid bias due to plant–plant interactions in 
transplant gardens would be to apply spatial models to determine ap-
propriate planting densities before the experiment. Species-specific 
data and models may be available for well-studied species, such as 
big sagebrush. For other species, a lack of pre-existing spatial data 
may necessitate alternate approaches to inform planting densities. 
Morphological traits published in the literature or measured em-
pirically may be easier to obtain than species-specific competition 
kernels (Muscarella et al.,  2018; Uriarte et al., 2010). For example, 
Sandquist and Ehleringer  (1997) used the length of lateral roots in 
Encelia farinosa to guide planting distances in a common garden. In big 
sagebrush, a model-based estimation of the competition kernel in a 
common garden setting was also consistent with distances measured 
in an experiment that quantified the belowground zone of influence 
and potential root-to-root interactions (Zaiats et al., 2020, 2021). An 
increasing body of evidence suggests that the strength and scale of 
competitive interactions vary predictably with plant functional traits, 
including wood density and specific leaf area (Kraft et al.,  2015; 
Uriarte et al., 2010; Yang et al., 2021). These predictive models for 
plant–plant interactions could guide planting densities based on trait 
measurements. Achieving the promise of model-based approaches to 
inform transplant garden design will benefit from more dialogue be-
tween experimentalists and quantitative ecologists.

Biotic interactions in transplant garden experiments can com-
plicate inference on genetic variation, but they also provide an 
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opportunity to study questions that relate plant–plant interactions 
to genetic differentiation (Grassein et al., 2014; Johnson et al., 2022). 
Neighbor interactions in otherwise homogenous environments 
(i.e., with interspecific neighbors removed) may partially explain 
high variability in estimates of local adaption in studies investi-
gating biotic and abiotic sources of genetic variation (Hargreaves 
et al., 2020). For example, our models revealed that competition re-
sponse (i.e., neighbor tolerance) in a biotically altered transplant gar-
den could change the relative average growth estimates (Figures 1 
and 3). While plant growth alone may not be a reliable indicator of 
plant fitness, nor a sole basis to measure intraspecific genetic vari-
ation (Kawecki & Ebert, 2004), the majority of studies that focus 
on quantitative traits in transplant gardens include measurements 
of growth-dependent traits that often correlate with each other 
(Baughman et al., 2019; Caswell, 2000; Laughlin et al., 2020; Rees & 
Ellner, 2016). We include only a single common garden experiment 
and cannot directly estimate biases in local adaptation, yet, our con-
clusions are relevant to replicated experiments along environmental 
gradients. Carefully designed treatments of biotic neighborhoods in 
transplant gardens could provide valuable insights into biotic fac-
tors of genetic differentiation and local adaptation.

Given the risk of biased inference from spatial plant–plant inter-
actions, accounting for biotic neighborhood variation will likely im-
prove future inference from transplant gardens. Existing data from 
transplant garden experiments (reviewed in Baughman et al., 2019; 
Hargreaves et al., 2020; Johnson et al., 2022) and spatially explicit 
models (e.g., Barber et al.,  2022; Chu & Adler,  2015; Muscarella 
et al., 2018) provide an opportunity to determine the appropriate 
spacing of plants for future experiments. For example, considering 
the overarching importance of plant–plant interactions for popula-
tion and community dynamics, growing plants in isolation from com-
petitors is unrealistic and may give a biased view of adaptation. As an 
alternative to eliminating spatial interactions in transplant gardens, 
experimental designs could explicitly test the importance of biotic 
interactions by varying neighborhood composition and density as 
an experimental treatment, including treatments with minimal com-
petition (Kawecki & Ebert, 2004; Münzbergová, 2007). Accounting 
for biotic interactions in the transplant gardens will be informative 
in differentiating abiotic and biotic or potential and realized eco-
logical niches of the tested genotypes. Our study emphasizes the 
increasing recognition of biotic interactions as agents of popula-
tion and evolutionary changes (Ariza & Tielbörger, 2011), including 
management interventions such as re-introduction, translocation, or 
restoration efforts (Breed et al., 2019; Bucharova, 2017; McLane & 
Aitken, 2012; Seaborn et al., 2021). Transplant gardens with appro-
priate experimental designs represent an invaluable opportunity to 
disentangle biotic interactions and genetic diversification.
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