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Abstract 

In Earth sciences, the measurement of soil and rock moisture content is essential  in improving 
our understanding of various hydrologic processes. Recently, the electrical resistivity method 
has been frequently used to estimate the moisture content in the field. The uncertainty associated 
with resistivity-estimated moisture content is mainly from two sources: regularized inversion 

and petrophysical interpretation. In this study, to reduce the uncertainty, we propose (1) to use 
subsurface structural information from seismic refraction measurements to relax the 
smoothness-based regularization at structural boundaries and (2) to use structural unit-specific 
petrophysical relationships to translate resistivity into moisture content. The proposed methods 
are tested on a synthetic subsurface model featuring three distinct layers of a granitic critical 
zone (CZ). The results of the synthetic example show that both the spatial pattern and the 

moisture content values estimated with the new method are very close to the true model with 
low uncertainty. Compared to the traditional method, the estimation is significantly improved, 
particularly at the CZ boundaries, such as the regolith-fractured bedrock interface. We also apply 
the new method to a granitic hillslope to estimate the moisture content distribution from field 
resistivity measurements. Although no ground truth is available for validation, the estimated 
moisture content distributions exhibit some typical hydrological features in hillslopes, such as 

the perched water at the soil/rock interface and preferential flow path in fractured rocks. 
Therefore, it is concluded that incorporating structural information in resistivity inversion and 
using structural unit-specific petrophysical models can improve moisture content estimation 

from field resistivity measurements. 

Keywords: moisture content, electrical resistivity, Monte Carlo, constrained inversion, subsurface structure 

1. Introduction 

In the shallow subsurface, weathering of bedrock results in a physically mobile, granular surface mantle that lacks 
relict rock structure (Pope, 2015), usually termed as soil (or regolith). The soil layer plays a critical role in the terrestrial 

water cycles by influencing the partitioning of precipitation between soil moisture, evaporation/evapotranspiration, 
deep infiltration (contributing to groundwater recharge), and runoff (Brooks et al., 2015). With advances in 
measurement techniques (e.g., Robinson et al., 2008), soil moisture has become a regular state variable in many 
hydrologic, ecologic, and climate models (Dorigo et al., 2011). Recently, it has been realized that the fractured bedrock 
beneath the soil (or regolith) layer also influences groundwater recharge, evapotranspiration, base flow, and stream 
water chemistry (e.g., Rempe and Dietrich, 2018). Thus, many efforts have been made to incorporate rock moisture 

as a state variable into hydrologic, ecological, and climate models (e.g., Ackerer et al., 2021). In this regard, soil and 
rock moisture measurements are essential in improving our understanding of various hydrologic processes and our 

projections of Earth's water resources. 

Soil moisture can be measured either with satellite remote sensing techniques (Mohanty et al., 2017) or in situ, for 
example, using soil moisture probes/sensors (Dobriyal et al., 2012). Remote sensing can cover a large region, and thus 
the measured soil moisture data are valuable for the calibration and verification of large-scale hydrologic modeling 
(Vischel et al., 2008; Sánchez et al., 2010). The primary limitation of satellite-based remote sensing is that the moisture 
data are only available for near-surface soils (~5 cm). In contrast, soil moisture probes/sensors (e.g., time-domain 

reflectometry) installed in soil pits can reach down to the bedrock and showed excellent vertical resolutions (e.g., 
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Heimovaara and Bouten, 1990). If these moisture probes are distributed over large regions to form a soil moisture 
monitoring network (e.g., Benninga et al., 2018), the spatial-temporal soil moisture patterns can be revealed. The 
monitored soil moisture data can also be used for the calibration and verification of distributed hydrologic models. 
One limitation of this point-based soil moisture measurement is the limited support volume (~cm3), which is 

inconsistent with the mesh volume used in most hydrologic models (from ~m3 to ~ km3). 

Rock moisture measurement has been conducted in the field in many ecohydrological studies. The current practice is 

to measure in boreholes using non-destructive geophysical techniques, such as the neutron probe (Rempe and Dietrich, 
2018; Hahm et al., 2020) and nuclear magnetic resonance (Schmidt and Rempe, 2020). The typical support volume 
of these borehole-based tools is ~m3, and the instrument can be lowered down to ~10s m with a vertical resolution of 
~25 cm (e.g., Hahm et al., 2020). Such rock moisture data are critical for understanding the role of fractured bedrock 
in regulating the ecohydrological partitioning at the land surface (Brooks et al., 2015). However, one primary 
drawback of the borehole-based rock moisture measurement is the high cost, which prohibits the establishment of a 

monitoring network for watershed- or catchment-scale applications. Given the limitations of existing soil and rock 
moisture measurement techniques, there is a need to develop cost-effective techniques that can measure soil and rock 

moisture content at an intermediate scale (from hillslope to catchment scale) with a high vertical resolution. 

Near-surface geophysical methods have been frequently used in hydrological studies to provide spatio-temporal 
information on the subsurface, from sub-meter pedon scales to ~km watershed scales (Binley et al., 2015; Parsekian 
et al., 2015). Among them, the electrical resistivity method received considerable attention (e.g., Garré et al., 2011; 
Coscia et al., 2011) due to the strong influence of water content on the electrical resistivity of geological materials 
(Lesmes and Friedman, 2005). Many models have been developed to describe the relationship between resistivity and 

water content (Friedman, 2005; Laloy et al., 2011; Romero‐Ruiz et al., 2022). In particular, many physics-based 
models are available, including the differential effective medium models (Sen et al., 1981), percolation theory-based 
models (Ghanbarian et al., 2014), and the bundle of capillary tubes models (Niu et al., 2015). Recently, significant 
advances have been made in almost all aspects of resistivity method, including instrumentation (Slater and Binley, 
2021), inversion (Linde and Doetsch, 2016), and petrophysics (Day-Lewis et al, 2017). These advances have led to 
increased use of the resistivity method in estimating moisture content and monitoring hydrologic processes in field 

applications (e.g., Slater and Binley, 2021; Leopold et al., 2021). 

It is also well known that the moisture content estimated from resistivity tomography may contain significant 

uncertainties mainly due to two factors (Linde et al., 2017). First, resistivity inversion is an ill-posed problem (Roy, 
1962), and many "equally good" resistivity models exist to fit the measurements. To have a unique solution, 
regularizations are usually applied in the inversion (Zhdanov 2002) to force the optimal model to be close to some 
specified models or have a smooth variation (e.g., Vauhkonen et al., 1998). However, the applied regularizations may 
not be realistic for subsurfaces having contrasting properties or sharp boundaries (Zhou et al., 2014). Second, the 
relationships between resistivity and moisture content of geological materials are influenced by many material 

properties such as texture, mineralogy, and pore water chemistry. Due to subsurface heterogeneity, using one 
resistivity-moisture content relationship to interpret the entire subsurface tends to create significant errors (Tso et al., 
2019). Sometimes, the interpreted moisture content could be erroneous and thus misleading for hydrological 

applications. 

In the applied geophysics community, a number of methods have been developed the address the aforementioned 
problems. To resolve the problem related to regularization, many efforts have been devoted to stochastic inversions 
(e.g., Tso et al., 2021) and joint inversions (Linde and Doetsch, 2016). The most popular strategy in joint inversions 
is probably the use of the cross-gradient constraint (Doetsch et al., 2010; Gallardo and Meju, 2004), which assumes 

different physical properties (e.g., velocity and resistivity) have similar spatial patterns (i.e., structural similarity). The 
second type of method uses the structural information from one data set (e.g., travel time) to guide the inversion of a 
second geophysical data set (e.g., resistivity) by manipulating the regularization term in the inversion. Relevant 
approaches include image-guided inversion (e.g., Zhou et al., 2014) and regularization relaxation at structural 
boundaries (e.g., Slater and Binley. 2006; Johnson et al., 2012; Jiang et al., 2020). Using different resistivity models 
to estimate moisture content in heterogeneous subsurface is not very common (e.g., González et al., 2021; Pleasants 

et al., 2022), partially due to the difficulty in determining the actual structural boundaries. Alternatively, a number of 
studies account for spatial heterogeneity by quantifying the petrophysical uncertainty (Brunetti et al., 2017; Brunetti 

and Linde, 2018; Tso et al., 2019). 
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Recent advances in structure-based resistivity inversions have not been commonly used in moisture estimations with 
field resistivity measurements. Therefore, this study's objective is to test if the resistivity-estimated moisture content 
can be improved by incorporating structural information into the resistivity inversion and applying structural unit-
specific resistivity models in the petrophysical interpretation. This proposed new approach would be particularly 

useful for structurally heterogeneous subsurfaces such as critical zone in mountainous regions. In this study, the 
structural information will be used in resistivity inversion to relax the smoothness-based regularization at structural 
boundaries in the subsurface (Doetsch et al., 2010). By doing this, we may keep the sharp resistivity contrasts across 
some structural boundaries (Zhou et al., 2014). The structural information of the subsurface can be from geological 
mapping (Wellmann et al., 2018), borehole logging data (Wisén et al., 2005), or other geophysical results (Zhou et al., 
2014). We also use the structural information to perform zonation so that the structural unit-specific resistivity model 

can be applied to reduce the petrophysical uncertainties related to moisture estimations. In this study, the structure 
information of the subsurface will be obtained from seismic refraction tomography, which has been frequently used 

in practice to delineate the structural features of shallow subsurface (Flinchum et al., 2018a). 

The paper is organized as follows. First, we introduce the theories of incorporating structural information into 
traditional resistivity inversions and conducting the subsequent moisture estimation. We then design a synthetic 
subsurface model for testing our proposed method. To quantify the petrophysical uncertainties related to moisture 
estimation, Monte Carlo simulations are carried out to consider the variability in model parameters of the resistivity-
moisture content relationships. We also test our method using field data collected from a small catchment in western 

mountain regions of the US. Major conclusions are summarized at the end of the paper. 

2. Theory 

This section briefly describes the theoretical background of the proposed strategy of incorporating the structure 
information extracted from seismic surveys into resistivity inversions. We also introduce the new method for moisture 

estimation and uncertainty quantification using structural unit-specific petrophysical models (i.e., resistivity-moisture 
content relationships). The workflow of the proposed methods is shown in Figure 1, and detailed explanations are 

described as follows. 

2.1. Smoothness-Constrained Resistivity Inversion 

In electrical resistivity surveys, a pair of electrodes are usually used to inject electric current into the subsurface, and 
other electrodes are used to measure the induced electrical potential on the ground surface. This process is repeated at 
different locations with different combinations of electrodes. The measurements are usually presented as apparent 
resistivity data (Perrone et al., 2014). Forward modeling of electrical resistivity surveys involves solving the governing 
equation of electric current flow in heterogeneous materials under appropriate boundary conditions. In matrix format, 
the resistivity measurements (apparent resistivity data) d obtained from a resistivity survey can be expressed as (e.g., 

Pidlisecky and Knight, 2008) 

𝐝 = 𝐀(𝐦)      (1) 

where m is the model parameters defining the subsurface resistivity model, and A is the relevant forward operator. 

To obtain a unique resistivity model m from d, regularized inversions are usually carried out. For example, the 
Tikhonov regularization (e.g., Zhdanov, 2002) is often used in resistivity inversion, and the object function Φ(𝐦) can 

be expressed as the sum of two terms, 

Φ(𝐦) = Φd(𝐦) + 𝜆Φm(𝐦)     (2) 

where Φd(𝐦) quantifies the measurement or data misfit, Φm(𝐦) is the Tikhonov regularization term, and the 

parameter λ balances the data misfit and regularization. In practice, Φd(𝐦) is usually calculated as the l2-norm of the 

difference between the observed resistivity data 𝐝obs and theoretical responses d(m), expressed as 

Φd(𝐦) = ∥∥𝐖d (𝐝(𝐦) − 𝐝obs)∥∥
2
    (3) 

where 𝐖d is a weighting matrix and its elements are usually related to resistivity measurement errors. If the errors are 

assumed uncorrelated, 𝐖d will be a diagonal matrix, and each diagonal element can be chosen as the inverse of the 
associated measurement error. The regularization term Φm(m) applies some constraints to the model m and can be 

written as (e.g., Jordi et al., 2018) 
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Φm(𝐦) = ∥∥𝐖m
s (𝐦 − 𝐦ref)∥∥

2
    (4) 

where 𝐖m
s  is the constraint matrix for m and 𝐦ref  is a reference resistivity model, which may contain prior 

information on the resistivity of the subsurface (e.g., from borehole resistivity logging). The constraint matrix 𝐖m
s  is 

usually chosen as the first- or second-order gradient operator matrix, and thus it imposes a smoothness constraint to 

the resistivity model m. 

The optimal resistivity model can be obtained by minimizing the objective function Φ(𝐦) in Equation (2). This study 
uses the Gauss-Newton method to determine the optimal resistivity model iteratively (Günther et al., 2006). At step k, 

the model update Δ𝐦𝑘 to the current resistivity model mk can be determined by solving the following equation (e.g., 

Jordi et al., 2018) 

[
𝐖d𝐉𝑘

𝜆𝐖m
s ] Δ𝐦𝑘 = [

𝐖d(𝐝(𝐦𝑘) − 𝐝obs )

𝜆𝐖m
s (𝐦𝑘 − 𝐦ref)

]    (5) 

where 𝐉𝑘 is the Jacobian matrix associated with resistivity forward modeling at step k. Thus, the new resistivity model 

at step k+1 can be updated as 𝐦𝑘+1 = 𝐦𝑘 + 𝛼Δ𝐦𝑘 where α is a line search parameter that prevents overshooting 
(e.g., Günther et al., 2006). This iterative process can be terminated if the model update is negligible or the parameter 

𝜒2 = Φ𝑑/𝑛𝑑 (where 𝑛d is the data length) is close to 1 (Günther et al., 2006). 

2.2. Extraction of Structural Information 

The structural information of the subsurface can be extracted from a variety of datasets, such as seismic images and 
ground-penetrating radar images (e.g., Zhou et al., 2014; Doetsch et al., 2012; de Pasquale and Linde, 2017; de 
Pasquale et al., 2019). In this study, we use seismic refraction tomography to delineate the structural features of the 
subsurface, and the results are then used to constrain the resistivity inversion. The results of seismic refraction 
tomography (i.e., seismic velocity) are very sensitive to geological materials' microstructure, such as grain-to-grain 
arrangement (e.g., Falcon-Suarez et al., 2020) and the presence of fractures (e.g., Han, 2008). Other factors, such as 

water saturation (particularly close to the saturation), may also affect the seismic velocity of geological materials (e.g., 
Pride, 2005; Pasquet et al., 2016). Nevertheless, seismic velocity has been proven effective and is commonly used in 

earth sciences to characterize the subsurface's structural features and conduct zonation (e.g., Befus et al., 2011). 

Here, we argue seismic surveys contain more structural information than resistivity methods, and thus the extracted 
structures can be used to constrain the resistivity inversion. From a mathematical point of view, seismic methods 
(refraction or reflection) and ground-penetrating radar are based on solving the wave equations. As a result, the vertical 
resolution is proportional to the inverse of the wavelength, and the wave carries impedance information along its entire 
ray path (e.g., Constable, 2010). In contrast, the resistivity method is based on solving the Laplace equation, which is 

a reduced form of the diffusion equation considering a zero frequency. The Laplace equation describes the potential-
field problem, and the intrinsic resolution becomes almost nonexistent (Constable, 2010). Thus, structural information 
contained in seismic results could be used to guide the resistivity inversion to reconstruct the subsurface resistivity 

distribution. 

To extract the structural information, in this study, we first invert the first arrival time data to construct the subsurface 
velocity model. In the inversion, theoretical travel times can be calculated using conventional ray-tracing methods 
such as shooting (e.g., White, 1989) and bending (Wesson, 1971); the velocity model can be updated using the Gauss-
Newton method iteratively. Similarly, regularization is imposed to ensure a unique solution. Here, we use an 
anisotropic smooth matrix, which applies different weights to vertical and horizontal directions to improve the vertical 

resolution (e.g., Jiang et al., 2020; Wagner and Uhlemann, 2021). It should be addressed that, in seismic inversion, 
the regularization mainly influences the inverted velocity values, and its influence on the structural features of the 
velocity model is minor (e.g., Zhang and Toksöz, 1998; Jiang and Zhang, 2017). That said, the structural information 
(e.g., the boundary of structural units) extracted from the inverted velocity model is not significantly affected by the 

selection of regularization schemes (e.g., Van Avendonk et al., 2004). 

The current practice of determining the subsurface structures from a velocity model is to pick up representative 
velocity values as the boundaries between different structural units (e.g., St Clair et al., 2015; Flinchum et al., 2018b). 
This method may introduce significant biases as the inverted velocity values may be influenced by the selected 

regularization scheme. In this study, we propose a new method, and we demonstrate it using the velocity data collected 
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from a typical critical zone (CZ) site (Flinchum et al., 2022). As shown in Figure 2, we identify the three CZ layers 
(regolith, fractured bedrock, and fresh bedrock) from the velocity-depth profile by selecting segments featuring a 
relatively constant velocity gradient (red dash lines in Figure 2). Using the gradient rather than the absolute value of 
the velocity to distinguish CZ layers is supported by the distinct velocity-porosity relationships observed in different 

CZ materials (see Figure 3). In fractured bedrock, it is the fracture density that controls the velocity (e.g., Boadu and 
Long, 1996; Boadu, 1998); in contrast, the velocity of granular material (e.g., in regolith) is mainly controlled by the 
grain-to-grain contact (i.e., fabric). Therefore, the velocity-porosity curve of fractured rocks is much steeper than that 
of granular materials [see Figure 3 or empirical equations in Zhukov and Kuzmin (2020)]. Assuming a simple linear 
relationship between porosity and depth (e.g., see experimental data in Holbrook et al., 2019), it is easy to understand 

that the velocity gradient should differ noticeably in regolith and fractured bedrocks (e.g., see Figure 2). 

2.3. Structure Constrained Resistivity Inversion 

Once the structure information is extracted from the velocity image, it will be used to constrain the resistivity inversion. 
In this study, we follow the method used by Rücker (2010) and Jiang et al. (2020) to incorporate structural information 
in resistivity inversion. The regularization-imposed smoothness constraint at boundaries between different structural 

units can then be removed. Mathematically, the structural information will be added to the constraint matrix 𝐖m
s  to 

affect the resistivity model m. Thus, the matrix 𝐖m
s  is changed to a new matrix 𝐖m

c  having the following form (Jiang 

et al., 2020), 

𝐖m
c = 𝐖c𝐖m

s        (6) 

where the matrix Wc is a diagonal matrix, and its elements are 1 for locations within a structural unit but 0 at structural 
boundaries (Jiang et al., 2020). Compared to smoothness-based regularization, this relaxed regularization can improve 

geophysical inversion results, particularly at the structural boundaries (Jiang et al., 2020; Skibbe et al., 2021). 

2.4. Estimation of Moisture Content and Relevant Uncertainty 

The reconstructed resistivity image can be translated into moisture content using resistivity-moisture content models 
(e.g., Lesmes and Friedman, 2005). In this study, it is proposed to take advantage of the existing petrophysical 
understanding of CZ materials. More specifically, we will treat different CZ layers as different materials, and thus 
each CZ layer (i.e., structural unit) will have its own resistivity-moisture content relationship. Note that the traditional 

method usually applies a single resistivity-moisture content relationship to the entire subsurface. Such a simple 
petrophysical interpretation could induce large uncertainty in the estimated moisture content due to subsurface 
heterogeneity (Tso et al., 2019). In contrast, we use structural unit-specific resistivity-moisture content relationships, 
which can account for, to a certain degree, the difference in material texture and mineralogy in different structural 

units. The uncertainty related to the estimated moisture content can be reduced if compared to the traditional method. 

Here we use the Waxman and Smits (WS) model (Waxman and Smits, 1968; Doussan and Ruy, 2009) to link the 

electrical conductivity σ of geological materials to their volumetric moisture content 𝜃, expressed as 

𝜎 =
𝑆𝑛

𝐹
(𝜎w +

𝜎s

𝑆
)     (7) 

where σw is the pore water conductivity, S is the water saturation (S = θ/ϕ where ϕ is porosity), F is the formation 
factor (F = ϕ-m where m is the porosity exponent or commonly known as cementation exponent), n is the saturation 
exponent, and σs is the surface conductivity associated with counter ions of the electrical double layer (Revil and 

Golver, 1998). Rearranging Equation 7 yields an implicit expression for 𝜃, 

𝜎 = 𝜎sat
p (

𝜃

𝜙
)

𝑛

+ 𝜎sat
s (

𝜃

𝜙
)

𝑛−1

     (8) 

where 𝜎sat
p

=σw/F is the conductivity of the soil at saturation contributed by the pore water and 𝜎sat
s =σs/F is the 

conductivity of the soil at saturation contributed from the counter ions of the electrical double layer. The sum of 𝜎sat
p

 

and 𝜎sat
s  is the saturated soil conductivity σsat. In practice, n, 𝜎sat

p
, and 𝜎sat

s  can be determined by fitting Equation 8 to 

resistivity measurements of materials at variably saturated conditions. The saturation exponent n is related to the pore 

water connectivity or connectedness (e.g., Glover 2017). For unconsolidated materials, n ranges between 1.3 and 2 

(e.g., Schön, 2015); for fractured rocks, n may be much smaller due to the well-connected fractures. 
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Even within a structural unit, the parameters of Equation 8 may still vary for materials at different locations. Using 
Equation 8 with a fixed set of parameters can still induce uncertainty in moisture estimation. To quantify this 
uncertainty, we conduct an uncertainty propagation analysis (e.g., Aster et al. 2005) using the Monte Carlo (MC) 
simulation. In the MC analysis, the parameters of the WS model in Equation 8 will be given a range rather than a 

single value. Since in the field electrical resistivity is more often used than electrical conductivity, in this study, we 

will use the saturated resistivity 𝜌sat = 1 𝜎sat⁄ = 1 (𝜎sat
p + 𝜎sat

s )⁄  and saturated resistivity related to surface 

conduction 𝜌sat
s = 1/𝜎sat

s  to conduct the MC analysis. Thus, for each structural unit, we will have four petrophysical 

parameters (i.e., n, 𝜙, ρsat and 𝜌sat
s ) to estimate the moisture content. For a typical CZ having three layers (regolith, 

fractured bedrock, and fresh bedrock), we then need 12 parameters. Among them, ρsat accounts for the combined 
influence of formation factor F (and thus porosity) and pore fluid conductivity, and 𝜌sat

s  accounts for the combined 

influence of F and surface conductivity. 

The parameters are randomly drawn from their plausible ranges and are used to convert resistivity into moisture 
content. With many realizations, we then can evaluate the possible range for the moisture content. It should be 
addressed that this MC-based uncertainty analysis only accounts for the petrophysical uncertainty. The uncertainty 

induced by resistivity inversion may also be quantified, for example, using the stochastic inversion method (e.g., Linde 

et al., 2017; de Pasquale et al. 2017; de Pasquale et al., 2019) or the method used in Tso et al., (2019). 

3. Synthetic Example 

In this section, we use a synthetic subsurface model to demonstrate the use of our proposed method for moisture 

content estimation and uncertainty analysis. The estimated moisture content is compared to the true values and the 

results of the traditional method to show the effectiveness of the new method. 

3.1. Synthetic Subsurface Model 

As shown in Figure 4a, we design a CZ model extending from the stream valley to the ridge with an average slope of 

~16%. This CZ model is typical for mountain regions with granitic bedrock (e.g., Olona et al., 2010) , and the 
subsurface under the hillslope consists of three layers: regolith, fractured rock, and fresh bedrock. The regolith layer 
is composed of unconsolidated materials weathered from the bedrock. In the model (Figure 4a), the thickness of 
regolith is ~0.5 m in the valley and increases gradually to ~4.0 m under the ridge. Fractures in the bedrock commonly 
form as a result of local/regional tectonic stresses or frost-cracking, and in this model, the depth of the fractured 

bedrock layer is ~0.5 m in the valley and increases to ~ 5.5 m under the ridge. 

The ranges of the physical properties of the synthetic model are summarized in Table 1 . Here, we assume these 

properties (𝜌sat, ϕ, 𝜌sat
s  and n) are different for each CZ layer. In each CZ layer, these properties are also depth-

dependent and spatially correlated (e.g., Western et al., 2004). For example, the regolith and fractured bedrock have a 
mean saturated resistivity of 900 Ω m and 1500 Ω m, respectively, to reflect the fact that the pore space in fractured 

rocks is generally smaller than that in the regolith. Regarding the spatial variability of 𝜌sat and ϕ, we treat them as 
stationary random functions with uniform probability densities and autocovariance functions (e.g., Zhang et al., 2003; 
Chen and Niu, 2021), which are modeled with an exponential covariance model with two correlation lengths (vertical 
and horizontal directions). In the synthetic model, the horizontal and vertical correlation lengths are 20 m and 2 m, 

respectively, and the logarithmic variance of 𝜌sat and ϕ are 0.2 and 0.1, respectively. Only the regolith layer considers 

the surface conductivity. 

We assume the degree of saturation S in the model increases linearly with depth from S = 50% at the ground surface 
to fully saturation (S = 100%) at the fresh bedrock. Thus, we can generate a heterogeneous moisture content map, as 
shown in Figure 4b. Similar to field conditions (Flinchum et al., 2019), the moisture content in Figure 4b is generally 
high near the ground surface and low in the bedrock. Using Equation 9 and parameters in Table 1, we also calculate 
the resistivity distribution for the synthetic model, shown in Figure 4c. To generate the velocity model, we follow the 

method used in Flinchum et al. (2018b). For regolith, we used a velocity model based on Hertz–Mindlin contact theory 
and modified Hashin Shtrikman bounds (Mavko et al., 2020), and the effective fluid model (Mavko et al., 2020) and 
Gassmann’s fluid substitution equation (Mavko et al., 2020) are used to calculate the velocity at various water 
saturations (e.g., Pasquet et al. 2016; Flinchum et al., 2018b). The differential effective medium model (e.g., Berryman, 
1992) for the fractured and fresh bedrock, and the results are shown in Figure 4d. It is noted that these two theoretical 
models are used only for the purpose of generating realistic velocity values for different materials, and other models 

may also be used. 
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Synthetic seismic refraction and electrical resistivity tests are simulated on the subsurface model. In the modeling, 90 
geophones and electrodes are collocated on the ground surface with a spacing of 1 m. In the seismic refraction test, 
16 seismic sources are created on the ground surface with ~ 5 m spacing, and the travel time of the waves from the 
source to each geophone is calculated by solving the eikonal equation (e.g., Gallardo and Meju, 2004). In the resistivity 

survey, the Wenner array is used, and the electrode spacing ranges between 1 m and 30 m. We used the software 
package PyGIMLi (https://www.pygimli.org/) developed by Rücker et al. (2017) to simulate both seismic and 
resistivity tests, and in total, we collected 1424 travel-time and 1305 resistivity measurements. The travel time and 

apparent resistivity data are corrupted with 1% normally distributed random noises to account for measurement errors. 

3.2. Seismic Results 

The travel time data are inverted to reconstruct the velocity distribution of the synthetic model. During the inversion, 

1% of the observed travel times are used as the diagonal elements in the matrix 𝐖d, and 𝜆 are 50 and 10 for the 
horizontal and vertical directions, respectively. In the inversion, the model was discretized into ~3200 cells, and the 
reconstructed velocity distribution is shown in Figure 5a. In general, the reconstructed velocity is quite similar to the 
true velocity distribution (Figure 4d), and the normalized root mean square deviation between the true and inverted 
velocity is only ~10%. In addition, the boundary between fresh bedrock and fractured bedrock is clearly identified in 
Figure 5a. The regolith-fractured bedrock interface may also be located (Figure 5a), although it is less obvious than 

the fresh bedrock-fractured bedrock interface. 

A vertical transect is taken from the velocity model in Figure 5a at a distance x = 68 m, and the velocity-elevation 
profile is plotted in Figure 5b. We use the approach proposed in section 2.2 to determine the structural boundary 

between regolith, fractured rock, and fresh bedrock. As shown in Figure 5b, the velocity gradient in regions near the 
ground surface (e.g., elevation z > 35 m) is very small and increases to large values in the middle part of the profile 
(30 m < z < 35m). We use linear lines to fit the velocity-elevation curves in these two regions (top two red dash lines 
in Figure 5b), and the regolith-fractured rock interface can then be determined (e.g., z = 36 m in Figure 5b). Similarly, 
the boundary between the fractured and fresh bedrocks is determined as z = 30.8 m, as shown in Figure 5b. The 
associated velocity values for these two interfaces are 1500 m s-1 and 3600 m s-1. We then draw two contour lines with 

velocity V = 1500 m s-1 and 3600 m s-1 in Figure 5a to represent the CZ structural boundaries for the synthetic model. 

3.3. Resistivity Inversion Results 

The obtained structural information is then incorporated into the regularization term (Equation 6) to improve the 
resistivity inversion. In the inversion, the subsurface was discretized into 3200 cells and their resistivity values were 
optimized using the Gauss-Newtown method. The regularization parameter λ was chosen as 50 and 1% of the 

logarithms of the apparent resistivity values are used as the diagonal elements in the matrix 𝐖d (Günther, 2006). The 
optimization process was stopped after 7 iterations. The relative misfit between the observed and simulated apparent 
resistivity is ~0.8%. The reconstructed resistivity distribution is shown in Figure 6a. For comparison, we also 

conducted a traditional resistivity inversion with smoothness-based regularization, and the regularization term 𝐖m
s  

was chosen as the second-order gradient matrix. The results of the traditional inversion are shown in Figure 6b. Note 
that there are some other inversion methods that can also consider subsurface structural information in the resistivity 
inversion, such as the image-guided inversion (Zhou et al., 2014) and the structure-based priors introduced by de 

Pasquale et al. (2017). 

In Figures 6a and 6b, the true structural boundaries are indicated as solid lines to facilitate discussion. In general, both 

resistivity images show a similar pattern consistent with the true resistivity model (Figure 4c). That is, the resistivity 
near the ground surface is much lower than that in the deep regions (Figure 6). It is also found that the resistivity in 
the fractured bedrock was well reconstructed in Figure 6a using our new method. In contrast, the traditional inversion 
gives a very heterogeneous resistivity distribution in each CZ layer (Figure 6b). For quantitative analysis, we plot the 
resistivity-elevation profiles at a distance x = 65 m for both traditional and structural-constraint inversions (Figures 6a 
and 6b). It is clear that the resistivity curve from the new method (Figure 6a) agrees better with the true resistivity 

curve than the traditional method. In particular, the sharp resistivity contrast at structural boundaries (e.g., at z = 36 m 
and 31 m) are well reproduced in Figure 6a. We use the coefficient of determination R2 value and Lin's concordance 
correlation coefficient (e.g., Liao, 2003) to quantify how well the reconstructed resistivity curve agrees with the true 
resistivity curve. For Figures 6a and 6b (right panels), the associated R2 values are 0.990 and 0.864, and Lin's 
concordance correlation coefficients are 0.995 and 0.934, respectively. This confirms that the structural-constraint 

resistivity inversion improves the resistivity reconstruction. 
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3.4. Moisture Estimation Results 

We apply the WS model (Equation 8) to estimate the moisture content based on the reconstructed resistivity image in 
Figure 6a. As discussed in section 2.4, our interpretation is different from the traditional method in two aspects. First, 
we use different model parameters for different structural units. Second, we do not treat each model parameter as a 
constant value; instead, an appropriate variation range is used. The MC simulations are conducted to calculate the 

mean and standard deviation of the moisture content from the resistivity image with the WS model. We treat n, 𝜌sat, 

𝜌sat
s  and ϕ as random variables linearly distributed in a given range (see Table 1); that means the MC method here is 

based on a multivariate uniform distribution. In each MC run, these model parameters are randomly drawn from their 
given ranges and are then input into the WS model to convert the resistivity image into the moisture content image. 
In total, we conducted 10000 MC runs, and all the realizations are combined to produce the mean moisture content 
image (left panel of Figure 7a) and the standard deviation image (left panel of Figure 7b). The standard deviation 
distribution quantifies the uncertainty of estimated moisture content associated to our incomplete knowledge of the 

petrophysical properties of geological materials. 

The mean moisture content estimated using the new method (left panel of Figure 7a) shows a similar pattern to the 
true moisture content distribution (Figure 4a). That is, the moisture content is relatively high in regolith and decreases 

to very low values in deep regions (fractured and fresh bedrocks). In addition, the estimated moisture content is also 
very close to the true values. For instance, the average value of the mean moisture content of the entire regolith is 
~22.5%, slightly higher than the true value of 19.5%. The overall petrophysical uncertainty of the estimated moisture 
content is relatively small (left panel of Figure 7b). For instance, the variation range of the standard deviation in 
regolith is [0.02, 0.08], and it decreases to [0, 0.03] in the fresh bedrock layer. The petrophysical uncertainty shown 
in Figure 7a (left panel) is comparable to other borehole-based moisture content measurements such as neutron probe 

and nuclear magnetic resonance (e.g., Schmidt and Rempe, 2020). This implies that the moisture content could be 
fairly estimated from resistivity measurements if the resistivity image is reliably reconstructed and structural unit-
specific petrophysical models are applied in the interpretation. In addition, we also plot the moisture content-elevation 
profile for the vertical transect at x = 65 m (left panel of Figure 7c). The sharp moisture content variations at the 
structural interfaces are clearly captured, and the estimated and true moisture content curves are in good agreement 

with an R2 value of 0.945 and a Lin's concordance coefficient of 0.977. 

For comparison, we also estimate the moisture content based on the resistivity image in Figure 6b using the traditional 
method, which applies a single petrophysical model to the entire subsurface. Here we use the regolith's moisture 

content-resistivity relationship to interpret the entire resistivity image. Similarly, the model parameters are considered 
as random variables linearly distributed in a range. The calculated mean and standard deviation of the moisture content 
is shown in the right panel of Figure 7. It appears the traditional method still gives a similar moisture distribution 
pattern. However, the absolute values of the estimated moisture content deviate from the true values and have large 
uncertainty in the deep depth. This discrepancy can be clearly seen in the moisture content-elevation profile shown in 
Figure 7b (right panel), and the related R2 value is only 0.804 (Lin's concordance coefficient is 0.890).In summary, 

the results of the synthetic model show that the uncertainty of moisture content estimation can be significantly reduced 
if the structural information is incorporated in the resistivity inversion and structural unit-specific petrophysical 

models are used in the resistivity interpretation. 

We conducted a sensitivity analysis using the Morris (1991) method, which has been successfully applied in other 
geoelectrical studies (e.g., Tso et al., 2020). In the analysis, the root-mean-square-error between true and estimated 
moisture content is used as the objective function. Based on the analysis, it is found that porosity ϕ has the largest 

influence on the moisture content estimation. Other parameters (such as ρsat, n, and 𝜌sat
s ) have the same level of 

influence on the moisture content estimation but are less significant than the porosity. 

4. Field Example 

In this section, we apply the proposed method to resistivity measurements collected near the ridge of a small catchment 

in the Dry Creek Experimental Watershed, Idaho, US to estimate the moisture content distribution. The details of the 
site condition and geophysical tests are presented. We also explain how the structural unit-specific petrophysical 
properties are determined. The estimated moisture content is presented and discussed to evaluate the performance of 

the proposed new method. 
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4.1. Site Condition and Geophysical Tests 

The field site is within a small catchment (Figure 8) of the Dry Creek Experimental Watershed (McNamara et al., 
2005) located within the Boise Front Range in semiarid southwestern Idaho, US. The bedrock of the watershed is 
granodiorite of Cretaceous-Paleogene age. This region was not glaciated during the Pleistocene, and soils in the region 
are mainly formed by in situ weathering of the underlying granite. Previous studies show that the regolith/soil layer is 
thin, ranging from ~10s cm to ~2 m (Poulos, 2016). The erosion rate in Idaho batholith is about 0.005 mm per year 

over a 10-year time scale (Kirchner et al., 2001). This indicates the residence time in the weathered profile is at the 

range of 200 ka, allowing regolith to have long-term exposure to weathering before being eroded. 

Both electrical resistivity and seismic refraction tests have been carried out along and across a ridge of the catchment 
in June 2020 (Figure 8). During this time of the year, the soil/regolith layer is relatively dry, with an average volumetric 
moisture content of ~10% (McNamara et al., 2005). In geophysical tests, we used 72 electrodes and geophones 
collocated on the ground surface with a spacing of 1 m. The Syscal Pro 72 system (IRIS Instruments, Orléans, France) 
with the Wenner array was used to collect resistivity data, and the total number of apparent resistivity measurements 
are 936. We chose the Wenner array for two reasons: (1) compared to the dipole-dipole array, Wenner array has a 

better resolution in identifying the vertical resistivity variations (e.g., Neyamadpour et al., 2010); and (2) trial tests at 
this site show that the Wenner array has a higher signal-to-noise ratio than the dipole-dipole array. In the seismic tests, 
a sledgehammer was used to generate seismic waves at five locations along each survey line, and the Geode system 
(Geometrics Inc., CA, USA) was used to record the seismic responses. The shot spacing ranges between ~12 m and 
~30 m and is comparable to those used in near-surface seismic refraction tests (e.g., Gallardo and Meju, 2004; 
Flinchum et al., 2018a). We repeated the shot 10 times at each source location to enhance the signal-to-noise ratio. 

The measured seismic signal of each geophone was then stacked to form a single trace, and the first arrival time was 

then determined. The total number of travel times is 357. 

4.2. Structure Identification and Resistivity Inversion 

The first arrival time data are inverted to reconstruct the velocity model for the two survey lines. In the inversion, the 

regularization parameter λ is chosen as 50 for the horizontal direction and 10 for the vertical direction. The data 
weighting matrix Wd is assumed as a diagonal matrix, and its elements are the inverse of 3% of the measured travel 
time. The inversion was stopped after 8 and 4 iterations, respectively for the profiles across and along the ridge, and 
the relative mean data misfits are ~4% and ~3%. The reconstructed velocity images are shown in Figures 9a and 9b. 
We then use the method proposed in section 2.2 to identify the boundaries of different CZ layers (Figure 9c). The 
regolith-fractured bedrock interface is determined as the contour line with V = 1000 m s-1, the fractured-fresh bedrock 

interface as the contour line with V =1950 m s-1. Note that the selection of these contour values may be subjective, but 
a slight difference does not have a significant effect on the extracted subsurface structural interfaces. For instance, we 
compared contour lines with V = 900, 1000, and 1100 m s-1 for the regolith-fractured bedrock and V = 1750, 1950, 
and 2150 m s-1 for the fractured-fresh bedrock. The induced variation in the vertical positions (mean value) of the 
regolith-fractured bedrock and fractured-fresh bedrock is only ~0.6 and ~1.0 m, respectively. The fractured bedrock 
layer shows a clear aspect influence for the survey line across the ridge (Figure 9a). For the southeast-facing slope 

(left in the figure), the total thickness of regolith and fractured bedrock layers is ~15 m; in contrast, the thickness is 
only ~10 m for the northwest-facing slope (right in the figure). For the survey line along the ridge, the total thickness 
of regolith and fractured bedrock varies along the ridge from ~10 m on the right to ~20 m on the left, as shown in 
Figure 9b. The thickness of the regolith layer for both survey lines is between ~2 m and ~5 m, slightly higher than the 

augur survey results in nearby hillslopes (Poulos, 2016). 

The structural information is used in the resistivity inversion to relax the smoothness constraint at the  boundaries of 
different CZ layers. In the inversion, the smooth regularization parameter λ is 5; the data weighting matrix is assumed 
as diagonal, and the element is the inverse of 4% (6%) of the measured apparent resistivity along (across) the ridge. 

Both inversions were stopped after 4 iterations, and the related relative data misfits are respectively ~10% and ~3% 

for the survey lines across and along the ridge. The resistivity inversion results are shown in Figure 10. 

4.3. Moisture Content Results and Discussion 

To interpret the resistivity distribution, we need to determine the variation ranges of the model parameters in Equation 

8 for the site. In this study, we use existing experimental data of samples collected at the site and published data of 
other similar materials to constrain these model parameters. For porosity ϕ, the material near the ground surface has 
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been measured, ranging between ~30% and ~50% (Geroy et al., 2011). Considering the decreasing trend of ϕ with 
depth in the regolith (Hayes et al., 2019), we therefore assume the variation range is from 25% to 50% (see Table 2). 
The stream water conductivity σw at the site is monitored year-round, and it generally varies between 0.01 and 0.025 
S m-1. Regolith samples were collected from a soil pit along the ridge at x = 14 m, and their apparent formation factor 

Fa (ratio of saturated resistivity over pore water resistivity) was found to vary between 1.3 and 2.8 (Bienvenue, 2021). 
Note that the low Fa values are due to the presence of clay minerals (up to ~40% by weight; Bienvenue, 2021). Using 
σw = 0.02 S m-1

, ϕ in the range of [25%, 50%], and measured Fa values, we can determine that the range of the saturated 
resistivity ρsat of the regolith varies between 50 and 250 Ω m. The saturated resistivity of the regolith related to surface 

conduction 𝜌sat
s  was estimated from lab experimental data, and it was in the range between 400 and 3200 Ω m. The 

saturation exponent n of regolith samples is assumed to vary between 1.3 and 2.2, a typical range for relatively coarse 

granular materials (e.g., Doussan and Ruy, 2009). 

For the porosity of fractured bedrock, direct field measurement data are not available. Results from a site with similar 
geology (Rempe and Dietrich, 2018) indicate that although the pore volume in fractured granite is lower than the 
regolith developed on bedrock, the porosity is still substantial, averaging ~25%. Thus, we assume the porosity of the 
fractured bedrock in our site ranges between 15% and 30%. Assuming the cementation factor m ranges between 1 and 

1.2, a typical value for fractured materials (e.g., Yue, 2019), we estimate ρsat of the fractured bedrock at our site is 
between 165 and 350 Ωm (Table 2). Surface conduction is not considered for both the fractured and fresh bedrock. 
The porosity of intact granite is ~1% (e.g., Llera et al., 1990). Considering the presence of microfractures, we assume 
the porosity of the fresh bedrock at our site ranges between 5% and 15%, similar to the observations of a granitic 
gneiss site in Holbrook et al. (2019). We estimate the cementation exponent m of the fresh bedrock using the 
experimental data in Llera et al. (1990), and it gives a value close to 1. Based on m and ϕ, we can estimate that the 

range of ρsat for the fresh bedrock is between 325 to 1000 Ω m (Table 2). For the saturation exponent n, we simply 

assume n = m + 1 (Mualem and Friedman, 1991). All the parameters are summarized in Table 2. 

Using Archie's law and the model parameters in Table 2, we estimate the mean and standard deviation of the moisture 
content for the field site based on the resistivity image in Figure 10 using the MC simulation. The results are shown 
in Figures 11a and 11b, respectively, for survey lines across and along the ridge. The two moisture content images in 
Figure 11 show similar patterns. First, shallow regolith (<1 m) has a relatively low moisture content, ~16%. This dry 
layer is the result of a combined effect of the high evaporation/evapotranspiration rate and low precipitation at the site 
in the summer (McNamara et al., 2018). Second, the perched water, an important subsurface water component in 
runoff generation (e.g., Guo et al., 2019; McDonnell et al., 2021), is clearly seen at the regolith-fractured bedrock 

interfaces. For instance, the moisture content at the regolith-fractured bedrock interface is considerably high in the 
right panel of Figure 11a at x = 17 m, exceeding ~40%. This perched water also coincides with the location of a conifer 
tree (at x = 18) on the ridge. In the fractured bedrock, the moisture content is relatively high, ranging between ~15% 
and ~30%. This component of groundwater (i.e., rock moisture) was historically overlooked in hydrologic studies, but 
recent studies have highlighted its importance in supporting vegetation evapotranspiration during dry seasons (Rempe 
and Dietrich, 2018). Within the fractured bedrock, small patches with relatively high moisture content can also be 

found, for example, at x = 45 in the left panel of Figure 11a and x = 38 m and 55 m in the right panel of Figure 11a. 
These relatively wet regions connect the regolith (soil) water to fresh bedrock and thus may be the preferential flow 
path that facilitates the bedrock infiltration (Kormos et al., 2015). The petrophysical uncertainties related to the 
moisture content estimation are shown in Figure 11b. In general, the uncertainty varies within different CZ layers, 
decreasing from ~10% in regolith to ~ 2% in the bedrock. This decreased uncertainty in deep depth is associated with 
the smaller variability of resistivity model parameters in bedrocks. This result implies that if the petrophysical 

properties of a structural unit can be better understood, the uncertainty related to resistivity-estimated moisture content 

could be reduced. 

4.4. Comparison with the Traditional Method 

We also estimate the moisture content of the field site from resistivity measurements using the traditional methods. It 

is noted that, in the traditional method, no structural information was used to constrain the resistivity inversion, and 
the petrophysical relationship of the regolith is used for the moisture interpretation of the entire subsurface. We 
selected the moisture content-elevation profiles of two representative transects (x = 45 m across the ridge and x = 17 
along the ridge) for a direct comparison of the traditional and new methods. As shown in Figure 12, the new method 
clearly reveals the sharp moisture contrasts at CZ boundaries, which have been observed in other granitic CZs (e.g.,  
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Flinchum et al., 2019). For example, the sudden decrease in moisture content at z = 1633 in Figure 12 b was not 
captured with the traditional method. Thus, the traditional method may not identify the perched water at the regolith-

fractured bedrock interface. 

Moreover, using a single petrophysical relationship for all the three CZ layers significantly overestimates the moisture 
content in fractured and fresh bedrocks. For instance, the traditional method gives a moisture content of ~20% for 
rocks ~20 m below the ridge in Figure 12a. In this deep depth, the microfractures in the bedrock are less likely to open 

due to the high confining pressure (supported by the large velocity value, exceeding ~3000 m s-1). Thus, the moisture 
stored in deep bedrocks should be limited, consistent with the results of the new method. Direct rock moisture 
measurements at the site would help validate our interpretation. Unfortunately, no boreholes are installed at the site. 
Further studies are recommended to drill boreholes and conduct borehole geophysical logging (e.g., neutron probe or 

nuclear magnetic resonance) such that direct observations of rock moisture can be realized. 

Lastly, we comment on the field conditions where the proposed method should be used. If the subsurface structure is 
known to be strongly heterogeneous such as at mountainous CZ sites, it is always preferred to use structural 
information to constrain the moisture content estimation. However, if the sites are only slightly heterogeneous such 

as at unconsolidated aquifers or agricultural fields, it is expected that the structural boundaries are not clearly defined 
and may not be identified with seismic refraction tomography. Under these conditions, using structural information 
may not improve the moisture content estimation. Of course, the cost is also a concern because both seismic refraction 

tests in the field and structural-based resistivity inversion are more costly than the traditional methods. 

5. Conclusions 

In this study, we proposed to use the subsurface structural information to reduce the uncertainty of moisture content 
estimation with field resistivity measurements. The results of the synthetic subsurface example show that seismic 
refraction tomography contains enough structural information, which can be extracted with the velocity gradient-based 
method from the reconstructed velocity images. Incorporating the structural information into resistivity inversions can 
relax the regularization-forced smoothing at structural boundaries, thus improving the reconstruction of resistivity 

images. In particular, the sharp resistivity contrast near structural boundaries is better captured if compared to 
traditional inversion. The synthetic example also shows that the moisture content estimated using structural unit-
specific petrophysical models gives a similar spatial pattern as the true model. In addition to spatial patterns, the 
estimated moisture content values with the new method agree very well with the true moisture content. Compared to 
the traditional method that applies a single petrophysical relationship to the entire subsurface, the new method shows 

a better performance. 

The new method has been applied to a granitic hillslope to estimate the moisture content distribution from field 
resistivity measurements. The resistivity-estimated moisture content distributions exhibit typical features commonly 

found in hillslopes, such as perched water at the soil/rock interface and preferential flow path contributing to 
groundwater recharge. Although no ground truth is available for validating the estimated moisture content, a 
comparison with the traditional method results confirms our proposed methods' superior performance. Therefore, we 
conclude that incorporating structural information in resistivity inversion and using structural unit -specific 
petrophysical models can improve the estimation of subsurface moisture content from field resistivity measurements. 
Therefore, if the subsurface is strongly heterogeneous in structure, for example, at mountainous CZ sites, it is preferred 

to adopt this new method. However, if the sites are only slightly heterogeneous, this new method may not be able to 

improve the moisture content estimation from resistivity tomography. 

  



 

12 

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at  Journal 

of Hydrology, published by Elsevier. Copyright restrictions may apply. https://doi.org/10.1016/j.jhydrol.2022.128343. 

Reference 

Ackerer, J., Ranchoux, C., Lucas, Y., Viville, D., Clément, A., Fritz, B., Lerouge, C., Schäfer, G. and Chabaux, F., 
2021. Investigating the role of deep weathering in critical zone evolution by reactive transport modeling of the 
geochemical composition of deep fracture water. Geochimica et Cosmochimica Acta, 312, pp.257-278. 

Aster, R., Borchers, B., and Thurber, C. H., 2005. Parameter estimation and inverse problems. Burlington, 
Massachusetts, USA: Elsevier. 

Befus, K.M., Sheehan, A.F., Leopold, M., Anderson, S.P. and Anderson, R.S., 2011. Seismic constraints on critical 
zone architecture, Boulder Creek watershed, Front Range, Colorado. Vadose Zone Journal, 10(3), pp.915-927. 

Benninga, H.J.F., Carranza, C.D., Pezij, M., van Santen, P., van der Ploeg, M.J., Augustijn, D. and van der Velde, 
R., 2018. The Raam regional soil moisture monitoring network in the Netherlands. Earth system science data, 
10(1), pp.61-79. 

Berre, I., Doster, F. and Keilegavlen, E., 2019. Flow in fractured porous media: A review of conceptual models and 

discretization approaches. Transport in Porous Media, 130(1), pp.215-236. 
Berryman, J.G., 1992. Single‐scattering approximations for coefficients in Biot 's equations of poroelasticity. The 

Journal of the Acoustical Society of America, 91(2), pp.551-571. 
Bienvenue, T.J., 2021. Laboratory Measurement of Electrical and Hydraulic Properties of Regolith over Granitic 

Bedrock (Master Thesis, Boise State University). 
Binley, A., Hubbard, S.S., Huisman, J.A., Revil, A., Robinson, D.A., Singha, K. and Slater, L.D., 2015. The 

emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water 
resources research, 51(6), pp.3837-3866. 

Boadu, F.K. and Long, L.T., 1996. Effects of fractures on seismic-wave velocity and attenuation. Geophysical 
Journal International, 127(1), pp.86-110. 

Boadu, F.K., 1998. Inversion of fracture density from field seismic velocities using artificial neural networks. 
Geophysics, 63(2), pp.534-545. 

Brooks, E.S., Saia, S.M., Boll, J., Wetzel, L., Easton, Z.M. and Steenhuis, T.S., 2015. Assessing BMP Effectiveness 
and Guiding BMP Planning Using Process‐Based Modeling. JAWRA Journal of the American Water Resources 
Association, 51(2), pp.343-358. 

Brunetti, C., Linde, N. and Vrugt, J.A., 2017. Bayesian model selection in hydrogeophysics: Application to 
conceptual subsurface models of the South Oyster Bacterial Transport Site, Virginia, USA. Advances in Water 
Resources, 102, pp.127-141. 

Brunetti, C. and Linde, N., 2018. Impact of petrophysical uncertainty on Bayesian hydrogeophysical inversion and 
model selection. Advances in Water Resources, 111, pp.346-359. 

Chen, H. and Niu, Q., 2021, December. Influence of subsurface heterogeneity on critical zone characterizations with 
electrical resistivity and seismic refraction tomography. In Sixth International Conference on Engineering 
Geophysics, Virtual, 25–28 October 2021 (pp. 213-216). Society of Exploration Geophysicists. 

Constable, S., 2010. Ten years of marine CSEM for hydrocarbon exploration. Geophysics, 75(5), pp.75A67-75A81. 

Constable, S.C., Parker, R.L. and Constable, C.G., 1987. Occam's inversion: A practical algorithm for generating 
smooth models from electromagnetic sounding data. Geophysics, 52(3), pp.289-300. 

Coscia, I., Greenhalgh, S.A., Linde, N., Doetsch, J., Marescot, L., Günther, T., Vogt, T. and Green, A.G., 2011. 3D 
crosshole ERT for aquifer characterization and monitoring of infiltrating river water. Geophysics, 76(2), 
pp.G49-G59. 

Day‐Lewis, F.D., Linde, N., Haggerty, R., Singha, K. and Briggs, M.A., 2017. Pore network modeling of the 

electrical signature of solute transport in dual‐domain media. Geophysical Research Letters, 44(10), pp.4908-
4916. 

de Pasquale, G. and Linde, N., 2017. On structure-based priors in Bayesian geophysical inversion. Geophysical 
Journal International, 208(3), pp.1342-1358. 

de Pasquale, G., Linde, N., Doetsch, J. and Holbrook, W.S., 2019. Probabilistic inference of subsurface 
heterogeneity and interface geometry using geophysical data. Geophysical Journal International, 217(2), 

pp.816-831. 
Dobriyal, P., Qureshi, A., Badola, R. and Hussain, S.A., 2012. A review of the methods available for estimating soil 

moisture and its implications for water resource management. Journal of Hydrology, 458, pp.110-117. 
Doetsch, J., Linde, N., Pessognelli, M., Green, A.G. and Günther, T., 2012. Constraining 3-D electrical resistance 

tomography with GPR reflection data for improved aquifer characterization. Journal of Applied Geophysics, 
78, pp.68-76. 



 

13 

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at  Journal 

of Hydrology, published by Elsevier. Copyright restrictions may apply. https://doi.org/10.1016/j.jhydrol.2022.128343. 

Doetsch, J., Linde, N. and Binley, A., 2010. Structural joint inversion of time‐lapse crosshole ERT and GPR 
traveltime data. Geophysical research letters, 37(24). 

Dorigo, W., Van Oevelen, P., Wagner, W., Drusch, M., Mecklenburg, S., Robock, A. and Jackson, T., 2011. A new 
international network for in situ soil moisture data. Eos, Transactions American Geophysical Union, 92(17), 

pp.141-142. 
Doussan, C. and Ruy, S., 2009. Prediction of unsaturated soil hydraulic conductivity with electrical conductivity. 

Water Resources Research, 45(10). 
Falcon-Suarez, I.H., North, L., Callow, B., Bayrakci, G., Bull, J. and Best, A., 2020. Experimental assessment of the 

stress-sensitivity of combined elastic and electrical anisotropy in shallow reservoir sandstones. Geophysics, 
85(5), pp.MR271-MR283. 

Flinchum, B.A., Holbrook, W., Rempe, D., Moon, S., Riebe, C.S., Carr, B.J., Hayes, J.L., St. Clair, J. and Peters, 
M.P., 2018a. Critical zone structure under a granite ridge inferred from drilling and three‐dimensional seismic 
refraction data. Journal of Geophysical Research: Earth Surface, 123(6), pp.1317-1343. 

Flinchum, B.A., Holbrook, W.S., Grana, D., Parsekian, A.D., Carr, B.J., Hayes, J.L. and Jiao, J., 2018b. Estimating 
the water holding capacity of the critical zone using near‐surface geophysics. Hydrological Processes, 32(22), 
pp.3308-3326. 

Flinchum, B.A., Holbrook, W.S., Parsekian, A.D. and Carr, B.J., 2019. Characterizing the critical zone using 
borehole and surface nuclear magnetic resonance. Vadose Zone Journal, 18(1), pp.1-18. 

Friedman, S.P., 2005. Soil properties influencing apparent electrical conductivity: a review. Computers and 
electronics in agriculture, 46(1-3), pp.45-70. 

Gallardo, L.A. and Meju, M.A., 2004. Joint two‐dimensional DC resistivity and seismic travel time inversion with 
cross‐gradients constraints. Journal of Geophysical Research: Solid Earth, 109(B3). 

Garré, S., Javaux, M., Vanderborght, J., Pagès, L. and Vereecken, H., 2011. Three-dimensional electrical resistivity 
tomography to monitor root zone water dynamics. Vadose Zone Journal, 10(1), pp.412-424. 

Geroy, I.J., Gribb, M.M., Marshall, H.P., Chandler, D.G., Benner, S.G. and McNamara, J.P., 2011. Aspect 
influences on soil water retention and storage. Hydrological Processes, 25(25), pp.3836-3842. 

Ghanbarian, B., Hunt, A.G., Ewing, R.P. and Skinner, T.E., 2014. Universal scaling of the formation factor in 
porous media derived by combining percolation and effective medium theories. Geophysical Research Letters, 

41(11), pp.3884-3890. 
Glover, P.W., 2017. A new theoretical interpretation of Archie's saturation exponent. Solid Earth, 8(4), pp.805-816. 
González, J.A.M., Comte, J.C., Legchenko, A., Ofterdinger, U. and Healy, D., 2021. Quantification of groundwater 

storage heterogeneity in weathered/fractured basement rock aquifers using electrical resistivity tomography: 
Sensitivity and uncertainty associated with petrophysical modelling. Journal of Hydrology, 593, p.125637. 

Günther, T., Rücker, C. and Spitzer, K., 2006. Three-dimensional modelling and inversion of DC resistivity data 

incorporating topography—II. Inversion. Geophysical Journal International, 166(2), pp.506-517. 
Guo, L., Lin, H., Fan, B., Nyquist, J., Toran, L. and Mount, G.J., 2019. Preferential flow through shallow fractured 

bedrock and a 3D fill-and-spill model of hillslope subsurface hydrology. Journal of Hydrology, 576, pp.430-
442. 

Hahm, W.J., Rempe, D.M., Dralle, D.N., Dawson, T.E. and Dietrich, W.E., 2020. Oak transpiration drawn from the 
weathered bedrock vadose zone in the summer dry season. Water Resources Research, 56(11), 

p.e2020WR027419. 
Han, L. and Showman, A.P., 2008. Implications of shear heating and fracture zones for ridge formation on Europa. 

Geophysical Research Letters, 35(3). 
Hayes, J.L., Riebe, C.S., Holbrook, W.S., Flinchum, B.A. and Hartsough, P.C., 2019. Porosity production in 

weathered rock: Where volumetric strain dominates over chemical mass loss. Science advances, 5(9), 
p.eaao0834. 

Heimovaara, T.J. and Bouten, W., 1990. A computer‐controlled 36‐channel time domain reflectometry system for 
monitoring soil water contents. Water Resources Research, 26(10), pp.2311-2316. 

Holbrook, W.S., Marcon, V., Bacon, A.R., Brantley, S.L., Carr, B.J., Flinchum, B.A., Richter, D.D. and Riebe, C.S., 
2019. Links between physical and chemical weathering inferred from a 65-m-deep borehole through Earth's 
critical zone. Scientific reports, 9(1), pp.1-11. 

Jiang, C., Igel, J., Dlugosch, R., Müller-Petke, M., Günther, T., Helms, J., Lang, J. and Winsemann, J., 2020. 

Magnetic resonance tomography constrained by ground-penetrating radar for improved hydrogeophysical 
characterization. Geophysics, 85(6), pp.JM13-JM26. 

Jiang, W. and Zhang, J., 2017. First‐arrival traveltime tomography with modified total‐variation regularization. 
Geophysical Prospecting, 65(5), pp.1138-1154. 



 

14 

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at  Journal 

of Hydrology, published by Elsevier. Copyright restrictions may apply. https://doi.org/10.1016/j.jhydrol.2022.128343. 

Johnson, T.C., Slater, L.D., Ntarlagiannis, D., Day‐Lewis, F.D. and Elwaseif, M., 2012. Monitoring groundwater‐
surface water interaction using time‐series and time‐frequency analysis of transient three‐dimensional electrical 
resistivity changes. Water Resources Research, 48(7). 

Jordi, C., Doetsch, J., Günther, T., Schmelzbach, C. and Robertsson, J.O., 2018. Geostatistical regularization 

operators for geophysical inverse problems on irregular meshes. Geophysical Journal International, 213(2), 
pp.1374-1386. 

Kirchner, J.W., Finkel, R.C., Riebe, C.S., Granger, D.E., Clayton, J.L., King, J.G. and Megahan, W.F., 2001. 
Mountain erosion over 10 yr, 10 ky, and 10 my time scales. Geology, 29(7), pp.591-594. 

Kormos, P.R., McNamara, J.P., Seyfried, M.S., Marshall, H.P., Marks, D. and Flores, A.N., 2015. Bedrock 
infiltration estimates from a catchment water storage-based modeling approach in the rain snow transition zone. 

Journal of Hydrology, 525, pp.231-248. 
Laloy, E., Javaux, M., Vanclooster, M., Roisin, C. and Bielders, C.L., 2011. Electrical resistivity in a loamy soil: 

Identification of the appropriate pedo‐electrical model. Vadose Zone Journal, 10(3), pp.1023-1033. 
Leopold, M., Gupanis-Broadway, C., Baker, A., Hankin, S. and Treble, P., 2021. Time lapse electric resistivity 

tomography to portray infiltration and hydrologic flow paths from surface to cave. Journal of Hydrology, 593, 
p.125810. 

Lesmes, D.P. and Friedman, S.P., 2005. Relationships between the electrical and hydrogeological properties of 
rocks and soils. In Hydrogeophysics (pp. 87-128). Springer, Dordrecht. 

Liao, J.J., 2003. An improved concordance correlation coefficient. Pharmaceutical Statistics: The Journal of 
Applied Statistics in the Pharmaceutical Industry, 2(4), pp.253-261. 

Linde, N. and Doetsch, J., 2016. Joint inversion in hydrogeophysics and near-surface geophysics. Integrated 
imaging of the Earth: Theory and applications, 218, pp.119-135. 

Linde, N., Ginsbourger, D., Irving, J., Nobile, F. and Doucet, A., 2017. On uncertainty quantification in 
hydrogeology and hydrogeophysics. Advances in Water Resources, 110, pp.166-181. 

Llera, F.J., Sato, M., Nakatsuka, K. and Yokoyama, H., 1990. Temperature dependence of the electrical resistivity of 
water-saturated rocks. Geophysics, 55(5), pp.576-585. 

Mavko, G., Mukerji, T. and Dvorkin, J., 2020. The rock physics handbook. Cambridge university press. 
McDonnell, J.J., Spence, C., Karran, D.J., Van Meerveld, H.J. and Harman, C.J., 2021. Fill‐and‐spill: A process 

description of runoff generation at the scale of the beholder. Water Resources Research, 57(5), 
p.e2020WR027514. 

McNamara, J.P., Benner, S.G., Poulos, M.J., Pierce, J.L., Chandler, D.G., Kormos, P.R., Marshall, H.P., Flores, 
A.N., Seyfried, M., Glenn, N.F. and Aishlin, P., 2018. Form and function relationships revealed by long‐term 
research in a semiarid mountain catchment. Wiley Interdisciplinary Reviews: Water, 5(2), p.e1267. 

McNamara, J.P., Chandler, D., Seyfried, M. and Achet, S., 2005. Soil moisture states, lateral flow, and streamflow 

generation in a semi‐arid, snowmelt‐driven catchment. Hydrological Processes: An International Journal, 
19(20), pp.4023-4038. 

Mohanty, B.P., Cosh, M.H., Lakshmi, V. and Montzka, C., 2017. Soil moisture remote sensing: State‐of‐the‐science. 
Vadose Zone Journal, 16(1), pp.1-9. 

Morris, M.D., 1991. Factorial sampling plans for preliminary computational experiments. Technometrics, 33(2), 
pp.161-174. 

Mualem, Y. and Friedman, S.P., 1991. Theoretical prediction of electrical conductivity in saturated and unsaturated 
soil. Water Resources Research, 27(10), pp.2771-2777. 

Neyamadpour, A., Wan Abdullah, W.A.T., Taib, S. and Neyamadpour, B., 2010. Comparison of Wenner and 
dipole–dipole arrays in the study of an underground three-dimensional cavity. Journal of Geophysics and 
Engineering, 7(1), pp.30-40. 

Niu, Q., Fratta, D. and Wang, Y.H., 2015. The use of electrical conductivity measurements in the prediction of 

hydraulic conductivity of unsaturated soils. Journal of Hydrology, 522, pp.475-487. 
Olona, J., Pulgar, J.A., Fernández‐Viejo, G., López‐Fernández, C. and González‐Cortina, J.M., 2010. Weathering 

variations in a granitic massif and related geotechnical properties through seismic and electrical resistivity 
methods. Near Surface Geophysics, 8(6), pp.585-599. 

Parsekian, A.D., Singha, K., Minsley, B.J., Holbrook, W.S. and Slater, L., 2015. Multiscale geophysical imaging of 
the critical zone. Reviews of Geophysics, 53(1), pp.1-26. 

Pasquet, S., Holbrook, W. S., Carr, B. J., & Sims, K. W. W. (2016). Geophysical imaging of shallow degassing in a 
Yellowstone hydrothermal system. Geophysical Research Letters, 43(23), 12-027. 

Perrone, A., Lapenna, V. and Piscitelli, S., 2014. Electrical resistivity tomography technique for landslide 
investigation: A review. Earth-Science Reviews, 135, pp.65-82. 



 

15 

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at  Journal 

of Hydrology, published by Elsevier. Copyright restrictions may apply. https://doi.org/10.1016/j.jhydrol.2022.128343. 

Pidlisecky, A. and Knight, R., 2008. FW2_5D: A MATLAB 2.5-D electrical resistivity modeling code. Computers 
& Geosciences, 34(12), pp.1645-1654. 

Pleasants, M.S., Neves, F.D.A., Parsekian, A.D., Befus, K.M. and Kelleners, T.J., 2022. Hydrogeophysical 
Inversion of Time‐Lapse ERT Data to Determine Hillslope Subsurface Hydraulic Properties. Water Resources 

Research, 58(4), p.e2021WR031073. 
Pope, G.A., 2015. Regolith and weathering (rock decay) in the critical zone. In Developments in Earth Surface 

Processes (Vol. 19, pp. 113-145). Elsevier. 
Poulos, M.J., 2016. Feedbacks Among Climate, Soils, Vegetation, and Erosion Drive Valley Asymmetry 

Development in the Mountains of Central Idaho. (Doctoral dissertation, Boise State University). 
Pride, S. R. (2005). Relationships between seismic and hydrological properties. In Hydrogeophysics (pp. 253-290). 

Springer, Dordrecht. 
Romero‐Ruiz, A., Linde, N., Baron, L., Breitenstein, D., Keller, T. and Or, D., 2022. Lasting effects of soil 

compaction on soil water regime confirmed by geoelectrical monitoring. Water Resources Research, 58(2), 
p.e2021WR030696. 

Rempe, D.M. and Dietrich, W.E., 2018. Direct observations of rock moisture, a hidden component of the hydrologic 
cycle. Proceedings of the National Academy of Sciences, 115(11), pp.2664-2669. 

Revil, A. and Glover, P.W.J., 1998. Nature of surface electrical conductivity in natural sands, sandstones, and clays. 
Geophysical research letters, 25(5), pp.691-694. 

Robinson, D.A., Campbell, C.S., Hopmans, J.W., Hornbuckle, B.K., Jones, S.B., Knight, R., Ogden, F., Selker, J. 
and Wendroth, O., 2008. Soil moisture measurement for ecological and hydrological watershed-scale 
observatories: A review. Vadose Zone Journal, 7(1), pp.358-389. 

Roy, A., 1962. Ambiguity in geophysical interpretation. Geophysics, 27(1), pp.90-99. 

Rücker, C., 2010. Advanced electrical resistivity modelling and inversion using unstructured discretization 
(Doctoral dissertation, Universität Leipzig). 

Rücker, C., Günther, T. and Wagner, F.M., 2017. pyGIMLi: An open-source library for modelling and inversion in 
geophysics. Computers & Geosciences, 109, pp.106-123. 

Sánchez, N., Martínez-Fernández, J., Calera, A., Torres, E. and Pérez-Gutiérrez, C., 2010. Combining remote 
sensing and in situ soil moisture data for the application and validation of a distributed water balance model 

(HIDROMORE). Agricultural Water Management, 98(1), pp.69-78. 
Schmidt, L. and Rempe, D., 2020. Quantifying dynamic water storage in unsaturated bedrock with borehole nuclear 

magnetic resonance. Geophysical Research Letters, 47(22), p.e2020GL089600. 
Schön, J.H., 2015. Physical properties of rocks: Fundamentals and principles of petrophysics . Elsevier. 
Sen, P.N., Scala, C. and Cohen, M.H., 1981. A self-similar model for sedimentary rocks with application to the 

dielectric constant of fused glass beads. Geophysics, 46(5), pp.781-795. 

Skibbe, N., Günther, T. and Müller-Petke, M., 2021. Improved hydrogeophysical imaging by structural coupling of 
2D magnetic resonance and electrical resistivity tomography. Geophysics, 86(5), pp.WB77-WB88. 

Slater, L. and Binley, A., 2021. Advancing hydrological process understanding from long‐term resistivity 
monitoring systems. Wiley Interdisciplinary Reviews: Water, 8(3), p.e1513. 

Slater, L. and Binley, A., 2006. Synthetic and field-based electrical imaging of a zerovalent iron barrier: 
Implications for monitoring long-term barrier performance. Geophysics, 71(5), pp.B129-B137. 

St. Clair, J., Moon, S., Holbrook, W.S., Perron, J.T., Riebe, C.S., Martel, S.J., Carr, B., Harman, C., Singha, K.D. 
and Richter, D.D., 2015. Geophysical imaging reveals topographic stress control of bedrock weathering. 
Science, 350(6260), pp.534-538. 

Tso, C.H.M., Kuras, O. and Binley, A., 2019. On the field estimation of moisture content using electrical 
geophysics: The impact of petrophysical model uncertainty. Water Resources Research, 55(8), pp.7196-7211. 

Tso, C.H.M., Iglesias, M., Wilkinson, P., Kuras, O., Chambers, J. and Binley, A., 2021. Efficient multiscale imaging 

of subsurface resistivity with uncertainty quantification using ensemble Kalman inversion. Geophysical 
Journal International, 225(2), pp.887-905. 

Tso, C.H.M., Johnson, T.C., Song, X., Chen, X., Kuras, O., Wilkinson, P., Uhlemann, S., Chambers, J. and Binley, 
A., 2020. Integrated hydrogeophysical modelling and data assimilation for geoelectrical leak detection. Journal 
of Contaminant Hydrology, 234, p.103679. 

Van Avendonk, H.J., Shillington, D.J., Holbrook, W.S. and Hornbach, M.J., 2004. Inferring crustal structure in the 

Aleutian island arc from a sparse wide‐angle seismic data set. Geochemistry, Geophysics, Geosystems, 5(8). 
Vauhkonen, M., Vadasz, D., Karjalainen, P.A., Somersalo, E. and Kaipio, J.P., 1998. Tikhonov regularization and 

prior information in electrical impedance tomography. IEEE transactions on medical imaging, 17(2), pp.285-
293. 



 

16 

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at  Journal 

of Hydrology, published by Elsevier. Copyright restrictions may apply. https://doi.org/10.1016/j.jhydrol.2022.128343. 

Vischel, T., Pegram, G.G.S., Sinclair, S., Wagner, W. and Bartsch, A., 2008. Comparison of soil moisture fields 
estimated by catchment modelling and remote sensing: a case study in South Africa. Hydrology and Earth 
System Sciences, 12(3), pp.751-767. 

Wagner, F.M. and Uhlemann, S., 2021. An overview of multimethod imaging approaches in environmental 

geophysics. Advances in Geophysics, 62, pp.1-72. 
Wan, J., Tokunaga, T.K., Williams, K.H., Dong, W., Brown, W., Henderson, A.N., Newman, A.W. and Hubbard, 

S.S., 2019. Predicting sedimentary bedrock subsurface weathering fronts and weathering rates. Scientific 
reports, 9(1), pp.1-10. 

Waxman, M.H. and Smits, L.J.M., 1968. Electrical conductivities in oil-bearing shaly sands. Society of Petroleum 
Engineers Journal, 8(02), pp.107-122. 

Wellmann, J.F., De La Varga, M., Murdie, R.E., Gessner, K. and Jessell, M., 2018. Uncertainty estimation for a 
geological model of the Sandstone greenstone belt, Western Australia–insights from integrated geological and 
geophysical inversion in a Bayesian inference framework. Geological Society, London, Special Publications, 
453(1), pp.41-56. 

Wesson, R.L., 1971. Travel-time inversion for laterally inhomogeneous crustal velocity models. Bulletin of the 
Seismological Society of America, 61(3), pp.729-746. 

Western, A.W., Zhou, S.L., Grayson, R.B., McMahon, T.A., Blöschl, G. and Wilson, D.J., 2004. Spatial correlation 
of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. Journal of 
Hydrology, 286(1-4), pp.113-134. 

White, D.J., 1989. Two-dimensional seismic refraction tomography. Geophysical Journal International, 97(2), 
pp.223-245. 

Wisén, R., Auken, E. and Dahlin, T., 2005. Combination of 1D laterally constrained inversion and 2D smooth 

inversion of resistivity data with a priori data from boreholes. Near Surface Geophysics, 3(2), pp.71-79. 
Yue, Z., Song, Y., Li, P., Tian, S., Ming, X. and Chen, Z., 2019. Applications of digital image correlation (DIC) and 

the strain gage method for measuring dynamic mode I fracture parameters of the white marble specimen. Rock 
Mechanics and Rock Engineering, 52(11), pp.4203-4216. 

Zhang, J. and Toksöz, M.N., 1998. Nonlinear refraction traveltime tomography. Geophysics, 63(5), pp.1726-1737. 
Zhang, Z.F., Ward, A.L. and Gee, G.W., 2003. A tensorial connectivity–tortuosity concept to describe the 

unsaturated hydraulic properties of anisotropic soils. Vadose Zone Journal, 2(3), pp.313-321. 
Zhdanov, M.S., 2002. Geophysical inverse theory and regularization problems (Vol. 36). Elsevier. 
Zhou, J., Revil, A., Karaoulis, M., Hale, D., Doetsch, J. and Cuttler, S., 2014. Image-guided inversion of electrical 

resistivity data. Geophysical Journal International, 197(1), pp.292-309. 
Zhukov, V.S. and Kuzmin, Y.O., 2020. The Influence of Fracturing of the Rocks and Model Materials on P-Wave 

Propagation Velocity: Experimental Studies. Izvestiya, Physics of the Solid Earth, 56(4), pp.470-480. 

  



 

17 

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at  Journal 

of Hydrology, published by Elsevier. Copyright restrictions may apply. https://doi.org/10.1016/j.jhydrol.2022.128343. 

Figures 

 

Figure 1. The proposed workflow for estimating moisture content from field resistivity measurements and evaluating 

relevant uncertainties. MC stands for Monte Carlo analysis. 
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Figure 2. The proposed method for identifying the critical zone layers (regolith, fractured bedrock, and fresh bedrock) 
from a velocity-depth profile. Depths with distinct velocity gradients are identified as different structural units. The 

velocity-depth data are from Flinchum et al (2022). Red dash lines are used to represent constant velocity gradients. 



 

19 

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at  Journal 

of Hydrology, published by Elsevier. Copyright restrictions may apply. https://doi.org/10.1016/j.jhydrol.2022.128343. 

 

Figure 3. The p-wave velocity-porosity relationships for granular and fractured geological materials. The differential 
effective medium (DEM) theory (Berryman et al., 2002) is used to fit the fractured materials (solid line), and the linear 

empirical model (Han et al., 1986) is used to fit the granular materials (dash line). For velocity data in Zimmer (2003), 

only those with a low confining pressure are used in the above figure. 
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Figure 4. Synthetic subsurface model: (a) structural units, (b) moisture content distribution, (c) velocity distribution, 

and (d) resistivity distribution. 
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Figure 5. The reconstructed velocity distribution of the synthetic model: (a) spatial distribution and (b) velocity and 
velocity gradient profiles for vertical transect at distance x = 68 m. The identified CZ structural boundaries are 
indicated by solid lines in (a) and represented by red dots and horizontal lines in (b). The associated velocity for the 

regolith-fractured bedrock interface is 1500 m s-1 and is 3600 m s-1 for the fractured bedrock-fresh bedrock interface. 
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Figure 6. Reconstructed resistivity for the synthetic subsurface model: (a) new method incorporating structural 

information; and (b) traditional method using smoothness-based regularization. 
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Figure 7. Comparison of the estimated moisture content of the synthetic model using new and traditional methods: 
(a) mean moisture content, (b) standard deviation of moisture content, and (c) mean and standard deviation of moisture 

content along elevation at distance x = 65 m. 
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Figure 8. Map showing the location of the studied catchment and geophysical survey lines. The catchment is within 

the Dry Creek Experimental Watershed, Idaho (McNamara et al., 2005). 
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Figure 9. Reconstructed velocity distributions at the field site: (a) survey line across the ridge, (b) survey line along 
the ridge, and (c) velocity-elevation profiles at the intersection point of the two survey lines. In (a) and (b), solid lines 

indicate the inferred critical zone interfaces. 
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Figure 10. The reconstructed resistivity distributions of the field site using structure-constrained inversion: (a) survey 

line across the ridge and (b) survey line along the ridge. 

  



 

27 

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at  Journal 

of Hydrology, published by Elsevier. Copyright restrictions may apply. https://doi.org/10.1016/j.jhydrol.2022.128343. 

 

Figure 11. The moisture content results of the field site estimated from resistivity measurements: (a) mean value and 

(b) standard deviation. 

  

Figure 12. Comparison of the estimated moisture content–elevation profiles at the field site: (a) at distance x = 45 m 

on the survey line across the ridge and (b) at x = 17 m on the survey line along the ridge. The shaded area represents 

the uncertainty of the moisture content estimation. 

  



 

28 

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at  Journal 

of Hydrology, published by Elsevier. Copyright restrictions may apply. https://doi.org/10.1016/j.jhydrol.2022.128343. 

Tables 

Table 1. The physical properties of different structural units of the synthetic subsurface model. MC stands for Monte 

Carlo simulation. 

Subsurface structural units 
Saturated resistivity 

𝜌sat (Ω m) 

Saturated resistivity 
related to surface 

conduction 𝜌sat
s  (Ω m) 

Saturation 
exponent n 
(-) 

Porosity ϕ 

(-) 

Regolith 

Mean value 

and variation 
range 

170  
[100,350] 

510  
[400,1400] 

2.2 
0.4  

[0.25,0.5] 

Range used 
in MC 

[80, 400] [400,3200] [1.8, 2.5] [0.25, 0.5] 

Fractured 

bedrock 

Mean value 
and variation 

range 

1100  

[500,1920] 
- 1.8 

0.18 

[0.11,0.25] 

Range used 
in MC 

[600, 1200] - [1.6, 2.0] [0.12, 0.25] 

Fresh 

bedrock 

True value 2400 - 2.5 0.05 

Range used 
in MC 

[1800, 2800] - [2.4, 2.6] [0.01, 0.08] 

 

Table 2. Variation ranges of the petrophysical properties used to interpret the resistivity measurement at the field site. 

Subsurface structural 
units 

Saturated resistivity 
𝜌sat (Ω m) 

Saturated resistivity 
related to surface 

conduction 𝜌sat
s  (Ω m) 

Saturation 
exponent n (-) 

Porosity ϕ (-) 

Regolith [50, 250] [400,3200] [1.3, 2.2] [0.25, 0.5] 

Fractured bedrock [165, 350] - [2, 2.2] [0.2, 0.3] 

Fresh bedrock [325, 1000] - 2 [0.05, 0.15] 

 


	Improving Moisture Content Estimation from Field Resistivity Measurements with Subsurface Structure Information
	Improving Moisture Content Estimation from Field Resistivity Measurements with Subsurface Structure Information

