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Phantom rivers filter birds and bats by
acoustic niche

D. G. E. Gomes® '™, C. A. Toth!, H. J. Cole!, C. D. Francis® %3 & J. R. Barber® 13

Natural sensory environments, despite strong potential for structuring systems, have been
neglected in ecological theory. Here, we test the hypothesis that intense natural acoustic
environments shape animal distributions and behavior by broadcasting whitewater river noise
in montane riparian zones for two summers. Additionally, we use spectrally-altered river
noise to explicitly test the effects of masking as a mechanism driving patterns. Using data
from abundance and activity surveys across 60 locations, over two full breeding seasons, we
find that both birds and bats avoid areas with high sound levels, while birds avoid frequencies
that overlap with birdsong, and bats avoid higher frequencies more generally. We place 720
clay caterpillars in willows, and find that intense sound levels decrease foraging behavior in
birds. For bats, we deploy foraging tests across 144 nights, consisting of robotic insect-wing
mimics, and speakers broadcasting bat prey sounds, and find that bats appear to switch
hunting strategies from passive listening to aerial hawking as sound levels increase. Natural
acoustic environments are an underappreciated niche axis, a conclusion that serves to
escalate the urgency of mitigating human-created noise.
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nimals surveil the environment to extract information

important for decision making. Bats alter roost emergence

in the presence of rain noise! and bees use ultraviolet? and
electromagnetic? signals created by flowers to learn the location
of nectar rewards. The information an animal can extract from
the world, its umwelt*, has long been appreciated as important for
explaining animal behavior®, yet we often fail to account for the
filtering effects of these umwelten when explaining larger ecolo-
gical patterns. Despite recent advances in understanding the role
that anthropogenic noise and artificial light play on wildlife®-19, it
is surprising that natural sensory environments, such as gradients
of light and sound, are rarely used in ecological analyses!!. In one
of the few exceptions, noise from nearby streams had the most
power in explaining where frogs chose to call relative to other
habitat variables!2. Recent experimental evidence further sup-
ports a potentially widespread role of sensory environments in
shaping animal behavior and ecology. Playback of river noise
alters spider abundance!3, healthy coral reef sounds increases fish
settlement on degraded reefs!4, and stream noise, paired with
male advertisement calls, attracts more female torrent frogs!>.

The cacophony of an insect chorus and the thunder of a
mountain river are examples of intense acoustic sources that
characterize many environments. There are 150,000 km of marine
shoreline (NOAA 2014) and 5.6 million km of rivers and streams
in the United States alone (US EPA 2014) that expose adjacent
environments to the sounds of moving water. We hypothesize
that such intense natural acoustic sources have the power to
structure habitat use!l. To test this hypothesis, we select 60
locations within 20 sites, which we match for elevation and
riparian vegetation, along streams in the Pioneer mountain range
of Idaho (Fig. 1A) and monitor two taxonomic groups dependent
upon the acoustic environment® that are abundant, diverse, and
widespread across our system—birds and bats. Ten sites remain
acoustically unaltered (controls) and span a natural range of
sound levels; from quiet, slow-moving streams to loud, white-
water rapids (30.6-73.8 dBA, 24-h L50). We broadcast whitewater
river noise from speaker arrays powered by solar panels and
banks of batteries at five additional, naturally quiet streams using
acoustic recordings taken from the highest sound level control
sites. These phantom rivers thus present the amplitude and
spectral profiles of raging, whitewater rapids (avg. median fre-
quency £ SD: 2.1 +1.3kHz). To understand the mechanisms
underlying responses to the acoustic environment, we also create
a gradient of background spectra by broadcasting shifted river
noise of an identical temporal profile, but shifted upwards in
frequency (4.8 £1.3kHz) at five additional quiet-stream sites
(Fig. 1B). We create these files so that the average broadcast
energy, weighted by birds’ hearing thresholds, is the same (see
supplement for details; Fig. 1C).

Energetic masking occurs when there is spectral overlap
between the signal and background noise. Masking of vocaliza-
tions, like birdsong, can drive distributional shifts of animals in
areas exposed to anthropogenic noise!°. Similarly, the masking of
prey cues is suggested to be a primary mechanism structuring the
space use of acoustically-mediated predators, such as gleaning
bats!7-18,

In this work, we predict that overlap between song and back-
ground noise is an important predictor of bird distributions if
masking of birdsong is underlying noise effects (Fig. 1D). Because
most bat echolocation is higher frequency than the acoustic
environments we created, we do not expect changes in bat activity
to be related to sonar frequency, yet we do predict that gleaning
bats will avoid sites with energy in higher frequencies (>3 kHz)!°
due to masking of prey-generated sounds (Fig. S11)!718. Our
experimental design allows us to explicitly test the effects of
sound level separately from those of background spectra.

Results and discussion
Bird abundance. Leveraging data from 2969 point counts (~150
count hours), we found bird abundance declined by 7.0% (95%
CI: 3.4-10.5%) for each 12 dB increase in sound level (Fig. 2A;
Table S1). High-intensity noise makes detection and dis-
crimination of acoustic signals and cues more difficult, either
because of energetic masking at the periphery of the auditory
system, or because of limited central attentional resources®. To
explore masking of communication, we took the difference
between the median background frequency and individual bird
species’ peak vocalization frequency as a measure of spectral
overlap with the acoustic environment. Birds with a peak voca-
lization frequency closer to the median of the background spec-
trum showed lower abundances, with declines of 10.0%
(5.1-15.3%) for each 2 kHz increase in spectral overlap (Fig. 2B).
However, these overlap-mediated effects interact with sound level
in a diminishing way (Table S1): higher amplitude background
noise resulted in weaker relationships between spectral overlap
and bird abundance. It seems that when acoustic environments
are intense, masking of specific vocalizations is no longer the
primary mechanism underlying distributional changes (Fig. S14).
Individual species models (Table S2) combined with phylo-
genetically-informed, trait-based analyses indicate that birds
with lower-frequency songs avoid noise with similar spectra,
while birds with higher frequency vocalizations do not
(t=—3.73; p < 0.01; Fig. 2C). Previous work (2011)2° found that
lower-frequency vocalizers more strongly avoid high sound levels.
Here, no distributional patterns related to song frequency
emerged in response to the sound level or median frequency of
the acoustic environment (Table S3).

Bird foraging. Animals that remain in anthropogenic noise can
bear costs, such as reduced body condition®. To examine one
potential behavioral cost of exposure to natural noise, we placed
720 clay caterpillars across our sites (Fig. S8). While controlling
for bird abundance, the odds of a caterpillar being depredated
by a bird decreased by 37.2% (95% CI: 22.7-49.1%) for each 12
dB increase in sound level (Fig. 2D; Table S4). As this task was
entirely visual, it seems likely that cross-modal attentional
limitations underlie this effect?!. Birds that persist in high
sound-level environments will likely suffer negative foraging
consequences under noise exposure and such effects may have
indirect consequences for arthropods!3.

Bat activity. The direct effects of the acoustic environment are a
potential driver of bat distributions. Limited evidence suggests
that space-use by bats is shaped by anthropogenic noise?2, and
laboratory work has shown that gleaning bats have difficulty
hunting in both anthropogenic and natural noise!”>18. Using
~100,000 identified bat call sequences, we found that overall bat
activity decreased 8.2% (95% CI: 4.8-11.4%) for each 12 dB
increase in sound level, and decreased 19.5% (16.1-22.8%) for
each 2 kHz increase in median background frequency (Fig. 3A,
B; Table S5). Individual species models reveal consistently
similar inferences (Table S6). Bats likely perceive higher fre-
quency noise as louder?3, yet masking of echolocation is an
improbable explanation for these results as bat sonar does not
spectrally overlap with the acoustic environments we studied
(although see Bunkley et al.?2 for frequency shifts in non-
overlapping noise). Phylogenetically controlled trait-based
analyses revealed that bats with increasingly high-frequency
sonar exhibited increasingly lower activity with rising sound
levels (t = —5.39; p < 0.001; Fig. 3C; Table S8), further counter to
masking as an explanatory mechanism. This finding may reflect
indirect drivers if small insects disproportionately avoid noise,
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Fig. 1 Design and predictions for phantom rivers playback experiment. A Twenty sites were monitored across the Pioneer Mountains of Idaho,
comprising a gradient of sound levels (indicated by color scale). Control sites are indicated by circles, phantom river playback sites by squares, and shifted-
river playback sites by triangles. B These symbols are matched with their geographically referenced representative spectrograms (linked between A, B via
black dots in center of symbols) to show the gradient of noise exposure at control sites and playback sites with speakers both on and off. € Both playback
files were created so that the average broadcast energy, weighted by birds’ hearing thresholds, was the same. D Predicted responses of birds and bats to
the playback treatments. Silhouettes placed on frequency axis as a heuristic representation of vocalization frequency (not to scale).

as these are most accessible to high-frequency echolocators?4.
Alternatively, high-frequency echolocators (and listeners®3)
experience a reduced sensing area, since high-frequencies
attenuate quickly, which may compromise risk assessments in
a noisy world.

While these data suggest that masking of echolocation is not
responsible for patterns of bat activity, they do indicate that
limited attentional resources available for sonar processing and
perhaps masking of lower-frequency environmental cues?> might
be two underappreciated drivers of bat distributions. We used
additional trait-based analyses to test a component of the latter
hypothesis and found that bats capable of hunting via passive
listening are not more likely to avoid noise (Table S8). This result

is at odds with previous laboratory work!”7, and might indicate
that wild bats are behaviorally flexible enough to cope with
noise!8. Indeed, those bats that are obligate aerial hawkers are
more likely to avoid higher frequency acoustic environments (t =
—4.1; p<0.01).

Bat foraging. To quantify bats’ use of passive listening and active
sonar strategies, and to explore if bats employ flexibility in
hunting techniques to circumvent the costs of noise (Fig. S11),
we deployed custom-designed assays at 36 locations across our
sites. We placed small speakers playing insect walking and
orthopteran mating sounds on the ground to evaluate bats’
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Fig. 2 Bird responses to noise. A Bird abundance declines with increasing sound levels. B Bird abundance declines with increasing spectral overlap with
song (note reversed x axis; O = complete spectral overlap). € Phylogenetically-informed trait analyses reveal that lower-frequency singers are more likely
to be masked by background noise with similar spectra (n = 26 species). D Bird foraging rates decrease in high sound levels. For all plots, points represent
raw data (species estimates for C), error bars represent standard errors (€ only), the plotted lines (estimated conditional means) and shaded gray regions
(95% confidence intervals) represent predicted values of the response variable over the range of the variable on the x axis, given constant mean values of

all other variables in the model.

attraction to prey-generated cues (Fig. S13). To query bats’ use of
sonar-mediated aerial hawking, we used a motor-driven syn-
thetic wing®"s#26 placed at 1 m above the ground to echo-
acoustically mimic the wingbeat frequency of insect prey (250
Hz, e.g., Diptera?’; Fig. S12). We focused our analysis on bat
species that employ both strategies (i.e., behaviorally flexible bats;
including Corynorhinus townsendii, Myotis evotis, Myotis luci-
fugus, and Myotis thysanodes; see Supplementary Information)
and predicted that high sound-level acoustic environments
would hinder bats’ use of passive listening (which requires the
processing of lower-frequency sounds) and result in heightened
use of sonar!826, Indeed, while controlling for changes in bat
abundance, for every 12 dB increase in sound pressure level and
2 kHz increase in median background frequency, bat activity at
speakers playing prey cues decreased by a factor of 0.58 (95% CI:
0.38-0.87; Fig. 3D; Table S7), while aerial hawking activity
increased by a factor of 8.1 (95% CI: 1.5-44.1) at simultaneously
deployed robo-insects. This strategy switching only seemed to
occur at sites with relatively higher frequency acoustic environ-
ments, likely because the bulk of the energy of prey-generated
sounds are within these frequencies?. The ability to behaviorally

switch is unlikely to be universal, which may allow flexible bat
species to persist where others cannot!8,

Detectability in noise. We experimentally show that natural
noise can have strong effects on animal abundance, activity, and
behavior, yet our findings are dependent on the probability of
detecting vocalizing animals in noise?$2°. For birds, we controlled
for this potential problem using four approaches. We turned off
speakers during counts so that most observations occurred below
sound levels known to interfere with detection?® (Fig. S6). To
implement imperfect detection into our models, we both directly
measured observer detection in noise with a birdsong playback
experiment (Fig. S7), and estimated bird detection probabilities
with a noise-informed removal model (Table S11). We wore
earplugs and earmuffs during a duplicate set of point counts so
that observations were visual-only (Table S12), which suggest
similar inferences as above (Table S1). For bats, a laboratory test
verified acoustic recording units were triggered similarly in a
gradient of noise levels. Further, we validated that identification
software correctly classified bats by experimentally adding noise
to files (see Supplementary information).
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Fig. 3 Bat responses to noise. A Bat activity declines with increasing sound levels. B Bat activity declines with increasing frequency of the acoustic
environment. C Phylogenetically-informed trait analyses reveal that higher frequency echolocators are more likely to avoid high sound-level environments
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(except in D).

Concluding remarks. Our results demonstrate that natural
acoustic environments represent an underappreciated dimension
of the niche and are clearly important in shaping animal behavior
and distributions. Incorporating this axis into our understanding
of the natural world will provide stronger inference for both basic
and applied questions!!. Because the spatial and temporal foot-
print of human-generated noise is orders of magnitude greater
than loud natural acoustic environments, it is critical to under-
stand that the insights provided by our data increase the
importance of mitigating noise pollution impacts on animals and
their habitats. Our results reveal age-old strategies for dealing
with the long-standing problem of noise and help explain con-
temporary responses to anthropogenic noise. A renewed focus on
animal umwelten will redefine our understanding of ecological
niche axes that have been canalized by our own sensory biases!!.

Methods

TACUC approval: all work described below was approved by the Boise State
Institutional Animal Care and Use Committee: AC15-021.

Site layout. We selected 20 sites, across five drainages, within the Pioneer
Mountains of Idaho—matched for elevation and riparian habitat. We split these

20 sites into 10 noise playback sites, and 10 control sites (Fig. 1A; S1). The control
sites ranged from quiet, slow-moving streams to relatively loud whitewater tor-
rents. Noise playback sites, on the other hand, were relatively quiet (not white-
water) sites, where we broadcast loud whitewater river recordings with speaker
arrays hung from towers (Fig. S1; S2; S3; S4; see supplementary information for
more details on noise file creation, playback equipment, and experimental setup).
At five of the noise playback sites we broadcast normal river noise (hereafter
referred to as ‘river noise’ sites), and at the other five noise sites we broadcast
spectrally-altered river recordings (hereafter referred to as “shifted noise” sites).

Our field sites were oriented along the riparian zone, with data collection
occurring at three primary locations within each site (Fig. S1): (1) roughly in the
middle of the speaker tower systems, (2) at a shorter distance from the middle
location (mean: 198.2 + 54.5 m SD; range: 117.6-384.5 m), and (3) and a longer
distance from the middle location (in the opposite direction from the nearer
location; mean: 312.7 + 64.7 m SD; range: 249.1-479.6 m). Thus, sites were
approximately 510.9 + 98.3 m long (range: 374.7-850.6 m), along the riparian
corridor. All control sites were, at minimum, 1 km apart along the riparian corridor
from any noise site, to maintain acoustic independence (see Fig. 1A; S1).

Data collection

Birds

We conducted three-minute avian point counts between one half hour before sunrise and
6 h after sunrise (roughly 0530-1130 h). During the project, we conducted 1330 point-
counts from 28 May to 20 July 2017 and 1639 point-count events occurred from 7 May
to 24 July in 2018.
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Caterpillar deployment. We deployed a total of 720 clay caterpillars throughout the
2018 breeding season. Forty caterpillars were glued to stems and branches of trees
between 1 and 2.5 m high at each site (Fig. S8). Twenty caterpillars surrounded the
middle point count location at each site (a set of 10 were placed upstream, and
another set of 10 were placed downstream starting from the middle ARU location),
while the other twenty were at upstream and downstream sampling locations

(10 each at upstream and downstream locations). We placed each caterpillar along
the riparian corridor, at least 1 m apart from each other®(. See Supplementary
information for details on caterpillar predation scoring.

Bird trait analysis. We performed a trait-based analysis to understand the
mechanistic patterns of bird distributions in our study paradigm. Avian vocal
frequencies and body mass were collected from Hu and Cardoso 2009, Cardoso
2014, and Francis 2015163132, When multiple sources contained data, the values
were averaged. There were a few cases where none of those sources contained a
vocal frequency or mass measurement for species of interest. Thus, representative
songs were downloaded from the Macaulay Library of the Cornell Lab of Orni-
thology based on recording quality and geographical relevance (MacGillivray’s
warbler: ML42249; dusky flycatcher: ML534684; red-naped sapsuckers: ML6956),
and analyzed with Avisoft SASLab Pro to obtain a peak frequency measure. Mass
measurements for these ‘missing’ birds were taken from the ‘All about birds’
webpage of the Cornell Lab of Ornithology.

Bats

Measuring and identifying bat calls. We measured bat activity using Song Meter 3
(hereafter “SM3”) recording units (Wildlife Acoustics Inc., Massachusetts, USA)
equipped with a single SMU (Wildlife Acoustics Inc.) ultrasonic microphone. One
recording unit was used at each site and we pseudo-randomly rotated the unit
between the three point-count locations so that each location was monitored for at
least 21 days. We mounted microphones on metal conduit at a height of ~3 m,
oriented perpendicular to the ground and facing away from the stream to optimize
recording conditions (Fig. S9; S10; see Supplementary information for more
information).

Robotic insects. We used a modified version of Lazure and Fenton’s2¢ apparatus to
present bats with a fluttering target (Fig. S12). This consisted of a 3 cm? piece of
masking tape affixed to a metal rod [30.48 cm length x 3.25 mm diameter], which
itself was connected to a 12-volt brushed DC motor (AndyMark 9015 12V,
AndyMark Inc., Kokomo, IN, USA). The no-load revolution speed of these motors
(267 Hz) falls within the range of wingbeat frequency measured in
Chironomidae?”33, a group that is an important food source for many North
American bat species®?.

We attached each motor to a tripod made of PVC piping and positioned the
tripod such that the target was approximately 1.2 m above the ground. Each motor
was powered by a 12V battery (35Ah AGM; DURA12-35C, Duracell) which was
controlled by a programmable 12V timer (CN101, FAVOLCANO) to
automatically start and stop the motor each night. The rotors were powered for 2 h
following sunset.

Prey-sound speaker playback. We created a playlist composed of several insect
acoustic cues to present gleaning bats: a beetle (Tenebrio molitor) walking on dried
grass, a cricket (Acheta domesticus) walking on leaves, mealworm larvae (Tenebrio
molitor) on leaves, fall field cricket (Gryllus pennsylvanicus) calls, and fork-tailed
bush katydid (Scudderia furcata) calls. The cricket and katydid calls were sourced
from the Macaulay Library (ML527360 and ML107505, respectively).

Experimental setup for bat foraging tests. Most sites received two rotors
(Fig. S12) and two speakers (Fig. S13): one of each at the center of the site, and one
of each at approximately 125 m from the center of the site (in opposite directions in
order to have tests in a range of acoustic environments), placed roughly 10 m from
the edge of the riparian zone. Rotors and speakers at the center locations were
separated by at least 50 m. The exception to this setup were the four positive
control (loud whitewater river) sites, which only received a single rotor and speaker
separated by 50 m because of logistical difficulties of accessing those sites. We
paired each rotor and speaker with an SM2BAT + bat detector equipped with an
SMX-US microphone (Wildlife Acoustics Inc.)3, using tripods to elevate the
microphones approximately 1 m off the ground and ~1 m from the speaker/rotor.
We programmed the bat detectors with a gain of 36 dB and a trigger level of 18 dB
to limit recordings to bats that were passing within the immediate vicinity. To
allow for a comparison of activity between speakers and rotors, bat activity was
only considered for the first two hours following sunset.

Bat trait analysis. We collected bat foraging behavior and peak echolocation fre-
quency information to use as predictors in a phylogenetically controlled trait
analysis (Tables S8; S13). We based our behavioral foraging classifications on the
categories of Ratcliffe et al.3¢ and followed the classifications of Gordon et al.3”
where possible, and others?3-43 where necessary. We extracted peak echolocation
frequency from the 2017 and 2018 SM3 field recordings and employed two controls
to decrease variability in call parameters potentially introduced via this method.

First, we selected only recordings made on control sites in 2017 and 2018 (n =
740,848 calls), as echolocation call characteristics may be affected by local acoustic
environments (e.g., Bunkley et al.)22. Secondly, we averaged all call parameters per
species per hour at each site to decrease the possible effects of few individuals
driving measurements. This resulted in 9538 species-hours of recordings, which
themselves were averaged per species (Table S13).

Quantifying environmental variables. We used long-term monitoring of the
acoustic environment (via Roland R05 recorders) to calculate daily sound pressure
level (L50 dBA) and median frequency (kHz) values for each location (see sup-
plementary information for details on quantification of all predictor variables).

Sound pressure level (SPL). We converted 106,769 h of long-term ARU recordings
into daily-averaged median sound pressure levels (L50; measured as dBA rel. 20
pPa) see refs. 1344 using custom software ‘AUDIO2NVSPL’ and ‘Acoustic Mon-
itoring Toolbox’ (Damon Joyce, Natural Sounds and Night Skies Division, National
Park Service).

Acoustic environment spectrum. We used custom software*” in the programming
language R and the package ‘FFmpeg’ in command prompt to convert 106,769 h of
long-term recordings into 71,282 individual 3-minute files starting each hour of the
day (Fig. S5). Thus 24, 3-min files were created per acoustic recording location
per day (one for every hour). We then used the packages “tuneR” and “seewave” to
read in and measure the median frequency of sound files, respectively*>~47. These
hourly metrics were then averaged by date to create a daily metric.

Statistics. All models of abundance, activity, and foraging transects were gen-
eralized linear mixed effects models (glmm) in R*® using the package Ime4’4%>0 or
‘glmmTMB™!, All distribution families were selected based on theoretical sampling
processes of the data, models were checked for collinearity (VIF scores)?2, and
model fits were visually checked with residual plots (see supplemental R code)>3.

Bird abundance and bat activity

Model predictors and covariates

Both bird and bat models had the following variables in a glmm: site and bird/bat species
were random effects terms and sound pressure level (dBA L50), sound spectrum (median
frequency), the interaction between sound pressure level and spectrum, elevation, percent
riparian vegetation, ordinal date (and a quadratic version of this), and year as fixed
effects. While year is sometimes used as a random-effect term, it is suggested to be used
as a fixed effect if fewer than five levels exist for that factor, as variance estimates become
imprecise®*%°. Additionally, moon phase was a fixed effect in the bat models®, while
spectral overlap (the absolute difference between sound spectrum and bird species
vocalization frequencies) and the interaction between sound pressure level and spectral
overlap were fixed effects in bird models.

We attempted to fit both sound pressure level and spectrum as having random slopes
for each species, yet both bat and bird models would not converge with such complex
model structure. Thus, we followed group models with individual species models (see
Supplementary information).

Model family distribution and link function

For both bird and bat counts, we used a negative binomial distribution with a log link,
rather than a Poisson distribution, because data were over-dispersed. We plotted
variance-mean relationships and residuals of multiple models to select the appropriate
variance structure, and compared these with AIC to select the best-fitting distribution
(see R script for further justification of these methods)>%.

Individual species models

Individual species models were parameterized the same as above (except without the
species term). All 12 bat species (see Tables S6; S10) and 26 of the most common birds
(see Tables S2; S9) were modeled individually to be able to interpret model parameter
estimates, with complex interactions, for each species.

Clay caterpillar predation. We modeled caterpillar predation with a glmm (bino-
mial family; logit link function), using the number of individual scorers as weights
in the model. Like the bird abundance model, we used site as a random effect and
sound pressure level (dBA L50), spectral frequency (median), elevation, percent
riparian vegetation, ordinal date, and year as fixed effects (Table S4). Additionally,
the predicted number of birds at a site were modeled as fixed effects to control for
varying amounts of foraging birds on the landscape.

Robotic moths and prey-sound speakers. Robotic moth and prey-sound speaker
models were parameterized exactly the same as the overall bat activity model. That
is, the model was fit with a negative binomial family (log link) with site and species
as random effects and sound pressure level (dBA L50), sound spectrum (median
frequency), the interaction between sound pressure level and spectrum, moon

phase, elevation, percent riparian vegetation, ordinal date (and a quadratic version
of this), and year as fixed effects. Additionally, the predicted number of bats at a
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site were modeled as fixed effects to control for varying amounts of foraging bats
on the landscape.

Trait analyses. We performed trait analyses with phylogenetic generalized least
squares (PGLS) to control for relatedness while predicting species responses to
noise!2. We performed PGLS analyses with the gls function in the R package
nlme>’, and accounted for error in the response variable with a fixed-variance
weighting function of one divided by the square root of the standard error of the
response estimate®®>, We accounted for phylogenetic structure by estimating
Pagel’s A°0. When \ estimates fell outside of the zero to 1 range, we fixed A at the
nearest boundary. For bird models, we used a pruned consensus tree from a recent
class-wide phylogeny®!. For bats, we used a pruned mammalian tree®?. We used
initial global models with all traits as variables that explained the responses to
sound pressure level (SPL; birds and bats), spectral overlap with birdsong (birds),
background frequency (bats), and the interaction between SPL and each measure of
frequency (birds and bats). We then used AIC model selection® to choose top
models in explaining these patterns. Models with dAIC <4 are included in Table S3
(birds) and Table S8 (bats), and the top model is interpreted in the main text.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All source data are provided with this paper at Dryad Data Repository (https://doi.org/
10.5061/dryad.n5tb2rbsv).

Code availability
All code and materials used in the analysis are available as a fully-reproducible workflow
from Dryad Data Repository (https://doi.org/10.5061/dryad.n5tb2rbsv).
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