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Abstract
Field-	based	 transplant	 gardens,	 including	 common	 and	 reciprocal	 garden	 experi-
ments,	are	a	powerful	tool	for	studying	genetic	variation	and	gene-	by-	environment	
interactions.	These	experiments	assume	that	individuals	within	the	garden	represent	
independent	replicates	growing	in	a	homogenous	environment.	Plant	neighborhood	
interactions	 are	 pervasive	 across	 plant	 populations	 and	 could	 violate	 assumptions	
of	 transplant	 garden	 experiments.	 We	 demonstrate	 how	 spatially	 explicit	 models	
for	 plant–	plant	 interactions	 can	 provide	 novel	 insights	 on	 genotypes'	 performance	
in	field-	transplant	garden	designs.	We	used	individual-	based	models,	based	on	data	
from	a	sagebrush	(Artemisia	spp.)	common	garden,	to	simulate	the	impact	of	spatial	
plant–	plant	 interactions	 on	 between-	group	 differences	 in	 plant	 growth.	We	 found	
that	planting	densities	within	the	range	of	those	used	in	many	common	gardens	can	
bias	experimental	outcomes.	Our	results	demonstrate	that	higher	planting	densities	
can	lead	to	inflated	group	differences	and	may	confound	genotypes'	competitive	abil-
ity and genetically underpinned variation. Synthesis.	We	propose	that	spatially	explicit	
models	can	help	avoid	biased	results	by	 informing	the	design	and	analysis	of	 field-	
based	transplant	garden	experiments.	Alternately,	including	neighborhood	effects	in	
post	hoc	analyses	of	transplant	garden	experiments	is	likely	to	provide	novel	insights	
into	the	roles	of	biotic	factors	and	density	dependence	in	genetic	differentiation.

K E Y W O R D S
common	garden,	density	dependence,	gene-	by-	environment	interaction,	local	adaptation,	
quantitative genetics, transplant garden

T A X O N O M Y  C L A S S I F I C A T I O N
Conservation	ecology,	Conservation	genetics,	Demography,	Population	genetics,	Quantitative	
genetics,	Spatial	ecology

Resumen
Los	experimentos	de	 trasplante	de	especies	en	parcelas	de	campo	experimentales,	
tanto	 bajo	 condiciones	 ambientales	 comunes	 (“common	 gardens”)	 como	diferentes	
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1  |  INTRODUC TION

How	environmental	 variation	 leads	 to	 genetic	differences	 and,	ul-
timately,	 to	 local	 adaptation	 is	 a	 fundamental	 question	 in	 ecology	
and	 evolution	 with	 broad	 implications	 for	 conservation	 (Aitken	
&	Bemmels,	2016; Breed et al., 2019;	Weigel	&	Nordborg,	2015). 
However,	quantifying	genetically	underpinned	differences	between	
populations	 is	 complicated	 by	 phenotypic	 plasticity	 and	 environ-
mental	heterogeneity,	necessitating	carefully	designed	experiments.	
Transplant	 gardens,	 including	 common	 and	 reciprocal	 transplant	
experiments,	 provide	 a	way	 to	 isolate	 genetic	 variation	 from	phe-
notypic	plasticity	by	growing	individuals	from	different	populations	
in	 the	 same	 environment	 (Cheplick,	 2015; Johnson et al., 2022; 
Kawecki	 &	 Ebert,	 2004;	 but	 see	 Galloway,	 1995).	 By	 quantifying	
genetic	 variation,	 transplant	 garden	 experiments	 have	 resulted	 in	
transformative	insights,	from	drivers	of	genetic	differentiation	to	ef-
fective	conservation	policies	in	the	face	of	climate	change	(Aitken	&	
Bemmels,	2016;	Ariza	&	Tielbörger,	2011).

Appropriate	experimental	design	is	key	to	inference	on	genetic	
variation	 from	 transplant	 gardens,	 including	 the	 assumption	of	 in-
dependent	 replicates.	 Consequently,	 minimizing	 spatial	 variation	
that	 could	 violate	 experimental	 assumptions	 is	 paramount.	 Spatial	
variation	can	exist	before	planting	due	to	environmental,	that	is,	abi-
otic,	heterogeneity.	For	example,	variable	soil	fertility	can	alter	plant	

fitness	outcomes	in	planting	experiments,	potentially	leading	to	bi-
ased	results	(Wijesinghe	&	Hutchings,	1997).	Considerable	effort	has	
focused	on	minimizing	the	impacts	of	environmental	heterogeneity	
by	carefully	selecting	experimental	sites	and	using	block	designs	that	
account	for	spatial	autocorrelation,	for	example,	α-	lattice	incomplete	
block	experimental	designs	(Borges	et	al.,	2019).	Spatially	structured	
variation	can	also	emerge	during	the	experiment	due	to	dynamic	in-
teractions	between	growing	plants	(Urza	et	al.,	2019). The ideal way 
to	control	 for	plant–	plant	 interactions	 in	 transplant	garden	experi-
ments	is	to	choose	a	planting	distance	that	ensures	plants	are	spaced	
far	enough	to	minimize	any	possible	interactions.	However,	the	spa-
tial	extent	of	plant–	plant	 interactions	 is	highly	variable,	depending	
on	neighboring	plant	species	and	life	stages	(Goldberg	et	al.,	2001; 
Urza	et	al.,	2019).	As	a	result,	planting	densities	are	rarely	based	on	
quantitative	estimates	of	the	spatial	scale	at	which	plants	may	inter-
act	(but	see	Sandquist	&	Ehleringer,	1997).

Inappropriately	high	planting	densities	 could	undermine	analy-
ses	of	transplant	garden	experiments	that	assume	plants	are	 inde-
pendent.	Decades	of	research	from	experimental	and	observational	
studies	demonstrate	that	spatial	interactions	are	a	significant	source	
of	variation	 in	plant	performance	 (Adams	et	al.,	2013;	Goldberg	&	
Fleetwood,	 1987;	 Parachnowitsch	 et	 al.,	 2014).	 Examples	 of	 eco-
logical	 mechanisms	 that	 contribute	 to	 spatial	 plant–	plant	 interac-
tions	 include	asymmetric	competition,	community	defense	against	

(“reciprocal	 gardens”),	 son	 una	 poderosa	 herramienta	 que	 permite	 estudiar	 la	
variación	genética	 y	 la	 interacción	entre	el	 genoma	y	el	medio	 ambiente.	Dichos	
experimentos	asumen	que	los	individuos	dentro	de	una	misma	parcela	representan	
réplicas	 independientes	 creciendo	 bajo	 condiciones	 ambientales	 homogéneas.	
Las	 interacciones	 entre	 plantas	 vecinas	 están	 omnipresentes	 en	 las	 dinámicas	
poblaciones	y	pueden	 suponer	una	violación	de	dichas	 asunciones.	 Sin	embargo,	
enfoques	cuantitativos	que	permitan	evaluar	la	adecuación	del	diseño	experimental	
son	 escasos.	Nosotros	 demostramos	 cómo	 los	modelos	 espacialmente	 explícitos	
para	 las	 interacciones	planta-	planta	pueden	proporcionar	nuevos	hallazgos	 sobre	
el	rendimiento	genotípico	en	el	diseño	de	experimentos	de	trasplante.	Utilizamos	
modelos	 basados	 en	 individuos,	 junto	 con	 datos	 de	 “artemisa”	 (Artemisia spp.) 
procedentes	de	un	“common	garden,”	para	simular	el	impacto	de	las	interacciones	
planta-	planta	sobre	las	diferencias	de	crecimiento	entre	grupos.	Encontramos	que	la	
densidad	de	siembra	utilizada	con	frecuencia	en	muchos	“common	gardens”	puede	
sesgar	la	estimación	de	la	variación	entre	grupos.	Nuestros	resultados	demuestran	
que	 una	 mayor	 densidad	 de	 siembra	 puede	 inflar	 las	 diferencias	 entre	 grupos,	
confundir	 la	 habilidad	 competitiva	 de	 los	 genomas	 y	 la	 variabilidad	 sustentada	
genéticamente,	introduciendo	así	un	sesgo	en	el	experimento.	Proponemos	que	los	
modelos	espacialmente	explícitos	pueden	ayudar	a	evitar	el	sesgo	en	los	resultados	
mediante	 el	 apoyo	 en	 el	 diseño	 y	 análisis	 de	 experimentos	 de	 trasplante.	 Incluir	
efectos	de	vecindad	en	el	análisis	a	posteriori	de	experimentos	puede	proporcionar	
nuevos	hallazgos	sobre	el	papel	de	los	factores	bióticos	y	densidad-	dependientes	en	
la	diferenciación	genética.
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herbivory,	 hydraulic	 redistribution,	 and	 effects	 of	 plant	 volatile	
compounds	 (Karban	 &	 Shiojiri,	 2009;	 Neumann	 &	 Cardon,	 2013; 
Ninkovic	 et	 al.,	 2016;	 Schwinning	 &	 Weiner,	 1998).	 Pairwise	 in-
teractions	 between	 neighboring	 plants	 determine	 the	 strength	 of	
spatial	 plant–	plant	 interactions	 and	 depend	 both	 on	 distance	 be-
tween	neighbors	and	 their	 relative	 size	 (Adler	et	 al.,	2010;	Barber	
et al., 2022).	Quantifying	these	interactions	and	their	consequences	
for	plant	population	dynamics	 remains	 an	 active	 area	of	 research,	
in	part	because	demographic	outcomes	of	plant–	plant	 interactions	
are	 not	 always	 obvious	 (Bolker	 &	 Pacala,	 1997; Law et al., 2003; 
Miriti,	 2006).	 For	 example,	 weak	 interactions	 between	 large,	 es-
tablished	 individuals	 may	 have	 equal	 or	 greater	 importance	 for	
population	 growth	 rates	 than	 strong	 interactions	 between	 seed-
lings	(Caughlin	et	al.,	2015).	Despite	the	foundational	importance	of	
plant–	plant	interactions	in	ecology	and	evolution,	a	gap	remains	be-
tween	quantitative	models	for	these	interactions,	which	are	often	fit	
using	observational	data,	and	transplant	garden	experiments,	which	
often	do	not	consider	potential	neighborhood	effects.

This	 research	 gap	 is	 problematic	 as	 persistent	 effects	 of	
plant–	plant	 interactions	 can	 lead	 to	 varying	 population	 fitness	
and	 local	 adaptation	 that	 transplant	 garden	 experiments	 aim	 to	
measure	 (Grassein	et	 al.,	2014; Liancourt et al., 2013; Liancourt 
&	 Tielbörger,	 2009).	 Interactions	 between	 neighboring	 plants	
could	differentially	 contribute	 to	phenotypic	 variation	of	 tested	
genotypes	in	transplant	garden	experiments	(Fridley	et	al.,	2007; 
Willis	 et	 al.,	2010).	As	a	 result,	differences	 in	 fitness	 that	 result	
from	 intraspecific	 interactions	could	be	 falsely	attributed	 to	ge-
netic variation, potentially increasing Type I error in the statisti-
cal	analysis;	or,	register	as	unaccounted	variation	in	the	observed	
data,	 increasing	 experimental	 error	 and	 Type	 II	 statistical	 error.	
Potential	biases	due	to	 intraspecific	 interactions	are	particularly	
unpredictable	 in	 artificial	 combinations	 of	 plant	 genotypes	 that	
would	not	 co-	occur	 in	natural	 settings,	 for	example,	 in	 common	
and transplant gardens.

Spatial	models	could	aid	 inference	on	 transplant	garden	experi-
ments	by	providing	quantitative	information	on	the	strength	and	scale	
of	 plant–	plant	 interactions.	 Spatially	 explicit	models	 for	 plant–	plant	
interactions	are	widely	used	to	analyze	observational	data	on	plant	
demography,	 including	 inter-		versus	 intraspecific	competition	(Adler	
et al., 2010;	Chu	&	Adler,	2015),	 the	role	of	functional	strategies	 in	
spatial	interactions	(Muscarella	et	al.,	2018),	and	spatial	clustering	of	
genetic	diversity	 (Shao	et	 al.,	2018).	These	 spatially	explicit	models	
typically	quantify	spatial	decay	of	competitive	effects	as	a	function	
of	 distance	 to	 neighbors,	 providing	 estimates	 that	 could	 directly	
inform	 the	 design	 and	 analysis	 of	 transplant	 garden	 experiments.	
Analogously,	 large-	scale	 yield	 experiments	 increasingly	 incorporate	
models	for	spatial	autocorrelation	caused	by	environmental	heteroge-
neity	(Burgueño,	2018).	Models	for	spatial	autocorrelation	can	allocate	
treatments	before	the	experiment	begins	(“spatial	designs”)	or	supple-
ment	analyses	after	the	experiment	ends	by	accounting	for	potential	
biases	in	results	(Coelho	et	al.,	2021;	Hoefler	et	al.,	2020;	Williams	&	
Piepho,	2013).	Given	the	increasing	interest	and	need	to	include	biotic	
factors	in	genome	to	phenome	studies	(Johnson	et	al.,	2022;	Urban	

et al., 2016),	we	propose	that	similar	spatially	explicit	models	will	be	
critical	to	isolate	and	account	for	biotic	neighborhood	effects.

Motivated	 by	 the	 theory	 and	 empirical	 evidence	 of	 spatial	
plant	 interactions	 across	 ecological	 systems	 (Adler	 et	 al.,	 2018; 
Caughlin et al., 2015; Law et al., 2003), our paper showcases the 
risks	of	ignoring	plant–	plant	interactions	when	interpreting	trans-
plant	garden	experiments	and	provides	model-	based	solutions	to	
mitigate	these	risks.	Our	spatially	explicit,	individual-	based	mod-
eling	 (IBM)	approach	was	 informed	by	data	from	a	common	gar-
den	 study	of	big	 sagebrush	 (Artemisia tridentata), a species with 
high	genetic	diversity	(Richardson	et	al.,	2012).	Using	the	parame-
ters	obtained	from	the	common	garden	experiment,	we	evaluated	
the	potential	for	biological	interactions	among	individual	plants	to	
alter	 inference	on	genetic	contributions	to	plant	growth.	We	re-
produced	the	spatial	planting	design,	including	distance	between	
focal	plants	and	their	crown	size,	of	this	common	garden	to	inves-
tigate two questions:

1.	 To	what	extent	do	intraspecific	neighbor	interactions	contribute
to	 observed	 population	 differences	 in	 plant	 growth?

2.	 How	can	 spatial	models	 for	 plant–	plant	 interactions	 aid	 experi-
mental	design	to	inform	appropriate	planting	densities?

While	our	case	study	focuses	on	a	single	species,	our	models	are	
generalizable	across	many	different	species.	Given	the	pervasive	im-
portance	of	plant–	plant	interactions	for	plant	fitness,	our	approach	
demonstrates	how	spatial	models	could	improve	the	design,	imple-
mentation,	and	analysis	of	transplant	garden	experiments.

2  |  METHODS

2.1  |  Description of the common garden

To	 demonstrate	 how	 intraspecific	 density	 dependence	 affects	
quantitative	plant	traits,	we	parametrized	the	IBM	based	on	a	com-
mon	 garden	 located	 in	 central	 Utah,	 USA	 (Majors	 Flat,	 39.3391,	
−111.5201).	In	this	garden,	big	sagebrush	(Artemisia tridentata	Nutt.)
source	seeds	were	collected	across	the	western	US	and	outplanted
in	 2010	 (Chaney	 et	 al.,	 2017).	 The	 size	 of	 the	 plants	 was	 moni-
tored	during	the	first	2 years	after	outplanting	(Chaney	et	al.,	2017;
Richardson et al., 2021),	and	in	our	study,	we	used	growth	estimates
from	the	second	year	of	the	experiment,	calculated	as	the	difference
in	crown	volume	between	2012	and	2011.	The	experimental	design
included	470	plants	from	55	source	populations	randomly	arranged
into	a	grid	with	spacing	among	plants	at	1	and	1.5	m	on	two	axes.
These	55	source	populations	represent	range-	wide	genetic	diversity
of	A. tridentata.	 The	 experiment	 included	 three	 commonly	 recog-
nized	subspecies	of	A. tridentata,	two	of	which	differ	in	ploidy	level,
resulting	in	five	subspecies-	cytotypes	categories:	A. t. tridentata-	2x,	
A. t. tridentata-	4x,	A. t. vaseyana-	2x,	A. t. vaseyana-	4x,	A. t. wyomin-
gensis-	4x.	 Akin	 to	 the	 language	 in	 common	 statistical	 analyses	 of
variance,	we	refer	 to	 these	 intraspecific	categories	as	groups in all
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subsequent	analyses.	Beside	A. tridentata plants, there was also one 
source	population	of	A. arbuscula	included	in	the	experiment.

2.2  |  Growth models

We	explored	the	effect	of	intraspecific	biotic	interactions	on	plant	
growth	in	a	series	of	spatially	explicit	simulations.	The	workflow	in-
cluded	three	steps.	First,	we	retrieved	estimated	plant	growth	and	
the	 magnitude	 of	 spatial	 interactions	 from	 the	 models	 (detailed	
below)	fit	with	the	common	garden	data.	Second,	we	used	the	IBM	
to	model	plant	growth	 in	simulated	common	gardens	with	varying	
distances	between	outplants.	Finally,	we	quantified	the	magnitude	
of	differences	in	growth	among	populations	that	could	be	attributed	
to	spatial	proximity	among	individual	plants.	To	do	that,	we	applied	
analysis	of	variance	(ANOVA),	a	commonly	used	technique	in	com-
mon	garden	studies	(Blanquart	et	al.,	2013),	using	a	model	without	
the	spatial	term	as	a	baseline	(detailed	below).

Growth	 model	 parameters	 were	 based	 on	 the	 subspecies-	
cytotype	 group	 differences	 in	 growth	 rate	 and	 plant	 tolerance	
to	 neighborhood	 crowding	 proposed	 by	 Zaiats	 et	 al.	 (2021). 
Neighborhood	 crowding	 represents	 a	 cumulative	 measure	 of	 per	
capita	effect	on	a	quantitative	trait	from	the	immediate	set	of	neigh-
bors,	corresponding	to	a	measure	of	competition	response	by	target	
plants	(Chu	&	Adler,	2015;	Goldberg	&	Fleetwood,	1987). The sta-
tistical	growth	model	quantified	intrinsic	growth	rate	and	crowding	
effect	 following	Equations 1 and 3	 (detailed	 below),	 and	we	 refer	
readers	to	Zaiats	et	al.	(2021)	for	further	details	on	parameter	esti-
mation.	Briefly,	the	common	garden	design	allows	for	11	distance-	
to-	focal	plant	 treatments	within	a	4	m	neighborhood	radius,	while	
the	 non-	linear	 crowding	 kernel	 can	 accommodate	 a	 range	 of	 spa-
tial	neighbor	effects,	 from	a	sharp	 to	gradual	declines	 in	neighbor	
effect	with	distance.	Models	for	plant	demography	in	this	common	
garden	indicated	different	responses	to	neighborhood	density	based	
on	 subspecies	 identity	 and	 ploidy	 (i.e.,	 cytotype)	 variation	 (Zaiats	
et al., 2021).	 Specifically,	 tetraploid	 variants	 demonstrated	 more	
conservative	growth	and	greater	tolerance	to	neighbors	than	their	
diploid variants.

2.3  |  Individual- based modeling simulations

We	 ran	 the	 simulations	 using	 R	 software	 version	 4.0.4	 (R	 Core	
Team,	2021),	 and	 the	R	 scripts	 are	 available	 from	 the	 Zenodo	 re-
pository	 (https://doi.org/10.5281/zenodo.7411125); the Overview, 
Design concepts, and Details	(ODD)	description	of	the	IBM	(Railsback	
&	 Grimm,	 2019)	 is	 provided	 in	 the	 Supporting	 Information	
(Appendix	S1).	Simulations	of	plant	growth	were	based	on	the	iden-
tical	 spatial	 arrangement	 as	 that	 in	 the	Majors	 Flat	 common	 gar-
den	 (i.e.,	 the	 qualitative	 composition	 of	 plant	 neighborhoods),	 but	
with	 varying	 pairwise	 distances	 among	 individuals.	We	 simulated	
15	distance	scenarios	ranging	from	0.5	to	4	m	and	propagated	the	
uncertainty	 in	 parameter	 estimates	 (2000	 posterior	 samples)	 to	

simulation	 output,	 resulting	 in	 30,000	 simulations.	We	 conducted	
the	 simulations	 in	 two	hypothetical	 scenarios:	 simulations	 that	 in-
cluded	neighbor	 interactions	and	those	that	did	not	 (hereafter,	full 
and base	models;	Equations 1 and 2,	respectively),	based	on	the	fol-
lowing	terms:	intrinsic	growth	rate	(i.e.,	the	intercept,	�),	the	effect	
of	plant	size	at	the	beginning	of	the	census	(�),	and	a	neighborhood	
crowding	effect	(γ).	The	crowding	index	(�)	represents	a	cumulative	
measure	of	neighbor	crown	size	weighted	by	distance	(D)	from	the	
target plant, where c, b	are	estimated	parameters	determining	the	
strength	of	spatial	neighbor	effects.	We	included	plant	size,	�	Sizei, 
as	a	covariate	to	account	for	initial	size	differences	between	plants	
and	differences	in	growth	forms	among	intraspecific	groups	(Merow	
et al., 2014).

where �	is	the	predicted	growth	of	plant	i	belonging	to	group	s with k 
neighbors,	with	the	superscripts	(F)	and	(B)	corresponding	to	the	full	
and	base	models,	respectively,	and	�	is	the	unexplained	variation.	The	
parameters	c and b in Equation 3	determine	the	shape	of	the	neighbor-
hood	effect,	from	sharply	to	gradually	declining	with	distances,	which	
was	 empirically	 estimated	 to	 near	 negligible	 effect	 beyond	 the	 dis-
tance	of	2.5	m	away	from	the	plant	(Zaiats	et	al.,	2021).	Similar	models	

(1)μ(F) i,s ∼ normal
(

�[s] + �[s]Sizei + � [s]ϕi ,�
2
)

(2)μ(B) i,s ∼ normal
(

�[s] + �[s]Sizei ,σ
2
)

(3)�i,s =

k
∑

j=1,j≠i

c[s]Sizej,s

exp
(

bD2
j

)

F I G U R E  1 Group	variation	in	Artemisia tridentata due to 
spatial	interactions	as	a	function	of	distance	among	plants	(m)	
in	a	simulated	common	garden	plot.	The	F-	statistic	is	calculated	
using	the	difference	between	the	predicted	outcomes	of	the	full	
(including	spatial	interactions)	and	the	base	models	(no	spatial	
interactions)	as	an	input	for	ANOVA.	The	obtained	F-	statistic	was	
relativized	by	the	average	F-	value	of	the	base	model,	that	is,	the	
gray dashed line indicates an F-	statistic	due	to	the	spatial	effects	
that	is	comparable	to	the	group	differences	generated	by	the	
intrinsic	growth	rates.	The	black	dashed	line	indicates	the	mean	
F-	statistic,	while	the	darker	and	lighter	shadows	show	68%	and
95%	percentiles	of	the	F-	statistic	values	in	the	simulated	growth
realizations.
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are	widely	used	to	quantify	the	effect	of	spatial	interactions	on	plant	
fitness	(Adler	et	al.,	2010;	Hülsmann	et	al.,	2020).

To	check	for	the	potential	impact	of	a	spatial	pattern	already	ex-
istent	at	the	time	of	the	census	 (i.e.,	different	growth	and	survival	
of	 individuals	prior	 to	data	acquisition),	we	spatially	perturbed	the	
arrangement	of	plants	and	conducted	an	analysis	of	variance	follow-
ing	the	same	steps	as	detailed	above.	This	analysis	resulted	in	similar	
estimates	to	those	obtained	using	the	observed	starting	conditions	
(results	not	shown).

2.4  |  Spatial biotic interactions

To	address	our	first	question,	to	what	extent	do	intraspecific	neigh-
bor	 interactions	 contribute	 to	 group	 differences	 in	 plant	 growth,	

we	conducted	an	analysis	of	variance	using	predicted	growth	from	
Equations 1 and 2	and	intraspecific	taxa	as	an	independent	variable.	
To	isolate	the	spatial	effect,	we	conducted	this	analysis	on	the	dif-
ference	between	the	full and base	models	(μ(F)-	μ(B)),	quantifying	the	
magnitude	of	 change	 in	F-	statistic	 relative	 to	 the	base	model	 that	
is	 explained	 by	 taxonomic	 groups,	 F(�

(full) − �(base))
F(�(base))

, where F(.)	 is	 an	
F-	statistic	of	the	ANOVA	test	performed	on	the	response	variable
specified	 inside	 the	 parentheses.	 By	 design,	 this	 difference	 con-
verges	to	zero	when	the	outcomes	of	the	base and full	models	are
equivalent	 (μ(F) = μ(B))	due	 to	 increasingly	 large	distances	 (D) in the
denominator	 of	 Equation 3.	 Additionally,	 we	 calculated	 Pearson's	
correlation	 coefficient	 (r)	 between	 the	 simulation	 outcomes	 as	 a	
function	of	distance	among	plants.	Pearson's	correlation	represents	
the	 agreement	 between	 the	 two	 predicted	 scenarios,	 that	 is,	 in-
cluding	and	not	including	neighbor	interactions.	For	the	correlation	
analysis, we set �2=0 in Equations 1 and 2 to propagate uncertainty 
only	through	the	mean,	isolating	the	deterministic	outcomes	of	the	
simulations	and	varying	only	distance	among	plants.	To	address	our	
second	question,	how	can	spatial	models	aid	experimental	design,	
we	 explored	 the	 spatial	 arrangement	 that	would	minimize	 the	 ef-
fect	of	biotic	interactions.	We	calculated	the	scenario	under	which	
the	95%	credibility	interval	(CI)	correlation	Pearson's	coefficient	was	
r > .99,	indicating	that	impacts	from	spatial	interactions	among	plants	
are	unlikely	to	impact	inference	on	mean	group	differences.	The	em-
pirical	estimates	of	plant	growth	using	spatial	and	non-	spatial	mod-
els	are	detailed	in	Zaiats	et	al.	(2021)	and	Richardson	et	al.	(2021).

3  |  RESULTS

The	data	from	the	common	garden	included	448	live	plants	at	the	
time	of	last	demographic	census.	We	used	the	arrangement	and	size	
distribution	from	the	second	year	after	outplanting	(2011)	as	start-
ing	conditions	in	the	simulations.	Before	our	demographic	censuses	
in 2011 and 2012, 22 plants had died, and thus, gaps in the regular 
grid	pattern	existed.	However,	our	spatial	perturbation	randomly	re-
arranged	the	relative	locations	of	live	and	dead	individuals,	thereby	
negating	potential	priority	effects.	The	observed	plant	growth	var-
ied	by	 the	 taxonomic	 identity	of	 the	populations,	F5,442 = 44.223, 
p < .001.	Specifically,	populations	of	A. t. tridentata and A. arbuscula 
had	the	highest	and	 lowest	growth	rate	 (i.e.,	change	 in	crown	vol-
ume),	respectively,	while	populations	of	A. t. vaseyana and A. t. wyo-
mingensis	had	intermediate	growth.

As	expected,	the	results	from	the	simulation	showed	that	among-	
group variation in the full and base	models	had	considerable	differ-
ences	 (Figure 1),	 particularly	 for	 simulation	 scenarios	when	plants	
were	 closely	 arranged.	 The	 number	 of	 individual	 plants	 did	 not	
change	over	time,	making	the	outcomes	from	the	full and base	models	
comparable.	The	spatial	term	introduced	a	substantial	change	in	the	
simulated	plant	growth,	and	the	magnitude	of	this	change	showed	
a	strong	negative	 relationship	with	distance	 (Figures 1 and 3).	For	
additional	details	on	model	parameters,	see	Zaiats	et	al.	(2021). The 
F-	statistic	based	on	the	difference	between	the	full and base	model

F I G U R E  2 Pearson's	correlation	coefficient	between	predicted	
mean	growth	of	a	full	(including	spatial	interactions)	and	base	(no	
spatial	interactions)	models	as	a	function	of	distance	(m)	among	
plants.	The	black	dashed	line	indicates	the	average	correlation	
coefficient,	while	darker-		and	lighter-	colored	shades	correspond	to	
68%	and	95%	error	of	the	mean,	respectively.	The	vertical	dashed	
line	shows	the	threshold	where	the	68%	uncertainty	is	within	
Pearson's	correlation > .99.
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bars	correspond	to	1	standard	deviation	around	the	predicted	mean.

−0.04

0.00

0.04

0.5 1.25 2.25 4
Distance between plants [m]

Av
er

ag
e 

gr
ow

th
, [

m
3

m
on

th
−1

]

Plant type
A.arbuscula
A.tridentata−2x
A.tridentata−4x
A.vaseyana−2x
A.vaseyana−4x
A.wyomingensis−4x



6 of 9  | ZAIATS et al.

outcomes	(μ(F)−μ(B))	for	the	planting	scenario	with	maximum	density	
(pairwise	distance	of	0.5	m)	was	32.4%	greater	than	the	base	model	
(F5,442 =	128.8,	95%CI:	16.7,	254.8).	The	among-	group	differences	
due	to	spatial	interactions	became	negligible	(i.e.,	converged	to	zero)	
as	the	spacing	among	plants	increased.

The	simulation	outcomes	from	the	full and base	models	showed	
increasing	positive	correlation	as	the	distance	between	plants	in-
creased.	The	average	correlation	coefficient	was	lowest	under	the	
densest	spatial	arrangement	(r =	.5,	95%CI:	−0.19,	0.99)	but	rapidly	
converged to r > .99	 for	distances	greater	 than	1.25 m.	For	 the	1	
SD	uncertainty	 around	 the	 average	 correlation,	 the	 r values var-
ied	 between	−.74	 and	 .90	 for	 the	 densest	 arrangement	 at	 0.5	m	
interspaces.	At	this	uncertainty	level,	the	lower	bound	of	the	cor-
relation uncertainty converged to r > .99	at	greater	than	2	m	inter-
spaces	between	the	plants	(Figure 2).	When	we	directly	compared	
the	predicted	growth	for	each	 intraspecific	group	under	 the	 two	
extreme	distance	scenarios,	we	found	evidence	that	neighborhood	
interactions	 altered	 the	 relative	 performance	 between	 groups	
(Figures 1 and 3).	These	simulation	results	demonstrate	how	neigh-
borhood	interactions	can	change	the	ranking	of	mean	performance	
among	groups.

4  |  DISCUSSION

We	have	shown	how	spatial	 interactions	can	bias	estimates	of	the	
relative	 performance	 of	 plant	 genotypes	 in	 a	 common	 garden	 ex-
periment.	 Our	 simulation	 models	 reveal	 the	 dangers	 of	 assuming	
environmental	homogeneity	within	transplant	gardens	when	plants	
are close enough to interact with one another. In genetically diverse 
transplant	gardens,	spatial	biotic	interactions	can	create	winners	and	
losers	 among	populations,	 because	 genotypes	more	 vulnerable	 to	
competition	should	have	 lower	performance	relative	to	genotypes	
more	 tolerant	 of	 competition	 (Fridley	 et	 al.,	 2007).	 Demographic	
stochasticity	may	exacerbate	these	differences	as	some	plants	grow	
larger	due	to	random	events	and	become	superior	competitors	(Hart	
et al., 2016). Together, our results support the need to interpret phe-
notypic	variation	in	plant	performance	in	the	context	of	dynamic	bi-
otic	conditions	that	evolve	over	time	(Coleman	et	al.,	1994).

Our	work	demonstrates	how	spatial	models	can	identify	appro-
priate	planting	distances	for	transplant	gardens.	For	our	focal	species,	
big	sagebrush,	planting	distances	>1.25 m	apart	may	be	required	to	
avoid	spatial	biotic	interactions,	even	during	relatively	early	stages	of	
establishment	(2 years	after	outplanting).	As	plants	increase	in	size,	
spatial	biotic	interactions	are	likely	to	continue	to	affect	the	expres-
sion	of	demographic	and	functional	traits	of	the	tested	genotypes	(B.	
Richardson, unpublished data).	A	non-	exhaustive	review	of	planting	
densities	in	highly	cited	transplant	garden	experiments	reveals	that	
spacing	between	plants	varies	markedly	(n =	20,	mean:	1.17 m,	SD:	
1.27 m;	Table	S1), including several studies with planting distances 
<0.1 m.	While	 the	distance	 required	 to	minimize	 the	effects	of	bi-
otic	interactions	on	plant	performance	will	depend	on	a	plant's	size	
and growth rate, a quantitative approach to predict potential spatial 
interactions	is	needed.	Among	the	20	reviewed	studies,	few	based	

planting	densities	on	the	measured	spatial	scale	of	plant–	plant	inter-
actions	or	an	explicit	assumption	for	the	relationship	between	plant	
size	 and	 biotic	 interactions.	 The	 motivation	 for	 minimizing	 plant–	
plant interactions via planting distances is that widely spaced plant-
ings	increase	the	maintenance	costs	of	the	garden,	including	weed	
suppression.	However,	ignoring	neighborhood	interactions	can	alter	
inference	on	the	magnitude	of	group-	level	differences.

Model-	based	designs	provide	a	way	to	select	appropriate	plant-
ing	density	and	plant	arrangement	in	transplant	gardens.	Ecologists	
and	evolutionary	biologists	 implementing	transplant	garden	exper-
iments	could	take	 inspiration	from	yield	experiments	 in	agronomy,	
where	model-	based	solutions	 to	spatial	autocorrelation	have	been	
thoroughly	explored	(Borges	et	al.,	2019).	Specifically,	study	designs	
that	spatially	stratify	populations	across	potential	confounding	fac-
tors	show	superior	performance	compared	to	random	plantings.	In	
addition	to	abiotic	spatial	heterogeneity,	accounting	for	biotic	inter-
actions	 using	 spatially	 explicit	models	 provides	 a	way	 to	 quantify	
neighborhood	 effects	 in	 existing	 populations	 across	 different	 life	
stages	and	spatial	plant	arrangements	(Barber	et	al.,	2022). The util-
ity	of	a	model-	based	approach	is	to	quantify	intrinsic	demographic	
rates	and	neighborhood	effects,	effectively	separating	abiotic	and	
biotic	drivers	of	variation	in	the	tested	genotypes	(Adler	et	al.,	2010; 
Zaiats	et	al.,	2021).	It	is	worth	noting	that	experimental	and	model-	
based	estimates	of	neighborhood	effects	and	intrinsic	demographic	
rates	may	 differ	 (Adler	 et	 al.,	 2018).	 Nevertheless,	 spatial	models	
for	neighborhood	effects	are	 relevant	 to	 transplant	garden	exper-
iments,	 with	 utility	 to	 strengthen	 experimental	 inference	 while	
expanding	the	range	of	future	research	questions	(Galloway,	1995; 
Wijesinghe	&	Hutchings,	1997).

An	 ideal	 way	 to	 avoid	 bias	 due	 to	 plant–	plant	 interactions	 in	
transplant	gardens	would	be	to	apply	spatial	models	to	determine	ap-
propriate	planting	densities	before	the	experiment.	Species-	specific	
data	and	models	may	be	available	for	well-	studied	species,	such	as	
big	sagebrush.	For	other	species,	a	 lack	of	pre-	existing	spatial	data	
may	 necessitate	 alternate	 approaches	 to	 inform	planting	 densities.	
Morphological	 traits	 published	 in	 the	 literature	 or	 measured	 em-
pirically	may	 be	 easier	 to	 obtain	 than	 species-	specific	 competition	
kernels	 (Muscarella	 et	 al.,	 2018;	Uriarte	 et	 al.,	2010).	 For	 example,	
Sandquist	 and	Ehleringer	 (1997)	used	 the	 length	of	 lateral	 roots	 in	
Encelia farinosa	to	guide	planting	distances	in	a	common	garden.	In	big	
sagebrush,	a	model-	based	estimation	of	the	competition	kernel	in	a	
common	garden	setting	was	also	consistent	with	distances	measured	
in	an	experiment	that	quantified	the	belowground	zone	of	influence	
and	potential	root-	to-	root	interactions	(Zaiats	et	al.,	2020, 2021).	An	
increasing	body	of	evidence	suggests	that	the	strength	and	scale	of	
competitive	interactions	vary	predictably	with	plant	functional	traits,	
including	 wood	 density	 and	 specific	 leaf	 area	 (Kraft	 et	 al.,	 2015; 
Uriarte	et	al.,	2010; Yang et al., 2021).	These	predictive	models	for	
plant–	plant	interactions	could	guide	planting	densities	based	on	trait	
measurements.	Achieving	the	promise	of	model-	based	approaches	to	
inform	transplant	garden	design	will	benefit	from	more	dialogue	be-
tween	experimentalists	and	quantitative	ecologists.

Biotic	 interactions	 in	 transplant	 garden	experiments	 can	 com-
plicate	 inference	 on	 genetic	 variation,	 but	 they	 also	 provide	 an	
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opportunity	to	study	questions	that	relate	plant–	plant	interactions	
to	genetic	differentiation	(Grassein	et	al.,	2014; Johnson et al., 2022). 
Neighbor	 interactions	 in	 otherwise	 homogenous	 environments	
(i.e.,	 with	 interspecific	 neighbors	 removed)	 may	 partially	 explain	
high	 variability	 in	 estimates	 of	 local	 adaption	 in	 studies	 investi-
gating	 biotic	 and	 abiotic	 sources	 of	 genetic	 variation	 (Hargreaves	
et al., 2020).	For	example,	our	models	revealed	that	competition	re-
sponse	(i.e.,	neighbor	tolerance)	in	a	biotically	altered	transplant	gar-
den	could	change	the	relative	average	growth	estimates	(Figures 1 
and 3).	While	plant	growth	alone	may	not	be	a	reliable	indicator	of	
plant	fitness,	nor	a	sole	basis	to	measure	intraspecific	genetic	vari-
ation	 (Kawecki	&	Ebert,	2004),	 the	majority	 of	 studies	 that	 focus	
on	quantitative	traits	 in	transplant	gardens	 include	measurements	
of	 growth-	dependent	 traits	 that	 often	 correlate	 with	 each	 other	
(Baughman	et	al.,	2019; Caswell, 2000; Laughlin et al., 2020;	Rees	&	
Ellner, 2016).	We	include	only	a	single	common	garden	experiment	
and	cannot	directly	estimate	biases	in	local	adaptation,	yet,	our	con-
clusions	are	relevant	to	replicated	experiments	along	environmental	
gradients.	Carefully	designed	treatments	of	biotic	neighborhoods	in	
transplant	 gardens	 could	provide	valuable	 insights	 into	biotic	 fac-
tors	of	genetic	differentiation	and	local	adaptation.

Given	the	risk	of	biased	inference	from	spatial	plant–	plant	inter-
actions,	accounting	for	biotic	neighborhood	variation	will	likely	im-
prove	future	inference	from	transplant	gardens.	Existing	data	from	
transplant	garden	experiments	(reviewed	in	Baughman	et	al.,	2019; 
Hargreaves et al., 2020; Johnson et al., 2022)	and	spatially	explicit	
models	 (e.g.,	 Barber	 et	 al.,	 2022;	 Chu	 &	 Adler,	 2015;	 Muscarella	
et al., 2018)	provide	 an	opportunity	 to	determine	 the	 appropriate	
spacing	of	plants	for	future	experiments.	For	example,	considering	
the	overarching	importance	of	plant–	plant	interactions	for	popula-
tion	and	community	dynamics,	growing	plants	in	isolation	from	com-
petitors	is	unrealistic	and	may	give	a	biased	view	of	adaptation.	As	an	
alternative	to	eliminating	spatial	interactions	in	transplant	gardens,	
experimental	designs	could	explicitly	 test	 the	 importance	of	biotic	
interactions	 by	 varying	 neighborhood	 composition	 and	 density	 as	
an	experimental	treatment,	including	treatments	with	minimal	com-
petition	(Kawecki	&	Ebert,	2004;	Münzbergová,	2007).	Accounting	
for	biotic	interactions	in	the	transplant	gardens	will	be	informative	
in	 differentiating	 abiotic	 and	 biotic	 or	 potential	 and	 realized	 eco-
logical	 niches	of	 the	 tested	 genotypes.	Our	 study	emphasizes	 the	
increasing	 recognition	 of	 biotic	 interactions	 as	 agents	 of	 popula-
tion	and	evolutionary	changes	(Ariza	&	Tielbörger,	2011), including 
management	interventions	such	as	re-	introduction,	translocation,	or	
restoration	efforts	(Breed	et	al.,	2019; Bucharova, 2017;	McLane	&	
Aitken,	2012;	Seaborn	et	al.,	2021). Transplant gardens with appro-
priate	experimental	designs	represent	an	invaluable	opportunity	to	
disentangle	biotic	interactions	and	genetic	diversification.
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