
A MEMRISTOR-BASED NEUROMORPHIC

COMPUTING APPLICATION

by

Adrian Rothenbuhler

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Electrical Engineering

Boise State University

May 2013

c© 2013
Adrian Rothenbuhler

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Adrian Rothenbuhler

Thesis Title: A Memristor-based Neuromorphic Computing Application

Date of Final Oral Examination: 12 December 2012

The following individuals read and discussed the thesis submitted by student Adrian
Rothenbuhler, and they evaluated his presentation and response to questions dur-
ing the final oral examination. They found that the student passed the final oral
examination.

Elisa H. Barney Smith, Ph.D. Chair, Supervisory Committee

Kristy Campbell, Ph.D. Member, Supervisory Committee

Vishal Saxena, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Elisa H. Barney Smith, Ph.D.,
Chair, Supervisory Committee. The thesis was approved for the Graduate College
by John R. Pelton, Ph.D., Dean of the Graduate College.

ACKNOWLEDGMENTS

First and foremost, I would like to thank Dr. Barney Smith for her encourage-

ment, guidance, and support. For the opportunities she has given me as a professor,

advisor, and mentor, I am truly grateful. Furthermore, I would like to express my

gratitude for Dr. Saxena and Dr. Campbell who patiently helped me understand

many aspects of my research and enabled me to succeed and grow as a student and

professional.

Special thanks go to Thanh Tran for the many productive discussions and her

help that benefitted my work in many ways. Thanks are also due aplenty to Jeanette

Brooks, who spent many hours soldering PCBs. Her experience and insight on PCB

fabrication greatly influenced the overall quality of this work. I would also like to

express my gratitude to Kolton Drake for many helpful discussions, Stephen Stauts

for bonding and testing memristors, Arlen Planting and Vikram Patel for support with

the NIOS II soft-core processor and Quartus software environment. Special thanks

go also to Sakkarapani Balagopal and Rajaram Mohan Roy Koppula for helping me

with ADC/DAC fundamentals and board design.

Last but not least, I am indebted to my wife Audrey for her constant encour-

agement, support, patience, and willingness to listen to my theories. Receiving such

great support and understanding during times I was extremely busy is not a given

and for that I am forever grateful.

iv

ABSTRACT

Artificial neural networks have recently received renewed interest because of

the discovery of the memristor. The memristor is the fourth basic circuit element,

hypothesized to exist by Leon Chua in 1971 and physically realized in 2008. The

two-terminal device acts like a resistor with memory and is therefore of great interest

for use as a synapse in hardware ANNs. Recent advances in memristor technology

allowed these devices to migrate from the experimental stage to the application stage.

This Master’s thesis presents the development of a threshold logic gate (TLG),

which is a special case of an ANN, implemented with discrete circuit elements using

memristors as synapses. Further, a programming circuit is developed, allowing the

memristors and therefore the network to be reconfigured and trained in real-time. The

results show that memristors are indeed viable for use in ANNs, but are somewhat

hard to control as a lot of intrinsic device characteristics are still under investigation

and are currently not fully understood. A simple threshold logic gate was built and

can be reconfigured to implement AND, OR, NAND, and NOR functionality. The

findings presented here contribute towards improvements on the device as well as

algorithmic level to implement a memristor-based ANN capable of on-line learning.

v

TABLE OF CONTENTS

ABSTRACT . v

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF ABBREVIATIONS . xiii

1 Introduction . 1

1.1 The Memristor . 1

1.2 Current Technological Challenges . 3

1.3 Bioinspired Circuits . 5

1.4 Motivation and Objective . 6

1.5 Ethical Issues . 8

2 Background . 10

2.1 Artificial Neural Networks . 10

2.1.1 A Brief History Lesson . 11

2.1.2 Basic Structure . 12

2.1.3 Linear and Non-Linear Separability . 14

2.1.4 Activation Function . 15

2.1.5 Bias Input . 18

2.1.6 Training Algorithms . 19

vi

2.2 Memristor . 24

2.2.1 Physical Model . 24

2.2.2 Device Topology . 25

2.2.3 Threshold . 27

2.2.4 Controlling a Memristor . 28

2.2.5 Memristor vs. Memistor . 29

2.3 Opamps . 30

2.3.1 Basic Opamp Equations . 30

2.3.2 Frequency Response and Gain Bandwidth Product 32

3 Memristor Programming and Reading Circuitry 33

3.1 Initial Attempts . 34

3.2 Challenges and Solutions . 38

3.2.1 Dynamic Range, Gain, and Bandwidth . 39

3.2.2 Noise . 44

3.2.3 Solutions . 47

3.3 Pulse Generator and Reading Circuit . 51

3.3.1 Requirements . 52

3.3.2 FPGA and DSP Board . 52

3.3.3 DSP Board Modifications and Supporting Hardware 52

3.3.4 Verilog Pulse Controller . 55

3.3.5 NIOS II Processor and C Control Program 58

3.4 Improved Programming/Reading Circuit . 59

4 From ANN Theory to Hardware . 62

4.1 Historic and Current Attempts of Hardware ANNs 62

vii

4.2 Neuron . 65

4.2.1 Summation . 66

4.2.2 Activation Function . 67

4.3 Synapse Supporting Negative Weights . 68

4.4 Finding Optimal Values for the Synapse-Neuron Circuit 73

4.5 Alternative Synapse Circuits . 76

4.6 Putting Everything Together . 78

4.7 Scalability and Expansion . 81

5 Results . 84

5.1 Circuit Characterization . 84

5.2 Memristor Characterization . 86

5.2.1 Threshold . 87

5.2.2 Varying the Device State . 89

5.2.3 State Drift . 94

5.2.4 Negative Differential Resistance . 95

5.3 Evaluation of Programming Algorithms . 98

5.4 TLG Results . 99

6 Conclusion . 109

6.1 Summary of Work . 109

6.2 Conclusion and Future Work . 110

REFERENCES . 114

viii

LIST OF TABLES

3.1 Programmable gain feedback resistor values . 42

3.2 Opamp details . 60

4.1 Boundary parameters . 73

5.1 Calibration values . 86

5.2 DC Threshold levels . 88

5.3 16 possible binary logic operations . 100

5.4 TLG logic configuration states . 101

5.5 TLG memristor resistances . 103

ix

LIST OF FIGURES

2.1 Biological structure of a neural network [29] . 13

2.2 Neuron with two input synapses and one bias synapse 14

2.3 Linear and Non-Linear Separability . 15

2.4 Sigmoid activation function . 17

2.5 ANN weight cube [32] . 20

2.6 MRII training algorithm flow chart [32] . 22

2.7 Physical and circuit model of a memristor . 25

2.8 Ion conduction [5] . 26

2.9 Device cross-section [5] . 27

2.10 Top down view of a memristor device [5] . 28

2.11 Opamp in (a) inverting and (b) non-inverting mode 30

3.1 Simple memristor experimental circuit . 34

3.2 Memristive behavior when a sine wave is applied [5] 35

3.3 Memristor exhibiting Lissajous pattern [5] . 36

3.4 Simple opamp based memristor programming circuit 37

3.5 Result of memristor pulse programming . 38

3.6 Nonlinear output of the reading circuit . 39

3.7 Opamp gain and bandwidth with different feedback resistors 41

3.8 Programming/reading circuit with programmable gain 42

3.9 Output of programming/reading circuit with programmable gain 43

x

3.10 Programming pulse and inverting input behavior 44

3.11 Glitch followed by opamp oscillation . 47

3.12 FPGA development board and DSP board . 53

3.13 Frequency response of a 100µs pulse . 54

3.14 DAC output conditioning circuit . 55

3.15 Pulse controller architecture . 56

3.16 Software architecture . 58

3.17 Final memristor programming/reading circuit . 61

4.1 Opamp summing the three input synapses . 66

4.2 Different hardware synapse implementations . 69

4.3 Synapse supporting both positive and negative weights 70

4.4 Synapse connected to a neuron . 71

4.5 Simulated synapse gain . 74

4.6 Network resistance variation and its outcome . 75

4.7 Synapse gain curve comparison . 76

4.8 Memristor bridge synapse . 77

4.9 Gain curve of the memristor bridge synapse . 78

4.10 Network with Programming Circuit . 79

4.11 PCB built for this project consisting of programming circuit, memristor

array, and ANN . 80

4.12 Network from Figure 4.10 expanded to a multilayer network 82

5.1 Programmer calibration plot . 85

5.2 Cross-talk . 87

5.3 Moving threshold . 89

xi

5.4 Toggling between memristor states . 91

5.5 Relationship between resistance change and previous state 92

5.6 Programming pulse and its effect on the memristor 93

5.7 Copper-based memristor state drift . 95

5.8 Typical NDR curve . 96

5.9 Memristor NDR behavior . 97

5.10 TLG inputs and output . 102

5.11 (a) Weight cube indicating the programming path required to go from

NOR to OR and (b) all programming paths required to obtain the

results seen in Figure 5.10. 104

5.12 Histogram of memristor programming attempts needed 106

5.13 Histogram of attained memristor resistances . 107

xii

LIST OF ABBREVIATIONS

ADC – Analog to digital converter

AI – Artificial intelligence

ANN – Artificial neural network

CMOS – Complementary metal oxide semiconductor

CPU – Central processing unit

DAC – Digital to analog converter

DC – Direct current

DRAM – Dynamic random access memory

DSP – Digital signal processing

ESD – Electrostatic discharge

ESR – Effective series resistance

FPGA – Field programmable gate array

FSM – Finite state machine

GBW – Gain bandwidth

GBWP – Gain bandwidth product

HSMC – High speed mezzanine card

HW – Hardware

xiii

LED – Light emitting diode

LUT – Look-up-table

MAC – Multiply and accumulate

MRII – Madaline rule II

NDR – Negative differential resistance

PCB – Printed circuit board

PGA – Programmable gain amplifier

PSD – Power spectral density

SNR – Signal to noise ratio

SPA – Semiconductor parameter analyzer

STDP – Spike-timing dependent plasticity

TLG – Threshold logic gate

TLU – Threshold logic unit

UART – Universal asynchronous receiver/transmitter

VLSI – Very-large-scale-integration

xiv

1

CHAPTER 1

INTRODUCTION

This chapter introduces the memristor, upon which this work is based, and explains

current technological challenges prompting the need for neuromorphic computing.

The introduction culminates with the motivation of this work and concludes with an

ethical analysis.

1.1 The Memristor

In 1971, Leon Chua realized that the three basic circuit elements - the resistor, the

capacitor, and the inductor - share some similarities that are symmetric. In fact,

the symmetry suggested that there should be a fourth basic circuit element. Chua

reasoned that from a circuit’s point of view there are four fundamental variables,

namely the current i, the voltage v, the charge q, and the flux linkage ϕ. The resistor

is defined by the relationship between v and i, the capacitor between q and v, and

the inductor between ϕ and i. Only the relationship between ϕ and q remained

unexplained. For the sake of completeness and symmetry, Chua argued that a fourth

basic two-terminal circuit element defined by a ϕ-q curve should exist [8], providing

the fourth and missing basic circuit equation linking ϕ and q, which is mathematically

described as

dϕ = Mdq, (1.1)

2

where M is the memristance, the proposed device’s parameter.

This fourth basic circuit element is termed memristor, which is a contraction for

memory resistor. The memristor is like a potentiometer, allowing us to continuously

change its resistance. However, a memristor has only two terminals and the resistance

is changed by applying different writing and erasing potentials across the device. Since

it can remember its previous state, the device has memory. In 1976, Chua and Kang

defined the memristor as a general nonlinear dynamic system, called a memristive

system [10]. The difference between a memristive system and a regular nonlinear

dynamic system is that the output of a memristor is zero, whenever the input is zero.

This is evident by the state equations

dx

dt
= f(x, u, t), (1.2)

y = g(x, u, t)u, (1.3)

where u and y are the input and output of the system and x is its state. While

Equation 1.2 governs the state of the memristor’s memory, we can clearly see that

it has no effect on the output when the input is zero. Therefore, the i-v curve of a

memristor looks like a Lissajous figure, which always crosses the origin [10]. Chua

further described a memristor as a voltage-controlled, one-port device, which can be

described similarly to Equations 1.2 and 1.3 as

dx

dt
= f(x, v, t) (1.4)

and

i = G(x, v, t)v, (1.5)

3

where i is the device current, v the voltage across the device, G the conductance of

the memristor, and x is its state. Chua and Kang furthermore stated that several

physical devices such as the thermistor, the Hodgkin-Huxley circuit model, or the

discharge tube exhibit an i-v curve, which can be described by the general memristor

model [10]. However, the mathematical memristor concept as given by Equations 1.2

and 1.3 has not been connected to any practical physical systems for almost 40 years.

Strukov et al. were the first to publicly announce that they had built a device that

behaved like a perfect memristor [30].

1.2 Current Technological Challenges

Though we still seem to follow Moore’s law and computers are still getting more and

more powerful, processor speeds seem to have staggered and peaked-out at the lower

GHz level. There are several different reasons that prohibit technology from advancing

without bound to satisfy our ever-growing hunger for more computing power. On one

side there are fabrication challenges, which require new semiconductor technologies

to be developed in order to fabricate digital hardware on an even smaller scale. On

the other side the laws of physics will not allow us to keep increasing processor

clocking speeds. Researchers have begun looking into using light as a high-speed data

carrier for on-chip communication. While this might help advance digital processing

technology further, there is another shortcoming of modern computer architecture.

Conventional digital computers rely upon a sequential processing scheme (fetch,

decode, execution). The Von Neumann or Princeton computer architecture, proposed

in 1945 by John Von Neumann, is still prevalently used, but because it uses a shared

bus between data and program memory, the so called Von Neumann bottleneck arises

4

[35]. Since both data and instructions are stored in the same memory space, the

CPU can only fetch either a new instruction or data at any one time, limiting the

throughput. With increasing CPU speeds and bigger memory sizes, the Von Neumann

bottleneck becomes more of a problem, because the throughput between CPU and

memory doesn’t increase as fast as the rest of the technology. Mechanisms like cache

and branch prediction can help alleviate the issue to some extent, but the bottleneck

still appears to be a severe problem for modern processor generations [35]. The

Harvard computer architecture doesn’t have this limitation, as program memory and

data memory are separated; the processor uses a separate bus for each memory. It

can therefore access both memories concurrently. Processors based on the Harvard

architecture often use the so called modified Harvard architecture, which relaxes the

strict Harvard architecture a little bit. The CPU operates on two separate caches (one

for instructions and another for data), therefore making it look like a pure Harvard

machine. However, both caches are fed by the same memory where instructions

and data are located, therefore also implementing the Von Neumann architecture.

Modern processors such as the ARM architecture and X86 processors use this modified

Harvard architecture [34].

Faster and more powerful processors come at a high cost, because higher switching

frequencies consume more power. However, processor speeds have recently staggered

at the lower GHz range because of some circuit-related issues. As Casper points

out, legacy backplanes, which are used to connect several different peripheral devices

like memory and other I/O devices, have a severe dip in their frequency response at

around 5 GHz [7]. This means that faster CPUs would not necessarily increase overall

computing speeds, because the underlying hardware is not capable of supporting such

high clocking rates. While semiconductor processes need to be refined to actually

5

make CPUs capable of much higher clocking frequencies, researchers are looking

at using different backplane interconnects supporting higher multi-Gb/s I/O. One

solution is to use light and fiber-optic technology as it not only supports much higher

speeds, but drastically reduces insertion losses compared to conventional copper-based

backplane interconnections [7].

Looking at modern processors from another perspective, we can see that they

are all based on finite state automatons, which transition between a finite number

of predefined states. These states are defined as digital logic in silicon and can’t be

reconfigured once produced. Field-programmable-gate-arrays (FPGA) on the other

hand are reconfigurable and have the capability of performing the same operations at

much higher throughput than a conventional CPU. This is because the user-defined

functions are all fully implemented in hardware and run in parallel. Besides massive

parallelism offered by FPGAs, their clocking rates are much lower, often in the 100

MHz range, which enables them to drastically reduce power consumption. Since

FPGAs implement all of the user-defined functionality directly in hardware and not

in software, they are way more efficient than conventional processors. While the

majority of low-level software functionality can be implemented in digital hardware,

it would require a very large amount of FPGA resources for higher-level functionality

and is therefore not a viable alternative. Exceptions are applications that only need

to perform a few select tasks.

1.3 Bioinspired Circuits

Nature has adapted to many changes and found solutions for many problems. Instead

of reinventing the wheel, why not look to nature for solutions to issues or needs

6

we have in our everyday life? This questions prompts many researchers to get

inspired by nature, causing a Bioinspired Engineering area to emerge. Many products

we’re using on a daily basis are based on processes found in nature. With the

computing challenges outlined in Section 1.2, researchers are looking to nature to

improve computing power and lower energy consumption. For example, to perform

certain cortical simulations of a cat brain, a team from IBM uses a supercomputer

with 147,456 CPUs and 144TB of main memory. The simulation runs about 83

times slower than in nature [17]. While computers are fast enough to emulate

brains of spiders, mice, and even cats, the energy requirement and dissipation grows

exponentially with the intelligence of the animal [17]. The example above clearly

depicts the vast differences between our current computing technology and nature’s

computing capability. The main difference is found in the architecture. While our

CPUs employ mainly the Von Neumann architecture, nature achieves high efficiency

with high connectivity between neurons, offering highly parallel processing power

[17]. It is not hard to see that bioinspiration and neuromorphic research are leading

the way towards revolutionizing current computation technology. Researchers even

expect that this kind of research will give artificial intelligence a boost.

1.4 Motivation and Objective

So far we have seen current technological computing challenges and that researchers

are turning to nature to find answers and new ideas for improvement. While neural

networks and other artificial intelligence functionality can be relatively easily imple-

mented in software, hardware implementation of such systems is relatively scarce.

However, with the discovery of the memristor there is new hope on the horizon. It is

7

no coincidence that the memristor is being used in neuromorphic computing. Back

in 1976, Chua and Kang discovered that the Hodgkin-Huxley model that describes

how action potentials in mammalian neurons are initiated and propagated, follows

the general mathematical memristor model [10]. The memristor is therefore perfect

for use as a synapse in a hardware-based artificial neural network (ANN).

The work presented here is motivated by the current technological challenges

outlined above and by the recent developments in memristor technology. While many

research groups have already published their simulation-based work on advanced

memristor networks capable of learning and functioning like a brain, there has been

very little work involving an actual hardware-based ANN. The vast majority of

actual hardware-based results originates from memristor characterization and is not

tied to an actual application. The work presented here is focussed on building a

memristor-based neuromorphic computing application in order to show the viability of

memristors as synapses in ANNs. It needs to be noted that the implemented network

is a threshold logic gate (TLG), which is a special case of an ANN. Furthermore, the

implemented network is not driven by a learning algorithm, but is rather controlled

manually to adjust the memristors. Chapter 5 outlines current shortcomings of

memristors and learning algorithms and presents possible solutions that can be used

to add learning to the network at a later point. The following list shows the objectives

of this work:

1. Develop memristor programming and reading circuit.

2. Develop synapse and neuron circuit.

3. Build a fully hardware implemented TLG.

4. Evaluate and characterize memristors for use in a synapse.

8

5. Find the effect of the training environment on training algorithms.

As can be seen, the majority of the objectives are hardware oriented and involve

a fair amount of circuit development. Chapter 2 presents some general background

information pertinent to this work. Chapter 3 describes a method to program and

read the state of a memristor, which is an integral part of the final fully hardware

implemented TLG. Furthermore, the neural network, consisting of synapse, neuron,

and other supporting functionality, needs to be built in hardware such that it supports

the use of memristors. Chapter 4 elaborates on that. Last, but not least, we need to

characterize and evaluate memristor behavior in an ANN type of application, such

that necessary adjustments can be made for the final application. Also, finding the

effects of the training environment on training algorithms is necessary in order to

come up with a new training algorithm that is hardware friendly. Chapter 5 presents

the characterization and TLG performance results, while Chapter 6 concludes this

work with a summary and recommendations for future work.

1.5 Ethical Issues

It is the author’s opinion that the ethical implications of any type of work should be

carefully considered. It is good practice to act according to the NSPE Code of Ethics

for Engineers whose first fundamental canon suggests “to hold paramount the safety,

health, and welfare of the public” [27]. Especially when dealing with new technologies

that overlap with and influence artificial intelligence, it is important to seek ethical

advice that goes beyond the fundamental ethical canons for engineers.

When reading literature about ethical implications and issues of artificial intelli-

gence, the term super-intelligence often appears. While super-intelligence does not yet

9

exist and experts cannot foresee when and if super-intelligence will be invented, several

authors have argued that super-intelligence might emerge because of advances in

hardware performance and the ability to implement algorithms and more importantly

architectures similar to those used by mammalian and human brains [4]. Whether

it is our intention to work towards super-intelligence or not, neuromorphic research

is working towards its development. Super-intelligence would indeed allow us to

build more powerful computers as stated above, but it would also enable advanced

weaponry [4]. While the former can easily be seen as an advantage, the latter could

be a threat to humanity if this technology falls into the wrong hands. Especially when

bearing in mind what Nick Bostrom stated about the creation of super-intelligence:

Super-intelligence may be the last invention humans ever need to make. This is

because the intellectual superiority of super-intelligence would be much better and

faster at doing scientific research than any human being, possibly even better than

all humans together [4].

Another aspect to keep in mind is that super-intelligence might not have human-

like psyches. Even if it is built based on human-like emotions, it has the capability

of evolving and changing its own source code. On the other side, defining a top-level

goal is of utmost importance, but if this goal later turns out to be a false utopia,

things essential to human flourishing get irreversibly lost [4]. Bostrom states: “We

need to be careful about what we wish for from a super-intelligence, because we might

get it.” It is hard to decide whether the development of super-intelligence should be

delayed or advanced, but experts agree that humankind will sooner or later be faced

with some kind of super-intelligence [4]. Therefore, we all need to remind ourselves

of the moral implications super-intelligence could bring.

10

CHAPTER 2

BACKGROUND

This chapter gives the background information needed to understand and reproduce

the work presented here. It begins with a basic introduction to artificial neural net-

works and mentions two common learning algorithms used for training. Furthermore,

the functionality and intrinsic operation of memristors are presented. Although not

necessarily part of the work presented here, the theory and physical relationships to

memristors are important parts that need to be understood in order to be able to

control the device accurately. The chapter will end with a brief review of opamps,

which are integral to the circuit development presented later.

2.1 Artificial Neural Networks

The neuromorphic application built for this Master’s thesis is based on the basic

structure of artificial neural networks (ANN). The following sections will make clear

that ANNs coupled with a learning algorithm can be used for learning applications.

It needs to be pointed out that the work presented here does not include a learning

algorithm and the threshold logic gate (TLG) built for proof-of-concept purposes does

not exhibit learning, because current learning algorithms are not hardware friendly

enough to be used with memristors (see Chapter 5 for more details). However, the

following sections on ANNs are important for this work as they constitute the foun-

11

dation for the TLG and heavily influenced the circuit design presented in Chapters 3

and 4.

2.1.1 A Brief History Lesson

In 1943, McCulloch and Pitts published a paper called “A logical calculus of the ideas

immanent in nervous activity” [23]. This paper is regarded as the beginning of artifi-

cial intelligence, as it elaborated on the mammalian neuron as well as the combination

of multiple neurons through synapses [24]. In 1949, Donald Hebb published his theory

in neuroscience, explaining how neurons in the brain adapt during the learning process

[15]. The theory, commonly known as Hebbian theory, describes a synaptic plasticity

mechanism that causes a pre-synapse to increase its efficacy on a post-synapse by

repeatedly stimulating it. These findings spurred research in neuroscience and most

importantly artificial intelligence. In 1957, Frank Rosenblatt invented the perceptron,

a classification algorithm based on a linear predictor function [24]. More specifically,

the perceptron is an automaton demonstrating that adaptive neural networks with a

rich interconnectivity and synapse-like nonlinearities could mimic cognitive functions

[12, 24].

Rosenblatt demonstrated that his generalized perceptron using a variable and

fixed layer of weights could solve any dichotomy. This generalized perceptron is also

called a single-layer perceptron or neural network [24]. In 1967, Minsky and Papert

concluded that a single-layer perceptron is not able to implement nonlinear decision

boundaries [24]. Unfortunately, many misunderstood this shortcoming as a general

problem of neural networks, bringing the first era of artificial intelligence to an end.

Neural network research was at a dead end until multi-layer networks (i.e., multi-layer

12

perceptrons) were more thoroughly investigated and training methods were found,

enabling the network to solve more complex problems.

2.1.2 Basic Structure

As already mentioned, ANNs are motivated by the biological structure of mammalian

brains. The structure and functionality is best explained with a graphical depiction

as seen in Figure 2.1. The depiction starts with the input zone of the cell (neuron).

Input signals from other neurons or stimuli are received through the dendrites and

passed on to the cell body. The summation zone is where the signals are summed up

and possibly trigger a signal that is carried through the conduction zone to the output.

The synaptic knobs in the output zone are connected to additional dendrites. Current

theories of memory in mammalian brains state that the synapses play a key role in

how memories are stored in the brain. These theories are backed up by the Hebbian

theory and are evidenced by the chemical reactions in the pre-synaptic cells, which

affect the amount of neurotransmitters emitted and received by the post-synaptic cell

[15, 29]. The neurotransmitters are responsible for transporting information across

the synaptic cleft [29].

Figure 2.1 depicts the synapses and neurons as the active parts and the dendrites

and axons as passive conduction elements. We can now make the jump to an artificial

neural network depicted in Figure 2.2, which shows a simple single-layer ANN. The

synapses can be thought of as weights, either amplifying or attenuating the signal,

while the neuron can be broken down into signal summation and activation function.

As with the biological neuron, the activation function is what triggers an output signal

depending on the strength of the sum. Each layer can have multiple neurons and each

input is connected to each neuron through a synapse. The general mathematical

13

Figure 2.1: Biological structure of a neural network [29]

model of a single-layer can be described as

y = f(
∑

gi(xi, wi)) = f(
∑

xiwi), (2.1)

where x is the input, w is the weight, and g(x,w) is the synapse function adding

weight to the signal. The function f(·) is called the activation function and will

be introduced later. A multi-layer network is essentially just the combination of

multiple single-layers by treating the outputs of a layer as the inputs to the next

layer. Although Rosenblatt differentiated between series-coupled, cross-coupled, and

back-coupled network topologies, series-coupled networks are most common [12, 24].

14

Figure 2.2: Neuron with two input synapses and one bias synapse

Often, a network is divided into input, hidden, and output layers, where the input

layer is the first, the output layer the last, and the hidden layer everything else

in-between (i.e., a layer or layers not directly connected to inputs or outputs). Also,

the input layer is most commonly only a fixed weight layer used for performing signal

conditioning [12]. The neural network seen in Figure 2.2 is often called a feedforward

network as the act of classification consists of feeding information forward from one

layer to the next. The flow of information is unidirectional.

2.1.3 Linear and Non-Linear Separability

Before we introduce activation functions, it is important to understand the two types

of patterns an ANN can encounter. In general, a pattern can be classified as either

a linearly or nonlinearly separable pattern. Figure 2.3 shows the difference between

the two types on some simple, well-known binary patterns. It is obvious that linearly

separable patterns can be solved by a simple linear decision boundary implemented

with a rather simple algorithm. More complex, non-linearly separable patterns require

a more complex pattern recognition algorithm. Figure 2.3a shows the AND, OR,

NAND, and NOR patterns, which are all linearly separable. Figure 2.3b, however,

shows the XOR pattern, which is not linearly separable, as evidenced by the x-y plot.

Rosenblatt’s as well as Minsky and Papert’s findings can be combined to conclude that

15

(a) (b)

Figure 2.3: Linear and Non-Linear Separability

a single-layer perceptron can solve any linearly-separable dichotomy, but a multi-layer

network is required to solve all nonlinear dichotomies. In short, a “simple” nonlinear

decision boundary can be implemented with a single-layer perceptron, but a more

“complex” one, like the one seen in Figure 2.3b, can’t and requires at least one

additional network layer. It should be noted that the XOR pattern seen in Figure 2.3b

is often used as a benchmarking problem because of its rather complex, fully enclosed

decision boundary. Literature commonly compares performance of ANNs through

the XOR problem.

2.1.4 Activation Function

As previously mentioned, the activation function is the part of the neuron responsible

for triggering an output signal depending on the strength of the sum of its inputs.

In other words, the activation function can be thought of as a decision maker. For

example, if the sum is above a certain threshold, the neuron’s output either indicates,

16

depending on the activation function, whether an event has occurred (hard threshold)

or how likely it is that an event has occurred (soft threshold). Rosenblatt described

the activation function as either linear, hard-threshold, or an S-curve [24]. We shall

call the linear and S-curve-like activation functions a soft-threshold, as they do not

make a definite decisions (1 or 0, yes or no) for every input value.

A linear activation function is essentially just a scaling factor or slope m. Equa-

tion 2.1 can then be expressed as

y = m
∑

xiwi. (2.2)

While a linear activation function can solve linearly separable problems like the AND,

OR, NAND, or NOR problem, it is often not used because of its limitations. Linear

activation functions are often used for input layers using fixed weights to perform

signal scaling or conditioning [12].

Modern ANNs most often use nonlinear S-curve-like activation functions. Exam-

ples are the sigmoid, hyperbolic tangent, and polynomial functions. The sigmoid is

probably the most commonly used activation function and can mathematically be

expressed as

f(x) =
1

1 + e−λx
, (2.3)

where λ determines the steepness of the curve. Figure 2.4 shows the sigmoid activation

function based on different values of λ. As λ increases, the curve becomes steeper and

essentially turns into a hard threshold as λ approaches∞. The parameter λ needs to

be carefully chosen, as high values are better for making a [0,1] decision, but training

algorithms (like backpropagation) work better with lower values due to the smoother

derivative of the sigmoid.

17

Figure 2.4: Sigmoid activation function

As can be seen from Figure 2.4, the sigmoid is a saturating function, meaning

that its output values are always within the interval [0,1]. Figure 2.4 suggests that

the input range should be in the range of [-1,1]. While this is generally a good idea,

it is especially important for sigmoids. Let’s elaborate on this with an example:

Assuming that we have two inputs, the first being the weight of cars in pounds and

the second being their fuel consumption in miles per gallon. Both of these inputs

are most definitely exceeding the ideal input range of [-1,1]. In fact, both numbers

are always greater than zero, but most importantly, the weight is usually a much

larger number than fuel consumption. There are two problems with this: First, the

weight, which for the average car is in the thousands, will easily saturate the sigmoid.

Second, the difference in orders of magnitude between the two inputs require the

synapse values for the “weight” measurement input to be much smaller than for the

“miles per gallon” measurement input. It is very hard for the training algorithm to

18

accommodate such inputs. Therefore, it is recommended that the training dataset is

normalized and input scaling is used [12]. While normalization does only get us to

a [0,1] input range, this is often all we can do for real-world input values. However,

computer simulations in conjunction with the work presented here have shown that

an ANN trains much better if binary problems are presented to the network in the

form of [-1,1] instead of [0,1].

Last, but not least, a nonlinear hard-threshold can be used as an activation

function, which is essentially just a step function but is more commonly referred

to as the signum or sign function. It can mathematically be expressed as

f(x) = sign(x) =


−1 for x < 0

0 for x = 0

1 for x > 0

. (2.4)

Even though the signum function is piecewise linear, it is considered a nonlinear

function, but the point here is that it is not continuous. Discontinuity of an activation

function poses a serious problem with the commonly used backpropagation learning

algorithm, because the derivative is undefined at x=0. However, there is an alternative

to the backpropagation algorithm as we will see in Section 2.1.6.

It needs to be noted that a neuron using a hard-thresholding activation function

is also called a threshold-logic-unit (TLU). A network using TLUs is therefore called

a threshold-logic-gate (TLG), which is a special case of an ANN.

2.1.5 Bias Input

Figure 2.2 depicts a simple ANN with three inputs, one of them being a bias input.

There is no general rule that a bias input is required. However, training is facilitated

19

if one is used. This is best explained with a 3-D weight space depiction of the network

in Figure 2.2. Assuming that we would like to recognize the patterns for AND, OR,

NAND, and NOR, we would need four different sets of distinct weights. These four

sets of weights are mutually exclusive, meaning that each pattern can have more than

one set of working weights, but all sets of weights for one particular pattern are not

a solution to any of the other patterns. Figure 2.5 shows this relationship. Note

that the weights were limited over the interval of [-1,1] for simplicity’s sake. The two

input weights are w1 and w2, respectively, and w0 is the bias weight. If w0, w1, and

w2 are chosen to be -1, then the NOR pattern can be recognized. Note that changing

the bias weight w0 from -1 to 1 changes the network to recognize the NAND pattern

without having to change the actual input weights. Furthermore, setting w3 = 0 (no

bias input) causes the network to be uncertain (i.e., from the graph in Figure 2.5 it is

not clear which pattern is chosen). For this particular network topology and patterns

a bias input is required for proper classification. In essence, the bias input shifts the

decision threshold up or down.

2.1.6 Training Algorithms

As mentioned before, the backpropagation algorithm is among the most popular

training algorithms used to train complex ANNs. It is based on a gradient descent

algorithm, trying to minimize the output error by tracing the error backwards through

the network. This backwards propagation is used along with the derivative of each

activation function to calculate the weight change for each synapse [12]. The back-

propagation algorithm works with virtually any activation function as long as it is

continuous and its derivative is defined over the entire interval [12]. For hardware

implementations the backpropagation algorithm is not ideal for the following reasons:

20

Figure 2.5: ANN weight cube [32]

- A continuous activation function such as the sigmoid is hard to implement in

discrete circuits;

- An inverter used as a hard-threshold is the optimal discrete circuit activation

function;

- Simulations done by Thanh Tran showed that both single and multi-layer ANNs

recognizing AND, OR, NAND, NOR, and XOR patterns train very well using

Widrow’s MRII training algorithm [32].

Since the objective of this work is to build the hardware TLG that Tran has simulated,

we will forego backpropagation and treat MRII as a potential training algorithm

candidate. Although a training algorithm will not be implemented here, it will

influence the circuit design of the network.

21

MRII Algorithm

Back in 1960, Widrow used Rosenblatt’s perceptron to build what he called an Adaline

(ADALINE = ADAptive LINEar) neuron. An Adaline is very similar to the general

perceptron, but uses a quantizer for the activation function, making it a TLU, and

requires binary inputs of [-1,1]. The neuron forms a linear combination of inputs and

weight values. If the linear combination is above a certain threshold, the output is

+1, otherwise it is -1. The threshold can be adjusted using the weight w0, which is

the bias weight [33]. In essence, the Adaline is just a special case of the perceptron

and is considered hardware friendly because of its simple hard-thresholding activation

function. This is perhaps the reason why Adalines are still the subject of research,

even though they are over 50 years old [20].

Almost 30 years later in 1988, Widrow and Winter came up with MRII, a simple

training algorithm, which can be used to train a network of multiple Adalines [36].

MRII stands for “Madaline Rule II,” where “Madaline” means multiple Adalines.

The algorithm is based on the minimal disturbance principle and starts working from

the output layer backwards to the input layer. Unlike the backpropagation algorithm,

MRII always performs feedforward on all training samples during a single training

cycle, calculating how many of them are misclassified by the network. If the error is

zero, then the algorithm stops without performing weight adaptation, as the network

is already trained. If the error is greater than zero, then the algorithm disturbs

the weights of the output layer node (neuron) that has the least confidence. Since

Adalines are optimized for values in the range of [-1,1], the neuron whose sum is

around 0 shows weak confidence, whereas a sum close to or above -1 or 1 shows high

confidence. Measuring confidence of a neuron means tapping into its signal flow right

22

Figure 2.6: MRII training algorithm flow chart [32]

before the sum is passed to the quantizer (thresholding unit) [36].

The weight adaptation is performed by adding a random value to each involved

weight. Mathematically this can be expressed as

wi[n] = wi[n− 1] + ∆wi, (2.5)

where ∆w is the change in weight and can itself be expressed as

∆wi = η ∗ rand(), (2.6)

where η is the learning rate, governing the distribution of the noise or in other words,

how much the weights are disturbed.

Figure 2.6 shows a simplified flow-chart of the MRII training algorithm. Once

the algorithm detects a mismatch between training set and classification output, it

23

starts to adapt the weights. It does so by starting with the output layer node that

has the least confidence. If the weight disturbance was not effective, the node will be

set back to its old weights. The algorithm then performs weight disturbance on the

two lowest confidence nodes, repeating the same procedure. After every disturbance,

the network is tested by feeding the entire training set forward. MRII continues to

include more nodes and eventually more layers until the total error is reduced. As

Figure 2.6 shows, the algorithm moves back towards the input layer until the overall

error has been reduced. If that is the case, the algorithm accepts the new weights

and starts over. If the error was not reduced, or even increased, the distribution η

of the random number generator is increased and another attempt is made. Because

weight disturbance relies on adding random values, it might take multiple attempts

to get a correct output. Each time the algorithm encounters an error reduction, η is

reset [32].

Increasing the distribution of the random number generator each time MRII

encounters a failed training loop is a modification Tran made to the base algorithm.

She furthermore implemented a maximum loop rule, which says that if the algorithm

was not able to reduce the error to zero after Niter iterations (Tran used Niter = 50

for XOR and Niter = 30 for AND, OR, NAND, NOR), then it is probably hopeless

to keep training. The network is reset and reinitialized with fresh, randomized

weights. Training for Niter iterations is considered an epoch and it might take multiple

epochs to successfully train an Adaline-based ANN. Tran’s results proved that these

modifications yielded very good results with significantly fewer training iterations

compared to backpropagation [32].

24

2.2 Memristor

Chapter 1 generally introduced the memristor as a voltage controlled, one-port device

relating the flux linkage ϕ to the charge q. While the general memristor model was

introduced in terms of a nonlinear system, we are still missing the connection to an

actual physical device.

2.2.1 Physical Model

In essence, the memristor is a device much like a resistor, but can change its intrinsic

resistance based on the applied voltage and most importantly remember its resistance

when power is removed, making it perfect for non-volatile analog memory applica-

tions. While modulated device resistance due to ion migration had been observed for

decades, memristor research received much attention since Strukov’s paper publicly

linked this behavior to Chua’s memristor model in 2008 for the first time [26]. Strukov

furthermore claimed that a memristor can be thought of as a thin semiconductor

film with thickness D sandwiched between two contacts. The semiconductor film

has a doped area with width w and an undoped area with width D-w. The total

resistance of the device is then simply the series resistance of the doped and undoped

region. By changing the width w, we can then adjust the resistance of both the

doped and undoped region, therefore changing the overall resistance of the device [30].

Figure 2.7a shows the physical memristor model with the doped and undoped area,

while Figure 2.7b shows the circuit model with the two series resistances. Changing

the width w affects both RON and ROFF and therefore the overall device resistance.

Mathematically, this can be expressed as

25

(a) (b)

Figure 2.7: Physical and circuit model of a memristor

V (t) =

(
RON

w(t)

D
+ROFF

(
1− w(t)

D

))
I(t), (2.7)

where V(t) is an external bias voltage causing the charged dopants to drift, therefore

adjusting w. Equation 2.7 is true for the simplest case of ohmic electronic conduction

and linear ionic drift in a uniform field with average ion mobility µv [30]. The

parameter w can then be expressed as

w(t) = µv
RON

D
q(t). (2.8)

Inserting Equation 2.8 into Equation 2.7 yields the memristance of the system, which

for RON << ROFF simplifies to

M(q) = ROFF

(
1− µvRON

D2
q(t)

)
. (2.9)

2.2.2 Device Topology

As stated above, a memristor’s resistance modulation can be achieved by ion mi-

gration in the semiconductor layer of the device. Memristors are therefore some-

times also called ion-conducting devices, as the magnetic flux moves ions into or

out of the semiconductor film’s insulation layer, affecting the device’s conductance

26

Figure 2.8: Ion conduction [5]

[17, 18, 26, 30]. Literature reveals several different semiconductor materials being

used as active regions for memristors, ranging from TiO2 [30] over Ag-Si [18] to

Ag-chalcogenide [26]. The work presented here is based on Ag-chalcogenide (silver)

and Cu-chalcogenide (copper) devices manufactured by Dr. Campbell’s research group

at Boise State University.

In general, the semiconductor film of a memristor consists of a top electrode,

a bottom electrode, and an insulating layer. After fabrication, the device is in a

high-resistance state (GΩ). Regardless of the switching material used in the active

layer, a so-called electroforming process is required to inject metal ions into the

insulating layer, causing semi-permanent structural modifications [18]. After this

initial procedure, the filament-like structure enables metal ions to easily migrate in

and out of the active region. By applying a positive voltage, ions move into the

active layer, forming a low resistance path, whereas a negative voltage causes ions to

migrate out of the active layer and go back to the top electrode [26]. Figure 2.8 shows a

simplified depiction of the initial (unprogrammed), low-resistance, and high-resistance

27

states.

Figure 2.9: Device cross-section [5]

Figure 2.9 shows a cross-section of a typical Ag-chalcogenide memristor fabricated

at Boise State University. The Ge2Se3 adhesion layers are only used for device pro-

cessing, as Ag cannot be directly deposited onto the M-Se layer. Furthermore, W does

not adhere well to Ag [6, 26]. The yellow middle layer consisting of M-Se is essentially

the amorphous insulation layer, where M is a placeholder for various different metals.

Using different materials for the M-Se layer, different device characteristics can be

achieved [6].

Figure 2.10 shows an optical top down view of a fabricated memristor device on

the substrate. The large square on the left is the bond pad for the top electrode and

the white metal line on the right is the bottom electrode. The device is located at

the intersection of the blue and white metal lines.

2.2.3 Threshold

Literature reports that a certain threshold voltage is required for ion migration to

start. It is noteworthy that the threshold applies to both writing and erasing (i.e.

positive and negative) voltages, but the threshold levels are not equal [17, 18, 26, 30].

28

Figure 2.10: Top down view of a memristor device [5]

While Chua’s memristor model does not account for a threshold, one might argue

that contemporary memristors are not actual memristors, but rather memristive-like

devices. On the other hand, having a threshold is very practical to read a device’s

state. Without a threshold, every read cycle would inevitably change the device’s

state, which is not desirable. Fortunately, Chua recently published a tutorial on the

memristor and explained that its fingerprint is a continuum of pinched hysteresis loops

at all frequencies and for all initial conditions [9]. The Ag-chalcogenide memristors

used for this work exhibit this phenomenon and by that definition can be called

memristors. Figure 3.3 in Chapter 3 shows that the hysteresis loop is indeed pinched.

2.2.4 Controlling a Memristor

Since a memristor is only a two terminal device as opposed to the three terminal

potentiometer, one might wonder how the device’s resistance can accurately be con-

trolled. The previous section already alluded to the fact that positive and negative

potentials cause the device to write and erase. At this point, there is no accurate

model that foresees how much the memristor’s state will move if a voltage pulse of

length x and voltage y is applied. As stated in Section 2.2.3, the writing and erasing

voltages have to exceed a certain threshold for the memristor to change its state.

29

There are both a writing as well as an erasing threshold and they are not necessarily

at the same absolute voltage level. Furthermore, thresholds can change as the device’s

resistance is altered, making it even more difficult to make an accurate prediction of

where the state is going to end up [5]. It is therefore important to read the device’s

state after each writing/erasing pulse so that programming error can be detected and

compensated for by applying subsequent pulses. A typical writing/erasing algorithm

will therefore send multiple pulses interspersed with reading pulses to the memristor.

It is of importance to make sure that the following general rules are followed:

- The reading voltage should be as low as possible to prevent unintentional ion

movement. For the Ag-chalcogenide devices used for this work, the reading

voltage should not exceed 40mV [5].

- If a large reduction in resistance has been observed after applying a writing

pulse, the device should be fully erased before applying another writing pulse.

A large ∆R indicates hard device switching, meaning that most of the silver

from the top electrode is embedded in the amorphous insulation layer. Applying

another writing pulse might irreversibly damage the device [5].

- Erasing pulses of very short duration and high enough amplitude can cause the

device to go into negative differential resistance (NDR) mode or even damage

the device. Repeated mild erase pulses won’t cause long-term damage [5].

2.2.5 Memristor vs. Memistor

As a final note, it should be mentioned that the memristor is not to be confused with

the memistor, a three-terminal device invented by Bernard Widrow in 1960. Like the

memristor, the name memistor is a contraction for “Memory Resistor” and is based

30

on the phenomenon of electroplating. Resistance can be controlled by chemically

depositing metal onto a resistive substrate [33]. Although Widrow’s memistor seems

to be very similar to Chua’s memristor, Widrow invented his device for the sole

purpose of creating an adaptive linear neuron, whereas Chua used his device to explain

the relationship between charge q and flux linkage ϕ and therefore defined the missing

fourth basic circuit element.

2.3 Opamps

Operational amplifiers, opamps for short, play an integral part of the work shown

here. Therefore, it is appropriate to state the general equations as a reference for the

reader.

2.3.1 Basic Opamp Equations

An opamp can be used in two different basic configurations: the inverting and non-

inverting mode. Figure 2.11 shows the two basic opamp configurations.

(a) (b)

Figure 2.11: Opamp in (a) inverting and (b) non-inverting mode

The inverting input in 2.11a is effectively tied to ground through the virtual ground

assumption. Since no current is flowing into the input terminals of an ideal opamp,

31

the current flowing through R1 (from VIN to ground), is also flowing through Rf . The

output of an opamp in an inverting configuration can therefore simply be expressed

as

Vout = Vref − (Vin − Vref)
Rf

R1

, (2.10)

where Vin is the input voltage and Vref is the reference voltage at the non-inverting

node. If Vref is set to zero (i.e., non-inverting node connected to ground), Equa-

tion 2.10 reduces to

Vout = −Vin
Rf

R1

. (2.11)

For an opamp in a non-inverting configuration, the circuit behaves similarly.

However, the input signal is what gives us the fixed reference. Through the virtual

ground assumption, the same potential appears on the inverting input node, causing

a current to flow through R1. We know that there is no current flowing into or out

of either input nodes, therefore the current has to be supplied through Rf from the

output node. The output voltage of such a configuration is expressed as

Vout = Vref + (Vin − Vref)
R1 +Rf

R1

, (2.12)

where Vref is the reference voltage at the bottom of R1. Again, let’s set Vref to

ground (zero) as depicted in Figure 2.11b to arrive at the simplified non-inverting

opamp output equation

Vout = Vin
R1 +Rf

R1

. (2.13)

32

2.3.2 Frequency Response and Gain Bandwidth Product

Reality tells us that virtually anything has a frequency response. While we can

control the gain of an opamp through R1 and Rf , opamps are limited in frequency,

meaning that as the frequency of the applied signal is increased, the device might not

be able to add the requested gain. In general, opamps have a low-pass like frequency

response and circuit designers need to keep the frequency response in mind. However,

the tricky part is that the frequency response changes with the gain. Let’s say, for

example, an opamp has a unity gain bandwidth (GBW) of 1 MHz. This implies that

at 1 MHz the opamp can produce a gain of 1. Even though decreasing the frequency

will bring us back into the nominal frequency bandwidth, an opamp cannot attain

any gain at any frequency. The so called gain bandwidth product (GBWP), given by

GBWP = AN ∗ f, (2.14)

where f is the desired frequency and AN is the noise gain, specifies the bandwidth of

an opamp at a given gain and frequency. The noise gain is the same for both inverting

and non-inverting opamp configurations and is defined as

AN = Anoninverting =
1

βnoninverting
=
R1 +Rf

R1

. (2.15)

Keep in mind that GBW is constant for voltage-feedback opamps. Therefore, one

has to pick values for AN and f that result in a GBWP that is less than or equal

to GBW. In short, when designing an opamp-based circuit, designers have to choose

an opamp such that the product of the desired frequency and gain does not exceed

GBW.

33

CHAPTER 3

MEMRISTOR PROGRAMMING AND READING

CIRCUITRY

Before a memristor-based TLG can be built to perform classification, we first need

to be able to program memristors and read their current state. This can in theory be

done relatively easy, as we will see in Section 3.1, but it also poses some challenges

when precision and accuracy is required. At this point, it should be noted that if

the programing and reading hardware is not properly working or the memristor’s

functionality is compromised, the TLG cannot be trained and is therefore not able to

classify patterns.

Thanh Tran simulated a memristor-based ANN including programming/reading

circuitry [32]. While her work pioneered neuromorphic computing in terms of using

memristors as synapses in ANNs, it did not account for several hardware related

challenges due to the nature of a simulation. For example, there are no dynamic

range or noise issues in a simulated circuit. Granted that this could be added on,

the real problem is that there is currently no accurate memristor simulation model

available. This chapter provides a thorough discussion of these challenges in terms

of memristor programming and reading circuitry and presents solutions as well as

results.

34

3.1 Initial Attempts

When dealing with novel technology, like the memristor, it is usually a good idea

to start with a simple experiment and then improve on that. While a simple but

effective programming and reading circuit had already been developed by Drake et

al. [11], it was important for this work to start from scratch and first get some

hands-on experience with memristors. Using an Agilent 33250A pulse generator, an

Agilent MSO7104A oscilloscope, and only a single resistor, a primitive but effective

experimental setup was built to demonstrate the memristive behavior of the mem-

ristive devices used for this work. This experimental circuit is shown in Figure 3.1

and, although crude, allows us to observe the memristor’s behavior while it is being

programmed. Recall that a positive potential “writes” the memristor to a lower

resistance and a negative potential “erases” it to a higher resistance state. Through

the voltage divider configuration, we can therefore expect Vout to follow Vin when

RM >> R1 and Vout to be less than Vin when RM << R1.

Figure 3.2 shows the result of applying a 100Hz sine wave with amplitude of 3V

and offset of 1V to the circuit in Figure 3.1. Resistor R1 was picked to be 5kΩ. Note

that the function generator was connected to Vin, channel 1 of the oscilloscope to Vin,

and channel 2 to Vout. It can clearly be seen that the output voltage Vout (also called

Figure 3.1: Simple memristor experimental circuit

35

Vmem since it depicts the voltage across the memristor RM) changes depending on

the applied potential of the sine wave. The result is as expected: A positive potential

writes the memristor into a lower resistance state causing the applied voltage to

decrease. Note the red line, roughly indicating the memristor’s resistance, going from

a higher resistance state to a lower state and back to a higher state when a negative

potential is applied (erasing). Applying a sine wave will essentially cause the device

to perform hard-switching between its high and low resistance states. Figure 3.2

clearly shows that the memristor doesn’t follow the applied sinewave (Vin) linearly,

but switches between high and low resitance during the write and erase cycles.

Figure 3.2: Memristive behavior when a sine wave is applied [5]

Figure 3.3 shows the pinched hysteresis loop or Lissajous pattern produced by the

memristor using Vin for the x-axis and Vmem for the y-axis. Note that the hysteresis

loop consists of a linear part (around the origin) and a nonlinear part (away from

the origin), indicating that the memristor behaves like a linear resistor below the

writing/erasing thresholds. The locations where the curve goes from the linear region

36

Figure 3.3: Memristor exhibiting Lissajous pattern [5]

into the nonlinear region indicates where the writing/erasing thresholds are located.

These results nicely demonstrate the memristor’s capability to go back and forth

between states. The device could therefore potentially be used to store digital values

(high, low). However, it is of no interest to use an analog memory for storing digital

data. Instead, the device should be used to store analog information. In order to do

so, we have to modify our circuit so that the memristor can be accurately controlled.

From Figure 3.2, we can deduce two problems that need to be solved in order to

move on. First, accuracy needs to be improved. The memristor’s resistance curve

shows some fluctuations in the high resistance region, which is due to measurement

error. Since the oscilloscope’s range was set so the sine wave’s 3Vpp swing can be

observed, it becomes very hard to accurately measure the small changes in voltage on

the scope’s channel 2 when RM << R1. Second, a continuous sine wave is not ideal

for accurately controlling a memristor (i.e., no hard-switching). Instead, it is better

to apply positive and negative pulses in order to better control the movement of the

device’s state in either direction.

37

A second experimental setup was created based on Kolton Drake’s programming

circuit, consisting of an LF411 opamp [11]. Figure 3.4 shows this circuit, which is

different from the circuit in Figure 3.1; it is not a voltage divider, but rather a voltage

follower with gain (RM + Rf)/RM . As long as the opamp’s bandwidth and range

limitations are not exceeded, the pulse applied to Vin is also applied to the memristor

because of the opamp’s virtual ground. Since we’re not continuously programming the

memristor, but rather applying single pulses, we have to read the memristor’s state

after each pulse to check how far the state has moved. As explained in Section 2.2.4,

the reading voltage across the device used for this work should not exceed 20-40mV.

Reading such a low voltage might be hard to measure, so the feedback resistor Rf is

set to add sufficient gain for measuring the memristor’s state at an adequate voltage

level. The advantage of this circuit is that the gain can be adjusted by the feedback

resistor Rf such that sending a programming pulse as well as a reading pulse will give

us an adequate voltage range at the Vout node.

For the initial pulse experiment, the feedback resistor Rf was chosen to be around

11kΩ. Figure 3.5 shows the results of applying several different positive and negative

pulses. Once again, positive pulses reduce the memristor’s resistance and negative

pulses increase it. The graph clearly shows that by applying single pulses, the memris-

tor’s state can be changed in a more controlled fashion than with a sine wave. While

Figure 3.4: Simple opamp based memristor programming circuit

38

Figure 3.5: Result of memristor pulse programming

this experiment proved to be much more successful and revealing than the previous

one, there are still some circuit limitations that need to be overcome in order to get

useful and accurate characterization data. The next section will touch upon these

limitations and provide solutions that will lead to the final reading/programming

circuit.

3.2 Challenges and Solutions

After experimenting with the initial memristor circuits as explained in Section 3.1, it

was discovered that there are some challenges that need to be overcome in order to

properly program and read memristive devices. So far we have seen several different

issues that might affect the accuracy of the programming/reading output voltage,

which indicates the memristor’s state. The first is measurement accuracy due to the

nonlinearity of the output voltage. The second is limitations of the opamp-based

39

circuit. Dealing with a 20-40mV reading voltage poses some additional challenges

like suppression of thermal and transient noise. This section will elaborate on these

issues and show how they can be overcome.

3.2.1 Dynamic Range, Gain, and Bandwidth

The opamp-based pulse programming circuit in Figure 3.4 is definitely a better

approach to memristor programming and reading than the voltage divider approach.

However, Section 3.1 already alluded to the fact that opamp limitations might cause

the circuit to fail. Before we dive into searching for limiting parameters, let’s first look

at the nonlinear output problem, which severely affects the accuracy of the reading

circuit. Figure 3.6 shows the nonlinear output of the reading circuit seen in Figure 3.4.

The curve is based on a 50mV reading voltage and Rf of 100kΩ. Note that the curve

is already depicted in a logarithmic format and the output voltage change decreases

exponentially as Rmem increases. If we were to look at this curve in a non-logarithmic

Figure 3.6: Nonlinear output of the reading circuit

40

format, the drop-off in the low Rmem region would be almost vertical, and almost

horizontal in the high Rmem region. There are two things that we can conclude from

Figure 3.6: First, the dynamic range of this circuit is not ideal and needs to be

improved. Second, the output swing is about 5Vpp at a reading voltage of 50mV and

Rf of 100kΩ, covering a memristor resistance range of 1kΩ - 1MΩ. Once we start

applying programming pulses with amplitudes of up to 3V, the opamp’s output would

most definitely rail, as the worst case in this configuration would require the opamp to

produce an output voltage of about 300V. Clearly, this is not possible and therefore

requires a smaller feedback resistor. However, decreasing Rf would also compress

the output swing when reading and this is clearly not desirable either. Figure 3.7a

shows the gain of the opamp over a wide range of memristor resistances with different

feedback resistors. Figure 3.7b shows that the gain bandwidth decreases as the gain

in Figure 3.7a increases. Since the programming circuit should be able to send pulses

of at least a 1µs pulse width, we have to keep GBWP above 1MHz. Two of the

three feedback resistors used in Figure 3.7b violate this constraint. Although the low

amplitude reading pulse could essentially be a very slow DC pulse, we don’t want to

make that trade-off just yet.

One thing we have to keep in mind is that so far we have assumed that we can use

the memristor over a range spanning about 6 orders of magnitude (Ω−MΩ) or maybe

even more. Because of that, it is no wonder that dynamic range issues arise. As a first

step in solving these issues, we will limit the operational range of the memristor to 2

orders of magnitude and operate between 1kΩ− 100kΩ. As a second step, we realize

that even for a decreased operational range of the memristor, one feedback resistor

is not sufficient to accurately cover the entire output range. Instead, we will turn

the circuit in Figure 3.5 into a programmable gain amplifier (PGA) using multiple

41

(a)

(b)

Figure 3.7: Opamp gain and bandwidth with different feedback resistors

feedback resistors that can be added to modify the gain such that the output voltage

is at a reasonable level for reading.

Figure 3.8 shows the modified circuit with three additional feedback resistors that

can be switched in or out to change the opamp’s gain. The feedback resistor Rf1,

which is not connected to a switch, has to have the largest value of all four. Each

additional feedback resistor, having a resistance lower than Rf1, can be added in

parallel to decrease the effective resistance in the feedback path. Table 3.1 shows

42

feedback resistor values of the PGA and Figure 3.9 shows the resulting output. It

can clearly be seen that the gain never exceeds 10 and that the output voltage swings

nicely between 0.1V and 0.4V for each range. Even though these output voltages

seem low, high-performance ADCs usually have an input range of 0-1V, which makes

it perfect for this application.

Table 3.1: Programmable gain feedback resistor values

Resistor Value Range

Rf1 300kΩ 41kΩ - 200kΩ
Rf2 56Ω 7kΩ - 40kΩ
Rf3 9kΩ 1kΩ - 6kΩ
Rf4 1kΩ Programming

In Figure 3.9, we can see that the memristor resistance range can be adequately

covered up to 200kΩ. Therefore, we can expand our range upwards, which is a benefit

for the synapse’s weight adjustment, as will be discussed in Chapter 4. Another

important fact that needs to be pointed out is that Table 3.1 indicates resistor Rf4 as

a programming only feedback resistor. Since it would not provide much amplification

within the 1kΩ - 200kΩ range, it is of no use for reading and is therefore not used to

produce the gain curves seen in Figure 3.9. The range could be extended downwards

Figure 3.8: Programming/reading circuit with programmable gain

43

Figure 3.9: Output of programming/reading circuit with programmable gain

and Rf4 could help cover it, but we don’t want to extend our range below 1kΩ, the

reason being that higher currents resulting from lower resistances could potentially

harm the memristor. When programming, however, we don’t want to limit the current

too much either, but more importantly, Rf4 should not add extraneous gain. First,

we don’t need gain when programming. Second, in order to prevent the opamp

from slewing and to stay within the GBWP, Rf4 needs to be at the low end of the

memristance range.

Figure 3.10a shows an applied programming pulse (yellow, bottom) to the opamp’s

noninverting input and the corresponding signal at the opamp’s inverting input (blue,

top). The blue signal is driven by the opamp and is what’s being applied to the

memristor. Note that the inverting input follows the noninverting input exactly, as

we can expect from the virtual gain assumption. This behavior can only be observed

when Rf4 is enabled. Otherwise, the GBWP rule might be violated, resulting in

44

(a) (b)

Figure 3.10: Programming pulse and inverting input behavior

a configuration in which the opamp cannot adhere to the virtual gain assumption.

Figure 3.10b shows the result of using Rf2 instead of Rf4 as a feedback resistor when

programming. We can see that the opamp cannot drive the inverting input such that

it follows the noninverting input exactly. Hence, the pulse applied to the memristor

is almost four-times less in magnitude than intended.

3.2.2 Noise

As explained in Section 2.2, the reading voltage across the memristive devices used

for this work should not exceed 20-40mV. Otherwise, we endanger the integrity of

the device as silver might be moved from one side to the other in an uncontrolled

and undetectable fashion. As Section 2.2.4 indicates, trying to move silver, whether

intentionally during programming or while reading, after the top electrode has no

more silver left, might cause permanent damage to the device. Therefore, the reading

circuit has to be designed to accommodate reading voltages in the lower mV region.

This requires minimization of noise sources, as their amplitude could potentially

exceed that of the small reading pulse.

45

Thermal Noise

When dealing with voltages in the millivolt range, thermal noise needs to be seriously

considered and carefully dealt with. Thermal noise in a resistor is primarily the

result of random motion of electrons due to thermal effects and is not dependent on

the applied voltage. Thermal noise is sometimes also called white noise, because the

power spectrum spreads evenly over nearly the entire frequency spectrum [2]. Noise

is best expressed as a power spectral density or PSD. Thermal noise can then be

expressed as

V 2
R(f) = 4kTR, (3.1)

where k is Boltzmann’s constant, T the temperature in ◦K, and R is the resistor’s

resistance [2]. Equation 3.1 shows that thermal noise is frequency independent, hence

the even spread over the power spectrum. More importantly, it shows that the larger

the resistance, the higher the thermal noise. In order to find the actual induced

thermal noise voltage, we have to use

VR =
√
V 2
R(f)∆f, (3.2)

where ∆f is the range of the covered frequency spectrum. Assuming no bandwidth

limitation, a resistor with a very high resistance (> 1GΩ) at room temperature can

easily induce a couple hundred microvolts of thermal noise [2]. Using a 20-40mV read-

ing voltage is challenging as we get closer and closer to the thermal noise, decreasing

the signal-to-noise-ratio (SNR). Limiting the memristor range to a maximum of a

couple kΩ now proves to be a good idea, as it limits the amount of thermal noise

introduced.

46

Transient and Periodic Noise

We will categorize all remaining noise signals as those of transient or periodic nature.

Periodic noise usually originates from an alternating source, such as an AC voltage

or a switching power supply. While by using a capacitor in low-pass configuration,

we can easily filter out the 60 or 120Hz ripple voltage left on top of a power supply’s

DC output voltage, it is harder to filter high frequency noise from switching power

supplies. This is because the switch’s operating frequency can change depending on

the load. On the other hand, transient noise is almost impossible to successfully

suppress, as we often do not have conclusive information about its nature and origin.

Transient noise signals can have many different origins, ranging from electrostatic dis-

charge over noise from other circuits propagating through the power-lines to parasitic

noise introduced in our own circuit. While we can try to block noise from outside by

adding filtering capacitors and shielding techniques, it is very important to identify

and understand the noise sources in our own circuit.

On-board generated transient noise was found to originate from the PGA’s switches.

Figure 3.8 shows multiple switches in the opamp’s feedback path. Not only do the

switches cause glitching due to charge injection, but they also cause the opamp to

oscillate due to the rapid change in feedback resistance. Figure 3.11 shows the result

of changing the PGA’s gain. A glitch is followed by oscillation with a maximum

peak-to-peak voltage of about 300mV. Transient noise that high is not only harmful

for memristors, but could also cause an unintentional change of its state.

47

Figure 3.11: Glitch followed by opamp oscillation

3.2.3 Solutions

Now that we are aware of possible sources of noise, let’s look at some preventative

measures. At this point, we are not really concerned about thermal noise, as we have

already ensured its minimization by using relatively low resistances. However, there

are still plenty of other noise sources that need to be taken care of.

Decoupling Capacitors and Board Design

As mentioned in Section 3.2.2, decoupling capacitors can be used to decouple power

supply induced noise. Decoupling capacitors, also called bypass capacitors, essentially

decouple one part of the circuit from another. They act as low-pass filters, but also

help to stabilize the supply voltage and reduce ground bounce and voltage droop.

Each active circuit component (i.e., opamp, inverter, etc.) should have its own

decoupling capacitor located right next to its supply pin. Circuit designers should

48

consult each component’s datasheet for suggested decoupling capacitor values, but

some commonly used values are in the range of 0.1µF and 0.33µF. The size of the

capacitor also depends on the type of material used (i.e., tantalum, ceramic, alu-

minum, etc.). Ceramic capacitors, for example, have a low effective series resistance

(ESR) of less than 1Ω and can therefore respond to fluctuations faster than aluminum

capacitors, which have a high ESR [31]. The ESR refers to the capacitor’s intrinsic

resistance, limiting its charge/discharge time constant and its frequency response.

The design of the printed circuit board (PCB) also plays a very important factor

in noise reduction. The following design rules are only a small collection of common

PCB design techniques:

- Keep traces as short as possible to keep the resistance of connecting wires low.

- Vias add resistance. Add multiple vias in parallel to reduce the effective resis-

tance to ground- and supply-planes in order to reduce IR drop.

- Add appropriate decoupling capacitors to each supply pin and ensure that the

capacitors are as close to each pin as possible.

- In addition to the ground-plane on the bottom layer, add a ground-plane to the

top layer and connect the two. Extend both of them past all signal traces to

provide shielding.

- Make sure the ground-plane does not get disrupted by traces. The wider the

path for the current, the lower the resistance.

- Use wide power-planes instead of thin traces for supply voltages to minimize

supply voltage droop.

49

Reducing Charge Injection and Opamp Ringing

In Section 3.2.2, we have seen that the charge injection of the PGA’s switches causes

glitching. The glitches along with the fast changing feedback path resistance causes

the opamp to oscillate. As Figure 3.11 shows, this is a condition that needs to be

resolved.

As a first measure, we can reduce the charge injection. There are two ways to do

this. The first one is to simply choose CMOS transistor switches with lower charge

injection. The gate of the CMOS transistor forms a capacitor with the channel right

underneath. This capacitor needs to be charged and discharged when the gate is

turned on and off respectively. Charging this parasitic capacitor is not a big deal as

it simply presents a very small time delay. However, since the charge is effectively

located in the transistor’s channel, it injects right into the drain and source when the

gate is turned off [2]. The capacitance of the parasitic gate capacitor is dependent

on the length and width of the channel, which in turn affects the on-resistance of the

transistor. Low-resistance transistors or switches therefore usually have a relatively

high charge injection, since their channel is wider to reduce resistance. The increased

area of the channel effectively makes for a larger capacitor. Since we’re not concerned

about low on-resistances of the PGA’s switches, we can pick a CMOS transistor

switch with a slightly higher on-resistance and therefore decreased charge injection.

The ADG1221 is a good pick as it has a charge injection of less than 0.5pC over the

entire signal range.

The second way to reduce charge injection is to slow the digital switching signal.

This can be done by adding an RC network to the switch’s input, where the resistor is

in series with the input and the capacitor is in parallel to ground. The charging and

50

discharging curve of the parallel capacitor will effectively cause the gate of the CMOS

transistor to transition from an on to off state over a longer time period. Therefore,

the charge should not be injected all at once, but slowly as the gate is turned off. RC

networks were therefore added to each signal controlling a CMOS transistor switch,

so that each gate can be slowed down if needed.

Last, but not least, we will have to deal with the opamp’s oscillation. As Fig-

ure 3.11 shows, this is the real problem as it is responsible for the relatively large

peak-to-peak voltage swing. The problem is essentially just that of GBW and slew

rate limitations. The glitch occurs in a very short time of less than 100ns, which

would correspond to a frequency of about 10GHz. Clearly, this is tough to handle,

even for high-speed opamps. In fact, several different high-speed opamps have been

compared by simulation and experiment to find the one with the least oscillation.

Unfortunately, no off-the-shelve opamp is the perfect fit for this application, as this is

a very special case. Off-the-shelve products are usually optimized for one particular

application. Here, however, we need high-speed, high slew-rate, unity-gain stability

as well as stability at gains up to 10, and low input offset. Once the entire circuit

is built on a chip instead of using discrete components on a circuit board, a custom

made opamp can be designed to fit this application. For the time being, we will have

to live with the oscillation issue and compensate for it by slowing the switches’ signal

down such that the CMOS transistor performs the transition slower.

Environment, Experimental Setup, and Operator Behavior

The environment where the experiment or circuit is set up can also cause noise

emissions. For example, the operator might get charged up while walking across the

floor, causing electrostatic discharge (ESD). A lab with anti-static floors is therefore

51

recommended for operation of such low-voltage circuitry. Furthermore, an ESD mat

can help reduce electrostatic issues as it absorbs high-voltage discharges and acts as

a clean ground-plane on which the circuit or device under test as well as measuring

equipment can be set up. Wearing an ESD wrist-band and anti-static shoes are also

good ESD reduction methods.

In general, any type of movement, especially of ungrounded surfaces, has the

potential to get statically charged. Closing doors, moving chairs, people getting up,

etc. all showed significant noise spikes in certain situations. Although these spikes

only last for a very short time, they could potentially damage sensitive electronics

such as memristors. That’s why it’s so important to install decoupling capacitors

throughout a PCB as they can dampen or sometimes even completely filter out these

spikes. For example, the circuit seen in Figure 3.4 was initially set up on a bread-board

without any decoupling capacitors. Power supply and environmental noise was so

heavy that the scope was instantaneously triggered by noise when its trigger was

set to slightly less than 40mV to capture the 40mV reading pulse. After building a

properly designed PCB, the scope’s trigger could be lowered to less than 5mV without

being triggered by noise.

3.3 Pulse Generator and Reading Circuit

Before we finish this chapter with the final improved memristor programming circuit,

we need to discuss the requirements of the pulse generator and pulse reading circuit

and find adequate equipment that can fulfill these tasks.

52

3.3.1 Requirements

The following list shows the requirements of the pulse generator and reading circuit:

- Variable pulse-width of at least 1µs up to several ms.

- Variable pulse height of 20mV up to 3V.

- Variable rise time profile.

- Able to quickly and easily send pulses of different heights and widths.

- Able to analyze the result of a reading pulse in near real-time.

These requirements could be met with the equipment used for the initial experimental

setup (see Section 3.1), but is too cumbersome for automated measurements and

network training. A better solution is to use a high speed DAC and ADC powered

by an FPGA.

3.3.2 FPGA and DSP Board

In order to build a pulse generator and reading circuit as outlined in Section 3.3.1, the

Altera Cyclone III development kit featuring the Cyclone III EP3C120F780 FPGA

running at speeds up to 125MHz and a high speed DSP board was chosen. The DSP

board connects to the development board through a high-speed mezzanine connector

(HSMC) and consists of two 14-bit 275 MSPS DACs and two 14-bit 150 MSPS ADCs.

3.3.3 DSP Board Modifications and Supporting Hardware

The DACs have complementary, balanced outputs with a maximum output swing

of 1Vpp centered around GND. A balun (BALanced -UNbalanced) transformer is

53

(a) (b)

Figure 3.12: FPGA development board and DSP board

used to decouple each DAC from the output connectors. Since the baluns have a

frequency response of 4kHz-300MHz, we cannot produce slow ramps and long pulses.

We would expect that the balun would still pass short DC pulses falling within its

frequency response. However, as Figure 3.13 shows, a 2V, 100µs pulse is severely

damped such that two short pulses at +2V and -2V occur. Clearly, this does not

satisfy our requirements as stated earlier. Since most high-speed DSP systems make

use of a balun transformer, we would either have to build our own DAC setup or

simply modify the DSP board by removing the balun.

It was determined that balun removal was the easier task. However, removing

the balun means that the output is now a fully-differential signal, which is not

compatible with our opamp-based programming circuit. A differential to single-ended

conversion circuit was therefore built to provide the appropriate single-ended pulse

signal. Figure 3.14 shows this circuit. Note that the opamp-based differential to

single-ended circuit is essentially the same thing as a balun, but does not block lower

frequencies (i.e., it passes DC). Figure 3.14 also shows an amplification/attenuation

stage after the differential to single-ended conversion stage. This was added to provide

54

Figure 3.13: Frequency response of a 100µs pulse

amplification when writing/erasing pulses of up to +/- 3V are needed (DAC output

is only 1Vpp). Attenuation is used when small signals like the 20-40mV reading pulses

are required. Since the signal is sent from one board to another and then converted

from fully differential to single-ended, it was decided to send a larger signal to get

out of the noise floor and then to attenuate right before it reaches the programming

opamp.

While the ADC is also decoupled from the rest of the circuit through a balun

transformer, this is not as big of a deal as it is for the DAC. This is because the

reading pulse is usually very short (1-5µs) and does not need to be variable over a

range as extensive as the writing/erasing pulse. Also, the reading pulse is sent in

the form of a near triangular pulse, reducing the amount of DC component present.

Therefore, we do not expect the balun to block any part of the reading response.

However, the ADC’s maximum allowed input voltage is 1V. While the reading pulse

55

Figure 3.14: DAC output conditioning circuit

response is not expected to exceed 0.4V (see Section 3.2.1), we have to disconnect the

ADC from the circuit when sending programming pulses. A CMOS transistor switch

is therefore used to disconnect the ADC from the programming opamp’s output and

will only close when reading a memristor. Since the balun transformer presents a 50Ω

load to the programming opamp, it is a good idea to buffer the opamp’s signal first

and then feed it to the DSP board.

3.3.4 Verilog Pulse Controller

Now that we have the appropriate hardware to create and read pulses, we need to

discuss how these pulses can be generated on the FPGA. A pulse controller has been

written in Verilog to implement both pulse generation and pulse reading functionality.

The general architecture is shown in Figure 3.15. The controller is based on a finite-

state-machine (FSM), controls all four of its subcomponents and handles the data

communication between the NIOS II soft-core processor (see Section 3.3.5), the DSP

56

board, and other external hardware such as switches and LEDs.

The pulse generator is based on an FSM itself and uses an intricate architecture

to allow the generation of pulses with variable height, width, and rise time. While the

pulse height is limited to a 14-bit data bus due to the 14-bit DAC, the pulse width

features a 32-bit data bus, allowing the pulse generator to generate pulses up to 42s

long (@50MHz). There are 8 user selectable rise time profiles available, allowing us

to generate anything from square pulses to triangular waves.

The pulse reader is also based on an FSM and is tightly coupled with the pulse

generator. Once the pulse controller commands the pulse generator to generate a

pulse, the pulse reader locks the initial input value in and waits until the pulse

generator reaches the maximum pulse height. That’s when the input is read again

and stored internally. This procedure is repeated right before the pulse generator

starts descending back to zero. Since fast rising pulses could still cause the opamp to

overshoot and oscillate a little bit, it is beneficial to measure the response when

reaching the top and right before descending back to zero (after the oscillations

settled). Furthermore, the pulse reader also keeps track of the highest value measured

during the entire width of the pulse. This allows us to not only detect overshoot and

Figure 3.15: Pulse controller architecture

57

oscillations, but also to calculate an average. Once the pulse generator reaches zero,

the input value is read again for comparison’s sake with the initial value. All five

measured input values are stored internally and can be read by the NIOS II processor

at any time until they are cleared right before another read pulse is generated. The

pulse reader also monitors the ADC’s out-of-range indicator and shuts the pulse

generator down immediately after an out-of-range condition is detected to prevent

damage to the ADC’s input.

The switch control is used to send the right signals to the switches controlling the

PGA’s gain, the amplification/attenuation stage, and the ADC decoupling switch.

This control module implements necessary lock-out conditions, preventing unsafe

operation of the circuit (i.e., sending a programming pulse with the ADC still con-

nected). Another feature of the switch control module is to address the memristor

array (i.e., connect the desired memristor to the programmer).

The Clock and I/O synchronization module is essentially just the I/O node be-

tween the pulse controller and the DSP board. Even though the ADC and DAC are

driven by the same 50MHz clock as the FPGA, they both have dedicated data clock

outputs used for proper data latching. The synchronization module provides output

latches to buffer the data before it’s sent to the DAC and doubly buffers the incoming

ADC data by first latching it using the ADC’s data clock and then using the FPGA’s

internal clock.

Not shown in Figure 3.15 is the top level project layout including a phase-locked-

loop (PLL) module and the NIOS II soft-core processor module. The PLL module

is used to provide a fully differential clock signal required by the DSP board. When

routing high-speed data lines such as clocks and data buses from one board to the

other via a connector, it is good practice to use differential signals to ensure signal

58

Figure 3.16: Software architecture

integrity and to minimize the impact of noise.

3.3.5 NIOS II Processor and C Control Program

As Section 3.3.4 already mentioned, a NIOS II soft-core processor was implemented on

the FPGA to provide a flexible platform to control and interact with the programming

circuit. More specifically, the NIOS II soft-core processor is used as a master controller

and communication interface between the pulse controller and a computer. The

software, written in C, consists of firmware level code, controlling the hardware-based

pulse generator and reading modules. The higher level code serves to communicate

with a host computer and to perform the network training. Even though the training

algorithm is implemented in software, it is considered on-line training as the algorithm

runs on the FPGA, which is an integral part of the feed-forward network. The host

computer is merely used as a user-interface. All the functionality is implemented

either in hardware or software running on the soft-core processor.

Figure 3.16 shows a block diagram of the software architecture. The bottom

blocks depict the firmware and are basically just device drivers to provide hardware

59

abstraction for higher level functions. The programmer simply talks to the device

drivers without having to interact with the hardware itself. This abstraction provides

an environment where the Matlab simulation code that Thanh Tran wrote for her

memristor-based ANN simulations [32] can easily be ported over to C.

The top-level is formed by the main.c file as the program’s entry point and most

importantly the ring-buffer. There are many valid scenarios of a communication layer

that could have been used for this project. However, it was decided to use an interrupt

based ring-buffer. The advantage is that there is very little overhead involved with

such a setup because no polling is involved. As long as there is no communication, the

processor spends all of its time entirely on training and programming. Once the host

starts communicating with the soft-core processor, an interrupt ensures that each

sent character is read from the UART’s internal buffer and stored in a ring-buffer for

processing.

3.4 Improved Programming/Reading Circuit

Throughout this chapter several improvements to the initial programming/reading

circuit seen in Figure 3.4 have been made. An FPGA was added to control the PGA

and to provide a flexible pulse generator. The improved programming circuit is now

connected to the supporting hardware.

Figure 3.17 shows the final and improved programming/reading circuit. The func-

tionality of the DAC, fully differential to single-ended, and amplification/attenuation

circuit was already elaborated on in Section 3.3.3. These three stages are considered

the signal generation and conditioning part of the programmer. The actual pro-

gramming circuit is based on the PGA seen in Figure 3.8. Since the memristor

60

Table 3.2: Opamp details

Symbol Opamp Type Max. Gain

U1 AD8055 2.95
U2 AD8055 2.44
U3 LM6171 Up to 10
U4 AD8055 1

in the PGA’s feedback network is not always in place (the programming circuit

connects to one of many memristors we wish to program), a 1kΩ resistor was placed

in parallel. This is useful when switching a memristor in, because the sudden load in

the feedback network would cause the opamp’s output to oscillate due to the sudden

load change. The parallel load is always connected when no memristor is present

in the programming circuit and is only disconnected once a memristor is present.

The nodes X1 and X2 indicate the connection to the memristor array. This implies

that the single memristor seen in Figure 3.17 is in reality an array of memristors.

Section 4.6 elaborates on how each memristor is addressed individually.

The buffer and ADC stage consists of a simple buffer in voltage follower mode and

is solely intended to decouple the ADC’s 50Ω load from the programming circuit’s

output. Note that the 1kΩ load on the buffer’s positive input is not necessarily

needed, but was included in the PCB design such that it can be populated if an

unstable situation arises. Also note that the ADC is not directly connected to the

output. As with the DAC, the ADC’s input is fully differential and uses the same

balun configuration. As mentioned before, the ADC’s balun does not need to be

removed due to the short reading pulse duration. Therefore, the single-ended to fully

differential conversion circuitry is part of the ADC setup on the DSP board. The

opamps used in Figure 3.17 are as in Table 3.2.

Note that U1, U2, and U4 have low gains and therefore do not require an opamp

61

Figure 3.17: Final memristor programming/reading circuit

type with special characteristics. The AD8055 used here is an opamp commonly

used for signal buffering and ADC/DAC signal conditioning. However, U3 is a little

different. As Section 3.2.3 mentioned, the programming opamp has to satisfy stringent

requirements. Unity gain as well as higher gain (up to 10) stability, high-speed, and

low input-offset voltage are all very important parameters that directly influence

the performance of the programming circuit. Picking a suitable device is therefore

crucial. Unfortunately, it is very hard to find an off-the-shelf opamp that fulfills

all requirements, as this application calls for a very specialized opamp. Therefore,

10 different opamps were chosen for further investigation based on bandwidth, gain

stability between 1 and 20, input-offset voltage, high input impedance, low output

impedance, and high peak-to-peak output range. The chosen devices were tested with

different loads and programming pulses. The LM6171 performed best overall and was

therefore chosen for U3.

62

CHAPTER 4

FROM ANN THEORY TO HARDWARE

In Chapter 2, the basics of ANNs, memristors, and opamps were introduced. Chap-

ter 3 then showed the development of a circuit that can be used to program memris-

tors. This chapter first shows how the theoretical ANN structure can be implemented

in discrete hardware. Then the synapses are built with an array of memristors and

connected to the programming circuit so that the network can be trained.

4.1 Historic and Current Attempts of Hardware ANNs

Before diving into the circuit development of hardware-based ANNs, let’s first do a

brief historical review of what has already been done. While Section 2.1.1 already

gave a brief review of the history of ANNs, it did not provide any information about

ANNs built in hardware. Despite the fact that computer simulation tools were not as

readily available in the 1960’s, an elaborate perceptron software simulation program

for the IBM 7090/94 system was developed [24]. However, Rosenblatt has always

insisted on the parallel, analog implementation of his perceptron model for large-scale

experiments. In 1958, he built the Mark I perceptron at the Cornell Aeronautical

Laboratory, consisting of a 20x20 photo-cell retina and 512 stepper-motor-controlled

potentiometers acting as synapses [24]. Between 1961 and 1967, Rosenblatt built the

four-layer Tobermory perceptron, consisting of 45 sensory synapses in the input layer,

63

1600 associative synapses in the first hidden layer, 1000 associative synapses in the

second hidden layer, and 12 response synapses in the output layer [24]. The network

was intended for speech recognition and was built entirely in hardware. By the time

Tobermory was completed, it was already outperformed by the rapidly advancing

digital computer technology [24].

The continued technological advance of computers caused researchers to “build”

their ANNs in software. Today’s computers have enough computing power to simulate

very large ANNs with thousands, even millions, of synapses and neurons. However,

the computational complexity increases dramatically when a network is expanded.

Let’s recall the example from Section 1.3, where a simulation of a cat’s neuro cortex

was run on a massive IBM supercomputer. The simulation ran 83 times slower

than in nature [17]. The issue is that modern computers suffer from their prevalent

serial architecture and the Von Neumann bottleneck. That’s why researchers started

going back to hardware and tried to implement neural networks using both discrete

circuits and CMOS technology in the late 1980s. With the rise of field programmable

gate arrays (FPGA), which offer massive parallelism, an alternative for software

implementation of ANNs was presented. FPGAs are of interest, because the network

can be implemented in hardware and runs fully parallel. Therefore, slower clocking

rates can be used, which drastically reduce power consumption. Over the last two

decades, many successful attempts have been made to implement ANNs on FPGAs.

In 1991, Holt and Baker determined that the optimal data bus width of an FPGA

implemented ANN is 16-bit fixed point, since the tradeoffs of precision vs. area are

optimized [16]. While longer bus widths reduce quantization errors in calculations,

they are significantly more expensive in terms of utilized hardware. Approaches using

floating-point arithmetic have been explored, but were deemed not feasible [25]. A

64

study on the XOR benchmarking problem has shown that a 16-bit fixed point ANN

does not only process weight updates faster, but most importantly converges to a

solution faster and more consistently than a 32-bit floating point implementation on

both an FPGA and Intel Pentium III CPU [21, 25].

The problem with FPGAs, however, is that ANNs are analog in nature, making

computations more expensive in digital hardware. The advantage of parallelism now

turns into a resource issue. For instance, a 3-layer network with 8 inputs and 1 output

implemented on a Xilinx Spartan-3E FPGA requires about 80% of 18x18 multipliers

used for the activation functions. Furthermore, the network used 41% of all available

LUTs and 27% slice registers [28]. Even though this implementation includes the

backpropagation learning algorithm, the majority of resources (18x18 multipliers) is

used by the neurons, which use a multiply-and-accumulate (MAC) technique. In

addition to that, the activation function itself can be very costly in terms of digital

hardware resources. Usually, a sigmoid or hyperbolic tangent is used for the activation

function. Obviously, they are complex to compute in digital hardware. Alternatives

are to use a look-up table, which requires large amounts of memory, or to use a

computationally simpler approximation, which reduces accuracy [3]. Keep in mind

that inaccuracy and memory resources are highly dependent on the bus width.

While FPGAs are not a viable solution for neuro cortical simulations, they provide

an efficient and low-cost platform for practical applications. It is common to train an

ANN off-line (on a computer; not on the actual HW/FPGA) and then download the

configured network to the system (FPGA). The disadvantage of off-line training is

that possible changes to the pattern recognition parameters requires re-synthesis. In

addition to that, if the system is deployed in the field, downloading the new bit-file to

the FPGA might add additional difficulty. However, there are several different ways

65

of training the network online on the FPGA. The simplest is to couple the FPGA or

its memory with a processor running the training software. Alternatively, a soft-core

processor can be directly implemented on the FPGA. Recent research has shown that

the common backpropagation algorithm can also efficiently be implemented directly

on the FPGA in digital hardware [13, 14].

As Rosenblatt pointed out, ANNs should be implemented in a parallel, analog

manner to be most efficient. FPGAs get close, but due to their digital nature they

are still too complex. A better way would be to implement the network on an analog-

mixed-signal chip. In the early 1990s, Lont and Guggenbühl successfully implemented

a neural network on-chip in CMOS technology [22]. The synapse weights were stored

in an off-chip digital memory, loaded to the chip by a D/A converter, and then stored

in DRAM-like capacitor cells. This approach seems like a good idea, but still suffers

from adaptive weights being implemented in a digital architecture. With the discovery

of memristors, we are one step closer to the implementation of a fully parallel ANN

in a fully analog architecture.

4.2 Neuron

It is best to look at the physical composition of the neuron before going into details

about synaptical circuit design. The neuron actually sets some constraints that need

to be met by the synapse. Let’s first revisit the general synapse-neuron model as

discussed in Section 2.1.2. Each neuron sums up all signals from the synapses that

are connected to it, before sending the sum through the activation function. The

neuron can therefore be broken into two parts: The summation and the activation

function. The summation itself is very straightforward and only needs to be discussed

66

in detail because of its implementation in hardware. However, the activation function,

as seen in Section 2.1.2, can be described and implemented in many different ways

(i.e., sigmoid or hyperbolic tangent).

4.2.1 Summation

Figure 2.2 in Section 2.1.2 shows the general synapse-neuron model and although it

doesn’t show it explicitly, the summation is essentially performed by combining all

synapse connections in a common node. Two observations can now be made, the

first being that Kirchhoff’s current law governs the behavior of multiple signals being

connected to a common node. Thus, the quantity being added is current. The second

observation is that the common node should not be floating, but rather be at a fixed

reference. An opamp can easily meet this constraint. Using these two observations, an

opamp-based circuit that simply adds the input signals can be developed. Figure 4.1

shows this circuit. It needs to be noted that the feedback resistor Rf can add gain.

Even though neurons usually do not have gain in their summation stage, we will later

see that this is actually a useful feature for setting the synapse’s weight range.

Figure 4.1: Opamp summing the three input synapses

67

4.2.2 Activation Function

Now that the summation is taken care of, let’s look at the activation function.

Section 2.1.3 showed that the activation function adds the nonlinearity required

to solve nonlinearly separable problems. If the activation function were a simple

linear operator, a nonlinear problem could not be solved. Designing a truly nonlinear

activation function as described in Section 2.1.2 is not a trivial task. A non-ideal

inverter would do the trick, but since semiconductor technology has advanced to the

point where inverters behave very closely to the ideal model (i.e., a sharp transition

from one state to the other), we can only get a digital output instead of an analog

output, which can assume any value between the activation function’s two saturation

values.

Nonlinear sigmoid-like activation functions can be built using transistors on-chip

with relatively little effort. However, this work is based on discrete components

on a PCB due to the proof-of-concept phase of the project and designing our own

custom activation function on-chip is out of question. Building the transistor-based

activation function on a PCB is an alternative, but would be too complicated due to

the vast space and resource requirement. Fortunately, Tran showed in her work that

the activation function can be simplified to a hard-threshold activation function for

implementation of reconfigurable TLGs such as AND, OR, NAND, NOR, and even

XOR and XNOR [32]. She furthermore showed that methods to train such networks

exist. A hard-threshold activation function can easily be realized using a comparator.

As already mentioned in Section 2.1.4, a neuron using such an activation function is

referred to as a threshold logic unit (TLU). A network using TLUs is then called a

threshold logic gate (TLG).

68

Threshold Logic Unit

In Section 2.1.3, we have seen that some functions can be solved with a linear decision

boundary. These linearly separable functions, like AND, OR, NAND, or NOR do not

require the synapse to have a sigmoidal activation function. While the nonlinearity

is still needed for the network to function properly, we can simplify the problem

by reducing the activation function to a piecewise linear function, which is still

nonlinear. A piecewise linear function in the form of a step, for example, is sufficient

to successfully build a network capable of recognizing linearly separable functions. A

step function can easily be implemented with a comparator or a logic inverter. A

comparator is in general the better choice, as inverters have a wide hysteresis (i.e.,

they switch from logic low to high at a lower point than switching from logic high to

low; the switching point is not necessarily midway between logic low and high). Since

such an activation function causes the neuron’s output to be either logic 1 or 0, it is

essentially a neuron with a logic output.

As mentioned in Section 2.1.6, networks using TLUs cannot be trained with the

backpropagation algorithm, as the derivative of the activation function is infinity at

the switching point and zero otherwise. Instead, the MRII algorithm is a viable option

to train such a network. Tran showed that a multi-layer TLG can be used to solve

simple nonlinearly separable functions like XOR and XNOR using MRII for training

[32].

4.3 Synapse Supporting Negative Weights

In general, a synapse can loosely be defined as an amplifier or attenuator, as it

adds a weight to the input signal. In physical circuitry, this can be done in many

69

different ways, but the simplest and most intuitive approach is to use a resistor.

However, resistors are fixed and therefore do not allow us to adjust the weight or

gain of a synapse. This is where the memristor comes in, because it offers adjustable

resistance while behaving like a linear resistor as long as the signal does not exceed

a certain threshold value. We might find that our ANN requires some of its weights

to be negative. Since resistance is a magnitude and therefore an absolute value, a

synapse cannot simply be composed of a resistive device. Instead, a couple more

circuit elements are needed to give the synapse the capability to be set to a negative

weight value.

(a) (b) (c)

Figure 4.2: (a) Simple synapse using only a memristor, (b) Synapse using an inverting
opamp for gains in the range of [-M,0], (c) Synapse using a noninverting opamp for
gains in the range of [0,M].

We can assume that the synapse is just a black box, adding weight to its input.

The weight can be thought of as a gain, meaning that the synapse is theoretically

adding a gain from -∞ to +∞ to the input signal. In practice, the gain is bounded

by a lower bound M and an upper bound N because of physical limitations. The

synapse’s gain is therefore finite but continuous over the region [M,N]. Figure 4.2

shows some possibilities for synapse circuits that fulfill this general model. However,

all of them have some limitations that we wish to overcome. The simple synapse

shown in Figure 4.2a consists of a single memristor and is at best able to set the gain

in the range of [0,1]. Figures 4.2b and 4.2c are not as restricted as Figure 4.2a, but can

70

only add negative or positive gain, respectively. Depending on the application, type

of ANN topology, and decision boundary, synapses only supporting positive weights

(i.e., Figure 4.2c) might be sufficient. Since we’re trying to develop a general synapse

hardware model, we have to find a better solution that can support both positive and

negative weights with the same circuit.

Figure 4.3: Synapse supporting both positive and negative weights

Accepting the constraints outlined above, we realize that a fixed negative offset

in parallel with a positive gain stage can achieve gains in the range of [M,N], where

M<0 and N>0. This can be done relatively easy with discrete circuit components

by using an inverting opamp with fixed gain to give us a constant negative gain

offset. A noninverting opamp with adjustable gain using a memristor is put in parallel

to compensate for the fixed negative gain. Since we want to keep the design as

simple as possible, we can simplify this synapse model by realizing that the adjustable

noninverting opamp stage can be replaced by a single memristor. Figure 4.3 shows

the final synapse circuit design, which supports both positive and negative weights.

Now that a hardware synapse supporting negative weights has been developed,

a general model that allows conversion from conceptual weights to physical param-

71

eterization of the circuit needs to be formulated. Let’s start by reiterating that the

neuron to which the synapse is connected sums current. Therefore, the synapse in

Figure 4.3 converts a voltage to current and the neuron converts the summed currents

back to a voltage. The current Is in Figure 4.3 will only flow when a load - a neuron

- is connected. Therefore, the synapse needs to be connected to a neuron for circuit

analysis. Figure 4.4 shows this setup. Note that the input to the synapse is a voltage

(Vin) and so is the neuron’s output (Vout). Multiple synapses can be added, each

producing its own current signal Isi , which are all summed by the neuron.

Figure 4.4: Synapse connected to a neuron

The summing opamp’s noninverting input is tied to VCM , resulting in a fixed

inverting terminal to which all synapse currents flow. The currents I1 and I2 can

then be expressed in terms of the synapse’s circuit elements. The output voltage VN

of the negative offset opamp is described by

VN = VCM −R2
VIN − VCM

R1

. (4.1)

72

The output current IS of the synapse can then be expressed as

IS = I1 + I2 =
VCM − VIN

RM

+
VN − VCM

RN

. (4.2)

Using both Equations 4.1 and 4.2 as well as the general inverting opamp equation

(Equation 2.10), the transfer function H of the synapse-neuron circuit can be derived

to be

H =
VOUT − VCM
VIN − VCM

= −Rf

(
1

RM

− 1

RN

)
= −Rf (GM −GN). (4.3)

Note that both the input and output voltages of the circuit are with reference to

VCM . Hence, the term shows up in the generalized definition of the transfer function

H. Another important observation we can make when looking at Equation 4.3 is that

the transfer function H can also be expressed in terms of the conductances GM and

GN . In fact, the conceptual weight of a synapse is best expressed physically as its

conductance, not its resistance. Since both Rf and GN are fixed, the conductance

GM of the memristor is what affects the output. However, the conductance of the

memristor is not the weight of the synapse. The synapse’s gain is a function of

RM , Rf , and RN . The transfer function H in Equation 4.3 is also the value of the

conceptual weight used in computer simulations. In order to convert from conceptual

weights to physical memristor resistance, Equation 4.3 can be solved for RM

RM =
RFRN

RF −HRN

. (4.4)

The summing opamp’s feedback resistor Rf is responsible for converting the

summed current back to a voltage. This is only possible because the opamp’s inverting

input is held constant at VCM due to the virtual ground. As stated before in

73

Section 4.2, this resistor can be used to add gain. As Section 4.4 shows, Rf is actually

used, among other parameters, to set the gain range of the synapse.

As a concluding statement of this section it should be noted that the input offset

voltage and noise of opamps can affect the output of the circuit seen in Figure 4.4.

However, the noise added by the input offset voltage through the opamps’s noise

gain is merely a constant measure and therefore a characteristic of the circuit itself.

Therefore, it can easily be compensated for, especially with a learning algorithm.

4.4 Finding Optimal Values for the Synapse-Neuron Circuit

At this point we have a solid base for the synapse as well as the neuron circuit and

have seen the general mathematical formulation for both. Equation 4.4 allows us to

convert a conceptual weight to physical memristor resistances. This section focuses

on the optimization of resistor values for Rf and RN as well as choosing the right

memristor resistance range so that the desired synapse gain range can be realized.

The fine tuning of the circuit described in Sections 4.2 and 4.3 starts by first

defining the range of the synapse gain. Let’s define that gain to be in the range [-2,2].

In Chapter 3, the operating range of the memristors was set to lie between 1kΩ and

100kΩ. The boundary parameters are therefore as seen in Table 4.1.

Table 4.1: Boundary parameters

Parameter Symbol Value

Highest gain HHigh 2
Lowest gain HLow -2

Highest memristor value RMHigh 100kΩ
Lowest memristor value RMLow 1kΩ

74

The value of RN is computed using

RN = RMHigh −
RMHigh ∗HHigh

RMHigh ∗HHigh −RMLow ∗HLow ∗ (RMHigh −RMLow)
, (4.5)

which makes sure that the synapse’s output current at RMLow is twice the negative

value of the input and at RMHigh twice the positive input value. With RN found, the

neuron’s feedback resistor RF can be computed using

RF = RN
RMHigh ∗HHigh −RMLow ∗HLow

RMHigh −RMLow

. (4.6)

Using the boundary parameter values from Table 4.1, RN evaluates to 1.98kΩ and

RF to 4.04kΩ. Figure 4.5 shows the simulated gain of the synapse-neuron circuit

using these values.

Figure 4.5: Simulated synapse gain

As Figure 4.5 shows, the gain curve is highly nonlinear, meaning that the change

in synapse gain is far greater for lower memristor resistances than it is for higher

75

resistances. This implies that the weight to resistance conversion is nonlinear. Recall

the weight cube in Figure 2.5 depicting where the AND, OR, NAND, and NOR

patterns are located in the weight space. Figure 4.6 shows the same in terms of

memristor resistance and it becomes clear that the NOR pattern is essentially the

hardest to train while the OR pattern is the easiest. This is because the OR pattern

spreads over a much larger resistance range as opposed to the NOR pattern.

Since we know that RF affects the gain (i.e., [-10,10] vs. [-2,2]) and RN causes

the gain-resistance curve to shift horizontally, we can alleviate the nonlinear weight

distribution issues by optimizing the values for RF and RN . Figure 4.7 shows different

resistance-gain curves. Note that the x-axis is not in log-scale as opposed to Figure 4.5

to emphasize the nonlinearity issue and how it can be solved. As a trade-off, we might

have to alter the memristor resistance range for adequate gain coverage.

Figure 4.6: Network resistance variation and its outcome

76

Figure 4.7: Synapse gain curve comparison

4.5 Alternative Synapse Circuits

The synapse introduced in Section 4.3 is not the only solution to negative weights.

Adhikari et al. recently published their work on a memristor bridge synapse [1]. The

synapse can be seen in Figure 4.8. At first glance, it seems that this circuit is more

elegant than what has been shown so far. However, while this circuit implements

both positive and negative weights, it is not able to provide amplification, meaning

that the synapse’s gain is never greater than or equal to 1. The weights of an ANN

can essentially all be normalized to lie within a range of [0,1] or even [-1,1]. This

is not a big issue for computer simulations where we have double-precision floating

point accuracy available. Even though analog signals are continuous, they are only in

theory more accurate than their digital representation. As was discussed in Chapter 3,

small feed-forward voltages can cause the attenuated signal to be in the noise floor.

Weight scaling or normalization is therefore not always a good idea and it is of benefit

to have a synapse supporting gains greater than 1 and less than -1.

77

Another issue the circuit in Figure 4.8 poses is that there are multiple memristors.

Memristor models available today are idealized and do not exhibit the true memristor

behavior. To the best of the author’s knowledge, literature has yet to present a way

to accurately program memristors. The current issue is that each memristor has a

unique intrinsic characteristic, which can change dependent on the pulses applied

to it. Therefore, it becomes exponentially difficult to program a synapse with four

memristors as opposed to a single memristor. The synapse proposed by Adhikari et

al. was only simulated and might seem like a good approach to a more linear adaptive

synapse, but it is very hard to control in hardware.

An alternative is to replace three of the four memristors with regular fixed resis-

tors, which will turn the bridge synapse into a design similar to the one described in

this chapter. One output of the bridge is fixed and provides an offset or reference

voltage, while the other output can swing above and below the reference such that

positive and negative weights can be achieved. The resistance-weight curve of this

circuit can be adjusted by changing the values of the fixed resistors. The resistance-

weight curve of this circuit is nonlinear as seen in Figure 4.9, therefore posing similar

programming difficulties as the synapse circuit introduced in Section 4.3. The synapse

gain curve in Figure 4.9 was achieved by replacing RM1, RM2, and RM3 with fixed

Figure 4.8: Memristor bridge synapse

78

Figure 4.9: Gain curve of the memristor bridge synapse

resistors of 50kΩ and RM4 assuming a resistance range of 1kΩ - 100kΩ.

4.6 Putting Everything Together

In this section, the programmer and network is put together to form the final pro-

grammable network. Chapter 3 describes the programing circuitry while this chapter

elaborates on the network structure itself. Referring to the objectives in Section 1.4,

we see that Chapters 3 and 4 have already covered the development of the pro-

gramming circuit and the feed-forward network with synapses and neurons. In order

to build a fully hardware implemented ANN, the programming circuit needs to be

connected with the network itself such that each synapse consisting of a memristor

can be programmed. Figure 4.10 shows a conceptual depiction of the programming

circuit connected to the network. It is a single TLG with two inputs (Vin1 and Vin2)

and one bias node (Vin0). Note that the three synapses are depicted in a simplified

manner. The negative offset circuit is the bottom half of the circuit seen in Figure 4.3,

79

Figure 4.10: Network with Programming Circuit

producing the current I2.

For programming, a memristor has to be fully disconnected from the feed-forward

network and connected to the programming circuit. Once programming is done, the

memristor is put back into the network. Figure 4.10 shows switches that allow each

memristor to be connected to either the programmer (see Figure 3.17) or the network.

Only one memristor can be programmed at a time. Switches φ1 connect memristor

RM1 to the programmer, φ2 selects RM2, etc. while φ4 connects all memristors to the

network for feed-forward operation. The switches are controlled by the switch control

module (see Section 3.3.4), which allows proper addressing of the memristor array,

such that the desired memristor can be programmed. The switch control module

implements necessary lock-out conditions, preventing unsafe operation of the circuit,

which could potentially harm the memristors.

The comparator is used as a hard-thresholding activation function and compares

80

the neuron’s sum to VCM . If the sum is greater than VCM , then the comparator’s

output is 1 (5V), otherwise it is 0 (0V). Note that the TLG’s output (VOUT) is only

valid during feed-forward operation when all φ4 switches are closed. For this work

VCM was set to zero.

Another important part is the signal conditioning of the inputs to the network.

As stated in Section 2.2, the voltage across a memristor should be as low as possible if

we wish to operate in the linear region, which is required for feed-forward operation.

Therefore, the input signals from the FPGA are scaled down and shifted to +/-20mV.

Figure 4.11: PCB built for this project consisting of programming circuit, memristor
array, and ANN

Figure 4.11 shows the final four layer PCB consisting of programming circuit,

memristor array, and TLG. The PCB also consists of a power supply and level

conversion circuit, which translates the FPGA’s 2.5V digital levels to the PCB’s

81

5V level. All necessary control signals are routed through the FPGA interface, while

programming pulses are brought in from the DAC through the connector on the top

left. The connector seen in the top middle is used to bring the response of a reading

pulse to the ADC.

4.7 Scalability and Expansion

When designing an ANN in software, the architecture is often not a big problem,

as only the feed-forward network has to be implemented. When “programming” the

weights, the software simply writes the updated weight value in the corresponding

memory location. However, when building an ANN in hardware, we can’t simply

update a memory location, but rather have to physically connect the synapse (in our

case a memristor) to the programming circuit. This requires a special architecture,

which adds some overhead. As Figure 4.10 shows, this architecture consists of a lot

of switches, allowing the programmer to individually address each memristor. While

this approach is acceptable for smaller networks, the question arises as to whether

this architecture is scalable with increasing network complexity.

The network seen in Figure 4.10 requires 4 switches for each memristor, for a

total of 12 switches. An XOR network requires a second layer with a 2-1 topology

(2 neurons in the first layer, 1 neuron in the second layer). Using bias weights, the

XOR network requires 9 memristors, meaning that the total number of switches is

36. Clearly, this is not scalable, as the overhead architecture gets too complex and

too resource intensive with increasing network size. Especially for this work, which

was built on a PCB for proof-of-concept purposes, the rapidly increasing number of

switches would blow-up the area of the PCB and the needed control lines from the

82

FPGA. In addition to that, the ADG1221 switches used for this work are relatively

expensive. When integrating everything on-chip, the architecture can be compacted,

but is still not ideal for larger networks. While the architecture used here is a

viable solution for small networks, a simpler solution has to be found for larger ANN

implementations.

If the network were expanded to implement a multilayer TLG as seen in Fig-

ure 4.12, there are some minor modifications that need to be done. The output

of each neuron is a signal in the range of 0-5V. If this signal is passed to other

synapses in a second stage, the same signal conditioning as for the network input

has to be performed (i.e., scaling and shifting the 0-5V signal to +/-20mV). With

that, the single layer developed in this chapter can simply be combined to form a

multilayer network. This modification is sufficient as long as no learning algorithm is

used. If a learning algorithm like MRII were to be added on to a multilayer network,

Figure 4.12: Network from Figure 4.10 expanded to a multilayer network

83

the algorithm would need access to the signal between the summing stage and the

comparator of each neuron. This is needed for the algorithm to establish the level

of confidence of each neuron, which is used to decide which synapses need to be

disturbed (see Section 2.1.6). For a single layer, single neuron network like the TLG

presented here, the tapping into the neuron is not necessary as the algorithm would

always disturb the synapses of the single neuron and would not have to distinguish

between others.

84

CHAPTER 5

RESULTS

In Chapter 4, a fully reconfigurable TLG was built using the memristor devices from

Chapter 2 and the programming circuit developed in Chapter 3, meeting objectives 1,

2, and 3 (see Section 1.4). In order to meet the remaining objectives, memristors need

to be characterized, TLG performance determined, and training algorithms evaluated.

This is necessary to determine whether it is feasible to use memristors as synapses

in TLGs or ANNs in general. This chapter presents the results and findings of the

programming circuit, memristor characterization, TLG performance, and training

algorithm evaluation.

5.1 Circuit Characterization

It is best to first characterize the circuitry described in Chapters 3 and 4 to make sure

that everything is working the way it is supposed to. Furthermore, it is important

that the programming circuit is calibrated such that when a 1.5V pulse is needed, a

1.5V pulse is indeed produced by the pulse generator. Figure 5.1 shows the calibration

curve for the programmer’s output. The DAC is controlled by an incremental value

between 0 and 16383 (14-bit) where 8191 is absolute zero. Incremental values above

8191 will generate a positive voltage and values below 8191 generate a negative

voltage. As Figure 5.1 shows, the amplitude peaks at roughly 3.2V for both the

85

negative and positive swing. This is a limitation of the AD8055 preamplifier opamp

in the programmer’s amplification stage. Using a least-squares approximation of

the measured output voltage values, a voltage/increment calibration value can be

computed, which is then used in the software to calculate the correct incremental

value for the DAC.

Figure 5.1: Programmer calibration plot

Another important parameter is the pulse length. Besides the incremental value

for the DAC, the pulse generator also requires an integer value for the pulse length,

so that the appropriate pulse can be formed and sent to the DAC. The pulse length is

also an incremental number, indicating how many clock cycles the pulse should last.

At a frequency of 50MHz, the period of a clock cycle is 20ns, which is the minimal

pulse width. Table 5.1 summarizes the calibration values.

Section 3.2.2 mentioned glitches and opamp oscillations propagating through the

circuit. While these glitches are expected from the switches and are not a big issue

86

Table 5.1: Calibration values

Parameter Value

Voltage/Increment 0.00052489V/Inc
Pulse length/Increment 20ns/Inc

for the circuit itself, it poses a problem for the memristors as a high enough glitch

could cause a memristor’s state to change. As described in Section 3.2.3, the existing

switches were replaced with the AD1221 analog switch, which has very low charge

injection. Using the AD1221 and applying a better switching scheme, which makes

sure that the memristors are isolated from the programmer whenever the PGA is

reconfigured, the glitches were found to be lower than the reading pulse amplitude.

Cross-talk is another concern with respect to signal and memristor device integrity.

If a programming pulse propagates to another trace because of cross-talk, a mem-

ristor could potentially be programmed even if it was not selected for programming.

Figure 5.2 shows the cross-talk between the three memristors’s signal lines. Note

that a programming pulse of maximal amplitude is applied to memristor 2 (signal 2

@ 2V/div). Both memristor 1 and 3 (signals 1 and 3 @ 20mV/div) show the same

signal due to cross-talk, but have a very small peak amplitude of 40mV. Since the

cross-talk does not exceed the reading voltage in the worst-case scenario, it is within

the allowed boundaries and therefore of no concern.

5.2 Memristor Characterization

This section elaborates on the memristor characterization results that will help to

improve or adjust existing programming techniques such that the ANN can quickly

and accurately be reprogrammed. At this point the reader should refer back to Sec-

87

Figure 5.2: Cross-talk

tion 2.2.4, which lists some general rules that need to be observed when programming

memristors. Experiments were conducted on two different device types: One using

silver, the other copper, as the conduction material. Unless otherwise stated, all char-

acterization experiments were conducted using the programming circuit developed in

Chapter 3.

5.2.1 Threshold

As stated in Section 2.2.3, a memristor’s state can only be changed if the applied

voltage reaches a threshold. While this is true for a change in the device’s con-

ductance, the conduction material (silver or copper) can still be moved into the

amorphous medium (see Figure 2.8 and Section 2.2.4) at voltages below the threshold.

It is therefore important that no unnecessary pulses below the threshold voltage are

applied to the memristor. However, the threshold of a device can change during its

88

Table 5.2: DC Threshold levels

Silver Copper

Writing 0.23V 1.2V
Erasing -0.58V -1.5V

lifetime and was found to exhibit significant fluctuations between devices. In general,

the writing and erasing thresholds for silver devices were found to be much lower

than for the copper devices. Table 5.2 shows the threshold voltages that were found

to work best for the devices under study. Note that these values are only valid for

DC operation (slow pulses) and are not representative of the AC behavior of these

devices. Figure 5.3 shows erasing and writing pulses applied to a silver-based device.

The device is initially in low resistance state. Applying a low erasing pulse does not

change its state, unless the erasing threshold is reached. At 15µs, the device switches

to a higher resistance because the erasing threshold listed in Table 5.2 is exceeded.

The same is true for programming the device back to a lower resistance at 25µs. The

three programming pulses between 30 and 40µs are bad examples as they violate

one of the programming rules. If a larger ∆R is observed when writing, no more

subsequent writing pulses should be applied as it could potentially harm the device.

Note that the resistance in Figure 5.3 was only slightly reduced by the first pulse at

25µs, indicating that the device has been sufficiently written. At 50µs the amplitude

needed to erase the device is significantly higher than previously reported. In fact,

the erasing pulse at 45µs did not alter the device’s state at all. This indicates that

the threshold levels can change while programming the device. Programming pulses

applied between 55 and 80µs show that the threshold levels for both erasing and

writing decreased, causing irregular changes in device state.

The erratic behavior of the device seen in Figure 5.3 could have been due to

89

Figure 5.3: Moving threshold

damage caused by applying subsequent writing pulses. However, the device used for

this experiment performed well for many more cycles, indicating that its integrity

was not decreased. In fact, the “moving threshold” phenomenon was observed in all

devices under study (both silver and copper). The threshold levels listed in Table 5.2

were found to generally hold true, but exhibited a deviation of up to 50% over a

memristor’s lifetime.

5.2.2 Varying the Device State

In her work, Tran has shown that a pulse train of writing pulses continues to decrease a

memristor’s resistance, while an erasing pulse train continually increased its resistance

[32]. Her work was based on an ideal simulated model, which does not have to follow

the memristor programming rules as outlined in Section 2.2.4. When dealing with

90

physical devices, the reality often looks significantly different compared to a simulated

environment. This is certainly the case here as well. Figure 5.3 indicates that the

change of resistance is not simply a function of the applied pulse. Experiments

on both silver and copper devices confirmed this indication and it was found that

continuously increasing or decreasing the resistance is extremely difficult to achieve.

This is especially true for continuous writing, as the programming rules prohibit us

from continually sending writing pulses. It is therefore better to write the device and

continually erase it. The resistance change was not found to be related to the previous

state and the applied pulse. In most cases the devices would perform hard-switching

(i.e., jump from a low resistance to a high resistance and vice-versa). While this is

not ideal for ANNs, we shall briefly investigate the hard-switching behavior.

Figure 5.4 shows the result of applying a pulse train of writing and erasing pulses

with pulse amplitudes that are only slightly above the silver threshold levels (see

Table 5.2) to a silver device. As can be seen, the resistance jumps up and down by

at least two orders of magnitude. Note that the deviation from the average high and

low values is pretty significant. The standard deviation was found to be around 45%

for both high and low states. While this is a pretty significant error, the memristors

can still be used as a digital memory when toggling between the two states (high and

low). The average high state resistance was found to be at 392kΩ and the average

low state resistance at 7.3kΩ.

Due to their intrinsic device structure and materials characteristics, silver-based

devices are expected to exhibit a certain hard-switching behavior, while copper-based

devices should work better with intermediate resistance values [5]. However, a similar

hard-switching behavior was found when investigating copper-based devices. The

reason for this discrepancy could be due to the fact that the programmer used for

91

Figure 5.4: Toggling between memristor states

this work is purely voltage controlled. While the threshold voltage suggests that

the programmer should be voltage controlled, it is possible that the device should be

programmed in current mode once the threshold voltage is reached. In fact, literature

suggests that memristors are both a voltage and current controlled device [26, 30],

but no solutions are presented as to how a memristor is best controlled in a practical

application such as an ANN programming circuit.

When looking at Figure 5.4, it seems as though the deviation of the high and

low states is random and does not suggest that a relationship between previous state

(resistance) and the change in resistance exists. However, Figure 5.4 is deceiving and

the change in resistance was analyzed numerically. It was found that a relationship

between the change in resistance and the previous resistance does exist, but only

when writing. Figure 5.5 shows data-points from selected datasets that exhibited

92

nice hard-switching behavior of both silver- and copper-based devices. When writing

the devices to a lower resistance, the change in resistance is dependent on the previous

state, but is independent of the pulse amplitude (the pulse amplitudes used here were

all the same). The resistance change can be said to be proportional to -1/R2, where

R is the resistance of the current state (before applying the pulse). This is consistent

with literature investigating spike-timing-dependent-plasticity (STDP), which gov-

erns how synapses learn in biology [37]. What is interesting about the relationship

between resistance change and previous state is that it only holds for programming

(i.e., reducing the resistance). When erasing, there seems to be no apparent pattern

between the change and previous state. Given that the relationship is proportional to

-1/R2, it makes sense that this only applies when writing a memristor to a lower state,

as the change in resistance will always be a negative number, indicating a reduction

in resistance. The copper-based devices seem to be a little more scattered than the

Figure 5.5: Relationship between resistance change and previous state

93

silver-based devices, whose data-points are much closer to each other, but overall the

two device types agree very well with each other.

Another observation was made that could explain why it is so hard to accurately

program memristors. Figure 5.6 shows the output of the programming opamp during

programming (top pulse, yellow). The figure depicts that the 10µs programming

pulse starts writing the device as soon as the threshold level is reached. The writing

process lasts for about 7µs before the memristor settles in at the new resistance.

What is interesting about the writing process is the stepwise change in voltage and

therefore the current through the device. Jo et al. observed the same behavior and

linked it to the formation of individual filaments in the amorphous medium [19].

The filaments actually already exist, but they are filled with silver during the writing

process. Characterizing the average wait time until the first or subsequent transitions

in voltage steps occur leads to a much better understanding of the device’s switching

Figure 5.6: Programming pulse and its effect on the memristor

94

behavior and its relationship to the threshold voltage [19]. Since the memristor devices

used for this work exhibited the same behavior as in the study by Jo et al., it is worth

investigating this matter further.

5.2.3 State Drift

Since memristors are ion-conduction devices, it is expected that the resistance of a

particular device could drift off over time due to unintentional ion migration. This

is especially true after very short programming pulses, as the ion migration does not

completely finish and some of the metal ions move back to the top electrode [5].

As Section 5.2.4 shows, very short erasing pulses can actually damage the device.

The applied programming pulse therefore has to be long enough such that the metal

ions are successfully moved into (or removed from) the amorphous medium. For

silver-based devices, the ideal programming pulse width is about 5µs and about 10

times higher or 50µs for copper-based devices [5]. Theory suggests that the longer

the pulse, the better the state will persist and not drift off [5].

Both silver- and copper-based devices were investigated for state drift. The

silver-based devices did not show any drift in resistance at all. Even when the pulse

length was reduced from 5µs to 1µs, the resistance of the device did not drift off.

However, copper-based devices showed significant drift. Figure 5.7 shows that after

applying a writing or erasing pulse the state drifted up or down respectively. Note that

the experiment leading to the plot in Figure 5.7 was conducted by applying either

a writing or erasing pulse and then reading the resistance approximately every 10

seconds until the resistance stayed constant. The index on the plot’s x-axis therefore

shows a multiple of 10 second intervals. The experiment performed on this particular

device showed that the resistance tends to drift back to its previous state (i.e., when

95

Figure 5.7: Copper-based memristor state drift

an erasing pulse is applied, the resistance is increased initially, but then decreases

back towards its previous value).

5.2.4 Negative Differential Resistance

From physics we know that resistance is always a positive value and that physical

devices cannot exhibit negative resistance. However, this is not completely true.

Tunnel diodes often exhibit the so called “negative differential resistance” (NDR)

phenomenon. When looking at the I-V curve, at some point the current starts to

decrease even though the voltage continues to increase. Continuing on, the current

will eventually increase and follow the expected behavior. Figure 5.8 shows a typical

NDR curve.

It turns out that memristors can exhibit NDR behavior as well. This is only

the case if the device is damaged by applying an extremely short, but high erasing

96

Figure 5.8: Typical NDR curve

pulse [5]. Figure 5.8 shows the two vertices of the curve (A and B). They govern

the area where the device exhibits NDR behavior. If the voltage applied is between

0V and A, then no change to the device’s resistance is made. In other words, A can

be thought of as the erasing threshold value. The region between A and B is where

the device exhibits NDR. When an erasing pulse is applied, which falls between A

and B, the device’s resistance is decreased instead of increased (writing). Once the

pulse amplitude passes B, the device erases normally [5]. Figure 5.9 shows the NDR

behavior of a silver-based device when pulses with different amplitudes are applied.

At 15µs, the erasing pulse causes the device to reduce its resistance just like the

previous writing pulse. The device does not erase until the pulse amplitude exceeds

point B as seen at 40µs. The same behavior can be observed between 45µs and 55µs.

NDR could be useful mechanism to program memristors, as it seems that the

97

Figure 5.9: Memristor NDR behavior

device’s resistance can be stepped down much better than when applying a single

writing pulse. It is therefore worth investigating whether NDR is a viable mechanism

for accurate memristor programming. However, as mentioned before, NDR is an

artifact of device damage and needs to be studied and understood better, before it

is used as a programming mechanism. The other problem is that points A and B

move up and down depending on the device’s state and the applied pulses [5]. This

means that the threshold voltages change, requiring the programming algorithm to

be re-tuned to each device on a regular basis. The phenomenon of moving thresholds

is consistent with the observations made in Section 5.2.1.

98

5.3 Evaluation of Programming Algorithms

Section 2.1.6 already alluded that the widely used backpropagation algorithm is not

useful here because a hard-thresholding activation function is used for this work.

Instead, the MRII training algorithm is a viable alternative and was shown to per-

form very well in simulation [32]. The majority of training algorithms are designed

for computer simulations where a weight is simply a memory location that can be

updated by the training algorithm. When dealing with programmable weights such

as memristors, the memory updating process has to be replaced by a programming

algorithm, making sure that the synapse or weight is set to the correct value. Tran

used a simple P-type programming algorithm, which applies a programming pulse

proportional to the error (Vprog = Kp*(Rm,desired - Rm,current)). This works for an

idealized model that does not change its characteristics over its lifetime. However,

the content of Section 5.2 indicated that the physical memristor devices do not follow

the simulation model and do, in fact, change their characteristics. This is for the

most part because not enough information about the characteristics of these devices

is known and no ideal programming mechanism has been discovered yet. Since no

consistent behavior was found thus far, it is not yet possible to develop a reliable

programming algorithm. This is mostly due to the fact that after each programming

pulse the devices changed their characteristic in an unpredictable manner. More

characterization research on both device level as well as programming circuitry has

to be done to proceed with the development of a programming algorithm suitable for

use with physical devices.

When looking at Figure 5.4, we see that silver-based devices work reasonably well

when they are toggled between high and low states. Even with an error of up to

99

50%, a repeated writing/erasing pulse train will eventually program the device to

the desired high or low state. Therefore, a simple algorithm applying a repeated

writing/erasing pulse train can be used for look-up table programming and even

simple binary learning.

5.4 TLG Results

The main objective of this work was to build a memristor-based neuromorphic com-

puting application. More specifically, a memristor-based TLG was developed in

Chapter 4. An FPGA controlled programming circuit, developed in Chapter 3, was

then used to program the memristors such that the TLG would exhibit different logic

functions (AND, OR, NAND, NOR). Its results are presented in this section.

Section 5.2 mentions that the memristor devices essentially work, but there are a

lot of things that are not yet well understood and therefore compromise full physical

ANN realization. The issues with moving threshold, erratic behavior when erasing,

and low device lifetime (due to the programming circuit’s inability to recover devices

in very high resistance state) did not allow a conclusive study on the TLG to be

conducted.

The performance of the TLG was measured by the four basic logic operations

(AND, OR, NAND, NOR), but there are a total of 16 2-input logic operations possible.

The invalid cases mentioned in this section are not necessarily invalid logic operations

as they might be part of the rest of the 16 functions. In Figure 5.10 for example,

the TLG outputs show TRUE, NOT(Input1), and NOT(Input2) functionality among

others. This clearly shows that the TLG can be reconfigured to many more possible

functions. For simplicity’s sake, only AND, OR, NAND, and NOR were used for this

100

work. Table 5.3 shows all 16 possible logic operations.

Table 5.3: 16 possible binary logic operations

INPUTS A (Input 1) 0 1 0 1
B (Input 2) 0 0 1 1

OUTPUTS FALSE 0 0 0 0
A AND B 0 0 0 1

B DOESN’T IMPLY A 0 0 1 0
TRUE B 0 0 1 1

B IS NOT IMPLIED BY A 0 1 0 0
TRUE A 0 1 0 1
A XOR B 0 1 1 0
A OR B 0 1 1 1

A NOR B 1 0 0 0
A XNOR B 1 0 0 1

NOT A 1 0 1 0
B IS IMPLIED BY A 1 0 1 1

NOT B 1 1 0 0
B IMPLIES A 1 1 0 1

A NAND B 1 1 1 0
TRUE 1 1 1 1

The results of the memristor characterization showed that it was not possible to

alter the device resistance in fine steps like Tran showed with her simulated TLG [32].

Instead, Figure 5.4 showed that the silver-based devices can be used to switch back

and forth between a “High” and “Low” state. This hard-switching behavior is used

to reconfigure the TLG to either an AND, OR, NAND, or NOR gate. As reported

in Section 5.2.2, the average high state resistance was around 392kΩ and the average

low state resistance at 7.3kΩ. Before any feed-forward operation can be done, the

synapses have to be configured for this resistance range such that the appropriate

gains can be realized. Referring back to Section 4.4 and Equations 4.5 and 4.6,

new values for Rn and Rf can be computed. However, since the average high and

low state resistances are likely to change from memristor to memristor, the general

101

synapse based on the second curve of Figure 4.7 was implemented (Rn = 33.3kΩ,

Rf = 500kΩ).

Table 5.4 shows the “logic” memristor resistance states needed to produce a

particular pattern. This is based on the high and low values seen in Figure 5.4

applied to the weight cube in Figure 4.6. In short, using high and low states, the

memristors are programmed such that the network operates only in the four corners

of the weight cube where a valid pattern is located. Due to the high error of the high

and low states (45%, see Section 5.2.2), the programmed resistance may cause the

TLG’s operating point to lie outside of the targeted tetrahedron.

Table 5.4: TLG logic configuration states

Configuration Memristor 1 Memristor 2 Memristor 3

AND High High Low
OR High High High

NAND Low Low High
NOR Low Low Low

Based on Table 5.4, the operator or control algorithm knows which memristor

to write or erase to achieve the desire logic operation. Once the programming

(writing or erasing) is done and feed-forward does not produce satisfactory results,

each memristor is simply toggled to attain a new resistance value. This process is

repeated until a correct output is obtained. Essentially, the devices are perturbed

using two fixed pulse amplitudes for writing and erasing. This is reminiscent of the

MRII algorithm, which also perturbs the devices in a random way. However, here we

restrict the perturbation to only two pulses, simplifying the programming process to

a simple toggling action.

Due to the irregular device behavior and the low device lifetime, the programming

of the three memristor devices used for the TLG was done manually through the

102

Nios II processor’s RS232 data link to a host computer. Figure 5.10 shows the result

of reconfiguring the TLG. The first two plots show the two input signals. Note that

their signal levels are not logic 1 or 0, but -1 and 1 (-20mV and 20mV) instead (see

Section 2.1.4). The third, fourth, and fifth plot shows the output of the TLG. The

two input signals were continuously applied to the TLG to obtain the three output

plots. During the programming phase, the input signals are kept at 0V. Figure 5.10

clearly shows that the TLG was reconfigured to exhibit AND, OR, NAND, and NOR

functionality.

Figure 5.10: TLG inputs and output

The programming sections in Figure 5.10 indicate where a single memristor was

programmed according to Table 5.4. As Table 5.4 shows, going from an AND to a

NOR configuration requires two memristors to change (memristor 1 and 2 need to

103

change from high to low; memristor 3 stays). Therefore, it required two programming

cycles - one for each memristor - to reconfigure the TLG. In order to reconfigure

the TLG from an AND to an OR or a NAND to a NOR configuration, only one

programming cycle is required, as the bias weight (memristor 3) is the only one that

needs to be changed.

Figure 5.11a shows the weight space with a possible programming path for re-

configuring the TLG from NOR to OR. In this case, it will take a total of three

programming cycles as all three memristors need to be changed. Note that changing

only the bias weight (memristor 3) changes the network from NOR to NAND, but

two memristors (memristor 1 and 2) need to be changed to go from NAND to OR. As

Figure 5.11a shows, the path from NAND to OR leads through a corner, which is not

one of the four functions used for this work. Figure 5.11b shows the programming

paths required to obtain the results in Figure 5.10. As can be seen, the TLG is

reconfigured to operate only in the corner regions. Four of the eight corners are valid

configurations (AND, OR, NAND, NOR), while the rest are unused configurations

and are simply used as way-points to reconfigure the TLG from one function to

another. Table 5.5 shows a set of memristor resistances for each gate configuration.

Note that these resistances agree with the high/low notation of Table 5.4 considering

that a resistance near 103Ω is interpreted as logic low and a resistance near 105Ω as

logic high.

Table 5.5: TLG memristor resistances

Configuration Memristor 1 (kΩ) Memristor 2 (kΩ) Memristor 3 (kΩ)

AND 80 118 17
OR 73 62 133

NAND 8.2 9.8 114
NOR 5.8 5.5 19

104

(a)

(b)

Figure 5.11: (a) Weight cube indicating the programming path required to go from
NOR to OR and (b) all programming paths required to obtain the results seen in
Figure 5.10.

It is worth mentioning that it took an average of 2 programming pulses per

programming cycle (see Figure 5.10) to program a device to the desired state. The

standard deviation was found to be 1 programming pulse and the highest and lowest

105

number of programming pulses needed was 4 and 1, respectively. This is just slightly

higher than expected when looking at the results in Figure 5.4, which were obtained by

using single pulses to switch the device from one state to the other. As Figure 5.11b

shows, the memristors are programmed such that the network always operates in

the corner regions. If a memristor’s resistance is adjusted such that the network is

not operating in one of the four valid corners (AND, OR, NAND, NOR) and most

importantly is not within the tetrahedra depicted in Figure 5.11a, the network’s

configuration is invalid. Therefore, additional programming pulses are needed to

move the network’s operation point into the desired tetrahedron. On the device

level, this issue arises because each device has a slightly different behavior and might

not react the same way to the programming pulses. Therefore, it is expected that

some devices need more pulses or even need characterization during programming

to determine where the new threshold values are. A better understanding of the

intrinsic memristor programming mechanisms and more research on hardware friendly

algorithms are needed to automate network reconfiguration. The results shown in

Figures 5.10, 5.11b, and Table 5.5 were obtained using only copper-based memristors

and all experiments were run on a series of devices and proved to be consistent and

reproducible.

Figure 5.12 agrees with the previously mentioned average of 2 programming pulses

needed per programming cycle. However, when looking at the normalized histogram,

it seems like the state of the memristor is not that hard to control as was previ-

ously mentioned. The data presented here suggests that about 33% of programming

attempts succeed with only a single programming pulse. The curve seems to fall

of exponentially with only 2% of all programming attempts needing 7 programming

pulses. This data is somewhat missleading and requires more explanation. First

106

Figure 5.12: Histogram of memristor programming attempts needed

of all, this work is based on binary states, meaning that the devices can easily be

toggled by using pulses big enough to cause the device’s state to move well over the

binary threshold. This cannot be compared to Tran’s work, as her simulation was

focused on varying the state in very small increments. Furthermore, all that needs

to be accomplished during programming is to cross the binary threshold. It does not

matter what the exact resistance of the memristor is. Lastly, a complete programming

cycle as described here, does not imply a successful reconfiguration of the TLG. A

complete programming cycle is simply the completion of setting a particular device to

a “High” or “Low” state. If the feed-forward operation does not indicate a successful

reconfiguration of the TLG, the memristor is simply perturbed (toggled) as explained

earlier.

Since the result of the TLG is a function of the resistances of all three memristors,

it is possible that their values cause one synapse to offset another, therefore producing

107

Figure 5.13: Histogram of attained memristor resistances

an incorrect outcome, even though all memristors are in their targeted logic state.

It would therefore be desirable that the memristors would have a much narrower

window of target resistance pertaining to each logic state, to decrease the number

of incorrect programming cycles. Unfortunately, this is not possible due to the fact

that memristors are hard to accurately control. Figure 5.13 shows the normalized

histogram of all resistances attained during programming. It can be seen that the

histogram is widely spread, indicating that the windows of the two “High” and “Low”

target resistances are quite wide.

What is interesting about the histogram in Figure 5.13 is that almost 50% of the

attained resistances were below 20kΩ. In fact, the majority of the attained resistances

are in the lower resistance range. This is because the memristors used here are easier

to write than to erase. In addition to that, when a writing pulse was applied, causing

the device’s resistance to decrease, the momentarily decreased resistance caused an

108

increased current flow, which in turn caused the resistance to decrease even more.

This avalanche efect is the reason that almost 50% of attained resistances are below

20kΩ. Dividing the histogram in Figure 5.13 into “High” and “Low” regions at around

200kΩ, it seems like the lower resistance region has more discernible distribution

pattern than the higher resistance region. In fact, this corresponds to the relationship

between resistance change and previous state as seen in Figure 5.5.

109

CHAPTER 6

CONCLUSION

This thesis revolved around building a memristor-based neuromorphic application in

order to show the viability of using memristors as synapses in ANNs. This chapter

summarizes this work and concludes with a list of recommendations for further

improvement.

6.1 Summary of Work

In Chapter 4, a fully hardware-based ANN in the form of a TLG was developed.

Even though that this has already been done by Rosenblatt, Widrow, and others as

early as 1960 [24, 33], there are many advances that set this work apart from what

has previously been done. Both Rosenblatt and Widrow built a fully reconfigurable

hardware ANN, but their setup was very large in size and slow to adapt. Their

synapses were based on a three terminal device; Rosenblatt used a variable resistor

powered by a stepper motor [24] and Widrow used a resistive metal strip whose

resistance could be altered by electro-deposition [33]. Clearly their three terminal

synapses were not only large in size, but required a lot of overhead resources. The

work presented here used two terminal memristive devices as synapses, which not

only simplifies the setup but most importantly significantly reduces its size. It needs

to be pointed out that the prototype built for this work was based on discrete circuit

110

components, making the final network several thousand times bigger than if it were

built on-chip. The findings presented in Chapter 5 prompt further improvements of

the circuit architecture so that it can later be implemented in CMOS technology.

The other novelty about this work is the use of memristors in an application-based

environment. Other research groups have reported on the characterization and use

of memristors, but their work was mostly done in a protective lab environment using

elaborate lab equipment such as SPAs [17, 18, 19, 26, 30]. The work presented here

is application based and characterized, programmed, and reprogrammed memristors

while they were physically part of the ANN. A simple pulse programming circuit was

developed in Chapter 3 that allows the application to control the memristors. While

Chapter 5 mentions some issues and shortcomings of both the application (ANN

and programmer) as well as the memristors, it clearly shows the viability of using

memristors in neuromorphic applications and indicates where further improvements

need to be made in order to advance this technology.

6.2 Conclusion and Future Work

The objectives of this work are stated in Section 1.4 and are repeated here for easier

referencing in this section.

1. Develop memristor programming and reading circuit.

2. Develop synapse and neuron circuit.

3. Build a fully hardware implemented TLG.

4. Evaluate and characterize memristors for use in a synapse.

5. Find the effect of the training environment on training algorithms.

111

Objectives 1, 2, and 3 were the focus of Chapters 3 and 4 and were implemented

and demonstrated to work in Section 5.4. While these three objectives were success-

fully met, some improvements are necessary for further advance of this technology.

The programming circuit needs to be able to cover a wider range of memristor

resistance. While the resistance range of the memristors was restricted from 1kΩ

to 100kΩ, it has been shown in Section 5.2.1 that the memristors are not only

hard to control, but they also exceed this range when toggled between high and

low states. Exceeding this range can be accounted for by adjusting Rn and Rf in the

synapse-neuron circuit, but it will cause resistance measurement error as the PGA’s

range is exceeded. The programming opamp used for this work does not support

high feedback resistances while supporting both high-speed and gains up to 10. In

order to expand the PGAs range to accommodate the larger resistance variation of

memristors, either a custom opamp is needed or a different programming circuit needs

to be developed.

The synapse and neuron circuit developed in Chapter 4 proved to work as ex-

pected. However, Tran reported that the nonlinearity of the synapse circuit can

lead to programming issues [32]. For “binary” state toggling, some memristors might

operate in the steeper region of the synapse’s gain curve, while others might operate in

the flatter region. This is due to the characteristic variation among memristors. Being

able to control memristors more accurately could alleviate this issue, but nonetheless

the nonlinearity of the synapse is an undesired behavior. Several options such as the

bridge-based synapse or the use of logarithmic opamps should be explored in order

to linearize the synapse’s gain curve. This is perhaps easier to do when building the

network on-chip, as it allows for more flexibility with custom designed transistors and

opamps.

112

The fully hardware implemented TLG as listed in objective 3 has been demon-

strated to work as expected (see Figure 5.10). While this is only a prototype for

a proof-of-concept neuromorphic application, more research in the area of network

topologies and programming overhead architectures needs to be conducted. As men-

tioned in Section 4.7, the network built here does not scale for larger, more complex

architectures.

The majority of Chapter 5 outlines the memristor characterization results, meeting

objective 4. Even though the results indicate that the memristor devices used for this

work were hard to control in terms of accurately adjusting the device resistance, it

showed that they do exhibit some relationships that can be exploited for better device

handling. Furthermore, the results indicate the areas where further research is needed.

This is by no means limited to the device only and should in particular include other

programming techniques such as voltage and current controlled programmers as well

as spike-timing-dependent-plasticity (STDP).

Last, but not least, the MRII training algorithm was evaluated for use with a

hardware ANN. Tran was able to successfully implement a slightly modified version

of the MRII algorithm in her Matlab-Cadence co-simulation [32]. As mentioned

before, her memristor model was based on idealized device assumptions. Therefore,

the simulation was able to successfully employ the learning algorithm in a simu-

lated hardware environment [32]. While the P-type programming algorithm worked

well for her work, it would certainly not work with hardware devices that do not

exhibit consistent behavior. With the improvement of memristor device behavior

and acquisition of a better device understanding, reliable programming techniques

can be developed, which would allow for software-based training algorithms to be

employed. However, this is not an ideal situation as current learning algorithms are

113

streamlined for software ANNs, meaning that the weight update process is simply

done by updating a memory location. In hardware we have to take the weight’s

characteristic and more importantly its lifetime into account. This should not only

be done in the programming algorithm, but also in the learning algorithm itself. For

example, MRII falls back to the previous weights if the new weight change does not

reduce the error [32, 36]. This is not very hardware friendly as it not only wears the

memristors out, but adds unnecessary programming time for the process of going back

to the previous weight. Further modification of the MRII algorithm or development

of another hardware-friendly learning algorithm is therefore required. Even though

the TLG was not equipped with a learning algorithm due to the issues outlined in

this chapter, a more hardware-friendly learning algorithm can easily be coupled with

the TLG in the future to exhibit learning.

114

REFERENCES

[1] S.P. Adhikari, Changju Yang, Hyongsuk Kim, and L.O. Chua. Memristor bridge
synapse-based neural network and its learning. Neural Networks and Learning
Systems, IEEE Transactions on, 23(9):1426 –1435, Sept. 2012.

[2] R. Jacob Baker. CMOS Circuit design, layout, and simulation. IEEE Press, 3rd
edition, 2010.

[3] K. Basterretxea, J.M. Tarela, and I. del Campo. Approximation of sigmoid
function and the derivative for hardware implementation of artificial neurons.
Circuits, Devices and Systems, IEEE Proceedings -, 151(1):18 – 24, Feb. 2004.

[4] Nick Bostrom. Ethical issues in advanced artificial intelligence. In Science Fiction
and Philosophy: From Time Travel to Superintelligence, pages 277–286. Wiley-
Blackwell, 2009.

[5] Kristy A. Campbell. Personal conversation with Dr. Campbell, Sept 2012.

[6] Kristy A. Campbell and Beth R. Cook. Unpublished Data.

[7] Brian Casper. Energy efficient Multi-Gb/s I/O: Circuit and system design
techniques. IEEE Workshop on Microelectronics and Electron Devices, 2011.

[8] L.O. Chua. Memristor-the missing circuit element. Circuit Theory, IEEE
Transactions on, 18(5):507 – 519, Sept. 1971.

[9] L.O. Chua. The fourth element. Proceedings of the IEEE, 100(6):1920 –1927,
June 2012.

[10] L.O. Chua and Sung Mo Kang. Memristive devices and systems. Proceedings of
the IEEE, 64(2):209 – 223, Feb. 1976.

[11] Kolton Drake and Kristy A. Campbell. Chalcogenide-based memristive device
control of a LEGO Mindstorms NXT servo motor. AIAA Infotech@Aerospace
Conference and Exhibit, March 2011.

[12] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification.
John Wiley & Sons, 2006.

115

[13] Rafael Gadea, Joaqúın Cerdá, Franciso Ballester, and Antonio Mochoĺı. Ar-
tificial neural network implementation on a single FPGA of a pipelined on-line
backpropagation. In Proceedings of the 13th International Symposium on System
Synthesis, pages 225–230, 2000.

[14] Rafael Gadea Girons, Ricardo Colom Palero, Joaqun Cerd Boluda, and Angel Se-
bastian Corts. FPGA implementation of a pipelined on-line backpropagation.
The Journal of VLSI Signal Processing, 40:189–213, 2005.

[15] D.O. Hebb. The Organization of Behavior: A Neuropsychological Theory. Taylor
& Francis, 2002.

[16] J.L. Holt and T.E. Baker. Back propagation simulations using limited precision
calculations. In Neural Networks, 1991, IJCNN-91-Seattle International Joint
Conference on, volume II, pages 121 –126, July 1991.

[17] Sung Hyun Jo, Ting Chang, Idongesit Ebong, Bhavitavya B. Bhadviya, Pinaki
Mazunder, and Wei Lu. Nanoscale memristor device as synapse in neuromorphic
systems. Nano Letters, 10(4):1297 – 1301, 2010.

[18] Sung Hyun Jo, Kuk-Hwan Kim, Ting Chang, S. Gaba, and Wei Lu. Si memristive
devices applied to memory and neuromorphic circuits. In Circuits and Systems
(ISCAS), Proceedings of 2010 IEEE International Symposium on, pages 13 –16,
June 2010.

[19] Sung Hyun Jo, Kuk-Hwan Kim, and Wei Lu. Programmable resistance switching
in nanoscale two-terminal devices. Nano Letters, 9(1):496–500, 2009.

[20] J.H. Kim, Wenle Zhang, Seung-Ki Ryu, and Yoon-Seuk Oh. An ADALINE
neural network with truncated momentum for system identification of linear
time varying systems. In Industrial Technology (ICIT), 2012 IEEE International
Conference on, pages 292 –297, March 2012.

[21] Jihong Liu and Deqin Liang. A survey of FPGA-based hardware implementation
of ANNs. In Neural Networks and Brain, 2005. ICNN B ’05. International
Conference on, volume 2, pages 915 –918, Oct. 2005.

[22] J.B. Lont and W. Guggenbühl. Analog CMOS implementation of a multilayer
perceptron with nonlinear synapses. Neural Networks, IEEE Transactions on,
3(3):457 –465, May 1992.

[23] W.S. McCulloch and W.H. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5:115 – 133, 1943.

116

[24] G. Nagy. Neural networks-then and now. Neural Networks, IEEE Transactions
on, 2(2):316–318, March 1991.

[25] Kristian R. Nichols, Medhat A. Moussa, and Shawki M. Areibi. Feasibility of
floating-point arithmetic in FPGA based artificial neural networks. In CAINE,
pages 8 – 13, 2002.

[26] A.S. Oblea, A. Timilsina, D. Moore, and K.A. Campbell. Silver chalcogenide
based memristor devices. In Neural Networks (IJCNN), The 2010 International
Joint Conference on, pages 1 –3, July 2010.

[27] National Society of Professional Engineers. NSPE code of ethics for engineers,
July 2012.

[28] Ernesto Ordoñez-Cardenas and Rene de J. Romero-Troncoso. MLP neural
network and on-line backpropagation learning implementation in a low-cost
FPGA. In Proceedings of the 18th ACM Great Lakes symposium on VLSI, pages
333–338, 2008.

[29] Kevin T. Patton and Gary A. Thibodeau. Anatomy & Physiology. Elsevier,
2010.

[30] Dmitri B. Strukov, Gregory S. Snider, Duncan R. Stewart, and R. Stanley
Williams. The missing memristor found. Nature, 453:80 – 83, May 2008.

[31] Linear Technology. LT1175 500mA low dropout micropower regulator.

[32] Thanh Tran. Simulations of artificial neural network with memristive devices.
Master’s thesis, Boise State University, Boise, Idaho, 2012.

[33] B. Widrow. An adaptive ADALINE neuron using chemical memistors. Tech-
nical Report No. 1553-2, Stanford Electronics Laboratory, Stanford, California,
October 1960.

[34] Wikipedia. Harvard architecture, July 2012.

[35] Wikipedia. Von Neumann architecture, July 2012.

[36] Rodney Winter and Bernard Widrow. MADALINE Rule II: a training algorithm
for neural networks. In Neural Networks, IEEE International Conference on,
volume 1, pages 401 – 408, July 1988.

[37] Carlos Zamarreño-Ramos, Luis A. Camuñas-Mesa, Jose A. Pérez-Carrasco, Tim-
othée Masquelier, Teresa Serrano-Gotarredona, and Bernabé Linares-Barranco.
On spike-timing-dependent-plasticity, memrisitve devices, and building a self-
learning visual cortex. Frontiers in Neuroscience, March 2011.

