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43 Abstract:

44 Rivers that do not flow year-round are the predominant type of running waters on Earth. 

45 Despite a burgeoning literature on natural flow intermittence (NFI), knowledge about the 

46 hydrological causes and ecological effects of human-induced, anthropogenic flow 

47 intermittence (AFI) remains limited. NFI and AFI could generate contrasting hydrological and 

48 biological responses in rivers due to distinct underlying causes of drying and evolutionary 

49 adaptations of their biota. We first review the causes of AFI and show how different 

50 anthropogenic drivers alter the timing, frequency and duration of drying, compared to NFI. 

51 Second, we evaluate the possible differences in biodiversity responses, ecological functions, 

52 and ecosystem services between NFI and AFI. Last, we outline knowledge gaps and 

53 management needs related to AFI. Due to the distinct hydrologic characteristics and ecological 

54 impacts of AFI, ignoring the distinction between NFI and AFI could undermine management 

55 of intermittent rivers and ephemeral streams and exacerbate risks to the ecosystems and 

56 societies downstream.

57

58

59

60

61

62
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64 Introduction

65 Rivers and streams that cease to flow (hereafter, IRES; Intermittent Rivers and Ephemeral 

66 Streams) dominate global river networks, naturally comprising an estimated 60% of the total 

67 river length (Messager et al. 2021). Natural flow intermittence (NFI) is driven by climatic, 

68 hydrological, geological, and geomorphological drivers (Larned et al. 2010, Costigan et al. 

69 2016, Hammond et al. 2021). However, humans are altering flow regimes worldwide, as 

70 illustrated by the dramatic and widespread changes in flow intermittence duration and timing 

71 in the United States, including longer drying durations in many regions, earlier drying in the 

72 south, and later drying in the north (Zipper et al. 2021). Such increases in flow intermittence 

73 are echoed around the world, with formerly perennial rivers becoming intermittent due to 

74 global change across all continents (Larned et al. 2010). In recent decades, six of the largest 

75 rivers on Earth have become intermittent in their mainstem, and over 400 rivers in Europe 

76 have dried earlier and for longer (Tramblay et al. 2021).

77 Research on the effects of NFI has accelerated in the past 15 years, reversing years of relative 

78 neglect of this topic by the scientific community (Datry et al. 2014, Leigh et al. 2016). 

79 Knowledge of these systems now spans many disciplines, including hydrology (e.g., 

80 Shanafield et al. 2021), geography (e.g., Messager et al. 2021), toponymy (e.g., Busch et al. 

81 2020), biodiversity (e.g., Soria et al. 2017), biogeochemistry (e.g., Gómez-Gener et al. 2021), 

82 socio-economics (e.g., Fovet et al. 2021), ecology (e.g., Allen et al. 2020), and resource 

83 management (e.g., Acuña et al. 2020). Drying influences the spatial and temporal distribution 

84 of water, nutrients, materials and organisms, thereby controlling ecological functions in river 

85 networks (Datry et al. 2014). For example, drying events generally have negative effects on 

86 aquatic species, which can be detected weeks, months or years after rewetting (Datry et al. 

87 2014, Gauthier et al. 2021, Sarremejane et al. 2022). Ultimately, the effects of drying events 
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88 cascade onto biogeochemical functions and ecosystem services (Datry et al. 2018, Fovet et al. 

89 2021, Kaletova et al. 2021). This growing interest in and understanding of IRES is gradually 

90 improving management practices (Mazor et al. 2014, Steward et al. 2018), although national 

91 legislation and policy protecting these systems still lags behind that afforded to perennial 

92 rivers (Marshall et al. 2018).

93 Our understanding of the effects of human-induced, anthropogenic flow intermittence (AFI) 

94 has not kept pace with the growing research on NFI. The hydrological features and associated 

95 ecological impacts of AFI are likely to differ from those of NFI. For example, rivers located 

96 downstream of hydropower dams can experience predictable dry periods in response to 

97 hydropower use, which often show daily or weekly cycles that contrast with the lower 

98 predictability and frequency of NFI (Widén et al. 2021). In various cases, however, human 

99 imprints on drying patterns are indistinguishable from natural ones because artificial and 

100 natural drivers interact to cause drying events (Snelder et al. 2013). Differences between AFI 

101 and NFI rivers may be particularly challenging to parse due to the impacts of climate change, 

102 because changing precipitation patterns alter drying patterns in both natural and 

103 anthropogenic IRES. 

104 Beyond hydrology, the biological and biogeochemical effects of AFI could differ from those 

105 of NFI. In NFI, many organismal responses to cope with drying, whether through resistance 

106 or resilience strategies, have emerged from the long-term (> millennia) action of evolution. 

107 Such a timescale is orders of magnitude greater than that of the hydrological shift to AFI, 

108 which has occurred over decades to centuries. Accordingly, it is reasonable to hypothesize 

109 that AFI has stronger effects on biotic communities than NFI, because changes from 

110 perennial to intermittent flow regimes could represent tipping points that lead river networks 

111 to irreversible, novel states (Zipper et al. 2022). Insufficient knowledge to test such 
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112 predictions jeopardizes the effectiveness of current management practices including 

113 biomonitoring (Crabot et al. 2021a) and the implementation of environmental flows (Acuña 

114 et al. 2020). If physical and biological responses vary between AFI and NFI, so will the 

115 responses of ecosystem functions and services.

116 Here, to the best of our knowledge, we are the first to explore differences between the effects 

117 of anthropogenic and natural flow intermittence (AFI and NFI, respectively) on hydrology, 

118 biodiversity, ecological functions and ecosystem services in IRES, and review the 

119 implications in terms of science, management and policy. First, we discuss sources of AFI 

120 and contrast their hydrological signatures with NFI. Second, we investigate why and how the 

121 effects of drying differ between AFI and NFI with respect to their biodiversity, ecological 

122 functions and ecosystem services. We then identify current knowledge gaps and research 

123 priorities, pointing to implications of the differences between AFI and NFI for IRES policy 

124 and management.

125

126 What are the drivers of human-induced flow intermittence and their hydrological 

127 signatures?

128 Multiple human activities can lead to AFI (Zimmer et al., 2020), which we broadly group into 

129 four drivers used throughout the paper: 1) water abstraction and diversion, 2) water storage 

130 and flow regulation, 3) land-use change, and 4) climate change (Table 1, Appendix 1 & 

131 2). While anthropogenic drivers of intermittence can be broadly grouped into these four 

132 categories, multiple types of human activities often interact to cause AFI (Doretto et al. 

133 2020). These interactions, specific human activities (e.g., urbanization versus afforestation), 

134 and the hydro-climatic and regulatory context of the river can alter streamflow in various 

135 ways. 
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136 (1) Water abstraction and diversion are a ubiquitous cause of AFI (Larned et al. 2010),

137 encompassing various mechanisms, including surface water extraction, groundwater 

138 pumping, and surface water diversion (Table 1). AFI due to water abstraction and diversion 

139 is distinguished from NFI by longer no-flow durations, earlier first no-flow occurrences, and 

140 shorter duration of dry-down periods in both Australian and US IRES (Figure 1a, 1b, 

141 Appendix 1). Longer no-flow durations may be due to increased water use and decreased 

142 return flows (i.e., water that returns to the river system after use, including runoff from 

143 irrigated fields). Earlier first occurrence of no-flow suggests that anthropogenic water use can 

144 trigger earlier seasonal drying than would have occurred naturally, thereby also reducing late-

145 season water availability. Shorter duration of dry-down periods may reflect an acceleration of 

146 baseflow recession caused by either surface-water or groundwater abstraction; the former 

147 reduces inflows from upstream while the latter reduces storage of groundwater, later release 

148 of which sustains flow during dry periods.

149 (2) Water storage and flow regulation by reservoirs for irrigation, flood control, or

150 hydroelectric power generation affects over one-sixth of the total annual river flow globally 

151 (Table 1; Hanasaki et al. 2006). Dams have extensive impacts on both upstream and 

152 downstream ecosystems through flow regime alterations (Figure 1c, d; Appendix 1; Grill et 

153 al. 2019). Flow regulation by reservoirs usually decreases flow variability, shortening or 

154 preventing no-flow events, and in extreme cases, causing complete drying of riverbeds for 

155 kilometers downstream or preventing natural drying (Allen et al. 2013). However, 

156 hydropeaking flow regimes can impart highly unnatural flow variability and create artificially 

157 dry banks that fluctuate hourly (Abernethy et al. 2021). The hydrological signature resulting 

158 from flow regulation depends on reservoir use (e.g., hydroelectricity, irrigation, flood 

159 control), river type (e.g., size, seasonality), and local environmental regulations. For example, 

160 environmental flows implemented for downstream river sections may attenuate the effects of 
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161 flow regulation and even prevent AFI (Mackie et al. 2013). Additional classification of pre-

162 impoundment hydrological regimes and characterization of dam-induced regime shifts would 

163 enable further assessment of how this widespread infrastructure impacts flow intermittence.

164 (3) Land-use change, which we define broadly to include changes in land use, land cover, and

165 land management practices, can impact no-flow characteristics by altering runoff generation 

166 and groundwater recharge processes within catchments — how much and how fast 

167 precipitation infiltrates, is lost to evapotranspiration, or runs off land surfaces. Different types 

168 of land-use change have varying impacts on flow intermittence because of their unique 

169 influence on hydrological processes (Table 1, Figure 1e, 1f, Appendix 1). For example, 

170 urbanization increases the proportion of impervious surfaces, which generally increases high 

171 flows, but can also both increase and decrease low-flow events (Bhaskar et al. 2020). While 

172 water abstraction is probably the main cause of AFI in agricultural landscapes, conversion of 

173 natural ecosystems to crops or pasture, as well as afforestation, can also shift the timing and 

174 magnitude of evapotranspiration, runoff, and groundwater recharge (Levy et al. 2018). 

175 However, changes to flow intermittence resulting from agricultural expansion depend on the 

176 local water balance, management practices, and the water balance of the crop type compared 

177 to the natural vegetation that preceded land-use change.

178 (4) Climate change is altering river flows globally (Villarini and Wasko 2021) and is

179 particularly challenging to disentangle from other drivers of AFI. Patterns of change 

180 associated with climate-change-driven AFI are distinct from other causes of AFI in that they 

181 tend to act at larger spatial and longer temporal scales, but are superimposed upon natural 

182 meteorological variability. Natural interannual variability in weather and local geophysical 

183 conditions, which in turn create variability in intermittent flow regimes, blur the signal of 

184 climate change (Snelder et al. 2013, Hammond et al. 2021). Therefore, identifying climate-
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185 change-driven AFI would require linking climate attribution science, such as tools developed 

186 for heatwaves and floods (Zhai et al. 2018), with flow intermittence models to determine the 

187 relative proportion of flow intermittence linked to natural climate variability and 

188 anthropogenic climate change. In the US and Europe, no-flow events are generally increasing 

189 in duration and occurring earlier in regions that have increased in aridity in recent decades 

190 (Table 1, Zipper et al. 2021, Tramblay et al. 2021). An earlier onset of no-flow compared to 

191 historical conditions may thus be a useful signal of climate-driven AFI. However, there is 

192 substantial local and regional variability in the impacts of climate change (Figure 1g, h, 

193 Appendix 1). In the US, for example, climate change may be increasing drying durations in 

194 southern, arid areas, whereas in northern streams, flow cessation is driven by stream freezing 

195 and climate change may be decreasing no-flow durations and delaying the onset of no-flow 

196 conditions in winter (Zipper et al. 2021). 

197 Do biodiversity responses differ between natural and anthropogenic flow intermittence?

198 Shifts among lotic (flowing water), lentic (standing water), and terrestrial (dry riverbed) 

199 phases are supposedly associated with pronounced stepwise shifts in biological communities 

200 (Boulton 2003). However, empirical evidence of pronounced shifts is rare in NFI. The 

201 taxonomic richness of most aquatic taxa decreases linearly as annual flow intermittence 

202 increases (Datry et al. 2014, Soria et al. 2017), which may be due to physiological, 

203 behavioral, and phenological strategies among the different species that tolerate drying 

204 conferring resistance and resilience to biotic communities (Datry et al. 2014; Appendix 3). 

205 For example, many species tolerate desiccation through dormant life stages, including insects 

206 (Bogan 2017), mussels (Lymbery et al. 2021), amphibians (Hillman et al. 2009), crayfish 

207 (Kouba et al. 2016), algae and macrophytes (Sabater et al. 2017), riparian plant (Rood et al. 

208 2003, Stella and Battles 2010, Katz et al. 2011) and fish (Eldon 1979). Local decreases in 
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209 taxonomic richness can concur alongside regional increases in beta diversity (Katz et al. 

210 2012, Crabot et al. 2020, Gauthier et al. 2020). This contrast stems from the different 

211 hydrological phases that coexist at the river network scale, with each phase supporting 

212 community successional stages with different compositions (Larned et al. 2010, Katz et al. 

213 2012). Monotonic decreases in functional diversity occur along gradients of increasing flow 

214 intermittence (Crabot et al. 2021a), with limited functional redundancy and no evident 

215 thresholds of change.

216 In contrast to the rapidly growing body of ecological literature on NFI, biodiversity responses 

217 to AFI remain poorly studied (Aspin et al. 2019, Crabot et al. 2020). AFI often results from 

218 pressures (e.g., irrigation) which can cause other concurrent stressors (e.g., poor water quality 

219 and altered thermal regimes), that can in turn alter communities (see below “Context-

220 dependence of the effects of AFI”). While communities often return to their pre-drying 

221 composition within weeks to months in hydrologically well-connected catchments, 

222 irreversible community shifts to alternative stable states are more likely at isolated sites (e.g., 

223 Bêche et al. 2009). Shifts from perennial to intermittent flow regimes driven by seasonal 

224 pressures may prevent community recovery to pre-disturbance composition: example cases 

225 include water abstraction to irrigate agricultural land (Peralta-Maraver et al. 2020) or climate-

226 change-driven decreases in summer rainfall (Bogan and Lytle 2011, Carey et al. 2021). 

227 Aquatic communities impacted by AFI may comprise nested subsets of the taxa present 

228 before drying occurs in AFI streams and before the increases in the dry period duration for 

229 NFI streams (Datry et al. 2014). The remaining taxa typically harbor traits that promote 

230 colonization after flow resumes, either from in-situ wet refuges including pools, subsurface 

231 sediments, or nearby perennial waters (Vander Vorste et al. 2016b). These colonists may 

232 increase in abundance over time to fill the ecological niches left vacant by the elimination of 

233 drying-sensitive functional equivalents (Carey et al. 2021). However, the long-term 
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234 biological responses to AFI remain poorly documented, limiting our ability to anticipate the 

235 effects of global change on riverine biodiversity.

236 When previously perennial streams experience unprecedented drying events, or when NFI 

237 streams are drying much longer due to artificial causes, ecological tipping points are crossed, 

238 leading to dramatic responses in which community composition is pushed to novel and 

239 irreversible states (Aspin et al. 2019, Crabot et al. 2020). These shifts occur because perennial 

240 stream biota typically lack adaptations to cope with drying, and because dramatic top-down 

241 changes to food chains can occur when drying eliminates top predators (e.g., fish, odonates) 

242 or increases terrestrial predation, leading to disruption of trophic interactions and partial food 

243 web collapse (McHugh et al. 2015, Steward et al. 2022). Over time, however, stream 

244 communities exposed to long-term AFI may become increasingly similar to those in 

245 comparable NFI streams, with rates of compositional change depending on connectivity with 

246 regional NFI metapopulations that represent potential colonists (Sarremejane et al. 2021; 

247 Figure 2). At the network scale, colonization may be facilitated by both passive drift and 

248 active migration if AFI reaches occur close to NFI reaches (e.g., due to irrigation in 

249 agricultural lowlands; Figure 2). AFI-induced changes in community composition resemble 

250 those after single drying events: succession starts as soon as flow resumes, and short-lived, 

251 drying-resistant taxa with strong dispersal abilities replace those with longer life cycles 

252 and/or desiccation-sensitive life stages. In some cases, this response to a rare drying event can 

253 temporarily increase the temporal community turnover (Katz et al. 2012, Aspin et al. 2019, 

254 Crabot et al. 2021b; Figure 2).

255 Of the four drivers, the effects of climate change AFI are probably the most similar to the 

256 effects of NFI. This is because they occur at large spatial scales and are gradual in time. As 

257 such, climate change exerts a continuous ramp disturbance on aquatic communities. Where 
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258 drying gradually increases in space and time due to climate change, biodiversity gradually 

259 declines, as species-specific desiccation-tolerance thresholds are exceeded during dry phases 

260 and as dispersal capacities fall short of distances between refuges and NFI streams 

261 (Sarremejane et al. 2021, Bogan et al. 2013). For example, these losses may be particularly 

262 pronounced for riparian plants if groundwater levels decrease below the reach of roots (Zhou 

263 et al. 2020), or if the refuges in which species could previously persist become ecological 

264 traps in which they die due to harsher abiotic conditions (Vander Vorste et al. 2020). In 

265 particular, climate-change-induced changes to NFI flow regimes such as earlier dry-phase 

266 onset and longer dry-phase duration may extirpate fish species due to lost spawning cues, 

267 lack of rearing habitats or increased habitat fragmentation.

268 Specialist species, which tolerate, or even require, drying to complete their life cycles can 

269 sustain the local taxonomic richness in NFI communities, moderating negative biodiversity 

270 responses to drying (Bogan et al. 2013). However, these specialists may not occur in AFI 

271 streams unless NFI source populations are close enough to supply colonists. Additionally, the 

272 flow regimes produced by AFI may differ substantially from the NFI regimes to which these 

273 specialists are adapted (Figure 1), as seen in the AFI created in the tailwaters of hydropower 

274 dams (Abernethy et al. 2021). This lack of specialists in AFI systems suggests that sites along 

275 increasing artificial drying gradients will become increasingly depauperate due to nested 

276 species losses, whereas moving along NFI gradients may generate distinct communities 

277 through species turnover (Rood et al. 2003, Katz et al. 2012, Gutiérrez-Cánovas et al. 2013). 

278 Community responses to AFI could thus vary in relation to the occurrence and distribution of 

279 specialists and other drying-tolerant species in regional species pools or with the prevalence 

280 of NFI in the landscape. Stochastic post-drying trajectories could characterize AFI 

281 community recovery where desiccation tolerance is uncommon and where AFI sites are 
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282 hydrologically isolated. These conditions could favor priority effects allowing generalists that 

283 colonize rapidly to become dominant (Vander Vorste et al. 2016a). 

284 Timing of AFI events could also influence colonization after flow resumes. For example, if a 

285 river impacted by AFI has wet and dry phases at different times than natural regional drying 

286 events, perennial refuges within the river network could provide a steady supply of species to 

287 colonize after rewetting occurs (Sarremejane et al. 2022). Alternatively, if regional NFI and 

288 AFI events are concurrent, the capacity of communities to recover decreases, potentially 

289 leading to metacommunity collapse due to the absence of colonists in the region. Thus, 

290 biological responses to AFI are inherently linked to the landscape context in which they 

291 occur.

292 Context-dependence of the effects of AFI on biodiversity responses

293 The context-dependent effects of AFI are likely to be influenced by the prevalence of NFI in 

294 the landscape (see above), the level of river network fragmentation by human-made 

295 structures, the severity of other stressors associated with anthropogenic drying, and the 

296 occurrence of invasive species. Accumulating evidence indicates that network-scale 

297 biological responses to drying are strongly dependent on other fragmentation in the network, 

298 especially that caused by dams and other human-made structures (Gauthier et al. 2021). In 

299 river networks that are already highly fragmented, AFI might have limited effects on already 

300 modified biotic communities, notably on beta diversity patterns, but could alter some pivotal 

301 ecological functions (see below). The local, negative effects of AFI might interact with other 

302 stressors, most commonly geomorphological and physicochemical stressors associated with 

303 urbanization and agriculture. For example, the negative effects of nutrients, microplastics, 

304 and pharmaceuticals on aquatic biodiversity are enhanced in the context of water scarcity 

305 (Pereira et al. 2017) and AFI could lead to higher pulses of water-transported toxins upon 
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306 flow resumption. However, because stressors can directly and indirectly impact biota, and 

307 because taxa may be differentially affected by concurrent stressors, stressors may 

308 unintuitively interact, in synergistic, neutral, or antagonistic ways. Exploring the interactive 

309 effects of drying with other stressors on river biodiversity and ecological integrity represents 

310 a promising research avenue (Stubbington et al. 2022).

311 Shifts from perennial to AFI regimes may also change the outcomes of biological invasions, 

312 influencing whether an invasive species establishes and, if so, reaches densities sufficient to 

313 have ecological impacts. For example, the invasive mudsnail, Potamopyrgus antipodarum, is 

314 associated with perennial flow (Arscott et al. 2010) and its spread could thus be limited by 

315 shifts to AFI and anthropogenic extensions of dry-phase durations. By contrast, invasive 

316 species that thrive in drier conditions include the riparian shrub Tamarix sp. (Stromberg et al. 

317 2007), the red swamp crayfish Procambarus clarkii (Kouba et al. 2016), and various 

318 opportunistic, tolerant fish (Rahel and Olden 2008). These organisms may have greater 

319 impacts on rivers prone to AFI, and altered invasion outcomes may have large-scale effects 

320 on aquatic communities and ecosystem functions (Moody and Sabo 2013).

321

322 Do the effects of anthropogenic flow intermittence on biodiversity alter ecological 

323 functions?

324 Most ecological functions are biologically controlled, and biodiversity responses to flow 

325 intermittence discussed in the previous section, such as species losses, can alter ecological 

326 functions (Truchy et al. 2015). This is particularly true for AFI, because the resultant 

327 biodiversity responses are expected to be stronger compared to NFI (Figure 3). The 

328 cascading effects of AFI on ecological functions will depend on the functional redundancy of 

329 a community and the types of organisms involved (Nyström 2006, Acuña et al. 2015). 
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330 Finally, in locations where AFI causes biodiversity losses and other stressors are present, 

331 alterations of ecological functions by AFI could be even more complex. Further research into 

332 the extent of functional redundancy in communities exposed to AFI and the mechanisms by 

333 which AFI may select for certain combinations of traits will reveal how AFI alters ecosystem 

334 function relative to NFI (Aspin et al. 2019; Crabot et al. 2021b).

335 Both NFI and AFI may reduce the range of functions provided by riverine communities, 

336 which highlights the role of functional redundancy in mitigating the effects of taxonomic 

337 losses on ecosystem functioning. Indeed, functional traits related to species’ life-history 

338 strategies that confer resistance and/or resilience to drying are generally selected for in harsh 

339 or frequently disturbed environments (Townsend and Hildrew 1994). This selection likely 

340 favors taxa with redundant traits linked to mobility, lifespan, body size, timing of maturity, 

341 reproduction, and feeding. Shifts in functional trait distribution accompanying drying-

342 induced biodiversity losses in NFI have been well documented (e.g., for invertebrates: Crabot 

343 et al. 2021a; diatoms: Falasco et al. 2021; algae and macrophytes: Sabater et al. 2017). These 

344 losses may be even more extreme in cases of AFI if the timing and severity of drying is 

345 unpredictable and/or different from regional NFI streams (Figure 3). For example, AFI 

346 reaches of the Salt River in Arizona had lower richness and abundance of riparian birds and 

347 plants than restored reaches, which in turn influenced reciprocal flows of energy and nutrients 

348 across aquatic-terrestrial boundaries (Bateman et al. 2015). By selecting for taxa that perform 

349 well in these novel and unpredictable conditions, AFI can therefore favor invasive species of 

350 plants and animals which can lead to drastically different functioning of these systems than 

351 naturally intermittent ones (Katz et al. 2012). In contrast to macroorganisms, AFI may 

352 negligibly affect microbially mediated processes due to the higher resilience and resistance of 

353 microbial populations to short-term drying (i.e., less than a month in duration; Acuña et al. 
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354 2015; Truchy et al. 2020). However, if AFI prolongs dry periods, even microbially mediated 

355 ecological functions are likely to deviate from those found in NFI streams.

356 Beyond the loss of functional redundancy, the elimination of certain functional traits from 

357 communities could have considerable ecological consequences (Figure 3). For example, in 

358 reaches prone to flow intermittence, the local elimination of sensitive microbial heterotrophs 

359 and invertebrate shredders reduces litter decomposition rates, both in the short and long term 

360 (Datry et al. 2011). The functional consequences of drying may depend on the similarity of 

361 AFI and NFI flow regimes, but also on connectivity with sources of colonists that maintain 

362 key functional traits. However, the specific trait combinations selected by AFI remain 

363 essentially unknown, potentially leading to underestimates of the effects of AFI on ecosystem 

364 functioning (e.g., Atkinson et al. 2014). 

365 In addition to biodiversity-driven changes in ecosystem functions in AFI streams, alterations 

366 of some ecosystem functions are driven by changes in abiotic conditions. For example, higher 

367 nutrient concentrations during no-flow conditions can increase gross primary production 

368 (Finn et al. 2009). Despite similar underlying mechanisms and physicochemical conditions, 

369 the effects of AFI on ecosystem functioning may be greater than the effects of NFI 

370 (Mohamad Ibrahim et al. 2019), because AFI is frequently associated with additional human 

371 impacts (Figure 3). In conclusion, the unique flow regimes and interacting stressors 

372 associated with AFI will lead to ecosystem function that differs from NFI, but more empirical 

373 work on the specific functional traits favored by AFI and how they interact with other human 

374 impacts is needed. 

375

376
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377 Does anthropogenic flow intermittence alter delivery of ecosystem services?

378 Natural IRES provide a wide range of highly valued ecosystem services during both their wet 

379 and dry phases (Datry et al. 2018, Stubbington et al. 2020). However, how the services 

380 delivered by AFI and NFI streams differ remains poorly understood. Differences may exist in 

381 the provisioning (e.g., food and water), regulating (e.g., erosion control) and cultural (e.g., 

382 recreation) services. In each case, changes to physical habitats, biological communities, and 

383 ecosystem functions underpin similarities and differences in the services delivered by AFI 

384 and NFI streams. In addition, the network-scale extent of intermittence has profound effects 

385 on water-based services, and human perceptions of naturalness can profoundly alter cultural 

386 services. 

387 Provisioning services, in particular the provision of fresh water for domestic use and 

388 irrigation of cropland, are highly sensitive to drying (Datry et al. 2018). Anthropogenic 

389 increases in drying reduce water availability and thus increase water’s social and economic 

390 values, particularly in arid regions where water is naturally scarce (Figure 4a, 4b, 

391 Stubbington et al. 2020). In other cases, drying may promote some ecosystem services. For 

392 example, rivers in the Great Plains of the central United States such as the Platte and the 

393 Arkansas Rivers historically flooded and had broad sandy floodplains. As they dried due to 

394 upstream water uses and groundwater extraction, a more stable riparian forest developed, 

395 creating new habitat for forest species in a region where trees are naturally sparse (Strange et 

396 al. 1999). However, AFI often reflects diversion of water from streams to provide drinking 

397 water, crop irrigation, and industrial water, and AFI may thus reflect increased water 

398 provisioning at the expense of other services. In addition to water provisioning, the stranding 

399 of fishes as water levels decline is far more frequent in AFI than NFI rivers (Pennock et al. 
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400 2022), with consequent mortality potentially impacting subsistence, commercial, and 

401 recreational fishing. 

402 The rates at which regulating services including sediment erosion control, pollution 

403 attenuation (via microbial nutrient processing) and climate regulation (through carbon 

404 cycling) are delivered differ profoundly between wet and dry phases, and are thus susceptible 

405 to alteration by AFI (Datry et al. 2018, Stubbington et al. 2020). Where AFI increases the 

406 spatial extent and/or duration of dry phases, sediment erosion is reduced, which compromises 

407 sediment supply to downstream reaches (Gamvroudis et al. 2015). In addition, by reducing 

408 microbial activity and eliminating invertebrate shredders, increased drying can limit 

409 processing of material, which accumulates along dry riverbeds and can generate pulses of 

410 carbon dioxide upon rewetting, thus altering atmospheric composition and climate regulation 

411 (Datry et al. 2018). The effects on such ecosystem processes and associated services will 

412 depend on the timing, frequency and duration of dry and wet phases, with longer AFI 

413 durations potentially delaying and limiting peaks in carbon dioxide release from organic 

414 material. Thus, climate change-related extensions of dry periods could increase downstream 

415 transport of low-quality organic material (Corti and Datry 2012), with potential repercussions 

416 on detrital food webs and associated ecosystem functions and services.

417 The cultural services provided by the wet and dry phases of natural IRES differ markedly, in 

418 particular in terms of recreation: wet phases can create opportunities for boating and fishing, 

419 whereas dry phases enable in-channel activities including rambling and horse riding (Steward 

420 et al. 2012, Datry et al. 2018, Stubbington et al. 2020). AFI thus theoretically changes the 

421 nature but not necessarily the extent of recreational service delivery. Yet in practice, use of 

422 available services can be altered by human perceptions of the naturalness of an ecosystem 

423 (Stålhammar and Pedersen 2017). In areas where NFI is common, AFI could promote greater 
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424 valuation of water as perennial sources are lost (Figure 4b), whereas in cool, wet regions, 

425 streams newly experiencing AFI may be recognized as indicative of anthropogenic 

426 degradation (although the presence of perennial reaches may not alter the value of flowing 

427 water; Figure 4c). Aesthetic values, cultural heritage, and sense of place may also be reduced 

428 in AFI during dry phases, due to people’s recognition that dry riverbeds symbolize human 

429 impacts, even leading to the feelings of ‘ecological grief’ (Cunsolo and Ellis 2018). This 

430 reduced use of cultural services during AFI dry phases limits benefits for human wellbeing, 

431 including mental and physical health and social cohesion. Relationships between 

432 environmental and socio-hydrological norms are complex and context dependent, and further 

433 research exploring the implications of AFI to cultural services is warranted. 

434 In sum, shifts in the frequency, timing, and duration of wet and dry phases caused by AFI, 

435 typically including an increase in dry phases, alter the composition of co-occurring 

436 provisioning, regulating, and cultural services within ecosystem service bundles (Datry et al. 

437 2018, Stubbington et al. 2018). Understanding trade-offs among different services could 

438 mitigate conflicts between users of services delivered by AFI streams – but ultimately, the 

439 high social, cultural and economic value of fresh water means that AFI causes marked overall 

440 reductions in service delivery. The extent of these reductions is context dependent, being 

441 most pronounced in dryland regions in which NFI already restricts delivery of water-based 

442 services (Figure 4a). 

443

444 Research priorities and management recommendations for AFI and NFI

445 Major gaps in our understanding of AFI systems have emerged from this study (Table 2). 

446 These gaps limit our ability to effectively manage river networks experiencing anthropogenic 

447 change, and indicate the need to develop management practices tailored towards the specific 
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448 effects of AFI. Although limitations in our capacity to manage NFI streams have been 

449 identified (Acuña et al. 2014, Marshall et al. 2018, Stubbington et al. 2018) and are starting to 

450 be addressed (Mazor et al. 2014, Steward et al. 2018), distinctions between NFI and AFI are 

451 still rarely considered in river management plans (Stubbington et al. 2018, Acuña et al. 2020, 

452 Crabot et al. 2021a). 

453 We cannot appreciate all the implications of AFI and NFI without first refining our 

454 knowledge of how they differ with respect to temporal and spatial flow regimes. 

455 Characterization of drainage network patterns, including hydrological connectivity, is 

456 particularly important, as it will allow improved monitoring, evaluation, reporting, 

457 restoration, and remediation policies to be developed. The first step towards this goal would 

458 be high-resolution mapping of river reaches affected by NFI and AFI (Table 2). Managers 

459 require detailed spatial and temporal information on the causes and patterns of flow 

460 intermittence to embed existing and future knowledge into monitoring, assessment, and 

461 reporting mechanisms. Development of quantitative metrics that distinguish NFI from AFI 

462 flow regimes would increase the usefulness of this mapping (Table 2). These metrics could 

463 also include detailed regional- and network-scale information: where streams are located, 

464 whether they are prone to NFI and/or AFI, when drying would occur based on seasonal 

465 climate patterns, and the likelihood of synchrony between the drying of AFI and NFI. 

466 Additionally, quantitatively estimating to what degree flow intermittence is due to 

467 anthropogenic stressors (as defined in Table 1) would be important. Applying these metrics 

468 to mapped patterns could enhance understanding of spatial and temporal variability in 

469 network-scale AFI, as well as creating predictive models of flow intermittence (Table 2).

470 As metrics are developed to better characterize the origins and factors leading to AFI, they 

471 will also illuminate what characteristics of the landscape and socio-economic circumstances 
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472 make a river more prone to AFI. More generally, describing the spatial context of drying in 

473 AFI will also help to identify contingencies in responses of biodiversity to drying and help 

474 prioritize mitigation and restoration efforts (Table 2). Further analyses of such factors could 

475 enable managers to identify those management actions which are more likely to conserve or 

476 restore the biodiversity of rivers prone to AFI. We are lacking information on 1) drying 

477 frequencies, magnitudes, and durations that could push communities or ecosystems to less 

478 desirable states, with particular attention to thresholds leading to alternative stable states (i.e., 

479 Zipper et al. 2022), 2) how functional redundancy promotes resilience and resistance to AFI, 

480 3) specific functional traits that confer resilience to pool or dry conditions, and whether AFI

481 specifically selects for or against them, 4) cascading effects of AFI on key biogeochemical 

482 functions (e.g., carbon and nitrogen cycling), and 5) feedbacks between riparian zones and 

483 rivers subject to AFI. As researchers continue to better understand the causes of drying, and 

484 biodiversity and ecosystem functioning responses to drying in these dynamic systems, further 

485 work can help pinpoint the contexts in which AFI has the greatest relative impacts on 

486 ecosystem services (Table 2). 

487

488 Identifying differences between AFI and NFI is critical to managing human impacts on river 

489 ecosystems. Such information could lead to policy briefs on critical eco-hydrological 

490 thresholds, mechanisms to minimize negative impacts, and eventually the partial or complete 

491 mitigation of AFI, which can rapidly lead to improved ecological communities and 

492 conditions. Moreover, establishing causal linkages between drying, rewetting, and 

493 biodiversity responses to AFI may improve our ability to predict biodiversity under 

494 alternative management scenarios. As human impacts continue to alter flow intermittence 

495 patterns, understanding the drivers and ecological, biogeochemical, and societal impacts of 
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496 AFI as well as how these differ from NFI is essential to inform policies and practices that 

497 support the effective management and conservation of river networks globally.
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830 Table 1. Drivers and examples of anthropogenic flow intermittence. A single example is 

831 provided for each driver.  A thorough meta-analysis is available on Appendix 2.

Driver Predominant mechanism Example Reference
(1) Water Abstraction and
Diversion: Surface water
extraction

Reduced stream flow due to 
removal of surface water

Tordera River, 
Spain

Benejam et al. 
2010

(1) Water Abstraction and
Diversion: Groundwater
pumping/removal

Reduced groundwater 
discharge to stream and/or 
induced infiltration from 
stream into aquifer due to 
capture by pumping wells

Wissey, Rhee, 
Pang Rivers, 
UK

Bickerton et al. 
1993

(1) Water Abstraction and
Diversion: Stream diversion

Stream rerouted into a new or 
different channel reducing 
volume of surface water

Tai Po Kau 
forest stream, 
Hong Kong, 
China

Dudgeon 1992

(2) Water storage and flow
regulation

Reduced volume of surface 
water and/or altered (un-
natural flow dynamics) due to 
water storage

Tarim River, 
China Zhou et al. 2020

(3) Land use/cover change

Changes to land surface affect 
water balance and catchment 
hydrology increasing 
evapotranspiration and/or 
flashier runoff, decreasing 
groundwater recharge and/or 
baseflow, and lengthening no-
flow periods

Southern and 
western US 
rivers

Ficklin et al. 
2018

(4) Climate change

Reduced precipitation, 
drought, increased 
evapotranspiration, 
generalized effects of climate 
change

Po and Pellice 
Rivers, Italy

Doretto et al. 
2020
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837 Table 2. Research gaps related to AFI across river networks

Discipline Gaps Why it is important

Geography/H
ydrology

Produce maps of river 
reaches prone to AFI at 
multiple spatial (from 
global to local) and 
temporal (from seasonal to 
annual) scales.

There are currently no maps that explicitly 
distinguish reaches prone to AFI from those 
affected by NFI. These maps are needed at 
multiple spatial and temporal scales to 
quantify the prevalence of AFI, upscale the 
effects of AFI on downstream biodiversity, 
functions and ecosystem services, manage 
river flows (e.g., environmental flows 
implementation), and to inform the design and 
improvement of monitoring networks.

Hydrology Develop predictive models 
of flow intermittence that 
distinguish between AFI 
and NFI.

Flow intermittence has different drivers but it 
is challenging to tease out the respective roles 
of these drivers, whether they are natural or 
due to human activities. Distinguishing AFI 
from NFI across river networks in predictive 
models is pivotal for river managers as 
conservation and restoration approaches have 
to be tailored accordingly.

Quantify long-term 
biodiversity trajectories 
upon shifts from perennial 
to artificially intermittent 
flow regimes.

Stream biota in perennial rivers and streams 
can lack adaptations to cope with drying: 
shifts from perennial to intermittent flow 
regimes due to human activities could thus 
have dramatic effects on local and regional 
biodiversity. In addition, top-down cascades 
within the food-chain can happen if top 
predators are removed, disrupting trophic 
interactions and leading to (partial) foodweb 
collapse. The magnitude of such responses to 
AFI, as well as the trajectories of 
communities recently prone to AFI have to be 
quantified for biodiversity conservation. 

Ecology

Determine ecological 
tipping points related to 
AFI that should not be 
crossed, along with their 
generality across climate 
and biogeographic zones.

Changes in environmental conditions due to 
AFI may be so drastic that ecosystems are 
pushed to novel and irreversible states, 
encompassing completely new (i.e., never 
encountered before) communities. 
Identification of such tipping points is needed 
to predict future biodiversity changes in 
freshwaters and to guide management and 
legislations.
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Identify mechanistic 
associations between 
drying or rewetting events 
and critical life history 
events. 

Understanding mechanistic linkages will 
enable a clearer understanding of the 
differential effects of AFI relative to NFI and 
enable the construction of mechanistic 
predictive models to forecast how AFI 
regimes will affect biodiversity. 

Generate a clearer un
derstanding of the spatial 
configuration of drying and 
how the relative positioning 
of drying in river networks 
propagates negative 
biodiversity effects. 

This knowledge will help to deconstruct 
contingencies in biodiversity responses to 
drying, and help prioritize mitigation and 
restoration efforts of underlying causes. For 
instance, localized vs whole water table 
drying will have differential effects on the 
synchrony/stability of metapopulations and 
metacommunities at network scales. 

Identify problematic 
frequencies of drying and 
how the effects on 
biodiversity differ between 
NFI and AFI. 

AFI drying often occurs at unnatural 
frequencies relative to NFI. Understanding 
which frequencies (and why) are problematic 
for various taxa will help prioritize 
remediation efforts.

Identify differences 
between traits found in AFI 
relative to NFI sites. Do 
NFI regimes select for 
particular traits that are not 
present in AFI sites? Are 
these traits found in AFI 
sites in networks with 
NFI? 

Identifying the specific traits that are missing 
in AFI streams relative to NFI will help to 
deconstruct the differential causal drivers of 
AFI on biodiversity relative to NFI.

Biogeochemi
stry

Quantify biodiversity and 
ecosystem functioning 
(BEF) relationships to 
predict how biodiversity 
loss alters ecological 
functions in drying river 
networks.

To document how biodiversity loss will alter 
the functional integrity of river networks 
undergoing AFI, improved BEF relationships 
specific to AFI are needed.

Biogeochemi
stry/Ecology

Upscale the effects of AFI 
on biodiversity and major 
biogeochemical cycles at 
the river network scale.

Understanding the effects of AFI on the 
different “levels” of the ecosystem is needed 
at multiple scales. How far these effects can 
be upscaled is critical for global assessments 
and for tailoring management practices.

Biogeochemi
stry/Ecotoxic
ology

Understand the individual 
versus combined effects of 
AFI in the face of 

AFI co-occurs with other anthropogenic 
stressors. Interacting stressors may exacerbate 
or dampen biologic responses to flow 
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competing, interacting and 
emerging stressors related 
to human activities.

changes. Identifying the synergistic and 
antagonistic effects of stressors will 1) allow 
to determine whether or not certain types of 
rivers are more sensitive to AFI than to NFI 
and 2) assist in the development of multi-
criteria tools.

Socio-
economic

Develop a comprehensive 
framework of AFI relative 
to the ecosystem services 
that rivers provide based on 
the context in which rivers 
are embedded.

AFI has profound effects on water-based 
ecosystem services (e.g., livability, provision 
of fresh water, habitat creation and 
maintenance, climate regulation), potentially 
leading to an increase of its social and 
economic unit value. Understanding the 
general context under which AFI has the 
greatest effects on ecosystem services will 1) 
help defining useful metrics that quantify 
relevant water uses (e.g., % water diverted, 
location in network) and 2) guide 
management practices as well as policy.
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845 Figures

846
847 Figure 1. Differences in hydrological signatures between natural (NFI; black) and 

848 anthropogenic (AFI; red) flow intermittence for four drivers of AFI in Australia (a,c,e,g) and 

849 the United States (b,d,f,h), as summarized in Appendix 1. No-flow fraction is the proportion 

850 of zero-flow days in a year, while dry down period is defined as the number of days from 

851 peak flow to zero flow. Panel (h) shows the relationship between the strength of the trend 

852 (Tau values of Mann-Kendall trend test) in no-flow fraction over time and the strength of the 

853 trend in climatic aridity (the ratio of annual precipitation P to potential Evapotranspiration 

854 PET)) over time in the United States. Results with negative P/PET Tau correspond to climate 

855 conditions which have become drier.

856
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857
858 Figure 2. The influence of landscape context on change in biodiversity (as taxa richness) in 

859 reaches shifting from perennial flow to artificial flow intermittence (AFI; b, d, e and g). In 

860 headwaters (a–f), intermittence specialist species capable of overland and/or instream 

861 dispersal colonize from reaches with natural flow intermittence (NFI) where their maximum 

862 dispersal distances allow, leading biodiversity to increase over time (e) to levels at NFI sites 

863 (c, f). In contrast, sites isolated from such colonists by distance, physical barriers and/or 

864 reaches with unsuitable habitat (including perennial reaches) remain taxon poorer (b, d). 

865 Barriers and/or intervening reaches with unsuitable habitat may also prevent intermittence 

866 specialists from colonizing downstream AFI sites (g), at which biodiversity instead increases 

867 due to colonization by generalists via overland dispersal from nearby aquatic habitats (blue 

868 circle) and instream dispersal from both downstream and upstream sources, the latter 

869 instream colonists capable of passively dispersing over greater distances. Line widths 

870 represent stream order and proportional to stream size.
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871

872

873 Figure 3. Anthropogenic flow intermittence (AFI, A) can cause shifts in community composition 

874 that alter ecosystem functioning compared to naturally intermittent (NFI, B) and naturally perennial 

875 (NP, C) reaches. These shifts can result from drivers including (1) water storage and flow reduction 

876 below dams; (2) groundwater pumping, here shown for center-pivot irrigation; (3) surface water 

877 abstraction, here shown for industrial use and public water supply; and (4) land modification, such as 

878 an increase in impervious surfaces. In scenario A, these drivers alter hydrological regimes compared 

879 to both NP and NFI reaches, as shown in hydrographs based on 20 years of gauge data from Arizona, 
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880 US, at AFI (Salt River), NP (Cherry Creek), and NFI (Dry Beaver Creek) sites. Circles in insets show 

881 hypothetical diatom communities in each reach. The functional trait of cell size is associated with 

882 growth rates, with smaller- and larger-celled species having “fast” and “slow” growth, respectively. 

883 Only a subset of species in NFI and NP communities are present in the AFI community, due to 

884 environmental filtering of taxa with traits conferring resistance to drying. Lower taxonomic diversity 

885 is typically associated with lower rates of ecosystem functions, as illustrated by the more even 

886 distribution of small, fast-growing and large, slow-growing species in NP and NFI communities, 

887 whereas the AFI community is composed entirely of small, fast-growing pioneer species. This 

888 hypothetical shift in traits would alter rates of primary production and temporal variability/stability in 

889 algal biomass, leading to altered ecosystem function. 
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897

898 Figure 4. Water availability drives differences in the delivery and value of water-based 

899 ecosystem services in artificial IRES. (a) The total value of water-based services within 

900 catchments is proportional to the perennial network length, with a given increase in water 

901 causing a greater increase in value in catchments with low water availability. (b) In networks 

902 with extensive NFI, AFI can further raise the already-high economic value of water 

903 provision, and a minor increase in already low cultural value. (c) In stream networks 

904 dominated by perennial reaches, AFI might have a minimal effect on both the relatively low 
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905 economic value or the high cultural value of water, though the value of cultural and economic 

906 services for a given volume of water would still increase as AFI within a watershed increases. 

907 Note that panels (b) and (c)  show the value of services for a given volume (i.e., a unit) of 

908 water rather than the total value of water. Accordingly, the total value of water-based 

909 ecosystem services would still decrease with increasing AFI, and do so less strongly  in 

910 networks dominated by intermittent reaches (panel b) than in networks dominated by 

911 perennial reaches (panel c) given the higher marginal value of water in the former.

912
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Causes, responses, and implications of anthropogenic versus natural flow intermittence 

in river networks

Appendix 1:

We selected stream gauges in Australia and the US to demonstrate differences between NFI 

and AFI, and to illustrate the potential hydrological signatures of individual anthropogenic 

drivers. In Australia, pairs of stream gauges were manually selected to compare AFI caused 

by each of the four drivers to NFI, while minimizing the effects of other drivers. In the US, 

we compared streamflow time series in which the hydrology primarily reflects prevailing 

meteorological conditions (Hydro-Climatic Data Network 2009 gauges; Lins 2012) to rivers 

whose streamflow has been altered by specific anthropogenic activities. Only catchments 

with similar hydro-environmental characteristics and within the same ecoregion were 

considered. Catchments were categorized by each driver using hydrological disturbance 

information in the GAGES2 dataset (Falcone 2011). To compare AFI and NFI, we 

characterized three hydrological signatures of flow intermittence: 1) The annual no-flow 

duration (the total number of days without surface water flow); 2) The Julian date of first no 

flow in a water year (April 1 to March 30); and 3) The duration of the dry-down period (i.e., 

from a local peak in flow to the first occurrence of no flow), as in Hammond et al. (2021), 

Zipper et al. (2021), and Price et al. (2021). For both Australia and the US, our analysis was 

designed to provide only an illustrative depiction of AFI for each driver, since a 

comprehensive analysis of every variation of a given driver (e.g., land-use change could 

include urbanization, forest-cover changes, and agricultural intensification, which would all 

likely have distinct impacts) was beyond the scope of this study. 

Australia analysis

1
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We manually selected stream gauges in Australia to be representative of NFI and AFI caused 

by each of the four anthropogenic drivers, while minimizing the effects of other drivers. For 

the drivers of water abstraction and diversion, and water storage, we selected multiple sites 

with a subset with clear human influence representing AFI and the other subset with few 

human impacts characterizing NFI. For the other two drivers, we selected one gauge for each 

and compared calculated flow metric values before and after the corresponding driver took 

effect.

Water abstraction and diversions

The Lockyer Creek catchment in south-east Queensland, Australia was cleared for intensive 

agriculture between the 1940s and the 1970s. Since then, water has been often abstracted 

from the river for irrigation. We selected two adjacent stream gauges in the Lockyer Creek: 

one (gauge 143201) measured streamflows from 1909 to 1947, and the other (gauge 

143210B) from 1988 to 2021. The former was used to calculate NFI metrics while the latter 

to characterize AFI conditions. 

Water storage

Three upstream gauges (gauge 406215, 406226, 406235) measuring unregulated inflows to 

Lake Eppalock in Victoria, Australia were grouped together to represent NFI. The immediate 

downstream gauge (gauge 406207), which measures regulated dam releases, was used to 

characterize AFI due to water storage.

Land use change 

The Mooloolah River catchment in south-east Queensland experienced rapid urbanization 

from the 1970s to 2000s. We selected a stream gauge (gauge 141006A) that has measured 

2
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streamflow since 1972 to explore the impact of land use change from forest to urban area on 

flow intermittence. We chose the year 2000 as the point to divide the flow record into pre- 

and post-urbanization periods. 

Climate change

The Yarragil Brook catchment in Western Australia is pristine with reserve forest as the 

dominant land use, but has experienced a significant decline in rainfall over the past 60 years. 

We selected the stream gauge (gauge 614044) to represent the area, and characterized the 

trend in flow intermittence due to the change in climate from 1953 to 2021. 

United States analysis

We identified hydro-climatically similar flow regulated (non-Hydro-Climatic Data Network 

[HDCN] 2009) sites to compare to mostly pristine (HCDN) sites for or AFI-NFI comparison 

using the variables drainage area, aridity, depth to bedrock, wetland percent of area, forest 

percent of area, and mean catchment elevation (from GAGES2; Falcone, 2011), that were 

identified by Zipper et al. (2021) as strong drivers of annual no-flow metrics. We thank 

Aaron Heldmyer for development of the initial code that was modified for assessing 

catchment property similarity.

For each HCDN gage used in Hammond et al. (2021) and Zipper at al. (2021), we (1) 

computed catchment similarity of all non-HCDN sites using the hydro-signatures listed 

above, (2) identified and listed the 25% most similar non-HCDN sites across the contiguous 

US, (3) subset this list to consider only non-HCDN sites in the same aggregated 

Environmental Protection Agency ecoregion as the HCDN gage, and (4) subset this list 

3
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-HCDN: USGS 11124500 Santa Cruz Creek near Santa Ynez, CA

-non-HCDN: USGS 11123000 Santa Ynez River below Gibraltar Dam near Santa

Barbara, CA

Water storage

-HCDN: USGS 08050800 Timber Creek near Collinsville, TX

-non-HCDN: USGS 07231000 Little River near Sasakwa, OK

Land use change 

-HCDN: USGS 08050800 Timber Creek near Collinsville, TX

-non-HCDN: USGS 08053500 Denton Creek near Justin, TX

We subset US sites from Zipper et al. (2021) to only those that are a part of the HCDN 

network from 1980-2018. These gauges demonstrated the concurrent trends in aridity 

4

further to only include sites that have catchment centroids < 500 km of the HCDN gage 

catchment centroid. This resulted in 59 possible sites to use in the AFI-NFI comparison. 

From this list, we then inspected flow regulation and disturbance comments for non-HCDN 

sites from USGS GAGES-II (Falcone, 2011) to identify four site pairs to use for the AFI-NFI 

comparison for the four drivers, as listed below: water abstraction and diversions, water 

storage or hydroelectric use, land use change, and climate change.

Water abstraction and diversions
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Each AFI driver can have highly variable outcomes on flow intermittence metrics that likely 

vary depending on watershed characteristics such as climate, land use, physiography, and the 

specific human activities. These local characteristics can accentuate or lessen the differences 

between AFI and NFI. The case studies presented here are meant to highlight observed 

differences between AFI and NFI in some settings.

Water abstraction and diversions

South-east Queensland, Australia: Irrigated acreage in the Lockyer Creek catchment rapidly 

increased from the 1940s to the 1970s. We selected a pair of adjacent stream gauges to 

respectively characterize flow intermittence hydro-signatures prior to and after the onset of 

intense water abstraction in this region. After abstraction began, the no-flow 

fraction increased, no-flow events started earlier, and the median dry-down periods shortened 

(Figure 1a). 

Southern California, US: The minimally disturbed Santa Cruz Creek in southern California 

was compared to the regulated Santa Ynez River below Gibraltar Dam. Between the 

minimally altered upstream catchment and the regulated downstream site, water is withdrawn 

5

and no-flow metrics; the changing climate has altered the number of no-flow days and 

the timing of the first no-flow, but not the duration of the dry-down period. 

Climate change

-All HCDN gages in Zipper et al. (2021)

AFI versus NFI case studies
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for public water supply, increasing the number of no-flow days and shortening dry-down 

periods below the abstraction (Figure 1b).

Water storage

Victoria, Australia: The median annual no-flow fraction was 0.4 upstream of Lake Eppalock, 

while the downstream gauge rarely measured no-flow events due to regulated constant water 

release from the dam (Figure 1c). 

Oklahoma, US: Comparison between two similar watersheds, one which is unregulated and 

the other below a dam, showed that annual no-flow days increased over time in the 

unregulated site, while the human-influenced AFI site has consistently had 0 no-flow days 

due to its management for water supply and recreation (Figure 1d).

Land-use change

South-east Queensland, Australia: the median dry-down period in the Mooloolah River 

catchment decreased significantly from 22 days to 14 days after rapid urbanization between 

the 1970s and the 2000s (Figure 1e). 

Texas, US: Comparing nearby catchments with natural forest vegetation and widespread 

irrigated agriculture, dry-down periods is longer in the agricultural catchment irrigation may 

be sustaining low flows (Figure 1f).

Climate change

Along the coast of Western Australia: annual rainfall has declined by around 20% over the 

last 60 years, which cannot be explained solely by natural climate variability (Western 

Australia Department of Primary Industries and Regional Development, 2020). The decline 

6
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in rainfall resulted in an increase in annual fraction of no-flows, earlier occurrence of no 

flow, and shorter dry-down period in the Yarragil Brook catchment (Figure 1g).

Across the contierminous US: As the western US has aridified, the number of no-flow days 

has increased while in the eastern US, no-flow days have decreased as the region has become 

wetter. This regional-scale variability highlights the discrepancies in the direction and 

magnitude of change anthropogenic climate change will have on flow intermittence (Figure 

1h). 
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Appendix 2. Meta-analysis of the drivers of anthropogenic flow intermittence along with examples. Examples are reference numbers 

which can be found in the reference list below the table.

Climate change Drying Driver Examples (Reference numbers)

Abstraction
89, 17, 18, 1, 20, 16, 49, 6, 9, 53, 77, 70, 26, 8, 28, 24, 88, 40, 35, 21, 10, 84, 30, 14, 12, 4, 2, 87, 25, 34, 72, 60, 22, 31, 74, 65, 54, 

27
Experimental drought, 
abstraction 73
Experimental 
abstraction 55
Groundwater pumping 61, 39, 3, 9, 5, 67, 40, 21, 51, 11, 36, 37
Irrigation 16, 76, 32, 49, 44, 9, 29, 8, 33, 28, 40, 35, 23, 30, 15, 4, 69, 60, 22, 31
Municipal use 19, 76
Mining 61

Water Abstraction and 
Diversion

Stream diversion 61, 20, 39, 76, 42, 32, 41, 45, 50, 36, 58, 66, 64, 72
Dams / weirs 1, 20, 7, 42, 46, 44, 49, 47, 48, 52, 33, 43, 88, 56, 41, 85, 23, 84, 38, 45, 50, 81, 2, 36, 25, 66, 64, 72, 82, 86, 22, 27
Hydropower 24, 49, 50, 15, 79Water storage and flow 

regulation Simulation - dams / 
diversions 62

Land use/cover change Land use / land cover 33, 45, 14, 78
Experimental climate 
change 55
Climate change 19, 21, 13, 14, 12, 75, 54, 43
Experimental drought 71, 80, 83, 57
Reduced precipitation / 
drought 89, 17, 18, 70, 74, 43

Climate change

Snowmelt / intense rain 62, 63
Implied / vague / unclear 19, 70, 23, 13, 25, 78, 68

1

48
49
50
51
52
53
54
55
56
57
58
59
60
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consequences of restoring flow intermittency to artificially perennial lowland streams: 

patterns and predictions from the Broken—Boosey creek system in Northern Victoria, 

Australia. River Research and Applications, 26(5), 529-545.

1
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Environmental associations

Category Adaptation Response
Wet 

phase
Dry 

phase
Subsurface 

habitat
Landscape 

connectivity
Example 

taxa References

Life history
Duration of 

aquatic stage
Plasticity in 
emergence timing

Insect Cover et al. 2015

Amphibian Richter-Boix et al. 2006

Developmental
Rapid 
development/growth

Insect Delucchi and Peckarsky 1989

Phenology
Asynchronous/delay
ed egg hatching with 
flow resumption

Insect
Sandberg and Stewart 2004
Ruiz-García and Ferreras-Romero 2007

Physiological Desiccation Aestivation
Non-

arthropod
Pennak 1989
Ricci and Pagani 1997

Insect
Hinton 1960
Bogan et al. 2015

Mussel Lymbery et al. 2021

Amphibian
Navas et al. 2004
Hillman et al. 2009
Jared et al. 2020

Fish
Eldon 1979
Fishman et al. 1986

1

Appendix 3. Examples of adaptations, accompanying trait responses, associated environmental conditions, and taxonomic groups known 

to respond to increased flow intermittence. Grey blocks within the environmental associations section indicate conditions where each trait 

is favoured or represented.
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Drought resistant 
eggs

Insect Delucchi and Peckarsky 1989

Dormancy
Non-

arthropods
Watanabe 2006

Insect Cover et al. 2015
Biofilms Holzinger and Karsten 2013, Sabater et al. 2016

Water use efficiency
Riparian 

vegetation
Rood et al. 2003, Stella and Battles 2010

Respiration Air breathing Insect
Lake 2011
Bogan and Boersma 2012

Fish van der Waal 1997

Tolerate low DO
Micro-

crustacean
Storey and Quinn 2008

Morphological Body armoring
Building mobile 
cases

Insect Ruiz-García and Ferreras-Romero 2007

Body size
Reduced leaf area/ 
Branch sacrifice

Riparian 
vegetation

Rood et al. 2000, Stella and Battles 2010

Behavioral Dispersal Adult flight Insect
Wickson et al. 2014
Chester et al. 2015

High mobility/
Colonization after 
rewetting

Insect
Vander Vorste et al. 2016a, Vander Vorste et al. 
2016b

Fish

Balcombe et al. 2007
Kerezsy et al. 2013
Walker et al. 2013
Pires et al. 2014

High seed/vegetative 
fragment dispersal

Riparian 
vegetation

Karrenberg et al. 2002

2
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Seeks surface 
refuges during 
drying

Insect
Bogan and Boersma 2012
Boersma and Lytle 2014

Fish
Labbe and Fausch 2000
Sheldon et al. 2010
Alexandre et al. 2016

Vertical migration 
into hyporheic zone

Insect
Agüero-Pelegrín and Ferreras-Romero 2002
Cover et al. 2015
Vander Vorste et al. 2016b

Crayfish
DiStefano et al. 2009
Kouba et al. 2016

Salamander Feral et al. 2005
Fish Secor and Lignot 2010
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