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R E S E A R C H A R T I C L E

Passive restoration of vegetation and biological soil
crusts following 80 years of exclusion from grazing
across the Great Basin
Lea A. Condon , Nicole Pietrasiak , Roger Rosentreter , David A. Pyke

Restoration targets for biological soil crusts are largely unknown. We surveyed seven 80-year-old grazing exclosures across
northern Nevada for biocrusts to quantify reference conditions at relatively undisturbed sites. Exclosures were associated
with the following plant communities: Wyoming big sagebrush, black sagebrush, and areas co-dominated by winterfat
and Wyoming big sagebrush. Cover of biocrusts and shrubs were generally higher than other plant groups at these sites,
regardless of being inside or outside of the exclosures, suggesting these groups make up most of the native flora across the
region. Important in forming soil structure, cyanobacteria of the order Oscillatoriales were less abundant and diverse in
black sagebrush communities. Grazing had a negative effect on the abundance of Oscillatoriales but not the number of algal
taxa, including cyanobacteria. Abundance of light algal crusts were not influenced by plant community or grazing. Dark
algal crusts were generally less abundant on grazed sites. Influences of plant community and grazing were most apparent
when accounting for reproductive rates of lichens and mosses based on establishment mechanisms. Abundance of shrubs,
perennial grasses, Oscillatoriales, fast reproducing biocrusts and the number of algal and cyanobacterial taxa, varied by
plant community, suggesting that restoration should be plant community specific. We demonstrate the affinity of rapidly
reproducing biocrusts for winterfat-Wyoming big sagebrush co-dominated plant communities, regardless of grazing pressure.
Across sites, the effects of grazing were most evident on the abundance of Oscillatoriales and slowly reproducing biocrusts
following 80 years of cessation from grazing.
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Implications for Practice

• Restoration targets for biocrusts, like vascular plants,
should be plant community specific.

• Inventories of biocrusts should be conducted before
restoration as many species, particularly biocrusts that
are fast reproducers, may not need to be reintroduced and
restoration may not be necessary.

• Both the abundance of Oscillatoriales (order contain-
ing cyanobacteria that create soil structure) and biocrust
species with slow rates of reproduction demonstrated pas-
sive recovery following 80 years of cessation from graz-
ing, suggesting that passive recovery is a viable option
over this time frame and that these species may be indica-
tive of relatively undisturbed sites.

Introduction

Globally, biological soil crusts (biocrusts: lichens, mosses,
fungi, prokaryotic bacteria, and eukaryotic algae) contribute to
ecosystem functions such as the prevention of soil erosion, nutri-
ent, and hydrologic cycling (Evans & Ehleringer 1993; Belnap
& Gillette 1998; Belnap & Lange 2003; Cantón et al. 2004;
Bowker et al. 2011). Specifically, biocrust components pro-
vide many complementary ecosystem functions. Lichens alter

water retention and infiltration, enhance soil stability, fix nitro-
gen, and sequester carbon (Eldridge et al. 2010; Chamizo et al.
2012; Elbert et al. 2012). Mosses facilitate water infiltration,
trap mobile soil surface particles, and directly contribute organic
matter to soils (Danin & Gaynor 1991; Melick & Seppelt 1992;
Zhang et al. 2009). Cyanobacteria, other bacteria, and eukary-
otic algae contribute to the stabilization of soils and contribute
to carbon and nitrogen cycling (Garcia-Pichel & Wojciechowski
2009; Büdel et al. 2016).
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Passive restoration of vegetation and biocrusts

In semiarid and arid regions biocrust often cover up to 70%
of the undisturbed landscape (Belnap & Lange 2003). Addi-
tionally, the primary land use in semiarid and arid regions is
livestock grazing (West 1983). In the sagebrush steppe of North
America, overgrazing leads to the dominance of annual invasive
grasses such as cheatgrass, Bromus tectorum L. However, high
cover of biocrusts in conjunction with vegetation cover is asso-
ciated with low cover of cheatgrass (Reisner et al. 2013; Condon
& Pyke 2018a, 2018b). Following disturbance, cheatgrass fills
the interspaces between perennial plants, resulting in an increase
in the frequency and extent of fire (Germino et al. 2015). Despite
the important association between biocrusts and low cover of
cheatgrass, little is known about what biocrusts look like in the
absence of anthropogenic disturbance across the region.

The practice of restoration ecology is not a science unless it is
grounded in observational and experimental studies (Bradshaw
1983). Scientifically based restoration targets require reference
sites; sites that share potential community compositions with
the target restoration site under intact ecosystem processes
(White & Walker 1997). Both restoration sites and associated
reference sites are experiencing change through time and sim-
ilar current conditions. This concept should not be confused
with trying to restore to historical conditions. Without reference
sites, restoration efforts do not have ecologically meaningful
targets. These targets are challenging in the sagebrush steppe of
the Great Basin given historical overgrazing across the region
(Leopold 1924). In response to overgrazing, the Taylor Grazing
Act was implemented in 1934 “[t]o stop injury to the public
grazing lands by preventing overgrazing and soil deterioration,
to provide for their orderly use, improvement, and development,
to stabilize the livestock industry dependent upon the public
range, and for other purposes” (48 Stat 1269, “Act of June 28,
1934” codified at 43 U.S.C. 315 et seq). Associated with the
Act, 28 livestock exclosures were constructed across the state of
Nevada. Exclosure locations were cooperatively selected by the
U.S. Forest Service Intermountain Forest and Range Experi-
ment Station, the University of Nevada Agricultural Experiment
Station, and the Taylor Grazing Service on areas considered
to be severely overgrazed (Holmgren 1976; Burnside 1988).
Although some exclosures are in areas that have since become
private land or have been damaged, the remaining sites are
potential reference sites that have not been grazed or burned
in the last 80 years. Additionally, these exclosures present an
opportunity to observe the effects of passive restoration on
biocrusts. We define passive restoration as the removal of a
disturbance with the intent of seeing a community return to its
native components through natural successional and climatic
processes. Rest from disturbances such as grazing may be a
viable restoration alternative in some scenarios if a threshold of
species change has not been reached (Suding & Hobbs 2009;
Pyke 2011).

In other ecosystems, such as the Namib Desert (south-
west coast of Africa), southeast Australia, the Monte Desert
(Argentina), the Mojave Desert (U.S.A.), and oak woodlands
in Portugal, the passive recovery of biocrusts has been noted
following the cessation of disturbance, but these studies have
all been on the timescale of 4–50 years following disturbance

(Lalley & Viles 2008; Pietrasiak et al. 2011; Read et al. 2011;
Gómez et al. 2012; Concostrina-Zubiri et al. 2016). The Tay-
lor Grazing Act exclosures have been in place for 80 years and
represent the first study that we know of within this time frame.
Although our study is in the cold desert of the Great Basin, many
of the growth forms and genera of biocrust species found in the
Great Basin also occur in arid and semiarid systems globally
(Bowker et al. 2016). An evaluation of these exclosures may
provide insight into recovery patterns of biocrusts that we would
expect to find globally following the removal of disturbance
such as grazing. These exclosures were surveyed with the pur-
pose of addressing four questions: (1) Is there a difference in the
abundance of biocrust components, specifically light algal, dark
algal, moss and lichen crusts as well as vascular plant groups:
annual forbs, perennial forbs, cheatgrass, perennial grasses and
shrubs following 80 years of exclusion from grazing?; (2) Does
the recovery of biocrusts from grazing vary by reproductive rate
of species?; (3) Is the abundance of cyanobacteria in the order
Oscillatoriales and species richness of algae in the soil differ-
ent following 80 years of cessation from grazing?; (4) Does the
identity of the associated plant community affect the presence
or recovery of any of the above-mentioned groups?

The first question gives us an opportunity to assess the abun-
dance of vascular plants and biocrust components across the
region, elucidating restoration targets (the goals of restoration)
with passive recovery in mind. We differentiate light and dark
algal crusts because this can easily be done in the field. Light
algal crusts are dominated by members of the cyanobacterial
order Oscillatoriales. Species of the order Oscillatoriales such
as Microcoleus vaginatus, Microcoleus steenstrupii, Kastovskya
adunca, Phormidium spp., and Symplocastrum spp. are known
to produce copious amounts of sticky exopolysaccharides and
are recognized as key species in biocrust formation and estab-
lishment. Species that dominate dark algal crusts are often the
photobionts in cyanolichens, such as Nostoc spp. and Scytonema
spp., darkening the soil surface due to their sun screen pigmenta-
tion. These species fix greater amounts of nitrogen compared to
other groups (Pietrasiak et al. 2013). The second question gives
us insight into restoration targets that are related to the repro-
ductive rates of biocrust species. The third question allows us
to assess if the potential of Oscillatoriales and algae to recover
following disturbance is limited by being present onsite. We use
the terms “algae” or “algae, including cyanobacteria” to refer to
both cyanobacteria and eukaryotic algae unless specified. The
fourth question gives us insight into potential targets for biocrust
and vascular plant restoration amongst varying environmental
gradients. The influence of plant community is examined with
each of the preceding questions. Restoration of plant communi-
ties has historically balanced what is present onsite with what
should be onsite, weighing what can most reliably be achieved
with active versus passive restoration over an acceptable time
frame. We expect that the compilation of findings from our
research questions will provide the first documented attempt
at creating a restoration framework for biocrusts considering
both biocrust and vegetation components as well as biocrusts
as related to reproductive speed.
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Table 1. Ecological site descriptions and environmental information on each of the grazing exclosures.

Exclosure Elevation (m)

Average
Freeze-Free

Period (days) Ecological Site Description 30-Year Averages

Baker
38∘56′42.70′′ N
114∘03′10.18′′ W

1,617 100–120 Loam 8–10 P.Z., R028AY015NV
Artemisia tridentata ssp. wyomingensis/Achnatherum

hymenoides-Hesperostipa comata

33.11∘C max temp
−8.92∘C min temp
221 mm precipitation

Conner Station
39∘01′57.08′′ N
114∘33′11.25′′ W

1,846 100–140 Shallow Calcareous Loam 8–10 P.Z., R028AY013NV
Artemisia nova/Achnatherum hymenoides-Hesperostipa

comata

31.12∘C max temp
−9.85∘C min temp
257 mm precipitation

Dinner Station
41∘08′16.39′′ N
115∘50′52.69′′ W

1,789 100–120 Loamy 8–10 P.Z., R025XY019NV
Artemisia tridentata ssp. wyomingensis/Achnatherum

thurberianum/Pseudoroegneria spicata

29.42∘C max temp
−11.07∘C min temp
300 mm precipitation

Newark Valley 1
39∘24′49.18′′ N
115∘35′25.84′′ W

1,909 100–120 Shallow Calcareous Loam 8–10 P.Z., R028BY011NV
Artemisia nova/Achnatherum hymenoides-Hesperostipa

comata

30.57∘C max temp
−10.38∘C min temp
237 mm precipitation

Newark Valley 2
39∘25′36.08′′ N
115∘38′15.92′′ W

1,850 90–150 Silty 8–10 P.Z., R028BY013NV
Krascheninnikovia lanata/Achnatherum

hymenoides-Elymus elymoides

30.89∘C max temp
−10.48∘C min temp
230 mm precipitation

Paradise Valley 1
41∘22′26.50′′ N
117∘33′51.57′′ W

1,339 90–120 Loamy 8–10 P.Z., R024XY005NV
Artemisia tridentata ssp. wyomingensis/Achnatherum

thurberianum

32.7∘C max temp
−7.6∘C min temp
242 mm precipitation

Paradise Valley 2
41∘33′44.89′′ N
117∘32′45.25′′ W

1,472 90–110 Loamy 8–10 P.Z., R024XY005NV
Artemisia tridentata ssp. wyomingensis/Achnatherum

thurberianum

31.26∘C max temp
−7.88∘C min temp
321 mm precipitation

Methods

Sixteen of the original 28 exclosures within the Nevada por-
tion of the Great Basin were relocated and surveyed by Cour-
tois et al. (2004). These same 16 exclosures were visited in the
summer of 2016 and notes were made as to the status of the
exclosures and if their fence lines were intact. Seven exclosures
were noted as having intact fences and these were revisited in
May of 2018 (Table 1). Most exclosures cover an area of 1.6 ha
(100 m× 160 m). In most exclosures, the area immediately sur-
rounding the ladder into each exclosure appeared trampled. This
was the only area in each surveyed exclosure where trampling
appeared to be of concern. We started each transect at the edge
of the trampled area and extended the transect in the direction of
the opposing exclosure corner. Transects outside of each exclo-
sure continued in the same direction as the transect inside of
the exclosure. Fifteen, 0.25-m× 0.25-m quadrats were surveyed
both inside and outside of each exclosure. Quadrats were placed
10 m apart along a transect. Within a quadrat, 40 point-vertex
intercept readings were used to measure cover of all vascular
plant, lichen and moss species as well as light and dark algal
crusts. Species of biocrusts were identified using McCune and
Rosentreter (2007). Cover was summarized for each component
by location: inside or outside of each exclosure. Soils were col-
lected from each quadrat using a core set to a 1 cm depth and
pooled by location (inside or outside) per exclosure for algal
enumeration.

Separate from the abundance data collected in the field sur-
vey, algal enumeration was performed with a second assessment
using the moistened soil method (MSM, Johansen et al. 2001).
Replicates consisted of 9 g of soil placed in 5 cm diameter
petri dishes and three replicates were used per location (inside

or outside) per exclosure. Soil in petri dishes was wetted to
glistening and kept under an illumination schedule of 16 hours
of light followed by 8 hours of darkness. Illumination ranged
from 35–44 μmol·m−2·s−1. Given the variation in light, dishes
were blocked within this range. Replicates were randomly
assigned positions within each of three blocks. At 1, 2, and
7 days after wetting, petri dishes were examined under a dis-
secting microscope. Hardware cloth with a 6-mm mesh size
was shaped to fit over each petri dish and used to quantify cover
of algae that intersected each of 36 vertices at predetermined
marks the hardware cloth. In general, cyanobacteria of the
order Oscillatoriales are the first algae (including cyanobacte-
ria) to colonize the soil surface in the petri dishes, appearing
at the surface after 24 hours. Algae of other orders and phyla
often require more incubation time. After 7 days heterocytous
cyanobacteria and eukaryotic algal colonies can therefore be
detected, which warrants this time point.

Data on grazing intensity follow methods in Condon and
Pyke (2018a). Examining grazing intensity can be more infor-
mative than presence or absence of grazing because allotments
differ in size, number of animal unit months (AUMs), and pat-
tern of use. AUMs that are actively being grazed on an allot-
ment as well as those that have been suspended from an allot-
ment were obtained from the Rangeland Administration System
(RAS 2018). AUMs are an estimate of the amount of forage
needed to sustain a standard animal unit (for example, a 454-kg
cow with a suckling calf for 1 month) (Ruyle & Ogen 1993).
This can be translated into the grazing capacity of a site as well
as possible overgrazing of a site as RAS reports the number of
suspended AUMs, which is the number of AUMs removed from
use that are not likely to be replaced because vegetation and
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soil management objectives are not being met (Ruyle & Ogen
1993). We use ratios as presented in Condon and Pyke (2018a)
of active AUMs over permitted AUMs and suspended AUMs
over permitted AUMs to represent grazing intensity and possi-
ble overgrazing. We also use a piosphere approach creating a
proxy for declining grazing intensity with increasing distance
from water (Andrew & Lange 1986). We repeated the methods
used in Condon and Pyke (2018a), mapping distance to the clos-
est water source in ESRI ArcMap 10.2 with a combination of
1-m resolution imagery from the National Agriculture Imagery
Program and the National Hydrography Dataset (accessed 10
February, 2016; http://nhd.usgs.gov, ESRI 2013).

Species vary in their ability to reproduce via fragmentation or
asexual propagules, such as pycnidia, soredia, and isidia versus
sexual structures such as spores (Rosentreter unpublished data).
Working under the assumption that smaller, more numerous
propagules would result in faster rates of reproduction, repro-
ductive rates were assigned to frequently encountered species
in the region (Table S1). These assignments allow for the testing
of ability of species to recover passively with more knowledge
about how they establish compared with broad classifications
based on morphological groups.

Analyses

Before determining the influence of passive restoration on
cover of vascular plants and biocrusts, we wanted to establish
the degree to which community composition differed amongst
locations and determine which locations had similar plant com-
munities. Plant community identities were defined using cluster
analysis with Ward’s method as the group linkage method
on each combination of exclosure and location, whether the
survey location was inside or outside of the respective exclo-
sure. This approach uses both cover data of vascular plants
as well as biocrusts. Identified groups were tested for statis-
tical differences with multi-response permutation procedure.
Euclidean distance was used as the distance measure in both
analyses.

To characterize the driving factors that separated these
groups, including grazing, we used non-metric multidimen-
sional scaling ordinations with Sorenson distance measure. We
did not transform the data. We used a random starting configura-
tion with 250 runs of real data. Ordinations were overlaid with
elevation, climatic variables: 30-year average precipitation,
maximum temperature and minimum temperature, maximum
number of frost-free days, minimum number of frost-free days
and disturbance variables related to grazing intensity: distance
from water, and ratios of active and suspended animal unit
months (AUMs) over permitted AUMs. Climate data were
taken from PRISM (2010).

We tested for the influence of grazing exclusion and plant
community identity on vascular plant groups, individual com-
ponents of biocrusts (grouped by light algal crusts, dark algal
crusts, moss, and lichen), the abundance of algal propagules,
including cyanobacteria (from MSM, day 7), and number of
taxa in the soil, as well as species of biocrusts categorized by
reproductive rate (fast, medium, slow). Analysis of variance

(ANOVA) was performed on separate linear models of each
category listed: each vascular plant group, biocrust component,
abundance of algal propagules, and each reproductive speed.
Models were checked for assumptions of normality and sym-
metry. Linear models and associated ANOVA tables were per-
formed in R version 3.4.0 and R Studio version 1.0.143 (R Core
Team 2017). Multivariate analyses were performed in PC-ORD
version 7. F statistics with p values of 0.1 or less are discussed.

Results

Pruning the dendrogram with 60% information remaining
resulted in three groups: Baker, Newark Valley 2; Conner,
Newark Valley 1; and Dinner Station, Paradise Valley 1 and
Paradise Valley 2. We arrived at the same groups with 60%
information remaining regardless of whether we included both
vascular plants and biocrusts or just biocrusts. All groups
were determined to be statistically different from one another
(A-statistic = 0.40, p value <0.001) and differed in dominant
plant species that define communities. The Baker-Newark
Valley 2 group is co-dominated by Wyoming big sagebrush
(Artemisia tridentata Nutt. ssp. wyomingensis Beetle and
Young) and winterfat (Krascheninnikovia lanata [Pursh] A.
Meeuse & Smit). The Conner Station, Newark Valley 1 group
is dominated by black sagebrush (Artemisia nova A. Nelson)
with calcareous soils. The Dinner Station, Paradise Valley 1
and 2 group is dominated by Wyoming big sagebrush and are
on similar ecological sites, but Dinner Station is in the adjacent
Major Land Resource Area (MLRA 25 Owyhee High Plateau)
from the Paradise Valley exclosures (MLRA 24 Humboldt
Area). Burnside (1988) reports that the outside of the Paradise
Valley exclosures had been sprayed and seeded to crested
wheatgrass in the past.

Non-metric multidimensional scaling ordination resulted in
a 2D solution with a final stress of 7.90 and a final instabil-
ity of 0.00 after 37 iterations. Along Axis 1, groups separated
by abundance of Oscillatoriales in the soil, minimum temper-
ature, and rabbit dung, and opposed elevation, gravel, mini-
mum number of frost-free days (Fig. 1, Table S2). The influence
of elevation (R = 0.729, R2 = 0.531) and gravel (R = 0.807,
R2 = 0.652) were notably strong. The abundance of Oscillato-
riales was strongly associated with community structure along
both Axis 1 (R = −0.704, R2 = 0.495) and Axis 2 (R = −0.544,
R2 = 0.296, Fig. 1, Table S2). Axis 1 explained 63.4% of the
variance and Axis 2 explained 25.9% of the variance for a total
of 89.3% variance explained by the ordination.

The influence of plant community and grazing demonstrated
different and sometimes interacting effects on the abundance of
biocrust and vascular plant components. ANOVA on a linear
model of cover of light algal crust did not demonstrate effects
of grazing or plant community (Table S3). ANOVA on a linear
model of cover of dark algal crust demonstrated an interaction
between grazing and plant community (F2,9 = 3.48, p = 0.08,
Table S3). Cover of dark algal crusts alternated between higher
and lower cover, inside and outside of the Wyoming big sage-
brush exclosures (Fig. 2) driving the weak interaction. An effect
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Figure 1. Non-metric multidimensional scaling ordination of exclosure-locations in species space. Both vascular plant and biocrust species are included.
Results from cluster analysis assigned sites to the following groups: black sage (Conner Station, Newark Valley 1), winterfat-Wyoming big sagebrush (Baker,
Newark Valley 2), and Wyoming big sagebrush (Paradise Valley 1, 2, and Dinner Station).

of plant community was found on the abundance of moss
(F2,9 = 3.37, p = 0.09, Table S3). The effect of grazing on
lichen cover trended towards negative (Fig. 2). When taking
reproductive speed into account, grazing influenced the cover
of slow reproducers (F1,9 = 3.54, p = 0.10, Fig. 3, Table S4)
and plant community influenced the cover of fast reproduc-
ers (F2,9 = 7.57, p = 0.01, Fig. 3, Table S4). Plant community
was associated with differences in cover of shrubs (F2,9 = 3.22,
p = 0.09, Table S3), perennial grasses (F2,9 = 4.33, p = 0.05,
Table S3), and cheatgrass (F2,9 = 14.72, p = 0.001, Table S3),
but not other vascular plant groups. Abundance of cheatgrass
was also influenced by grazing (F1,9 = 22.308, p = 0.002, Table
S3) as well as an interaction between plant community and graz-
ing (F2,9 = 18.538, p = 0.001, Table S3).

Abundance of Oscillatoriales in the soil as determined by
MSM varied by site (Fig. 4). Grazing effects on abundance of
Oscillatoriales were negative (F1,9 = 3.75, p = 0.09, Table S3,
Fig. 3), and abundance of Oscillatoriales varied by plant com-
munity (F2,9 = 13.66, p = <0.001, Table S3). Sites belonging
to the black sagebrush plant community group (Conner Sta-
tion and Newark Valley) demonstrated a lower abundance of
Oscillatoriales although these soils did have some presence of
Oscillatoriales by day 7 of the MSM (Fig. 4) and were lower
in cover compared to all other enclosures surveyed (Fig. 1).
Species richness of algae, including cyanobacteria, followed
similar patterns as the number of taxa varied by plant commu-
nity and were lowest in the black sagebrush plant community

sites (Fig. 4, F2,9 = 10.49, p = 0.01, Tables S4 & S5). Func-
tional groups have been assigned to identified algal taxa based
on morphologies but algae have not been analyzed according to
functional groups in this study because many of these functions
have yet been tested empirically (Table S5, Fig. 5, Ettl & Gartner
1995; Komárek & Anagnostidis 1998, 2005; Rosentreter et al.
2007).

Discussion

We demonstrate that the composition and abundance of
biocrusts vary with plant community across the Great Basin,
indicating that restoration targets should be plant community
specific. The effects of grazing were most apparent on the abun-
dance of Oscillatoriales, cheatgrass, and biocrusts as grouped
by reproductive rate. Slow reproducers, biocrust species that
are largely dependent on spores for reproduction, were less
abundant in actively grazed areas in plant communities domi-
nated by Wyoming big sagebrush or co-dominated by winterfat
and Wyoming big sagebrush. Although a significant interaction
was not found between plant community and grazing on the
abundance of slow reproducers, slightly greater abundance
of slow reproducers in grazed black sagebrush sites likely
weakened the relationship between grazing and slow repro-
ducers. Fast reproducers, biocrust species that reproduce via
asexual structures or with lots of spores, were more abundant
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Figure 2. Boxplots of point intercept hits of vegetation and biocrust components by plant community groups.

in winterfat-Wyoming big sagebrush co-dominated plant com-
munities. Effects of grazing on Oscillatoriales as determined
by MSM were associated with abundance and not on the
number of taxa, suggesting that propagules of algae, including
cyanobacteria, are in the soil and have the potential to recover
under the right conditions.

Although cyanobacteria from the order Oscillatoriales are
reported to occur globally, “everything is not everywhere” and
habitat characteristics are likely influencing the presence of
some species (Ribeiro et al. 2018). Dust movements between
continents make it likely that there is genetic flow amongst these
organisms at global scales (Kellogg & Griffin 2006). However,
we saw lower numbers of algal taxa, including cyanobacteria
from sites that are dominated by black sagebrush and are high
in carbonates, suggesting that algae are not naturally abundant in
all plant communities. Some environments such as desert pave-
ments naturally have low diversity of biocrusts (Pietrasiak et al.
2014), indicating that restoration targets for biocrust communi-
ties should be specific to the plant community and site condi-
tions of the target restoration site.

Although few differences in vegetation cover between inside
and outside of the exclosures were apparent in the previous
survey of these sites (Courtois et al. 2004), we demonstrate
differences in the abundance of Oscillatoriales and slowly

reproducing biocrust species following the removal of graz-
ing pressure. With the exception of cheatgrass, which was
sometimes found to be more abundant outside of exclosures,
differences that were seen in vegetation cover were associated
with differences in plant communities and not the presence or
absence of grazing. Similar observations have been made in the
sagebrush steppe of eastern Oregon where differences in the
cover of vascular plants following the cessation of grazing were
not observed but the cover and composition of biocrusts differed
(Ponzetti & McCune 2001). In western Colorado, reference con-
ditions in the sagebrush steppe, specifically black sagebrush
and Wyoming big sagebrush plant communities, were associ-
ated with high cover of biocrusts (Shinneman et al. 2008). Our
data corroborate that relatively higher cover of some biocrust
components are indicative of low levels of disturbance in the
sagebrush steppe (Condon & Pyke 2018b), and that in arid and
semiarid systems in general, species composition is affected by
grazing (Hodgins & Rogers 1997).

We were surprised to see mostly moderate relationships
between biocrust components, plant communities, and graz-
ing. Condon and Pyke (2018b) intentionally covered distur-
bance gradients related to fire and grazing. In this study, we
examined 80-year-old grazing exclosures that were judged to
be the most intact seven of the original 28 exclosures and
remaining 16 exclosures in Nevada (U.S.A.). It is possible that
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Figure 3. Boxplots of point intercept hits of biocrust categorized by reproductive speed and grouped by plant community.

these seven exclosures were intact because they received less
traffic over the last 80 years compared with the other exclo-
sures. If that is the case, this study addresses the low end of
the disturbance spectrum, where we detected differences in the
composition of biocrusts related to reproductive speed but only
weak differences with components. Over this period of low to
no disturbance (inside and outside of the exclosures), vegeta-
tion cover was fairly low with the exception of shrub cover.
In Wyoming big sagebrush communities, perennial grasses
increase with some disturbance and many have been shown to
remain at the same density or decrease over a period of 13 years
(Nafus et al. 2015; Condon & Pyke 2018b). Low vegetation
cover with intact biocrusts can be indicative of low levels of
disturbance.

Passive recovery of biocrusts, particularly of algae, including
cyanobacteria and other crust species with fast rates of repro-
duction, has the potential to be a viable option in some areas,
over short time frames (Miller et al. 2017; Warren et al. 2018).
The occurrence of these species was more associated with iden-
tified plant communities compared to the presence of grazing.

Following the removal of heavy disturbance in Wyoming big
sagebrush communities, we should expect to see increases in
the abundance of fast reproducing biocrust species. Given the
limited number of species representing each reproductive rate in
this observational study (4–10 species, Table S1), future work
aimed at specifically relating the number of propagules that
a species produces with the ability of that species to quickly
establish after disturbance should be further examined. If pas-
sive recovery of mosses in semiarid environments is the goal,
a time frame of approximately 20 years has been shown to be
realistic in eucalyptus and bull oak woodlands in southeastern
Australia and Mediterranean oak woodlands respectively (Read
et al. 2011; Concostrina-Zubiri et al. 2016). However, if sites are
devoid of propagules due to intensive disturbance or if higher
cover of biocrusts over a shorter period of time is a management
goal, active restoration may be warranted. Active restoration
on sterile soils in a field setting has led to regular increases in
moss cover of 30% annually (Condon & Pyke 2016) and the
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Figure 4. Oscillatoriales cover as determined by the moistened soil method (MSM) following wetting at 24, 48, and 168 hours. PValley refers to the Paradise
Valley sites.

use of tackifiers shows potential for facilitating moss establish-
ment and growth in hydromulch applications (Blankenship et al.
2019).

Previous work has demonstrated a positive influence of
both wetter climates (Belnap & Lange 2003; Lalley & Viles
2008) and finer textured soils (Belnap & Eldridge 2003) on
the recovery of biocrust. Our study consists of sites that all
generally experience 8–10 inches of precipitation a year
(203–254 mm) and are predominately loamy soils. Under these
conditions, sites clustered into three distinct plant communities.
The one site that was described as having silty soils (Newark
Valley 2) was co-dominated by Wyoming big sagebrush and
winterfat. This vegetation type consistently showed higher
abundance and cover of algae and higher cover of biocrust
components regardless of assigned reproductive rates. Inter-
preting precipitation as constant, as it relates to ecological site
descriptions, we see a positive influence of fine textured soils
on the recovery of biocrusts as inferred by plant community
composition.

The practice of restoration pairs disturbed sites that are to be
restored with undisturbed or minimally disturbed reference sites
to define the species and ecosystem processes for reintroduction
(Bradshaw 1983). In the case of biocrusts, biodiversity and

function tend to overlap (Bowker et al. 2008). Although we use
these exclosures across northern Nevada as potential reference
sites, these sites only provide two to three locations per plant
community. The plant communities that are addressed in this
study are indicative of the elevation ranges present in this region
(West & Young 2000). Most other plant communities in the
region are either higher in elevation, riparian, or on the edge of
the region such as those mixing with the Mojave Desert. There
are noticeable differences in the recovery of each site, signify-
ing that all restorations are to some extent unique (Stuble et al.
2017). We know that the history of use at each site varied and the
exclosure locations were likely selected to document “recovery”
from grazing and not because they were pristine (Holmgren
1976). Our knowledge of disturbance history of these sites prior
to the exclosures being constructed is minimal and it is possible
that the sites varied in disturbance intensity prior to the con-
struction of the exclosures, which would obviously influence
trajectories of recovery. These exclosures have been in place
for 80 years, which is a long period of time to have experienced
the removal of disturbance but given past linear approximations
of the recovery of biocrusts, this time scale could be considered
short (Belnap & Eldridge 2003), possibly explaining why we
saw low cover of biocrusts with slow to medium speed of
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Figure 5. Microscopy images of selected algal taxa observed in the soil plates after performing the modified moistened soil method: (A–C) Microcoleus
vaginatus—variety: bluegreen; (D–E) M. vaginatus—variety: brownish-bluegreen; (F) M. cf vaginatus with bend tip; (G) Symplocastrum sp.; (H)
Microcoleus steenstrupii; (I) Microcoleus sp.; (J) Phormidium sp.; (K) Hormoscilla sp.; (L) unknown Synechococcales cyanobacterial sp.; (M) unknown
Leptolyngbyaceae cyanobacterial sp.; (N) Hassallia sp., (O) Nostoc sp., (P) Pinnularia sp.; (Q) Bracteacoccus sp.; (R) Hantzschia cf amphioxys; (S)
Klebsormidium sp. Scale bar in (A) represents 100 μm and scale bars shown in (B–S) represent 10 μm. Identification were made using Ettl & Gartner 1995;
Komarek & Anagnostidis 1998, 2005.
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reproduction. We hope to call attention to the need to doc-
ument biocrusts in the region and the need to identify and
protect areas with intact communities given their potential use
as reference sites.
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