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Abstract.  Forecasting rates of forest succession at landscape scales will aid global efforts to
restore tree cover to millions of hectares of degraded land. While optical satellite remote sensing
can detect regional land cover change, quantifying forest structural change is challenging. We
developed a state-space modeling framework that applies Landsat satellite data to estimate
variability in rates of natural regeneration between sites in a tropical landscape. Our models work
by disentangling measurement error in Landsat-derived spectral reflectance from process error
related to successional variability. We applied our modeling framework to rank rates of forest suc-
cession between 10 naturally regenerating sites in Southwestern Panama from about 2001 to 2015
and tested how different models for measurement error impacted forecast accuracy, ecological
inference, and rankings of successional rates between sites. We achieved the greatest increase in
forecasting accuracy by adding intra-annual phenological variation to a model based on Landsat-
derived normalized difference vegetation index (NDVI). The best-performing model accounted
for inter- and intra-annual noise in spectral reflectance and translated NDVI to canopy height via
Landsat-lidar fusion. Modeling forest succession as a function of canopy height rather than
NDVI also resulted in more realistic estimates of forest state during early succession, including
greater confidence in rank order of successional rates between sites. These results establish the
viability of state-space models to quantify ecological dynamics from time series of space-borne
imagery. State-space models also provide a statistical approach well-suited to fusing high-resolu-
tion data, such as airborne lidar, with lower-resolution data that provides better temporal and
spatial coverage, such as the Landsat satellite record. Monitoring forest succession using satellite
imagery could play a key role in achieving global restoration targets, including identifying sites
that will regain tree cover with minimal intervention.

Key words:  forest landscape restoration; hierarchical Bayes; Landsat time series;, Landsat-lidar fusion,
large-scale restoration,; Latin America; natural regeneration; reforestation; spatial prioritization; state-space
model; tropical forest succession.

restore forest cover to millions of hectares of degraded

INTRODUCTION . L .
land is a top research priority (Chazdon and Uriarte

Across the tropics, secondary forests are regrowing on
land that was previously cleared for agriculture (Rudel
2012, Chazdon 2014). These second-growth forests rep-
resent an enormous carbon sink, with potential to act as
a natural climate solution while providing a suite of
other ecosystem services (Griscom et al. 2017, Busch
et al. 2019). Determining how to incorporate natural
regeneration into national and international plans to
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2016). However, outcomes of natural regeneration are
highly variable between sites (Holl and Aide 2011, Nor-
den et al. 2015, Shoo et al. 2016). For example, above-
ground biomass in 20-yr old secondary forests can vary
by over an order of magnitude (Poorter et al. 2016). This
high variability in biomass recovery is a significant chal-
lenge for incorporating natural regeneration into forest
restoration plans and points to an urgent need to under-
stand rates of secondary succession across heteroge-
neous landscapes.

Logistical considerations limit the spatial extent of
field studies of natural regeneration, potentially leading
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to biased estimates of landscape-scale forest dynamics
from forest inventory plot data (Marvin et al. 2014).
Funding also constrains the timespan of field measure-
ments, and lack of sufficient monitoring is a frequent
problem for reforestation projects (Mansourian and Val-
lauri 2014, Evans et al. 2018). Field data gaps due to lim-
ited spatial and temporal coverage provide one
explanation for high variability in the contribution of
forest regrowth to global carbon sink dynamics (Pugh
et al. 2019). The limited scale of field data raises the
question of how well satellite remote sensing can mea-
sure forest succession over large areas and long time
periods (White et al. 2019).

The primary source of remotely sensed data for mea-
suring historical changes in land cover is the Landsat
satellite archive, providing open access to >40 yr of glob-
ally extensive data (Zhu et al. 2019). Most studies have
applied Landsat imagery to quantify forest recovery
either as a transition between discrete land cover cate-
gories or as trajectories of spectral recovery, typically
vegetation indices. Linking either of these methods to an
ecological interpretation of forest structural change is
problematic. Land cover change studies that define
reforestation as a transition from non-forest to forest
pixels (Aide et al. 2013, Sloan 2015, Schwartz et al.
2017), oversimplify the ecological dynamics of sec-
ondary succession, an inherently continuous process
(Song et al. 2002, Caughlin et al. 20165, Coops and Wul-
der 2019). In contrast, vegetation indices (VI), such as
the Normalized Difference Vegetation Index (NDVI),
present a continuous proxy for ecosystem structure and
function (Pettorelli et al. 2005, Requena-Mullor et al.
2018). VIs are straightforward to calculate from satellite
reflectance data and have been widely applied to track
recovery in disturbed ecosystems (Kennedy et al. 2012,
Dutrieux et al. 2016, Frazier et al. 2018). Nevertheless,
VIs do not have a direct physical interpretation, and the
relationship of these indices to forest structure during
regrowth is not straightforward (Frolking et al. 2009).

The challenges of interpreting Landsat spectral reflec-
tance in an ecologically meaningful way have prompted
the development of statistical models that relate spectral
reflectance to forest structure (Pflugmacher et al. 2014,
Ota et al. 2014, Ahmed et al. 2015, Bolton et al. 2018).
Most commonly, these statistical models are developed
using lidar-derived metrics of forest structure as training
data (Marvin et al. 2014, Lee et al. 2018, Ver Planck
et al. 2018). Forest structural metrics estimated with high
accuracy using lidar data include tree cover, height, and
biomass (Almeida et al. 2019b). A recent study has
demonstrated the potential for Landsat-lidar fusion to
estimate forest structural dynamics at a national extent
over multiple decades (Matasci et al. 2018). Recent work
has also quantified how rates of spectral recovery relate
to measures of forest structure derived from airborne
lidar in boreal forests subject to disturbance (White
et al. 2017). Because satellite-borne passive sensors such
as Landsat predate the development of lidar technology,

T. TREVOR CAUGHLIN ET AL.

Ecological Applications
Vol. 31, No. 1

applying lidar-trained models to construct historical
time series of forest structure from satellite data requires
extrapolation (i.e., prediction outside the scope of the
model). However, extrapolating Landsat-lidar fusion to
years with no lidar data could lead to systematic error
due to high variability in Landsat spectral reflectance
from year to year.

The central problem is that temporal variation in
medium-resolution satellite data has many causes that
are unrelated to changes in forest structure, including
illumination, signal-to-noise-ratio, phenology, and
atmospheric conditions (Kennedy et al. 2010, Misra
et al. 2018). While the development of atmospheric cor-
rection algorithms for surface reflectance has improved
our capacity to extend Landsat-derived models through
space and time (Song et al. 2001), inter- and intra-an-
nual noise remains a major impediment to quantifying
forest recovery with Landsat data (Verbesselt et al. 2010,
Kennedy et al. 2012). In addition to high variability in
spectral reflectance, missing data are also prevalent
throughout the Landsat archive due in part to data stor-
age problems and the scan line corrector (SLC) failure
onboard Landsat 7 (Wulder et al. 2008). Pixel composit-
ing approaches present one solution to missing data
(Hermosilla et al. 2015), however, pixel-to-pixel variabil-
ity can occur if composited images represent a combina-
tion of different vegetation phenologies. While missing
data and noise complicate assessments of forest recovery
using Landsat data, spectral reflectance is an imperfect
proxy of forest structure, even in the best-case scenario.
Across a range of study systems and statistical
approaches, models based on Landsat spectral reflec-
tance can explain ~60-80% of the variation in lidar-
derived forest structure (Avitabile et al. 2012, Ota et al.
2014, Ahmed et al. 2015, Caughlin et al. 2016b, Matasci
et al. 2018). These studies suggest inherent upper limits
in the accuracy of forest structure measurements using
space-borne passive sensors. Overall, distinguishing the
signal of forest recovery from the noise of satellite spec-
tral reflectance data is a daunting problem.

Fortunately, ecological science has a lengthy track
record of inference from imperfectly observed data.
State-space models provide a formal way to estimate the
parameters of dynamic, process-based models while
simultaneously accounting for measurement and process
error (Clark and Bjernstad 2004). For example, the
Breeding Bird Survey is a continental-scale, multi-deca-
dal data set of bird counts collected by citizen scientists.
Similar to the Landsat satellite record, the Breeding Bird
Survey presents opportunities for ecological inference
over large scales and challenges due to multiple sources
of uncertainty. By explicitly modeling abundance condi-
tional on detection, state-space models have enabled
researchers to use this extensive but noisy data set to
explain the spread of invasive species (Hooten et al.
2007), map bird species richness (Dorazio et al. 2006),
and forecast population trends (Schmidt et al. 2013).
Other applications of state-space models for ecological
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inference include estimating disease outbreaks with
imperfect reporting rates (Cauchemez and Ferguson
2008), wildlife density from camera trap data (Royle
et al. 2009), and demographic rates of tree seedlings cen-
sused in dense, weedy environments (Caughlin et al.
2019). However, state-space modeling has not been
widely applied to satellite-borne remotely sensed data
(Bernardis et al. 2015, Kellner and Hubbell 2017). We
propose that state-space models complement previous
studies of trends in land cover change (Coops et al.
2010, Kennedy et al. 2012, Hermosilla et al. 2015) by
explicitly modeling both process and measurement error.
We applied state-space models to capture forest
dynamics during early succession, using time series of
Landsat spectral reflectance and a single snapshot of
lidar data. Our primary objective was to rank succes-
sional rates across sites undergoing natural regeneration,
corresponding to the practical challenge of prioritizing
sites for active restoration. Our study takes place in a
tropical region undergoing net increases in forest cover
(Caughlin et al. 20165). Within this region, we selected
naturally regenerating sites and evaluated the perfor-
mance of state-space models of forest succession fit to
time series of Landsat-derived NDVI. We began with a
state-space model built on a logistic growth process for
forest structural change. We then developed increasingly
complex models for measurement error, including
accounting for intra-annual variation in the date of
image acquisition and inter-annual variation in NDVI
baselines. Building off the model that represents inter-
and intra-annual variation in measurement error, we
incorporate Landsat-lidar fusion to model canopy
height dynamics. Within this set of models that vary in
complexity and data requirements, we compare (1)
model forecasting accuracy, (2) ecological inference on
successional dynamics, and (3) ranking of successional
rates between sites. Altogether, our modeling approach
demonstrates a solution to the problem of quantifying
variability in forest succession at landscape scales.

METHODS

Regional context

Our study is located in Los Santos Province in South-
western Panama (Fig. 1). Before European settlement,
the region was characterized by tropical dry forest, with
annual precipitation of 1,700 mm, an average tempera-
ture of 25°C, and a pronounced dry season from January
to May. Regional-scale deforestation rates reached an
apex during the early 20th century when ranchers
cleared large areas of land for cattle production
(Heckadon-Moreno 2009). During the past three dec-
ades, land cover change has shifted toward net reforesta-
tion, likely related to rural economic development and
forest scarcity (Wright and Samaniego 2008, Sloan
2015). Currently, tree cover in the landscape is composed
of a few small forest fragments and a variety of
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agricultural tree cover types, including dispersed pasture
trees, live fences, and riparian corridors (Tarbox et al.
2018). A sizeable fraction of aboveground biomass is
stored in trees outside forests (Graves et al. 2018). Previ-
ous field work in our study region has demonstrated that
fifteen-years is a sufficient period of time to detect differ-
ences in metrics of succession between sites, including
biomass accumulation and tree species richness
(Estrada-Villegas et al. 2020).

Site selection

We selected sites for our analyses using a tree cover
change data set derived from airborne photographs
acquired in 1998 by the Tommy Guardia National Geo-
graphic Institute of the Republic of Panama and Google
Earth images acquired in 2014. These very high resolu-
tion (<0.5 m) data sets enable visualization of small
patches of tree cover. Subsamples of these images were
digitized to quantify tree cover change (Tarbox et al.
2018). The subsamples consisted of 150 x 150 m plots,
each randomly located within a single property bound-
ary (hereafter “Sites”). Sites were designed to overlap
with Landsat 7 data, such that each site contained 25
Landsat pixels (Fig. 2). We selected 252 of these sites
matched to the same ecoregion as an airborne lidar
image (see below). For these 252 sites, we quantified the
percent change of tree cover from 1998 to 2014 using the
digitized polygons (available from Tarbox et al. 2019).
Reference sites represent the entire range of cover types,
from bare ground to active pasture to closed canopy for-
est. As the focus of this study was fitting models for for-
est succession, we selected the 10 sites with the highest
increases in tree cover to use as focal sites for our subse-
quent analyses. The boundaries of the 252 reference sites
and the 10 reforestation sites were used to clip Landsat
data for our analyses; otherwise, we did not use the
high-resolution data for model construction. For a sum-
mary of relationships between all data used in our mod-
eling, see Fig. 3.

Landsat data

We extracted Landsat 7 data between 1 December and
31 March from 1999 to 2015. Similar to many other
tropical forest sites, cloud cover during the rainy season
restricts availability of imagery at our study area to the
dry season. The period between December and March
corresponds to the driest part of the year, resulting in
less cloud contamination. Previous work at our study
site has shown that compositing Landsat images from
this time period results in better predictions of forest
structure than any single scene alone (Caughlin et al.
2016b). We used surface reflectance data from the USGS
Climate Data Record (available online via the USGS
Earth Explorer interface),” processed using the Landsat

% https://doi.org/10.5066/F7TWH2P8G
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FiG. 1.

Ecosystem Disturbance Adaptive Processing System
(LEDAPS) algorithm (Masek et al. 2006). Cloud con-
taminated pixels were removed using the cloud mask
band from the LEDAPS product (for more details, see
Caughlin et al. 2016b). In total, this resulted in 58 Land-
sat scenes with a range of two scenes per year (2001 and
2011) to six scenes per year (2010), all from Path/Row
012/055.

Numerous vegetation indices have been proposed to
monitor forest regrowth from Landsat spectral reflec-
tance. NDVI has a long history of use and is the most
familiar spectral index to a broad range of ecologists
(Pettorelli et al. 2005). However, NDVI can be problem-
atic as it saturates early during forest succession (Song
et al. 2002). Alternative Landsat indices used to quantify
forest regrowth include the Normalized Difference
Water Index (NDWI; e.g., Chen et al. 2016) and the
Normalized Difference Moisture Index (NDMI; e.g.,
Dutrieux et al. 2016). The Normalized Burn Ratio
(NBR) incorporates Landsat’s short-wave infrared
band, which is highly sensitive to canopy moisture
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Map of study area. Los Santos Province in Southwestern Panama.

content, and has emerged as a powerful tool for quanti-
fying forest succession (White et al. 2017, Nguyen et al.
2018). To determine which index was most appropriate
for our study goals, we assessed the ability of several
Landsat-derived indices, including NDVI, NDWI,
NDMI, NBR, to predict lidar-derived canopy height in
our study region (described in Appendix S1). Out of this
set of normalized difference indices, we found that NDVI
had the highest out-of-sample predictive accuracy
(Appendix S1: Table S1). Relative to NBR, the next best-
performing spectral index, NDVI increased R* by 4% and
decreased RMSE by 0.15 m. In addition, all normalized
difference indices tested exhibited spectral saturation at
high values of canopy height (Appendix S1: Fig. Sl1).
Therefore, we selected NDVI as the primary response vari-
able for this study. Nevertheless, we emphasize that the
best-fit vegetation index for canopy height data may vary
between study regions and should be selected with care.
We produced annual composites of Landsat images by
taking the average NDVI per pixel stack per year. The
particular dates used to construct annual composites
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March 2003

Site 9: fastest estimated rate of natural regeneration

December 2019

By

March 2010

Site 2: slowest estimated rate of natural regeneration

B Dk

March 2019

FiG. 2. Regeneration in two 150 x 150 m sampling units between 2003 and 2019. Gridlines represent 30-m Landsat pixels.
Rates of natural regeneration and site numbers correspond to Table 1. Images courtesy of Google Earth.

varied at the pixel-level, due to pixel-level variation in
missing data. We excluded pixels with more than one
consecutive missing value between years (<6% of the full
data set). The end product of Landsat processing was a
fifteen-year time series of NDVI across our study region.

Lidar data

The Carnegie Airborne Observatory-2 (now the Glo-
bal Airborne Observatory) collected lidar data on 11
January 2012, using a dual-laser waveform scanner with
a density of 2 points/m>. We developed a canopy height
model (CHM) with the classified point-cloud data with
a pixel size of 1.13 m covering a 13,333-ha area (Asner
et al. 2013). CHM pixels were resampled to match the
extent of Landsat pixels using bilinear interpolation,
resulting in a total of 676 CHM pixels of ~1.15 m?
within each 30-m Landsat pixel.

Process model

The goal of our modeling efforts was to fit a logistic
growth model for forest regrowth using the Landsat time
series while accounting for variance in spectral reflec-
tance unrelated to forest structural change. We imple-
mented the logistic growth model as our ecological
process model for several reasons. This model has a long
history for modeling population dynamics (Tsoularis
and Wallace 2002, Zelnik et al. 2019). Similar models
have been widely applied to represent the latent dynam-
ics of population growth in state-space models (Clark
and Bjernstad 2004, Dennis and Ponciano 2014, Nathan
et al. 2015, Montenegro and Branco 2016). The logistic
growth model has also been applied to forest dynamics,
including diffusion models for spatial patterns of forest
succession (Acevedo et al. 2012, Richit et al. 2019). The
parameters in the logistic growth model are



Ecological Applications

T. TREVOR CAUGHLIN ET AL. Vol 31, No. 1

Article €02208; page 6

Landsat-derived
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Use digitized tree
cover to identify 10
naturally
regenerating plots
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minimal tree cover
change

Plots with digitized
tree cover (22,500 m2)
c. 1998-2014
252 plots

Clip Landsat-derived
NDVI to extent of
digitized plots

}

Mosaic to produce
annual composites of
Landsat scenes,
including mean NDVI
and mean day-of-
acquisition per pixel

15-yr time series of
NDVI in 10 naturally
regenerating plots

15-yr time series of
NDVIin 91 plots with
minimal tree cover
change

/

Develop informative
priors for inter- and
intra-annual
variation

A 4

Mature forest

Model latent state of
forest succession
using Bayesian state
space model

Develop informative
priors for upper
limits of forest state

polygons from
historic land
cover data
(59 patches)

c. 1992-2015

Model relationship

LiDAR Canopy
Height Model

Resample LiDAR
CHM to match

between NDVIand |« resolution of (1.13 m?)
LiDAR-derived height Landsat pixels 11 Jan 2012
2 ~13,333 ha

Fic. 3. Workflow for developing state-space model. Circles indicate input data, parallelograms indicate derived products, and
squares indicate processes.

straightforward (Eq. 1) and include an intrinsic growth
rate (r) and a “carrying capacity” (K). We consider K as
the state of a mature secondary forest in our study
region and did not allow K to vary between sites. In

contrast, because our primary goal was to develop esti-
mates of r to distinguish between sites undergoing differ-
ent rates of forest succession, we enabled r to vary
between our 10 reforesting sites
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TasLE 1. Uncertainty in site ranking of successional rates between four state-space models.
P
Draws (S9) P(S2)

Model Measurement error Most frequent site ranking (%) best  worst
Basic no covariates S2 <S4 <S6 <S8 <S7<8S1<85<83<89<S810 1.1 042 046
Intra-annual date of acquisition S2 <S6 <S7<S1<8S4<83<88<85<S10<89 1.7 089  0.77

phenology
Inter- and intra-  date of acquisition + year S2 <86 <S7<S1<54<83<88<85<S810<S89 1.4 0.90  0.79

annual

phenology
Canopy height date of acquisition + year S2 <S6 <S7<S1<8S4<83<88<85<S810<89 5.6 0.89 0.74

+ Landsat-lidar fusion

Notes: The most frequent site ranking column represents the ranking (from slow to fast) of successional rate between the 10 sites
in our study, with the letter S preceding the number of the site. Fig. 2 illustrates the sites numbered S2 and S10. The percentage of
draws column represents the percentage of draws from the HMC algorithm with the same ranking of sites. The P(S9) best and P
(S2) worst columns represent the probability that site 9 and site 2 were identified as the fastest and slowest regenerating sites. A
higher probability of identifying a site as the best or worst site for natural regeneration indicates more certainty in model-produced

rank orders.

S,
Si1 :Sr‘i‘rsr{l —Et] (1

The state variable S is subject to process error, as our
logistic growth model is an imperfect representation of
the ecological process of forest succession. We quantified
process error using a normal distribution, with a vari-
ance parameter specific to state-space (o). In addition,
we modeled the intrinsic growth rate r and the initial
condition at the start of the study period (S;) as site-level
random effects, each drawn from a normal distribution.
These site-level random effects account for non-indepen-
dence between pixels from the same site. Altogether, our
process model represents forest recovery in the ith pixel
in the jth site at year y as

Sijy
Si,j,y+l ~ Normal (Si‘j‘y + eri.j,y |:1 - [’(/}:| s GSS) . (2)
J

Observation models

We developed four models with increasing complexity,
beginning with a model that represents forest structure
using NDVI with no covariates for measurement error
(basic model), then progressively adding covariates,
including date of acquisition (intra-annual phenology
model), year-to-year effects (inter-annual phenology
model), and finally, Landsat-lidar fusion to translate
NDVI into canopy height (height model).

Basic model.—Our models for measurement error relate
observations of NDVI at pixel i, site j, and year y, to
latent variable S. For the first three models, we do not
explicitly define S in terms of forest height. Instead, we
consider state variable S to represent a “true” NDVI,
without the complications of different date of acquisi-
tion between years (variation due to phenology), sensor
failure, unremoved atmospheric differences, and other

sources of measurement error. To represent those
sources of noise, we model observed NDVI as draws
from a normal distribution with S as the mean value and
a variance term, G,ps. The magnitude of o, directly
represents measurement error. Due to identifiability
problems, we were not able to estimate the variance term
for the process model (o) as a free parameter in our
basic model; instead, for the basic model only, we set this
parameter equal to 0.01, based on initial simulations of
the process model. Results were robust to different val-
ues of this parameter. For all other models, we estimated
o, from the data

Basicmodel: NDVI;;, ~ Normal(Si;y, Goss).  (3)

Intra-annual phenology.—Our Landsat data encompass
the onset of the dry season in December to the end of
the dry season in late March. During this period, decidu-
ous trees lose their leaves, and herbaceous vegetation
dries up, leading to a “brown-down” signal that is evi-
dent in satellite imagery (Bohlman 2010). Limiting our
Landsat images to this period simplifies intra-annual
phenology, as the browning-down process is approxi-
mately linear during this period (Appendix S2: Fig. S1).
For each pixel from the annual NDVI composite, we cal-
culated average date of acquisition. This date of acquisi-
tion predictor variable varies within and between years,
due to varying annual dates of Landsat image acquisi-
tion and to different dates with missing data in annual
pixel stacks. For example, if one year was represented by
a total of three Landsat scenes, the average NDVI for
that year for a particular pixel could represent the aver-
age of any combination of those three scenes. The aver-
age date of acquisition varies at a pixel scale because
scene-specific patterns of missing Landsat data are spa-
tially variable. To enable better integration of the state-
space model with the lidar data, we centered date of
acquisition around the day of lidar acquisition (11th
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January), such that the date of acquisition was equal to
zero for this date. As a result, positive and negative val-
ues of date of acquisition represent the number of days
that the average date of acquisition per pixel differed
from 11th January. We then fit an observation-level
model that included date of acquisition as a linear pre-
dictor variable (“Day” in Eq. 4). This observation model
accounts for pixel-level variability in greenness due to
within-year phenology that is separate from forest struc-
tural change (represented by S;;, below).

Intra — annualmodel : NDVI;;, ~ Normal(S;;, + BDay,; ,; Gobs)-

@

Inter-annual phenology.—In addition to within-year phe-
nological change, we expected that different years would
have different “baseline” levels of greenness (Reed et al.
1994). We accounted for inter-annual variability using a
categorical variable to represent years, with a separate
estimate of this fixed effect for each year (y,). We set
Y2012 = 0, such that the year of lidar acquisition (2012)
functions as our baseline year to which all other years
are compared. We consider the year effect as interannual
variation in greenness unrelated to successional change,
and constrained estimation of vy, using informative
parameters derived from sites that exhibited minimal
change in tree cover during the study period (see Priors
subsection for more details).

Inter — annualmodel: NDVTi,j, t ~ Normal
(Si,j,t + BDayi, t + yt Yeart, oobs). (5)

Landsat-lidar fusion.—For our final model, we con-
verted NDVI into lidar-derived canopy height. We first
developed a statistical model to relate the Canopy
Height Model to Landsat data from 2012 (Eq. 6). This
model structure is a generalized linear model (GLM)
with gamma distributed errors and a log-link function,
following Caughlin et al. (20165). In addition to NDVI
as a predictor of canopy height, we included average
date of acquisition per pixel for the 2012 data. This term
accounts for variations in greenness within a year due to
date of image acquisition, a source of variability that we
assume is unrelated to tree height. As input to the lidar-
Landsat model, we randomly sampled 4,000 pixels from
the matched Landsat and the resampled Canopy Height
Model. We jointly estimated the slope and intercept
parameters (¢ and b in Eq. 6) as components of the
state-space model (Eq. 7), where the k subscript repre-
sents the kth pixel out of the set of 4,000 used to train
the Landsat-lidar model.

HTZOlz.k ~ Gamma (9,
exp|

(6)
An advantage of jointly estimating parameters a and b
in Egs. 6 and 7 is that uncertainty in these parameter

T. TREVOR CAUGHLIN ET AL.

0
a+ bNDVyak + dDaY2012./c]> .

Ecological Applications
Vol. 31, No. 1

values is propagated to predictions for canopy height
across the 15-yr time series. A potential disadvantage of
joint estimation is that information from the time series
could “feed back” into the estimation of the Landsat-li-
dar parameters, leading to unreliable parameter esti-
mates (Plummer 2015). To test how joint estimation
impacted predictions from the Landsat-lidar model, we
compared out-of-sample accuracy between the jointly
estimated GLM and the same GLM fit independently of
the state-space model (i.e., using only data from 2012).
Our out-of-sample test data consisted of all resampled
pixels from the Canopy Height Model not used to fit the
GLM (n = 26,162).

The final step in our joint modeling approach was to pre-
dict observed NDVI from the time series of latent canopy
height. Eq. 7 shows how we applied the intercept and
NDVlI-slope parameters (¢ and b) to translate the latent
state variable S;;, representing canopy height, into
observed NDVI at a particular date of acquisition and year

Heightmodel: NDVI;;,
log(Sij,)—a
~ Normal (M + BDay; , + v, Year,, Gobs) .

Parameter estimation

Priors.—Fitting our models in a Bayesian framework
enabled us to take advantage of prior data for several
parameters in our model. For our observation models,
representing variation in spectral reflectance unrelated
to forest structural change, we incorporated data from
reference sites in areas with minimal tree cover change
during our study period. These reference sites were
determined using sites from the same study used to iden-
tify reforesting sites (Tarbox et al. 2018) with less than
3% absolute change in tree cover from 1998 to 2014,
quantified through a detailed examination of airborne
imagery. There were a total of 91 sites that met this crite-
rion. For each of these reference sites, we extracted
NDVI values from Landsat 7 surface reflectance data
and fit a model that included inter- and intra-annual
variation. For these models, we used pixel-level NDVI as
a response variable with the date of acquisition and year
variables as continuous and categorical predictor vari-
ables. We also included site identity as a random effect
to account for possible spatial autocorrelation in spec-
tral reflectance from pixels within the same site. We fit
these linear mixed-effect models corresponding to obser-
vation models in Egs. 4, 5 using the rstanarm package
with default priors (Goodrich et al. 2020). We then used
the mean and standard deviation of parameter estimates
from the linear mixed effect models to construct infor-
mative priors for the B, v,, and o, parameters in our
state-space models. Overall, this approach enabled us to
leverage prior information on Landsat spectral variabil-
ity in the verified absence of forest structural change.
The other parameter we were able to constrain using
prior data was the K parameter in our process model for
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forest dynamics. In the logistic growth model, this
parameter represents carrying capacity; in the context of
forest succession, we consider this parameter as the
NDVI saturation or maximum canopy height of mature
secondary forest in the region. To develop priors for K,
we identified patches of mature secondary forest in our
study landscape. We started by extracting secondary for-
est polygons from a data set representing land cover in
1992, developed at the Landsat scale by Panama’s Min-
istry of the Environment. We then overlaid these sec-
ondary forest units on Google Earth images taken in
2015, and manually digitized areas that were classified
as secondary forest in 1992 and still were dominated by
forest in 2015. This overlay resulted in 59 different
patches of mature secondary forest, with a total of 1,169
30 x 30 m Landsat pixels across all mature secondary
forest patches. We calculated beta-distributed informa-
tive priors for K in the basic, intra- and inter-annual
models using Landsat-derived NDVI from 2001 to 2015.
We then used beta regression (Zeileis et al. 2018) to cal-
culate the expected value for NDVI in an intercept-only
model (corresponding to the basic observation model), a
model with average date of acquisition as a sole predic-
tor variable (corresponding to the intrannual model),
and a model with both day and year as predictor vari-
ables (corresponding to the inter-annual model). For the
height model, we calculated gamma-distributed informa-
tive priors for K using the CHM aggregated to the
30 x 30 m Landsat scale, with pixels clipped to the digi-
tized mature secondary forest polygons. Because the
CHM represents forest structure at a single date (11 Jan-
uary 2012), we did not include covariates for date of year
or year in this model. Altogether, our efforts led to four
sets of informative priors, corresponding to our four
models. We report prior distributions for parameters in
Appendix S3.

Estimation.—Model fitting was conducted via Hamilto-
nian Monte Carlo (HMC) algorithm in the Stan pro-
gramming language (Stan Development Team 2016).
Stan model code for our four models is available online
(see Data Availability; Caughlin and Wilson 2020). For
each of our four models, we ran 12 chains for 6,000 iter-
ations, discarding the first 4,000 iterations of each chain
as warm-up, leaving 24,000 samples for estimating poste-
rior distributions. We assessed convergence by visual
examination of the chains, and through checking of the
unique diagnostics from HMC (Betancourt 2017). We
summarize  posterior  parameter  estimates in
Appendix S3.

Model evaluation.—We evaluated model performance
by quantifying uncertainty in site rankings between
models and by testing the ability of models to fore-
cast NDVI trajectories. A primary goal of our model-
ing approach is to confidently discriminate between
sites that are recovering forest structure quickly and
those that are recovering more slowly. To determine
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how different models achieve this goal, we compared
site rankings of the r parameter (Eq. 1) between
models. We took advantage of posterior draws from
our Bayesian models to propagate uncertainty from
model estimation to site rankings. For each iteration
of our HMC output, we created a vector representing
the order of the r parameter for each site. In other
words, each HMC iteration contains a single draw of
the r parameter for each site, which can be arranged
into an ordered vector {r; rp, ... rio}. Because our
output included 24,000 posterior draws, we had a
total of 24,000 ranked orders for each fitted model.
We then evaluated the frequency distribution of the
various site rankings, by summing the number of
times that a specific sequence {r;}'° appears over
24,000 draws. We interpreted the relative frequency of
the most common rank order as a measure of cer-
tainty in site rankings.

The relative frequency of rank orders between models
of successional rate provides information on model pre-
cision but rank orders alone do not indicate whether
Landsat-derived estimates accurately measure succes-
sional change. To validate our modeled successional rate
estimates, we compared our results to percentage change
of tree cover derived from digitized high resolution ima-
gery (Tarbox et al. 2019). While these digitized tree cover
data were used to identify sites that were undergoing
succession, data on relative rates of succession from
these sites were not used in model construction and can
be considered independent data. To validate the relative
successional rates from our models, we extracted the r
parameter (Eq. 1) for each site from model predictions,
including 24,000 posterior draws for each site’s value of
r from each model. We then matched each r parameter
to the percentage change of tree cover from each site. We
did not expect a one-to-one relationship between the
Landsat-derived r parameter, which reflects change from
about 2000 to 2015, is unconstrained, and represents
NDVI or canopy height, and the high resolution ima-
gery-derived percentage of tree cover change, which
reflects change from 1998 to 2014, is constrained
between —1 (100% tree cover loss) and 1 (100% tree
cover gain), and represents tree canopy cover. Conse-
quently, we applied Pearson’s correlation coefficient to
ask whether there was a correlation between the two
metrics of successional change, rather than directly eval-
uating error between observed and predicted values. We
considered positive correlations between the r parameter
and percentage tree cover change as an indicator that
our model-based inferences successfully reflect relative
rates of forest succession.

As a separate model validation exercise, we tested
model forecasting ability by quantifying how well mod-
els fit with data from the first 12 yr of the time series
could predict observed NDVI three years later. For data
with spatial and temporal structure, thoughtful consid-
eration of what data are held out is key to ensuring that
model evaluation matches objectives for model use
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(Roberts et al. 2017). We chose to hold out the last three
years of data for all sites for model validation as a test of
how well our logistic growth model can forecast NDVI
trajectories. Predicting the final three years of the data
out-of-sample corresponds to the applied need to predict
vegetation dynamics into the future. We calculated fore-
cast error as root mean square error (RMSE), relative
RMSE, and bias between observed NDVI and forecasts
of NDVI in 2015. Because the slope for the date of
acquisition predictor variable representing phenology (3
in Eq. 4) is constant across years, we incorporated date
of acquisition as a variable in model forecasts. In con-
trast, our modeled effect of year-to-year variation (y,, in
Eq. 5) is unknowable in advance, and we did not incor-
porate year as a variable in model forecasts. Thus, our
forecasts assume that future years have the same effect
on measurement error as our baseline year of 2012 when
lidar data was acquired.

REsuLTS

Dynamics of NDVI

In our 10 reforesting sites, the Landsat-derived NDVI
time series data exhibited net increases in vegetation
cover during the study period, including higher values of
NDVI in 2015 than in 2001 for nearly all pixels
(97.74%). Along with the trend of increasing NDVI over
time, the Landsat data exhibited considerable inter-an-
nual variation (Fig. 4). Six out of 15 years had an aver-
age decrease in NDVI, with the largest decline in 2004.
The variance between years (mean coefficient of varia-
tion: 0.203) was higher than the variance between pixels
in the same year (mean coefficient of variation: 0.158),
demonstrating how temporal variation in observed
NDVI overwhelmed spatial differences across our 10
sites.

Observation models

Our models suggest that intra-annual phenology
explains a considerable portion of temporal variation
between annual NDVI composites. Predictions from the
basic model, with no temporal covariates in the observa-
tion model, failed to reproduce the peaks and valleys in
the Landsat time series. The addition of a single linear
covariate, average date of acquisition for each pixel in
the annual NDVI composite (intra-annual phenology
variable), resulted in predictions that qualitatively repro-
duced the observed data, including the timing and
amplitude of stochastic year-to-year variation in NDVI
trajectories (Fig. 4). This result suggests that much of
the noise in the NDVI time series was due to varying
dates of image acquisition during the progression of the
dry season, rather than a signal representing vegetation
structure. The date of acquisition covariate also likely
improved model fit by correcting error due to the scan-
line-corrector (slc) failure in Landsat 7 (Appendix S4;
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FiG. 4. Accounting for intra-annual variation in state-space
models reproduces temporal patterns in observed data. These
figures show observed and predicted NDVI over the ~15 yr
from 2001 to 2015. Each line represents the trajectory of one
pixel. Different colored lines represent different sites. The top
panel shows observed NDVI from annual composites of Land-
sat 7 data. The middle and bottom panels show predicted
NDVI from models. Results from all models are shown in
Appendix S1: Fig. S3.

Fig. S1). While we found evidence for inter-annual varia-
tion in baseline NDVI, including different parameter
estimates for each year, adding the year term did not
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substantially alter predicted trajectories of NDVI
(Appendix S5; Fig. S1).

Process models

Estimated rates of forest succession from the logistic
growth model changed depending on which observation
model was used. Between the three models for latent
NDVI (basic, intra-annual, and inter-and intra-annual
effects), successional rate (r) was highest for the basic
model, with a median of 0.04 (95% CI 0.02-0.05) and
lowest for the inter-annual model, with a median of 0.01
(95% CI 0.00-0.02). This result suggests that without
accounting for inter-and intra-annual variability, models
for successional change fit with Landsat data may lead
to biased inferences, in this case, over-estimating succes-
sional recovery. In contrast to successional rate (r
parameter in Eq. 1), maximum NDVI (K parameter in
Eq. 1), was remarkably similar between models, with
posterior median estimates between 0.91 and 0.92
(Appendix S3: Table S3).

We found fundamental differences in apparent succes-
sional dynamics between the model with latent height
and the models with latent NDVI. The latent height
model suggests accelerating rates of successional change
for reforesting pixels, with minimal change early in the
time series followed by major increases in height later in
the time series. In contrast, the latent NDVI models sug-
gest decelerating rates of change, with most change
occurring early in the time series. We illustrate the differ-
ences in inferred successional dynamics between latent
height and NDVI models through trajectories forecasted
for 50 yr into the future (Fig. 5). The best fit model for
latent NDVI begins with initial values relatively close to
saturation. By 2030, NDVI values of pixels in this model
exhibit decelerating growth rates as they approach the
asymptote at K = 0.92. In contrast, the model for latent
height begins with initial height values <5 m, far from
maximum height at K = 31.52. By 2030, canopy height
values have not yet reached the maximum growth rate at
K72, and many pixels still exhibit accelerating growth
rates. Altogether, these results demonstrate that account-
ing for nonlinearity in the relationship between spectral
indices and forest structure can substantively change
inference on forest dynamics.

Variation in successional rate between sites

All models ranked site 2 as the site with the slowest
rate of succession and site 9 or 10 as the site with the
fastest rate of succession (Table 1; Fig. 2). There was a
clear difference between the “basic” model with no
covariates for measurement error and all other models
in uncertainty surrounding sites with slowest and fastest
natural regeneration: the addition of any covariates for
measurement error nearly halved uncertainty in identify-
ing best and worst performing sites. Models also identi-
fied different rank order of all sites. Namely, the latent
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Fic. 5. Different ecological dynamics between state-space

models with NDVI (top panel) vs. canopy height (bottom
panel) as latent variables. The vertical line at 2012 divides the
time series into observed and forecasted trajectories. Each col-
ored line represents one pixel trajectory over the study period.
Different colors represent different sites.

height model outperformed all other models in the con-
sistency of site rank order between HMC model itera-
tions. While the most frequent rank order of sites was
similar between the date of acquisition, year, and height
models, the height model identified the most frequent
rank order with nearly five times more certainty than the
other models. For the top 50 site rank orders, the height
model had a higher relative frequency of site rank orders
compared to the NDVI-only models (Fig. 6). This result
indicates greater certainty in identifying which sites are
reforesting faster or slower when canopy height, rather
than NDVI, was modeled as a response variable.
Validation of relative successional rates using percent-
age tree cover change from digitized imagery revealed
that adding covariates for measurement error improved
model performance (Fig. 7). The basic model with no
covariates for measurement error had the weakest corre-
lation with percentage tree cover change with a median
value for Pearson’s correlation coefficient of 0.08 and
nearly one-fifth of the correlation coefficients were less
than zero for this model, indicating little agreement
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lations between Landsat-derived successional rates and percent-
age tree cover change from digitized imagery. Violin plots
indicate the posterior probability density of Pearson’s correla-
tion coefficient, calculated between posterior draws of Landsat-
derived successional rate and percent tree cover change. Dots
and lines inside posterior density represent the median and 95%
CI of correlation coefficients. Correlations above zero (indicated
by the black line) suggest agreement between the two metrics of
forest succession.

between observed and modeled rates. In contrast, the
median correlation between successional rate metrics
was 0.35 for the date of acquisition model, 0.35 for the
year model, and had the highest value for the height
model, with a median correlation of 0.41. While all
24,000 posterior draws of successional rate from the date
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of acquisition, year, and height models had a positive
correlation with percentage tree cover change, there was
much less uncertainty in correlations for the height
model. Altogether, the fit of different models for relative
successional rate to percentage tree cover change exhib-
ited similar patterns to the consistency of site rank order
between models.

Comparison of forecast accuracy between models

Accounting for inter- and intra-annual variation as
sources of measurement error improved the ability of
models to predict NDVI over a 3-yr forecast horizon
(Table 2). The biggest improvement in forecast accuracy
occurred when intra-annual variation was added to the
state-space model; the addition of a single parameter
representing date of acquisition halved RMSE, relative
to the model with no covariates in the measurement
term. In comparison, adding terms to represent inter-an-
nual variation only resulted in minor improvements to
forecast accuracy. Without accounting for inter-annual
variation, models tended to overpredict NDVI, while
models that included inter-annual variation tended to
under-predict NDVI.

The state-space model that represented latent canopy
height, rather than latent NDVI, performed slightly bet-
ter than the inter-annual model without Landsat-lidar
fusion. The Landsat-lidar fusion model performed well
despite uncertainty in the relationship between NDVI
and lidar-derived canopy height, including a median
RMSE of 4.20 m (95% CI 3.98-4.6 m) for the gamma
GLM used to translate NDVI to canopy height. We did
not find strong evidence that embedding the gamma
GLM within the state-space model degraded the GLM’s
predictive accuracy, with similar RMSE for a gamma
GLM fit independently of the Landsat time series
(4.12 m; 95% CI 3.90-4.46 m).

DiscussioN

Monitoring rates of forest succession at landscape
scales will play a critical role in plans to reforest millions
of hectares of degraded land. Earth-observing satellites
present an opportunity to scale-up monitoring efforts,
but detecting succession from medium-resolution satel-
lite data is challenging, due in part to uncertainty in the
relationship between satellite spectral reflectance and
forest structural change. We demonstrate how hierarchi-
cal Bayesian models can improve our ability to quantify
forest succession with satellite imagery by disentangling
spectral noise and ecological process. We tested how
accounting for measurement error in models for forest
succession impacts ecological inference and forecasting
ability. We found that modeling intra-and inter-annual
noise in Landsat spectral reflectance substantially
improved model forecasts. Translating spectral reflec-
tance to canopy height via a Landsat-lidar fusion model
resulted in better precision for ranking rates of natural
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TaBLE 2. Forecast error between observed NDVI and predicted NDVI for a 3-yr forecasting window (2013-2015).

Relative
Model Measurement error RMSE RMSE Bias
Basic no covariates 0.16 (0.14-0.17)  33% (28-38%) 0.09 (0.08-0.11)

Intra-annual phenology

Inter- and intra-annual
phenology

Canopy height

date of acquisition
date of acquisition + year

lidar fusion

date of acquisition + year + Landsat—

0.08 (0.07-0.09)
0.07 (0.07-0.08)

13% (11-14%)
10% (10-11%)

0.01 (0.0-0.02)
—0.01 (=0.02 to 0.0)
—0.01 (=0.02 to 0.0)

0.07 (0.06-0.08)  10% (8-11%)

Notes: Forecasting error was calculated as root-mean square error (RMSE), relative RMSE, and bias at the pixel-level. We prop-
agated uncertainty in forecasts using posterior samples from the HMC algorithm, and present uncertainty as the median forecast

error with 95% credible intervals in parentheses.

regeneration between sites, relative to NDVI-only mod-
els. Our approach has direct relevance for calls to jump-
start forest landscape restoration by identifying sites
that can recover naturally with minimal human interven-
tion (Chazdon and Uriarte 2016, Griscom et al. 2017).
In our model framework, these correspond to sites with
faster rates of canopy height growth, while sites showing
minimal increases in canopy height may be more suitable
for active restoration, such as tree planting.

At our study site in Southwest Panama, time series of
annual NDVI composites exhibit high temporal variabil-
ity unrelated to forest structural changes (Fig. 4). In
contrast to field studies that repeatedly demonstrated
high spatial variability in tropical forest succession at
landscape scales (Norden et al. 2015, Poorter et al.
2016), temporal variability in NDVI measurements
eclipsed spatial variation across our >380-km? study
area. A major source of temporal variation in our data
was intra-annual variation generated by different dates
of image acquisition across years and missing data
within years. We accounted for intra-annual variation
using average date-of-image-acquisition as a covariate to
explain measurement error. While other models for phe-
nological change in satellite imagery span a range of
complexity, including complex nonlinear functions (Zhu
et al. 2012, Senf et al. 2017), we were able to approxi-
mate phenological change with a simple linear term.
This linear approximation was possible by restricting
image acquisition from the beginning to the middle of
the dry season, corresponding to the period in which
deciduous trees gradually lose their leaves in our study
system. Altogether, modeling intra-annual variability
provided the largest relative increase in model forecast-
ing strength and improved our ability to discriminate
between sites with slow vs. fast recovery rates. The gener-
ality of this approach will depend on whether similar
periods of linear phenological change can be identified
across other regions. Future work could evaluate other
metrics to represent intra-annual variation, in addition
to date of image acquisition, such as variance in spectral
index and/or direct measurements of atmospheric condi-
tions. The choice of multispectral vegetation index is
also important for ecological inference on forest dynam-
ics (Schroeder et al. 2011). In our study region, NDVI

provided a better fit to canopy height data than other
vegetation indices (Appendix S1). In other forest types,
metrics that account for canopy moisture, such as the
Normalized Burn Ratio (White et al. 2017), may be bet-
ter metrics of forest recovery.

Inter-annual variation in average NDVI values was
another source of temporal noise prevalent throughout
our study period. Incorporating inter-annual variation in
our state-space model improved forecasting accuracy,
albeit to a lesser extent than adding intra-annual varia-
tion. Unlike intra-annual variation, modeled as a contin-
uous variable using date-of-year, we modeled inter-
annual variation as a categorical variable with an inde-
pendent effect for each year. This approach for modeling
inter-annual variation makes minimal assumptions about
temporal trends but has some costs. Increased model
complexity is one cost, as fitting each year separately
requires an additional parameter for each year. Our Baye-
sian approach enabled us to increase our confidence that
the year terms represented measurement error, rather
than forest regrowth, by incorporating prior information
from reference sites with no structural change. In contrast
to approaches such as Kennedy et al. (2010) that smooth
noise in Landsat time series before fitting trend models,
our state-space models propagate uncertainty from inter-
annual variability through to model output. A cost of
simultaneously estimating both measurement and process
error is that state-space models can be more difficult to
fit than models that estimate error components in sepa-
rate steps (Auger-Méthé et al. 2020). A final cost to our
approach for modeling inter-annual variability is a lim-
ited ability to forecast the effects of inter-annual variation
since categorical effects cannot be extrapolated without
data. Modeling temporal variation in spectral reflectance
as a function of covariates, such as climate (Zhang et al.
2014), topography (Bohlman 2010), or forest type (Pas-
quarella et al. 2016), has potential to improve our mod-
el’s forecasting ability. Nevertheless, even without
incorporating year effects for forecasted years, the inter-
annual model increased forecasting accuracy. This result
suggests that accounting for year-to-year variation
improved the estimation of our logistic growth process
model, leading to more realistic trajectories across the
entire time series.
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The incorporation of Landsat-lidar fusion into our
measurement model enabled us to model canopy height
dynamics over time. Modeling canopy height as a state
variable, rather than a multispectral vegetation index
(NDVI), provides numerous benefits. Most importantly,
canopy height has a physical interpretation that can be
related to management targets for reforestation projects,
including aboveground carbon (Asner et al. 2013, Chaz-
don et al. 2016). Unlike NDVI, tree canopy height did
not approach its biological maximum during our fifteen-
year study. While canopy height trajectories exhibited
accelerating rates of change that emphasized succes-
sional differences, spectral reflectance tended to saturate
early in succession across all sites (Fig. 5). The tendency
for NDVI to saturate early in succession is a well-known
feature of this index (e.g., (Pickell et al. 2016); however,
spectral saturation was prevalent across all vegetation
indices calculated for our study site, including NBR
(Appendix 1: Fig. S1). A practical advantage of model-
ing canopy height, rather than a vegetation index, was
better discrimination of natural regeneration rates
between sites, including nearly five orders of magnitude
more certainty in site rankings, relative to NDVI models
(Fig. 6) and improved agreement between model-derived
successional rate and observed percentage tree cover
change (Fig. 7). We suggest that this decreased uncer-
tainty reflects the greater biological realism of modeling
canopy height rather than NDVI.

We expected to find decreases in forecasting accuracy as
a cost of Landsat-lidar fusion, considering the uncertain
relationship between our single-date lidar acquisition and
15 yr of Landsat-derived NDVI. Indeed, the average error
when NDVI was used to predict canopy height was
4.20 m, suggesting considerable noise even when relating
Landsat to lidar during the same year of acquisition.
There are an increasing number of methods to predict
lidar-derived forest structure from Landsat data, and many
are likely to outperform NDVI as a predictor variable
(Avitabile et al. 2012, Ota et al. 2014, Ahmed et al. 2015,
Caughlin et al. 2016h, Matasci et al. 2018). Nevertheless,
our canopy height model provided equivalent to better
forecasting compared to NDVI-only models, despite
uncertainty in Landsat-lidar fusion. By explicitly modeling
both process and measurement error, we were able to mon-
itor canopy dynamics, despite temporal variation in Land-
sat data. While state-space models have been applied to
analyze noisy time series for a range of fields, from fish-
eries science (Aeberhard et al. 2018) to epidemiology (Cau-
chemez and Ferguson 2008), this modeling approach is
not widely used for Earth observation applications.
Instead, remote sensing has focused more on minimizing
measurement error than on modeling ecological process.
Near-term forecasting, such as our 3-yr forecast window,
can provide a way to assess process model performance in
the face of measurement error (Dietze et al. 2018).

We anticipate that the increasing availability of high
quality remotely sensed data will provide new opportuni-
ties for state-space modeling across time and space. A time

T. TREVOR CAUGHLIN ET AL.

Ecological Applications
Vol. 31, No. 1

series of lidar data would likely boost our predictive power
by resolving a substantial portion of the residual uncer-
tainty in the relationship between satellite spectral reflec-
tance and forest structure. While repeat lidar is not readily
available for regions such as Panama, data sets from the
upcoming GEDI mission are likely to yield useful esti-
mates of structure in these regions at 25 m resolution
(Duncanson et al. 2020). In terms of spectral reflectance,
the temporal and spatial quality of the Landsat data
record, as well as its free and open status, is hard to match
(Wulder et al. 2019). Nevertheless, Sentinel and other
higher spectral resolution satellites may provide greater
information than using Landsat NDVI alone. Likewise,
utilizing radar information in the state-space model may
also yield increased predictive power (Qi et al. 2019).
Unmanned airborne systems (UAS) have also demon-
strated the potential to measure forest structural attributes
in reforesting sites via multi-spectral imagery (Zahawi
et al. 2015, Jayathunga et al. 2019) and UAS-borne lidar
(Almeida et al. 2019aa). Our state-space modeling
approach could be applied to account for variability in
spectral reflectance between sensors, for example, differ-
ences in spectral bandwidth between Landsat satellites. In
the context of our models, such an approach would
require developing the relationship between spectral
reflectance and forest structure for each new sensor added.
As a greater diversity of remotely sensed data become
available, Bayesian methods can provide statistically rigor-
ous means to combine information from different sources
into a single model.

Our state-space approach requires a process model to
represent the ecological dynamics of secondary succes-
sion. We used a relatively simple logistic model for popu-
lation growth to model successional trajectories with
three parameters: initial value, rate of increase, and bio-
logical maximum (carrying capacity). Considering that
our models converged with a sample size of Landsat pix-
els (~250 pixels over 15 yr) that represents a minuscule
fraction of available satellite data, we anticipate that fit-
ting more sophisticated models for forest dynamics using
our approach is possible. For forest succession, account-
ing for demographic processes that generate spatial
structure at landscape scales, including seed dispersal
(Acevedo et al. 2012, Caughlin et al. 2016a) and negative
density dependence (Kellner and Hubbell 2018), is an
important next step. Our Landsat-lidar approach could
also be used to parameterize forest dynamic models that
include canopy height as a state variable, such as the
Ecosystem Demography model (Medvigy et al. 2009,
Antonarakis et al. 2011) or the Perfect Plasticity
Approximation (Purves and Pacala 2008, Caughlin et al.
2016a). In a Bayesian context, data from forest inven-
tory plots could contribute informative priors to esti-
mate forest dynamics from satellite imagery (Chave et al.
2019). Our results serve as proof-of-concept that a state-
space modeling approach can disentangle rates of forest
succession from Landsat time series. While we focused
on 10 sites, our methods could be applied for ecological
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inference on forest succession at a range of scales, from
parcels to ecoregions.

Limits to the complexity of process models fit with
Landsat time series will likely be found at the intersection
of social and ecological dynamics. In our study area,
socioecological dynamics create a diversity of land cover
change trajectories, from swidden agriculture to the
expansion of agroforestry systems (Tarbox et al. 2018).
Across Latin America, the permanence of secondary for-
est patches depends on land manager decision-making
(Schwartz et al. 2017, Reid et al. 2019). Models that
attempt to represent all these multi-scale dynamics, from
human behavior to tree demography to national economic
trends, can become intractably complex (Walker 2008).
We anticipate that process models for tree cover change
will be most successful when applied to a subset of the
landscape undergoing the same type of land cover trajec-
tory. For our models, we digitized high-resolution imagery
to identify sites undergoing reforestation. An alternative
approach with better scalability would be to use one of an
increasing number of automated tools to characterize dis-
turbance using the Landsat record (Kennedy et al. 2012,
Watts and Laffan 2014, Vogelmann et al. 2016). State-
space models could then provide an opportunity to infer
differences in rates of change between pixels undergoing
the same type of land cover trajectory.

Given the urgency of climate change, regional-scale
coordination is necessary to ensure optimal reforestation
outcomes (Brancalion et al. 2019, Busch et al. 2019,
Stanturf et al. 2019). Identifying sites that can be
restored using natural regeneration will play a critical
role in large reforestation plans, with potential to reduce
the cost of extensive tree planting (Chazdon and Uriarte
2016, Molin et al. 2018). We have demonstrated an
approach to rank successional rates between naturally
regenerating sites during early succession, when initial
conditions are critical determinants of longer-term forest
recovery (Holl et al. 2018). Altogether, our work pre-
sents a step towards operationalizing remote sensing for
forest landscape restoration.
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SUPPORTING INFORMATION

Additional supporting information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/eap.2208/full

DATA AVAILABILITY
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