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A B S T R A C T   

Seasonal snow melt dominates the hydrologic budget across a large portion of the globe. Snow accumulation and 
melt vary over a broad range of spatial scales, preventing accurate extrapolation of sparse in situ observations to 
watershed scales. The lidar onboard the Ice, Cloud, and land Elevation, Satellite (ICESat-2) was designed for 
precise mapping of ice sheets and sea ice, and here we assess the feasibility of snow depth-mapping using ICESat- 
2 data in more complex and rugged mountain landscapes. We explore the utility of ATL08 Land and Vegetation 
Height and ATL06 Land Ice Height differencing from reference elevation datasets in two end member study sites. 
We analyze ~3 years of data for Reynolds Creek Experimental Watershed in Idaho’s Owyhee Mountains and 
Wolverine Glacier in southcentral Alaska’s Kenai Mountains. Our analysis reveals decimeter-scale uncertainties 
in derived snow depth and glacier mass balance at the watershed scale. Both accuracy and precision decrease as 
slope increases: the magnitudes of the median and median of the absolute deviation of elevation errors (MAD) 
vary from ~0.2 m for slopes <5◦ to >1 m for slopes >20◦. For glacierized regions, failure to account for intra- 
and inter-annual evolution of glacier surface elevations can strongly bias ATL06 elevations, resulting in under- 
estimation of the mass balance gradient with elevation. Based on these results, we conclude that ATL08 and 
ATL06 observations are best suited for characterization of watershed-scale snow depth and mass balance gra
dients over relatively shallow slopes with thick snowpacks. In these regions, ICESat-2 elevation residual-derived 
snow depth and mass balance transects can provide valuable watershed scale constraints on terrain parameter- 
and model-derived estimates of snow accumulation and melt.   

1. Introduction 

Seasonal snow accumulation and melt represent an important 
component of mountain environments and downstream hydrologic 
systems (Viviroli et al., 2007). Mountain snow dominates the hydrologic 
budget across a large portion of the globe and, therefore, exerts a strong 
control on water resources for billions of people (Barnett et al., 2005). 
Changes in seasonal snow both directly and indirectly influence water 
resources. Decreased winter snow accumulation results in a net decrease 
in water availability downstream and changes in timing of water 
availability, particularly in summer months (e.g., Elias et al., 2021). 
Changes in seasonal snow can also have much longer-term indirect ef
fects on water resources through alteration of local vegetation and 

glacier mass balance (Beniston, 2003; Freeman et al., 2018; Huss et al., 
2017; Huss and Hock, 2018; Steinbauer et al., 2018; Wrzesien et al., 
2018). 

Despite the broad importance of snow, estimates of seasonal snow 
depth and the corresponding mass of water contained in the snowpack 
(i.e., snow water equivalent) at watershed to continent scales are highly 
uncertain (Dozier et al., 2016; Mudryk et al., 2015). Snow water 
equivalent (SWE) estimates require snow density to convert snow depth 
into mass, but snow density can be difficult to accurately approximate, 
due to spatial variability across snowy watersheds and temporal vari
ability across seasons (Feng et al., 2022). While snow water equivalent is 
critical for direct hydrology calculations, snow depth provides the basis 
for estimating SWE and is subject to its own challenges. For example, 
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snow accumulation varies over a wide range of spatial scales, such that 
large-scale estimates of snow depth cannot be reliably extrapolated from 
sparse in situ observations (Elder et al., 1991; Grünewald et al., 2010; 
McGrath et al., 2018; Winstral and Marks, 2014; Winstral et al., 2002). 
Airborne lidar has proven to be an invaluable tool to map snow depth 
variability at watershed scales (Deems et al., 2013; Painter et al., 2016), 
but it requires expensive repeat lidar flights in order to collect reference 
(i.e., snow-free) and snow-covered terrain elevations, and is not feasible 
everywhere. Similar elevation-differencing approaches applied to sat
ellite image-derived digital elevation models (DEMs) have been recently 
explored, and show some promise (Deschamps-Berger et al., 2020), but 
the high-precision stereo pairs needed to create high resolution DEMs 
are irregularly acquired. Mapping snow depth using unmanned aerial 
vehicles empowers more flexibility with data acquisition frequency for 
local snow surveys with accurate georeferencing, but is limited to 
catchment scales (e.g. <5 km2), and so cannot measure the global rea
ches that satellites survey (e.g., Bühler et al., 2016; Harder et al., 2020; 
Revuelto et al., 2021). 

Here we test whether seasonal elevation transects acquired by the 
photon-counting lidar onboard the Ice, Cloud, and land Elevation, Sat
ellite (ICESat-2), launched in September 2018, can be used to construct 
accurate snow depth transects at watershed and larger spatial scales. We 
focus on accuracy assessment of ICESat-2 level 3A data products, spe
cifically the ATL06 Land Ice Height and ATL08 Land and Vegetation 
Height products, as these have been pre-processed to provide the best 
estimates of terrain elevations in glacierized and non-glacierized set
tings, respectively. We analyze ~3 years of ICESat-2 data for two study 
sites – Reynolds Creek Experimental Watershed (RCEW) in Idaho’s 
Owyhee Mountains and Wolverine Glacier in southcentral Alaska’s 
Kenai Mountains. These sites represent span a broad spectrum of climate 
and terrain regimes, have accurate snow-off reference elevation maps, 
and have been the focus of numerous prior analyses of seasonal snow 
accumulation (Marks et al., 2001, 2002; McNeil et al., 2019; O’Neel 
et al., 2019; Winstral and Marks, 2014; Winstral et al., 2002). Our 

analysis yields insights into the primary sources of uncertainty and bias 
in ICESat-2-derived snow depths and potential methodological im
provements that could further increase the utility of ICESat-2 snow re
trievals in vegetated and glacierized watersheds. 

2. Materials and data 

2.1. Study sites 

ICESat-2 data were gathered at two sites representative of middle- 
latitude and subpolar mountain snowpack: Reynolds Creek Experi
mental Watershed (RCEW) in southwestern Idaho and Wolverine Glacier 
on the Kenai Peninsula of Alaska (Fig. 1). Each site is described in detail 
in the paragraphs below. These sites were selected because (1) they span 
an array of slopes, aspects, and vegetation types and (2) they are part of 
long-term government observational efforts by the USDA and USGS 
(Marks et al., 2001; O’Neel et al., 2019), respectively, and therefore 
have a wealth of supporting datasets. Specifically, both sites have high- 
resolution reference elevation data required for ICESat-2 snow-depth 
estimation and a history of detailed in situ observations focused on 
seasonal snow accumulation (e.g., Baker et al., 2018; Marks et al., 2001; 
Winstral and Marks, 2014). 

Reynolds Creek Experimental Watershed (239 km2; Fig. 1b; 43.3241 
N, − 116.6858E), is a north-facing watershed that drains to the Snake 
River (Seyfried et al., 2001). Its location in the rain shadow of the 
Cascade Mountains results in low precipitation rates, <250 mm/yr at 
the lowest elevations increasing to >1100 mm/yr at the highest eleva
tions (~2100 m a.s.l.). The winter rain-snow transition zone typically 
falls above 1500 m a.s.l. (Godsey et al., 2018), with snow dominating the 
hydrologic budget at higher elevations. Snow survey data suggest the 
peak snow depth regularly exceeds 1.0 m above ~2000 m a.s.l. (Winstral 
and Marks, 2014), and range from ~0.2–0.9 m at the SNOTEL site at 
1707 m a.s.l. (https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=2029) 
and ~ 0.1–0.5 m at ~1500 m a.s.l. (Godsey et al., 2018). Spatial 

Fig. 1. A) Overview map of study sites in Idaho and 
Alaska. Outlines (yellow lines) for b) Reynolds Creek 
Experimental Watershed (RCEW) in Idaho and c) 
Wolverine Glacier in Alaska overlain on summer 
2020 Landsat 8 true-color images. The blue and red 
lines in the study site maps mark the snow-on 
(October–June) and snow-off (July–September) 
ICESat-2 transects from cycles 1–13, respectively. The 
white X in panel b) marks the location of the RCEW 
SNOTEL site (site 2029; 43.2833◦N, − 116.85◦E). c) 
The stark contrast in brightness between the white 
snow of the accumulation zone and grayer exposed 
ice in the ablation zone marks the end-of-melt-season 
snowline for Wolverine Glacier. (For interpretation of 
the references to color in this figure legend, the 
reader is referred to the web version of this article.)   
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variations in snow depth are largely controlled by elevation and wind 
redistribution (Godsey et al., 2018; Winstral and Marks, 2014). Wind 
redistribution is strongly controlled by aspect, with the formation of 
large 2+ meter drifts on north-facing slopes driven by predominantly 
southerly winds during winter storms, as well as vegetation (Winstral 
and Marks, 2014). Vegetation varies with elevation, with sagebrush 
steppe at the lowest elevations, transitioning upwards through mountain 

sagebrush, western juniper, aspen, and coniferous trees at the highest 
elevations (Seyfried et al., 2001). 

As part of the USGS Benchmark Glacier Project, glacier mass balance, 
meteorology and streamflow records have been maintained since the 
mid 1960s at Alaska’s Wolverine Glacier (Fig. 1c; 60.40◦N, -148.92◦E; 
Baker et al., 2018; McNeil et al., 2019; O’Neel et al., 2019; Zeller et al., 
2022). The glacier is located in a subpolar maritime climate typical of 

Table 1 
ICESat-2 track dates, number of level 3A product segments, and the median and median of the absolute deviation (MAD) 
elevation residuals between the level 3A and reference datasets, Δz, for each snow-off (pale red) and snow-on (pale blue) season 
for RCEW and Wolverine Glacier. 
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southcentral Alaska and perhumid coastal rain forests. In 2018 the total 
ice-covered area was ~15.6 km2, with measured horizontal speeds up to 
64 m/yr (McNeil et al., 2019). The average horizontal speed is estimated 
as 38 m/yr (Millan et al., 2022) and vertical speeds reach up to 6 m/yr 
(Zeller et al., 2022), as described in the Methods section. In recent years, 
the equilibrium line altitude (where snow annual accumulation is equal 
to melt) has been at ~1235 m above mean sea level (Zeller et al., 2022), 
with a glacier-wide mean annual balance rate of − 0.77 m water 
equivalent (w.e.) per year since 1990 (O’Neel et al., 2019). In situ data 
from 2013 to 2017 suggest the maximum annual snow depth on the 
glacier is typically ~12–15 m (McGrath et al., 2018). Variations in snow 
depth across the glacier are strongly controlled by elevation, with a 
winter surface mass balance gradient of ~4.4 m w.e. per kilometer 
elevation gain (McGrath et al., 2018). 

2.2. ICESat-2 elevation transects 

The scientific instrument of ICESat-2 is a six-beam laser altimeter 
called the Advanced Topographic Laser Altimeter System (ATLAS). 
ICESat-2 is configured for a 91 day repeat interval of its reference 
ground tracks in the polar regions, with off-track pointing at subpolar 
latitudes to optimize global coverage of vegetation. Each of the six 
ATLAS beams utilizes a 532-nm wavelength (green) laser operating at 
10,000 Hz, resulting in an along-track ground spacing of ~0.7 m, with a 
ground segment diameter of ~11 m (Markus et al., 2017). For the 
relatively flat and highly reflective terrain for which ICESat-2 is 
designed to map, ~10 of the ~1014 photons that are transmitted with 
each pulse are returned to the satellite and detected by the sensor (~150 
photons per 11 × 11 m2 area). The beams are separated into three pairs; 
the interpair distance is 3 km and the intrapair distance is 90 m. One 
beam in each pair is the strong beam that sends four times as many 
photons per laser shot as the weak beam in the pair. 

The large relatively dense spatial coverage of ATLAS data, as well as 
the complicated interactions between the photons and varied terrain 
types, complicate efforts to create custom processing pipeline for geo
located photon returns (i.e., level 2A ATL03 product) for each scientific 
application. To facilitate data use, the photon data have been pre- 
processed for a number of terrain types and science applications. Level 
3A data products are available for land ice height, sea ice height and 
freeboard, land and vegetation height, ocean surface and inland water 
height, and atmospheric layer characteristics. We use the level 3A, 
version 5 land and vegetation height (ATL08) and land ice height 
(ATL06) data products for October 2018 – December 2021 (Table 1) 
because these products are designed to provide the best estimates of 
terrain height in potentially-vegetated and glacierized regions, respec
tively. Simplified descriptions of the algorithms used to create the 
ATL08 and ATL06 products, along with the spatial resolution and esti
mated uncertainties of these products, are presented in the subsections 
below. We refer the reader to the ATL08 (Neuenschwander et al., 2021) 
and ATL06 (Smith et al., 2021) algorithm theoretical basis documents 
for more detailed descriptions of the level 3A products used herein. 

2.2.1. ATL08: Land and vegetation height 
The ATL08 product was designed to provide estimates of terrain and 

canopy height for every ~140 photons. In vegetated terrain, <4 return 
photons are expected for each photon pulse, such that the ATL08 
products are provided for 100 m-long segments at 100 m intervals along 
each beam’s track. To estimate terrain and canopy heights from geo
located photon data, the data are parsed in 10 km lengths then filtered to 
eliminate solar background noise. The remaining (signal) photons are 
detrended and a moving window is applied to classify vegetation cover 
based on the spread in heights. Finally, an iterative median filter is 
applied to identify the underlying terrain. 

For each 100 m-long ATL08 segment within the Reynolds Creek 
Experimental Watershed, we extracted the coordinates and mean terrain 
and canopy height relative to the World Geodetic System 1984 (WGS84) 

ellipsoid (Neuenschwander et al., 2021). Estimated vertical accuracy for 
ATL08 products is terrain-dependent, with sub-meter uncertainties in 
relatively flat and sparsely-vegetated regions and 1–2 m for more 
complex terrain (Neuenschwander and Pitts, 2019). To facilitate the 
identification of snow-covered areas, we also extracted the brightness 
flag for each segment. The brightness flag parameter uses a radiometric 
approach to label a segment as “bright” if it exceeds one photon returned 
per pulse for the strong beam and a quarter photon per pulse for the 
weak beam (Neuenschwander and Pitts, 2019). For terrestrial environ
ments, bright returns are the most likely for snowy terrain and smooth 
bodies of water, and we use the brightness flag here to identify and 
exclude non-static features from coregistration (described in section 
3.1). 

2.2.2. ATL06: Land ice height 
The ATL06 product was designed to provide estimates of surface 

heights for highly-reflective terrestrial ice bodies (i.e., glaciers, ice caps, 
ice shelves, and ice sheets), enabling the adoption of a smaller segment 
length than ATL08. ATL06 products are provided for 40 m-long seg
ments at 20 m intervals along each beam’s track. As with ATL08, solar 
background noise photons are first filtered from the geolocated photon 
data. Next, the vertical and horizontal windows over which to compute 
photon statistics are iteratively refined based on the concentration of 
photon returns and confidence in their interpretation as non-noise 
photons. A least-squares fitting approach is then used to model the 
terrain heights within the window. Finally, terrain heights are corrected 
for biases associated with saturation of ATLAS’ photon-counting de
tectors for highly reflective flat surfaces (i.e., first photon bias). 

For each 40 m-long ATL06 segment within the 2018 GLIMS 
Wolverine Glacier polygon and ~ 20 km2 of neighboring low-elevation 
ice-free terrain, we extracted the coordinates and mean land ice height 
relative to the World Geodetic System 1984 (WGS84) ellipsoid (Smith 
et al., 2021). Although ATL06 heights are not partitioned into terrain 
and canopy like ATL08 and will include vegetation where present in off- 
ice regions, the ATL06 data are processed to minimize the ≤0.1 m but 
highly variable first photon bias (Smith et al., 2021). Vertical bias and 
precision have been estimated as <0.03 m and < 0.09 m, respectively, 
for the smooth and flat Antarctic Ice Sheet interior but with a strong 
slope dependency (Smith et al., 2019). Because the glacier surface ele
vations vary over time as the result of glacier flow and the imbalance 
between snow accumulation and snow and ice ablation (O’Neel et al., 
2019), the off-ice data are used for coregistration to the reference 
elevation maps (described in section 3.1). 

2.3. Reference elevation maps 

Due to the non-repeating nature of ICESat-2 tracks at our study sites, 
independent reference elevation datasets were needed to detect changes 
in the surface elevation related to snow accumulation and melt. High- 
quality (decimeter-scale uncertainties, meter-scale spatial resolution) 
reference elevation datasets exist for both study sites, allowing confident 
evaluation of ICESat-2 acquisitions with and without snow cover. 

For RCEW we used an August 2014 airborne lidar-derived bare-earth 
digital terrain model (DTM), wherein overlying vegetation was 
segmented from terrain elevations. Terrain elevations were provided as 
a 1 m-resolution raster (Fig. 1; Ilangakoon et al., 2016). Uncertainties in 
terrain elevations vary with terrain parameters, as described in Ilanga
koon et al. (2018), and are on the order of 10 cm. DTM elevations were 
provided relative to the North American Datum 1983 in the horizontal 
(EPSG: 26911) and the North American Vertical Datum 1988 (EPSG: 
5103) geoid heights in the vertical, requiring reprojection to UTM co
ordinates (EPSG:32611) with respect to the WGS84 ellipsoid (EPSG: 
4326) prior to differencing (gdal.io). Although spatially variable, the 
transformation resulted in adjustments of ~17 m in the vertical and 10s 
of meters in the horizontal. 

To account for the changing glacier geometry, annual reference 
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digital elevation models (DEMs) were used for Wolverine Glacier. End- 
of-melt season geodetic DEMs exist for each year in our study (McNeil 
et al., 2019; O’Neel et al., 2019). For 2018 and 2020, we used 2 m- 
resolution Worldview DEMs from stereo imagery acquired on 12 
September 2018 and 19 October 2020, respectively. For 2019, we used a 
0.5 m-resolution airborne lidar-derived DEM collected on 20 September. 
Although the 2020 DEM was acquired nearly one month later in the year 
than the other reference elevation datasets, air temperatures recorded 
near the glacier margin were above freezing through October 10th and 
the Landsat image record indicates little snow had accumulated off-ice 
prior to October 20th, suggesting elevation bias introduced by early 
season snow is likely small (McNeil et al., 2019). Uncertainties are on 
the order of ~3 m for Worldview DEMs (Shean et al., 2016), and 10 cm 
for the lidar DEM, but can be larger in vegetated off-glacier terrain and 
where glacier features (e.g., crevasses, melt ponds, sastruggi) evolve 
over time. The quoted DEM uncertainties are less than the uncertainty 
introduced by the temporal evolution of the glacier’s surface, and the 
thickness of maritime snowpacks that characterize the field site. Both 
coregistration and elevation residuals extraction use the reference DEM 
with the closest acquisition date preceding the ATL06 time stamp, 
therefore, potential horizontal or vertical offsets between reference 
DEMs can be ignored. All reference data at Wolverine did not require 
datum transformations as they were provided in UTM coordinates with 
respect to the WGS84 ellipsoid (EPSG:32606). 

3. Methods 

Estimation of snow depths using an elevation-differencing approach 
requires precise coregistration between datasets, particularly in regions 
with highly variable terrain characteristics, so that the difference be
tween elevation datasets (i.e., elevation residuals) can be confidently 
attributed to snow. In Section 3.1, we describe the coregistration process 
used to align the independent datasets and minimize systematic biases in 
their elevations. Differences between coregistered transects and refer
ence elevations are generically referred to as Δz, or ΔzATL08 and ΔzATL06 

when specifically referencing the ATL08 and ATL06 datasets, respec
tively. Quantification of terrain-dependent, spatially-variable biases in 
Δz that remain following coregistration is described in sections 3.2 and 
3.3. The spatially-variable elevation biases are described in section 4, 
along with comparisons between in situ snow observations at RCEW and 
Wolverine Glacier and the bias-corrected elevation residuals, Δzadjusted

ATL08 

and Δzadjusted
ATL06 , respectively. Since we are interested in snow depths, the 

data are parsed into snow-off (i.e., summer; July–September) and snow- 
on (October–June) seasons for each hydrologic year (October–Sep
tember) throughout sections 3 and 4. For the glacierized site, the hy
drologic year is roughly equivalent to the mass balance year. For all 
figures, colors distinguish the snow-off (reds/pinks) and snow-on (blues) 
seasons, as in Fig. 1. 

3.1. Coregistration 

Each ICESat-2 segment was coregistered as a transect, not segment- 
by-segment, to eliminate systematic biases between the datasets. For 
coregistration and subsequent analysis, we used the mean elevation 
within segment footprints since this metric is provided for both ATL08 
and ATL06 products and can be quickly extracted from the reference 
datasets. 

A gradient-descent approach was applied to objectively identify and 
minimize three-dimensional offsets between ICESat-2 transect and 
reference elevation datasets. This approach inherently assumed mini
mization of the vertical offset between each ICESat-2 transect and the 
reference elevation dataset when properly coregistered. The coregis
tration code and the rest of the processing pipeline are available at (htt 
ps://github.com/CryoGARS-Glaciology/ICESat2-snow-code.git). 

Horizontal offsets were expected to be on the order of meters or less 
since the geolocation error for ICESat-2 is estimated as ~3.5 m (Bae 

et al., 2021). Therefore, we started with an initial guess of zero hori
zontal offset and computed the root-mean-square (RMS) elevation dif
ference between all segments in each ICESat-2 transect and the 
appropriate reference elevation dataset. Each transect was iteratively 
shifted horizontally until the global RMS minimum was identified. The 
median elevation difference between all horizontally-coregistered snow- 
off segments and the appropriate reference elevation datasets were then 
used for vertical coregistration. This bulk vertical coregistration 
approach assumed that the ICESat-2 elevation bias relative to a refer
ence dataset is static in time. Although a transect-specific vertical cor
egistration approach would be preferred if snow-covered areas were 
reliably eliminated from coregistration, the use of snow-off vertical 
biases for coregistration ensured preservation of any snow signal. 

Thin snow cover is expected for RCEW, therefore, we assumed that 
exclusion of bright ATL08 segments was sufficient to remove bias in 
horizontal coregistration associated with snow cover. The median hori
zontal offsets for all non-bright segments were 0 m for both the Easting 
and Northing. Vertical offsets for the horizontally-coregistered segments 
are shown in Fig. 2. The median ± median of the absolute deviation 
(MAD) of the snow-off vertical offsets was − 0.76 ± 0.64 m, indicating 
that ICESat-2 under-estimated terrain elevations relative to the RCEW 
reference DTM prior to vertical coregistration. The median vertical 
offset was subtracted from the ATL08 elevations to eliminate systematic 
bias in elevation residuals (i.e., median snow-off ΔzATL08 = 0). 

The evolving surfaces of glaciers prohibit their use for coregistration. 
Therefore, we coregistered ATL06 transects using segments over stable 
off-glacier terrain. For each transect, the reference elevation map from 
the closest preceding acquisition date was used for coregistration. Me
dian horizontal offsets were 0 m in both horizontal directions, with a 
range of 2.2 m in Easting and 2.9 m in Northing. Vertical offsets for the 
horizontally-coregistered segments are shown in Fig. 3. The median ±
MAD of the snow-off off-glacier elevation differences was − 2.51 ± 0.89 
m (Fig. 3), indicating ATL06 generally under-estimated terrain eleva
tions relative to the Wolverine reference elevation maps prior to vertical 
coregistration. As with the ATL08 dataset, the median vertical offset was 
subtracted from the ATL06 elevations to eliminate systematic bias in 
elevation residuals (i.e., median snow-off off-glacier ΔzATL06 = 0). 

3.2. Terrain parameter comparison 

Previous snow depth analyses at these study sites (McGrath et al., 
2018; Winstral and Marks, 2014), and elsewhere (Clark et al., 2011; 
Grünewald et al., 2010; Lehning et al., 2011; Saydi and Ding, 2020; 
Winstral et al., 2002), indicate that terrain characteristics strongly 
control snow depth. Terrain parameters previously shown to strongly 
influence snow depth include: elevation, slope, aspect (i.e., degrees 
counterclockwise from south) and vegetation type and structure (e.g., 
Armesto and Martínez, 1978; Ivanov et al., 2008; Luus et al., 2013; Yang 
et al., 2020). Surface slope and vegetation can also influence the accu
racy and precision of terrain elevations computed from stereoscopic 
imagery and lidar (e.g., Neuenschwander and Magruder, 2016; Neu
enschwander et al., 2020; Shean et al., 2016; Tinkham et al., 2014). 
Therefore, we compared elevation residuals for coregistered segments (i. 
e., Δz) to the corresponding elevation, slope, and aspect. The local slope 
and aspect were calculated for each raster cell using the ©Matlab gra
dientm function applied to the appropriate reference elevation maps. 
For RCEW, vegetation height from a 1 m-resolution airborne lidar- 
derived canopy height map for 10–18 November 2007 was included as 
well (Shrestha and Glenn, 2016). For consistency with the Δz calcula
tions, we use the mean terrain parameter value within each segment for 
our analysis. 

To characterize the potential terrain-dependency of Δz, we binned 
snow-off and snow-on Δz according to each individual terrain param
eter. The number of bins was manually selected to divide the majority of 
the observations fairly uniformly, with consideration for commonly- 
used bin widths and ease of interpretation (i.e., aspect binned into 8 
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tertiary intercardinal directions, elevation binned in 100 m increments). 
There is no appreciable influence on data interpretation for ±2 bins 
relative to those selected. For each terrain parameter bin, the median of 
Δz is used to characterize bias (i.e., systematic offset) and the MAD and 
interquartile range (IQR) of Δz are used to characterize uncertainty (i.e., 
random variability). 

3.3. Snow depth estimation 

Snow depth estimation requires the precise removal of any elevation 
biases between ICESat-2 and the reference elevation datasets. Coregis
tration removes uniform biases between the datasets but does not ac
count for spatial or temporal variations in bias. A recent analysis of 
ATL08 data for 40 U.S. watersheds found that the accuracy and precision 
of ATL08 elevations vary with slope: bias increases from ~0 m to 1 m 
and root mean square error increases from ~0.6 m to 7.5 m for slopes 
from 0 to 5◦ to slopes >30◦ (Liu et al., 2021). Based on the non-linear 
dependence of ATL08 elevation residuals with slope in Liu et al. 

(2021) and observed for RCEW, we estimated the slope-dependent bias 
for each ATL08 segment using a quadratic function fit to the median 
ΔzATL08 binned by slope (Table 2; R2 = 0.996). Slope-dependent bias- 
adjusted ΔzATL08 (i.e., Δzadjusted

ATL08 ) are compared to snow depth observa
tions in section 4.1. 

Glaciers are generally more shallow-sloped than non-glacierized 
terrain, minimizing slope-dependent biases. However, the conversion 
of ΔzATL06 to estimates of glacier elevation change requires consider
ation of intra-annual changes in glacier surface elevation due to the 
compaction of snow remaining from previous years and vertical ice flow 
(submergence and emergence). Snow compaction and vertical ice flow 
estimates from ice-penetrating radar acquired in 2016, 2017, and 2020 
from Zeller et al. (2022) were used to adjust the reference surface ele
vations to correct for sub-annual changes in the end-of-melt-season 
surface elevation assuming a constant rate of compaction- and flow- 
driven surface elevation change over the study period. Specifically, for 
each ATL06 segment, the product of the time elapsed since the reference 
DEM was acquired and the mean Zeller et al. (2022) submergence/ 

Fig. 2. Non-parametric kernel distributions of vertical co-registration offset (m) of RCEW ATL08 segments overlain on normalized probability density histograms. 
Warm (red/pink) colors depict vertical offsets in snow-off conditions. Cool (blue) colors depict offsets for the snow-on portion of the year, parsed by brightness flag. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Probability density function of vertical offsets (m) for Wolverine Glacier ATL06 segments. Warm (red/pink) colors depict vertical offsets in snow-off con
ditions, parsed for the glacier and surrounding terrain. Cool (blue) colors depict vertical offsets over the glacier surface for the snow-on portion of the year. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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emergence velocity for grid cells overlapping the segment was sub
tracted from the corresponding reference elevation. The surface 
evolution-adjusted ΔzATL06 (i.e., Δzadjusted

ATL06 ) are compared to winter and 
annual surface mass balance observations in section 4.2. 

4. Results 

For each study site, we summarize key characteristics of Δz and 
Δzadjusted with respect to terrain parameters. Since snow accumulation 
and melt can vary tremendously between years, the data are parsed into 
hydrologic/mass balance years, hereafter referred to as water years for 

Table 2 
Best-fit polynomials that model elevation residuals (Δz) as a function of elevation, slope, and aspect. Polynomials were fit to the medians of binned 
Δz for each terrain parameter. The coefficient of determination (i.e., R2) for each fit is listed in parentheses after each equation. All snow-off (pale 
red) and snow-on (pale blue) observations are aggregated for each site. Best-fit polynomials for the bias-adjusted elevation residuals (Δzadjusted) as 
a function of elevation are listed as the coregistered and bias-adjusted processing level. 
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Fig. 4. Non-parametric kernel distributions for 
RCEW ΔzATL08 for a) WY19, b) WY20, and c) WY21 
(1 Oct – 30 Sept). The data are parsed into snow-off 
(red; July–September) and potentially snow-on 
(blues; October–June) portions of the year. Since 
the rain-snow transition line is within the water
shed, the distributions for all snow-on segments 
(blue) and snow-on segments only above the sea
sonal snowline (light blue) are plotted to facilitate 
identification of the snow signal. The solid vertical 
line marks the median and the dashed vertical lines 
bracket the median ± the median of the absolute 
deviation (MAD) for each distribution. The same 
seasonal color scheme is used in Fig. 2. ΔzATL08 <

0 indicate an under-estimation of elevations by the 
ICESat-2 ATL08 dataset following coregistration. 
(For interpretation of the references to color in this 
figure legend, the reader is referred to the web 
version of this article.)   
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simplicity: 2018–2019 = WY19, 2019–2020 = WY20, and 2020–2021 
= WY21. 

4.1. RCEW: ATL08 case study in vegetated terrain 

The seasonal ΔzATL08 distributions are left-skewed, with a longer tail 

for negative residuals during all observation periods (Fig. 4). The me
dian ΔzATL08 for all snow-off segments is 0 m because the snow-off 
segments were used for vertical coregistration (Fig. 2). The MAD 
ΔzATL08 for all snow-off segments is 0.64 m (Fig. 4). There are only two 
observation dates with a total of 121 snow-on segments for RCEW 
during WY19. Only 69 snow-on segments were recorded above the 
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typical snowline and they span a narrow range of terrain characteristics, 
potentially biasing the WY19 ΔzATL08 characteristics in Figs. 4 and 6. 
Therefore, WY19 snow-on data are excluded from further analysis. For 
WY20 and WY21, the ΔzATL08 distributions are qualitatively similar for 
the snow-off and snow-on periods, but P-values from two-sample Kol
mogorov-Smirnov tests indicate that the snow-on distributions are 
significantly different from the snow-off distributions at the 95% con
fidence level. 

The boxplots in Fig. 5 demonstrate ΔzATL08 terrain dependency. The 
boxplots show the IQR (vertical box extent) and median (horizontal line 
within each box) for ΔzATL08 relative to each terrain parameter. Whiskers 
extending to the full range of nonoutlier values as well as markers for 
outliers (i.e., values >3 × IQR from the IQR) are included in the boxplots 
in Fig. S1. RCEW snow-off ΔzATL08 are independent of elevation, but vary 
non-linearly with both slope and aspect (Fig. 5). There is a pronounced 
increase in bias and uncertainty in ΔzATL08 with increasing slope up to 
~30◦. As slope increases from ~0◦ to ~30◦, bias becomes progressively 
more negative (median ΔzATL08=[0.19, − 2.07] m) and the spread of the 
residuals increases (MAD ΔzATL08=[0.17, 2.13] m, IQR ΔzATL08= [0.34, 
4.30] m); this indicates that estimating snow depth from ATL08 eleva
tions in steep mountain terrain is likely to be highly uncertain. The 
decrease in the medians of the slope-binned ΔzATL08 is best described 
with a quadratic function (Table 2). There are too few data for slopes 
>30◦ to quantify slope effects (Fig. S2). A slight sinusoidal variation in 
snow-off ΔzATL08 with aspect is also evident (Table 2). Much of RCEW is 
sparsely vegetated, such that the vast majority of segments have a mean 
vegetation height < 1 m (Fig. S2) and there is no apparent relationship 

between snow-off ΔzATL08 and vegetation height (Fig. 5). Unlike the 
snow-off data, snow-on ΔzATL08 from 2019 to 2021 increase with 
elevation above the snowline (Table 2). The relationships between 
snow-on ΔzATL08 and slope, aspect, and vegetation height are compa
rable to the relationship evident in the snow-off data (Fig. 5; Table 2). 

The probability density functions for the snow-off and snow-on 
ΔzATL08 and slope dependency-adjusted ΔzATL08 (i.e., Δzadjusted

ATL08 ) are 
shown in Fig. 6a and the slope-dependent adjustment is shown in 
Fig. 6b. The slope adjustment reduces the negative skew of the elevation 
residuals (Fig. 6a), but does not improve their precision: the snow-off 
MAD ΔzATL08 = 0.64 m and snow-off MAD Δzadjusted

ATL08 = 0.63 m, with 
unchanged slope-dependency for both the MAD and IQR. The slope- 
dependent adjustment reduces the apparent dependency of the snow- 
off Δzadjusted

ATL08 with elevation and strengthens the relationship between 
snow-on Δzadjusted

ATL08 and elevation with respect to the relationships 
observed for ΔzATL08 (Table 2). 

Given the large uncertainty in Δzadjusted
ATL08 , we compare the seasonal 

timing of brightness-flagged returns and inter-annual variations in 
Δzadjusted

ATL08 to the snow depth time series at the RCEW SNOTEL site to 
assess whether ATL08 can be used to reliably map snow cover. Over the 
past two decades, snow has typically been recorded at the SNOTEL site 
(1707 m a.s.l.) from mid-November through March. Eleven of twenty- 
one ATL08 transects were acquired during the typical snow-on season 
but only four transects contained brightness-flagged segments: 23/02/ 
2020, 26/02/2020, 21/02/2021, and 23/02/2021. The majority (80%) 
of the flagged segments were located at elevations above the common 
rain-snow transition line (Fig. 7, ~1500 m a.s.l.; Godsey et al., 2018), 

Fig. 6. The effects of slope-dependent elevation adjustments for RCEW. a) Snow-off (reds) and snow-on (blues) non-parametric distribution curves for ΔzATL08 and 
Δzadjusted

ATL08 . Line hue and style distinguish whether the slope-dependent adjustment has been applied, with lighter solid lines for ΔzATL08 and darker dashed lines for 
Δzadjusted

ATL08 . b) Scatterplot of Δzadjusted
ATL08 plotted against the slope-dependent adjustment. The scatterplot symbol color varies with slope (see inset color bar). 
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consistent with seasonal snow cover, but <10% of each transect was 
flagged as bright. Elevation profiles of the normalized difference snow 
index (NDSI) calculated using Landsat imagery corroborate that snow 
was under-reported by the brightness flag: application of the common 
NDSI range of 0.4–1.0 for snow (Vermote et al., 2016) to the snow-on 
Landsat images for RCEW suggests that high-elevation snow is com
mon from January–April over the ICESat-2 era (Fig. 7). Therefore, an
alyses of Δzadjusted

ATL08 should not be restricted to segments that are identified 
as exceptionally bright. 

Above the seasonal snowline, large-scale spatial and temporal pat
terns in snow-on Δzadjusted

ATL08 are in good agreement with in situ snow ob
servations. The majority (~67%) of the snow-on segments for WY20 and 
WY21 are nearly coincident in time with peak snow depths at the RCEW 
SNOTEL site (February 18th in WY20 and February 20th in WY21), 
facilitating intercomparison of the datasets. For WY20, the median 
Δzadjusted

ATL08 above the snowline is 0.06 m and the SNOTEL peak snow depth 
is 0.44 m. For WY21, the median Δzadjusted

ATL08 above the snowline is 0.31 m 
and the SNOTEL peak snow depth is 0.69 m. Even though the median 
Δzadjusted

ATL08 is negatively biased with respect to the SNOTEL peak snow 
depth during WY20 and WY21, the bias is consistent (0.38 m) over time, 
suggesting that inter-annual variations in Δzadjusted

ATL08 reflect temporal 
variations in seasonal snowpack. Additionally, we find that snow-on 
Δzadjusted

ATL08 increase by ~1 m per kilometer above the seasonal snowline 
(Table 2), consistent with the measured precipitation gradient for the 
watershed (Nayak et al., 2010). 

4.2. Wolverine glacier: ATL06 case study in glacierized terrain 

The snow-off, off-glacier data below the seasonal snowline (1235 m 
a.s.l.) are used to vertically coregister the Wolverine data and 

subsequently assess temporal variations in glacier ΔzATL06. Hereafter we 
refer to these data as “off-glacier” for simplicity. The off-glacier MAD 
ΔzATL06 = 0.89 m (Fig. 8). There is no apparent relationship between the 
off-glacier ΔzATL06 and elevation or slope (Fig. 9). P-values from two- 
sample Kolmogorov-Smirnov tests indicate that all seasonal distribu
tions of glacier ΔzATL06 are significantly different from the off-glacier 
ΔzATL06 distributions at the 95% confidence level. 

Snow-off glacier ΔzATL06 represent the sum of snow accumulation, 
snow, firn, and ice melt, snow and firn compaction, and vertical ice flow 
since the beginning of the water year. The spatial variations in each of 
these processes are complex, and a detailed description of their varia
tions at Wolverine Glacier is beyond the scope of our analysis, but 
general patterns are summarized below to facilitate interpretation of 
glacier ΔzATL06. In the accumulation zone, where snow persists year- 
round, snow accumulation causes glacier thickening (increasing 
ΔzATL06) that is countered by surface submergence (i.e., downwards 
motion) due to firn compaction and ice flow (decreasing ΔzATL06). In the 
ablation zone, winter snow accumulation and year-round mass transport 
from the accumulation zone and surface emergence (i.e., upwards mo
tion) due to vertical flow cause thickening (increasing ΔzATL06) that is 
countered by melt (decreasing ΔzATL06). 

For Wolverine Glacier, the majority of the snow-off glacier ΔzATL06 

are negative (Fig. 8; Table 1), indicating widespread lowering of the 
glacier surface consistent with independent observations of negative 
glacier-wide mass balance of − 1.87 m w.e., − 1.46 m w.e., and − 1.81 m 
w.e. in 2018, 2019, and 2020 respectively (McNeil et al., 2019). How
ever, the snow-off glacier ΔzATL06 are not normally distributed, reflect
ing differences in mass balance processes between the high-elevation 
accumulation zone and low-elevation ablation zone (Fig. 1.; white and 
gray glacier regions, respectively). When paired with the terrain 

Fig. 7. Elevation distribution of likely snow-covered 
regions in the RCEW. a) Map of Δzadjusted

ATL08 for excep
tionally bright segments (colored squares; see color 
bar). The background image is the reference elevation 
map for the watershed (grayscale color bar). The 
watershed extent is outlined in yellow and the typical 
snowline is delineated in white. b-d) Seasonal 
elevation-averaged profiles of the Normalized Differ
ence Snow Index (NDSI) from 2018 to 2021 Landsat 8 
images acquired during the typical snow-on season 
(blue lines). The dashed black line denotes the com
mon threshold used to identify snow (NDSI>0.4). The 
brightness-flagged segments are plotted according to 
elevation and average NDSI from the two Landsat 8 
images with the closest acquisition dates. (For inter
pretation of the references to color in this figure 
legend, the reader is referred to the web version of 
this article.)   
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parameters, we find that the snow-off glacier ΔzATL06 are strongly 
positively linearly correlated with elevation (Fig. 9; Table 2) but do not 
consistently vary with either slope or aspect (Fig. 9; Table 2). As with the 
snow-off glacier data, the snow-on ΔzATL06 are positively linearly 
correlated with elevation but have no consistent relationship with either 
slope or aspect (Fig. 9; Table 2). Full seasonal boxplots, including out
liers, are shown in Fig. S3 and histograms of the glacier terrain param
eters are shown in Fig. S4. 

Adjustment of the reference glacier surface elevations to account for 
emergence/submergence of the glacier surface relative to the beginning 
of the water year isolates the surface mass balance (i.e., difference be
tween snow accumulation and snow, firn, and ice ablation) component 
of the glacier’s total mass balance. The intra-annual adjustment of the 
glacier surface markedly alters the shape of the Δzadjusted

ATL06 distributions 
(Fig. 10a; dashed lines) relative to the ΔzATL06 distributions (Fig. 10a; 
solid lines), indicating that the surface mass balance cannot be estimated 
directly from ΔzATL06. The magnitude of the reference elevation 
adjustment is the product of the emergence/submergence velocity and 

the time separation between the ICESat-2 and reference elevation ac
quisitions. Therefore, the adjustment is generally larger for the snow-off 
portion of the year because they have the longest time separation rela
tive to the preceding end-of-melt-season reference elevation map 
(Fig. 10b; symbol size). 

After accounting for emergence/submergence of the glacier surface, 
we find that snow-off Δzadjusted

ATL06 strongly increase with elevation 
(Table 2). Surface melt dominates accumulation below the seasonal 
snowline, with net ablation of 4.0 m in WY19 and 5.1 m in WY21 at 950 
m a.s.l.. Accumulation dominates melt in the upper reaches of the 
glacier, with annual net accumulation of 6.0 m in WY19 and 3.7 m in 
WY21 at 1650 m a.s.l.. To convert Δzadjusted

ATL06 to estimates of annual sur
face mass balance in water equivalent, Δzadjusted

ATL06 is multiplied by the ratio 
of the density of the snow, firn, or ice at the glacier surface to the density 
of water (1000 kg/m3). We use a density of 440 kg/m3 from McGrath 
et al. (2018) above the snowline and 850 kg/m3 from Huss (2013) below 
the seasonal snowline. Following O’Neel et al. (2019), we estimate the 
average annual mass balance gradient using piecewise linear fits with 
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Fig. 8. Non-parametric kernel distributions for 
Wolverine Glacier ΔzATL06 for a) WY19, b) WY20, 
and c) WY21. The data are parsed into snow-off 
(red/pink; July–September) and potentially snow- 
on (blues; October–June) portions of the year. 
Since the snow-off off-glacier segments were used for 
coregistration, the snow-off segments are parsed 
according to location: glacier (red) and surrounding 
terrain (pink). The solid vertical line indicates the 
median and the dashed vertical lines bracket the 
median ± the median of the absolute deviation 
(MAD) for each distribution. The same seasonal 
color scheme is used in the vertical error distribu
tions in Fig. 3. ΔzATL06 < 0 indicate an under- 
estimation of elevations by the ICESat-2 ATL06 
dataset following coregistration. (For interpretation 
of the references to color in this figure legend, the 
reader is referred to the web version of this article.)   
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the breakpoint at the snowline (O’Neel et al., 2019). The average annual 
surface mass balance gradient above the snowline is ~5.1 m w.e./km 
and below the snowline is ~15.5 m w.e./km. In comparison, the annual 
mass balance gradient calculated from in situ observations collected 
during the 1966–2018 period was ~8 m w.e./km (O’Neel et al., 2019) 
and the winter surface mass balance gradient from repeat ice- 
penetrating radar surveys varied between 3.48 and 6.24 m w.e./km 
during the 2013–2017 period (McGrath et al., 2018). 

5. Discussion 

Satellite-based lidar systems provide invaluable observations of 
temporal changes in volume of the polar ice sheets and sea ice and 
airborne lidar provides valuable observations of spatial variations in 
snow depth and volume. However, prior to this study, the feasibility of 
mountain snow mapping using satellite-based lidar has not been fully 
assessed. Accurate satellite lidar-derived snow depth transects could be 
valuable for the development of terrain parameters used for spatial 
extrapolation of sparse in situ observations (e.g., Deems et al., 2008; 
Trujillo et al., 2009; Winstral and Marks, 2014) and/or validation of 
snow models (e.g., Winstral and Marks, 2002). 

Below we discuss the feasibility of ICESat-2 level 3A data products 
for quantification of mountain snow depth along transects using two 
end-member study sites: vegetated, semi-arid Reynolds Creek 

Experimental Watershed (RCEW) in Idaho, and maritime Wolverine 
Glacier in Alaska. At the most basic level, snow depths can be estimated 
as the difference between snow surface (i.e., snow-on) and snow-free 
terrain (i.e., snow-off) elevations. However, reliable estimates of snow 
depth from this elevation differencing approach depend on the accuracy 
and precision of both the ICESat-2 terrain elevations and the snow-off 
reference elevation datasets. For independent terrain elevations, as 
required for non-repeating ICESat-2 transects, biases between the 
datasets must be corrected. Below we discuss difficulties associated with 
the conversion of elevation residuals to snow depths based on the results 
for our study sites and provide recommendations for future methodo
logical improvements for ICESat-2 snow depth mapping. 

5.1. Snow depth estimates from elevation residuals 

5.1.1. Non-glacierized terrain 
For the vegetated semi-arid RCEW in southwestern Idaho, we find 

that ICESat-2 ATL08 data can be used to estimate watershed-scale var
iations in snow depth over time, with uncertainties in snow depth of 
~0.6 m. In line with Liu et al. (2021), we find non-linear slope-depen
dent errors in ATL08 terrain heights, ranging from 0.19 ± 0.34 m for 
slopes 0–5◦ to 2.07 ± 4.30 m for slopes from 25 to 30◦ for RCEW. While 
the slope-dependent bias can be minimized, such that watershed-scale 
variations in snow depth can be inferred from Δzadjusted

ATL08 (Table 2), the 
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Fig. 10. The effects of submergence/emergence- 
based reference elevation adjustments for Wolverine 
Glacier. a) Snow-off (reds) and snow-on (blues) non- 
parametric distribution curves for ΔzATL06 and 
Δzadjusted

ATL06 . Line hue and style distinguish whether the 
surface evolution adjustment has been applied, with 
lighter solid lines for ΔzATL06 and darker dashed lines 
for Δzadjusted

ATL06 . b) Scatterplot of Δzadjusted
ATL06 plotted 

against the surface elevation adjustment. The scat
terplot symbol color varies with elevation (see inset 
color bar). The scatterplot symbol size varies with 
time separation between the reference elevation map 
and ATL06 acquisitions.   

Fig. 11. Maps of a) snow-on and b) snow-off 
Δzadjusted

ATL08 for RCEW. The magnitude of the 
Δzadjusted

ATL08 is indicated by symbol color. Greens 
indicate Δzadjusted

ATL08 > 0 (i.e., ATL08 elevations 
greater than reference elevations) and pur
ples indicate Δzadjusted

ATL08 < 0 (i.e., ATL08 ele
vations less than reference elevations). 
Orange circles highlight several regions with 
persistently negative Δzadjusted

ATL08 . The back
ground image is the reference elevation map 
for the watershed (grayscale color bar). The 
watershed extent is outlined in yellow. (For 
interpretation of the references to color in 
this figure legend, the reader is referred to 
the web version of this article.)   
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increase in uncertainty with slope will be problematic in many mountain 
regions, where slopes are often >25◦ and uncertainties will obscure the 
snow signal (Figs. 5-6). 

Application of a slope-dependent adjustment reduces the negative 
skew of Δzadjusted

ATL08 relative to ΔzATL08 (Fig. 6), yet large uncertainties in 
Δzadjusted

ATL08 remain. Particularly problematic are the stationary meters- 
scale negative elevation residuals evident in both the snow-on and 
snow-off datasets (Fig. 11, orange circles). The year-round persistence of 
the negative elevation residuals suggests that they are caused by dif
ferences in vegetation removal from the ATL08 and reference terrain 
elevations. The accuracy of ATL08 terrain elevations has been found to 
vary with percent vegetation cover (Neuenschwander et al., 2020) and 
inadequate removal of vegetation from airborne lidar observations is 
known to dramatically increase uncertainties in terrain elevations (e.g., 
Klápštē et al., 2020; Reutebuch et al., 2003; Spaete et al., 2010; Su and 
Bork, 2006). In RCEW, vegetation type and structure are strongly 
dependent on the aspect of the terrain (Mitchell et al., 2015; Shrestha 
and Glenn, 2016). Therefore, although we do not find any clear re
lationships between ΔzATL08 and mean vegetation height, spatial varia
tions in vegetation cover may explain the observed aspect-dependency 
of ΔzATL08 (Fig. 5g-i, Table 2). Thus, even where high-quality reference 
elevations are available, varying vegetation effects on the accuracy of 
ATL08 and reference terrain elevations prevents estimation of snow 
depths at the segment scale. The increase in uncertainty with slope and 
vegetation observed for RCEW is in line with the sub-meter uncertainties 
in relatively flat and sparsely-vegetated regions and 1–2 m for more 
complex terrain quoted for ATL08 (Neuenschwander and Pitts, 2019). 
Thus, ATL08 data are best suited for the estimation of watershed-scale 
patterns in snow depth (e.g., snow depth variations with elevation) in 
unglacierized mountain regions with relatively low-slopes and sparse 
vegetation cover. 

5.1.2. Glacierized terrain 
For Wolverine Glacier in southcentral Alaska, we find that ATL06 

surface mass balance gradients are in good agreement with independent 
estimates (McGrath et al., 2018; O’Neel et al., 2019). While the differ
ence between off-glacier snow-off ATL06 terrain heights and reference 
surface elevations suggest that uncertainties in ATL06-derived surface 
mass balance are ~0.8 m, the intercomparison of the elevation datasets 
is likely influenced by the presence of vegetation in the ATL06 terrain 
heights. For low-slope regions, ATL06 uncertainties are estimates as 
<0.1 m (Smith et al., 2021). We do not observe a slope-dependency for 
off-glacier snow-free ΔzATL06 (Fig. 9), but our observations are limited in 

space and time. 
For glacierized study sites, failure to account for intra-annual vari

ations in the end-of-melt-season glacier surface can bias the interpre
tation of ΔzATL06 (Fig. 10). For Wolverine Glacier, we use independent 
estimates of surface emergence/submergence and firn compaction to 
adjust the reference elevation datasets to account for intra-annual sur
face elevation change so that Δzadjusted

ATL06 reflect the temporal evolution of 
the glacier due to surface mass balance processes. Failure to account for 
firn compaction and vertical ice flow can results in up to meters of bias in 
surface mass balance profiles, as demonstrated for Wolverine Glacier. 
Temporal variations in ICESat-2 transects can also bias the interpreta
tion of surface mass balance profiles, as demonstrated in the plots of 
elevation-binned ΔzATL06 in Fig. 9a-c. Differences in temporal sampling 
with respect to the surface mass balance extrema are also evident in the 
surface mass balance transects in Fig. 12, with less positive surface mass 
balance transects corresponding to earlier acquisition dates in the snow- 
on season. Peak snow conditions at Wolverine are expected between mid 
April and the end of May, with the closest ICESat-2 observations from 
~21–26 February and ~ 22–28 May, and the end of the melt season is 
expected in late September (O’Neel et al., 2019). Thus, even our steepest 
winter surface mass balance gradients may not accurately capture the 
snow accumulation gradient over the glacier’s surface. 

The timing offset between ICESat-2 acquisitions and annual surface 
mass balance extrema is not unique to Wolverine Glacier, or glacierized 
study sites in general, and will be problematic for all studies that aim to 
estimate maximum seasonal snow depths given that the timing of peak 
snowpack varies inter-annually. However, the temporal evolution of the 
glacier surface presents a unique challenge that complicates the appli
cation of ICESat-2 ATL06 data to mountain glaciers. If reference eleva
tion maps do not accurately capture inter-annual variations in the end- 
of-melt-season surface, and/or if the snow compaction and vertical ice 
flow for the glacier are unknown, snow depth and surface mass balance 
gradients may be considerably under-estimated by ATL06. 

5.2. Potential methodological improvements for snow depth estimation 

Based on the observed elevation-dependency of snow depths and the 
ICESat-2 level 3A residuals in our two test watersheds, we conclude that 
ATL08 and ATL06 elevation residuals can be used to map elevation 
gradients in snow accumulation and melt where high-quality reference 
elevation maps are available, as long as vertical biases can be con
strained. Snow depth accuracy and precision depends on a number of 
factors, including the availability of high-quality reference elevation 

Fig. 12. Maps of a) winter surface mass 
balance and b) annual surface mass balance 
from snow-on and snow-off Δzadjusted

ATL06 , 
respectively, for Wolverine Glacier. The 
surface mass balance magnitude is indicated 
by symbol color, with greens indicating mass 
gain and purples indicating mass loss. The 
background image is the time-averaged 
reference elevation map for the watershed 
(see grayscale color bar). The glacier extent 
is outlined in yellow. (For interpretation of 
the references to color in this figure legend, 
the reader is referred to the web version of 
this article.)   
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datasets, accurate coregistration, minimization of vegetation effects, 
and knowledge of terrain-dependency (particularly slope) of ATL08 and 
ATL06 products and snow depths. 

Here, we used high-quality reference elevation datasets and still 
found uncertainties on the order of 10s of centimeters at the transect 
scale, with biases of up to meters at the segment-scale. Thus, elevation 
residuals calculated with respect to lower-quality (i.e., less precision or 
lower spatial resolution) reference data would be too imprecise to esti
mate snow depths. More refined snow depth estimates may be possible if 
uncertainties can be reduced through (1) use of other ICESat-2 terrain 
elevation metrics, (2) cross-track weighting of reference elevations, 
and/or (3) custom processing of ATL03 geolocated photon clouds. 

In this study compared the mean terrain height within each ICESat-2 
segment to the mean over the corresponding area in the reference 
elevation map. The best-fit ICESat-2 terrain heights could also be used as 
long as the equivalent elevation metric can be extracted from the 
reference elevation map. Uncertainties in elevation residuals may also 
be reduced if the reference elevation metrics are weighted to account for 
the approximately gaussian cross-track distribution of ICESat-2 photons. 
Finally, given the relatively large number of photon returns per shot 
over bright snow-covered surfaces and the short spatial scales over 
which both terrain and snow depths vary in mountain regions, it may be 
beneficial to estimate terrain heights from ATL06 products custom- 
produced from ATL03 data in mountain regions. Custom ICESat-2 seg
ments are currently being pursued by the NASA-supported SlideRule 
framework, but additional research must be executed to determine the 
best methods to compare ICESat-2 and reference elevation datasets. 

6. Conclusions 

Seasonal snow melt dominates the hydrologic budget across a large 
portion of the globe (Barnett et al., 2005; Beniston, 2003; Freeman et al., 
2018; Huss et al., 2017; Huss and Hock, 2018; Steinbauer et al., 2018; 
Viviroli et al., 2007; Wrzesien et al., 2018). In situ snow observations 
provide valuable information regarding the temporal evolution of snow 
depth and density but are too sparse in to capture important spatial 
variability in snow depths. Airborne lidar can be used to construct 
spatially extensive snow depth maps, but is often limited to a single 
snapshot. 

In this study we explore the use of ICESat-2 elevation transects as a 
means to map spatial variations in snow depth at the watershed scale 
throughout the accumulation and melt seasons. For two mountain study 
sites that represent end-member climate regions, we find that seasonal 
elevation transects from the ICESat-2 level3A ATL08 (Land and vege
tation height) and ATL06 (Land ice height) data products can be used to 
estimate along-track gradients in snow depth in mountain watersheds 
where high-quality reference elevation datasets exist. We estimate that 
uncertainties for ATL08 terrain elevations are tens of centimeters at the 
watershed-scale, can exceed 1 m for individual segments, and are 
dependent on slope. After accounting for the non-linear slope-dependent 
bias, the difference in terrain elevations between ATL08 and a reference 
DTM captures the expected gradient in snow depths with elevation as 
well as temporal changes in peak snow depth. However, our analysis of 
ATL08 products for RCEW suggests that even where high-quality snow- 
off lidar-derived DTMs can be used as a reference, the increase in un
certainty with slope and spatially-isolated, systematic biases in elevation 
caused by inadequate terrain mapping through vegetation prevent the 
use of ATL08 data for segment-scale snow depth estimates in non- 
glacierized watersheds. 

Glacierized environments pose unique challenges to the application 
of ICESat-2 data for snow accumulation and snow, firn, and ice melt 
mapping. Although glaciers generally have shallow surface slopes and 
are devoid of vegetation, accurate estimation of mass balance from an 
elevation-differencing approach requires knowledge of the temporal 
evolution of the glacier surface at intra- and inter-annual time scales. We 
make use of annual end-of-melt-season high-resolution glacier surface 

elevation maps generated by the USGS Benchmark Glacier program, 
adjusted to account for intra-annual surface evolution using indepen
dent estimates of vertical surface motion (Zeller et al., 2022), to 
demonstrate that ATL06 data can be used to create time series of surface 
mass balance gradients for mountain glaciers. While reference eleva
tions can come from high-resolution stereo satellite image-derived DEMs 
in lieu of airborne lidar, enabling widespread comparison with ATL06 
elevations, application to Wolverine Glacier suggests that failure to ac
count for intra- or inter-annual evolution of the glacier surface can result 
in up to meters of bias in surface mass balance estimates and skew 
surface mass balance gradients. 

Based on the case studies presented here, we conclude that ATL08 
and ATL06 observations are best suited for characterization of 
watershed-scale snow depth/surface mass balance gradients in low- 
slope regions with thick snowpacks. As airborne lidar surveys become 
more common and additional high-resolution stereo satellite imaging 
platforms are deployed, the availability of the required reference data
sets should expand, enabling the construction of snow depth and surface 
mass balance gradients throughout the accumulation and ablation sea
sons. These time series will be beneficial to analyses of controls on snow 
depth variability and validation of snow models. 
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