
Boise State University Boise State University 

ScholarWorks ScholarWorks 

Biology Faculty Publications and Presentations Department of Biological Sciences 

4-2020 

Relevance of Individual and Environmental Drivers of Movement Relevance of Individual and Environmental Drivers of Movement 

of Golden Eagles of Golden Eagles 

Maitreyi Sur 
Boise State University 

Publication Information Publication Information 
Sur, Maitreyi; Duerr, Adam E.; Bell, Douglas A.; Fisher, Robert N.; Tracey, Jeff A.; Bloom, Peter H.; . . . and 
Katzner, Todd E. (2020). "Relevance of Individual and Environmental Drivers of Movement of Golden 
Eagles". IBIS, 162(2), 381-399. https://dx.doi.org/10.1111/ibi.12766 

This document was originally published in IBIS by Wiley-Blackwell on behalf of the U.S. Government. Copyright 
restrictions may apply. doi: 10.1111/ibi.12766 
This article is a U.S. Government work and is in the public domain in the USA. 

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/bio_facpubs
https://scholarworks.boisestate.edu/biosciences
https://dx.doi.org/10.1111/ibi.12766
https://dx.doi.org/10.1111/ibi.12766


Relevance of individual and environmental drivers of
movement of Golden Eagles

MAITREYI SUR*1 ADAM E. DUERR,2 DOUGLAS A. BELL,3 ROBERT N. FISHER,4

JEFF A. TRACEY,4 PETER H. BLOOM,2 TRICIA A. MILLER5 & TODD E. KATZNER6

1Boise State University, 1910 University Drive, Boise, ID, 83725, USA
2Bloom Research Inc., Los Angeles, CA, 90019, USA

3East Bay Regional Park District, Oakland, CA, 94605, USA
4U.S. Geological Survey, Western Ecological Research Center, San Diego, CA,9210, USA

5Conservation Science Global, Inc., 303 West Drive, West Cape May, NJ, 08204, USA
6U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise,

ID, 83706, USA

An animal’s movement is expected to be governed by an interplay between goals deter-
mined by its internal state and energetic costs associated with navigating through the
external environment. Understanding this ecological process is challenging when an ani-
mal moves in two dimensions and even more difficult for birds that move in a third
dimension. To understand the dynamic interaction between the internal state of an ani-
mal and the variable external environment, we evaluated hypotheses explaining associa-
tion of different covariates of movement and the trade-offs birds face as they make
behavioural decisions in a fluctuating landscape. We used ~870 000 GPS telemetry data
points collected from 68 Golden Eagles Aquila chrysaetos to test demographic, diel, topo-
graphic and meteorological hypotheses to determine (1) the probability that these birds
would be in motion and (2), once in motion, their flight speed. A complex and some-
times interacting set of potential internal and external factors determined movement
behaviour. There was good evidence that reproductive state, manifested as age, sex and
seasonal effects, had a significant influence on the probability of being in motion and, to a
lesser extent, on speed of motion. Likewise, movement responses to the external environ-
ment were often unexpectedly strong. These responses, to northness of slope, strength of
orographic updraft and intensity of solar radiation, were regionally and temporally vari-
able. In contrast to previous work showing the role of a single environmental factor in
determining movement decisions, our analyses support the hypothesis that multiple fac-
tors simultaneously interact to influence animal movement. In particular they highlighted
how movement is influenced by the interaction between the individual’s internal repro-
ductive state and the external environment, and that, of the environmental factors, topo-
graphic influences are often more relevant than meteorological influences in determining
patterns of flight behaviour. Further disentangling of how these internal and externals
states jointly affect movement will provide additional insights into the energetic costs of
movement and benefits associated with achieving process-driven goals.

Keywords: California, demography, Golden Eagle, GPS telemetry, meteorology, movement
ecology.
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Movement is fundamental to animal ecology and
plays a critical role in many small- and large-scale
processes. Animals vary movement to achieve a
complex set of goals that, once obtained, are
expected to contribute to fitness. As such, hypothe-
ses explaining animal movement have been linked
to territorial defence (Graf et al. 2016), den or
nest construction (Mainwaring & Hartley 2013),
fulfilling reproductive or food-gathering goals
(Weimerskirch et al. 2014), or transiting between
daily or seasonally varying ranges (Wittemyer et al.
2008). Although the internal state of animals moti-
vates them to move, the environment the animal
experiences is also expected to drive much of the
variation in these movements. For example, territo-
ries are larger in resource-poor habitats (Smith &
Shugart 1987), movements associated with nest- or
den-building and reproduction may occur only
when resources are sufficient for breeding (Sergio &
Newton 2003), foraging behaviour will reflect the
availability of food and water in the landscape (Wit-
temyer et al. 2008) and characteristics of migration,
and even the decision to migrate, are driven by
food availability and migration subsidies (Clobert
et al. 2009). To add complexity to this problem,
demographic characteristics – age and sex – are
expected to influence each of these, with differ-
ences in behaviour between males and females and
among adults and young animals (Miller et al.
2016). Thus, it is thought that animal movement is
ultimately defined by the trade-offs between the
environment that determines the energetic cost of
movement and the benefits associated with achiev-
ing process-driven goals (Halsey 2016).

Understanding how internal and environmental
states interact to determine movement is challeng-
ing when the animal moves in two dimensions.
However, this understanding is even more difficult
to achieve when movement occurs in three dimen-
sions. Although all animals respond to their envi-
ronment when making movement decisions,
animals that move in three dimensions have a
more complex environmental response because
they respond to conditions not only on the ground
but also to those in the medium through which
they are travelling (i.e. a seascape or an aeroscape;
Diehl 2013). For example, movements of marine
animals are strongly influenced by abiotic factors
such as water temperature, salinity and dissolved
oxygen content, which affect the physiology of
either the animal or the prey upon which they

depend (Hays et al. 2016). Similarly, movement of
soaring birds may be constrained by thermal gener-
ation (Duerr et al. 2015), topography (Katzner
et al. 2012, Pirotta et al. 2018) and the distribu-
tion of seasonal winds (Vansteelant et al. 2017).

In the face of internal competition among beha-
vioural goals, energetic costs, age- and sex-specific
needs, and environmental constraints, animals face
a suite of fundamental trade-offs when making
decisions about when and how to move. To under-
stand the interaction of the potential internal state
of an animal with its external environment, we
evaluated demographic, diel, topographic and
meteorological hypotheses explaining the beha-
viour of soaring birds. We specifically asked which
covariates, or combinations of covariates, deter-
mine (1) the probability that these birds would
chose to be in motion and (2), once in motion,
their flight speed. Subsequently, as a single factor
was unlikely fully to explain either behaviour, for
each behaviour, we evaluated the relative influ-
ence of key covariates. By testing these hypotheses
among behaviours and age-classes, we gain unique
insight into the trade-offs these animals face as
they make decisions about movement.

METHODS

Study species

Golden Eagles Aquila chrysaetos are large soaring
predatory birds with a Holarctic distribution. Some
populations are long-distance migrants and others
are year-round residents on or near nesting areas.
Eagle movements are determined by both their age-
and sex-specific goals and the environment they
experience (Miller et al. 2016, 2017). For example,
adults generally hold breeding territories in a fixed
area, but non-territorial adults and pre-adults wan-
der more widely, and males and females have differ-
ent roles during the nesting cycle. When not
moving, Eagles generally perch or roost in trees or
on prominent ground features and they can remain
in one spot for hours, when hunting, incubating, or
in bad weather (Watson 2010). When moving,
Eagles generally fly (walking is rare and covers com-
paratively short distances), and they usually use
environmentally generated updrafts for long-distance
soaring and gliding (Katzner et al. 2012). Flapping
flight is less common and is generally used when
moving short distances at low flight altitudes.
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Study site

We tracked Golden Eagles in and around the state
of California, USA. For the purposes of this study,
we considered tracking data from ecologically and
physiographically distinct provinces called Bird
Conservation Regions (BCRs; NABCI 2000).

Telemetry data collection

To capture Golden Eagles we used bow, cannon
or rocket net traps set over carcasses (Bloom et al.
2007) or we hand-captured young birds in the
nest. Upon capture, each bird was aged using
moult patterns (Jollie 1947, Bloom & Clark 2001)
as sub-adult (nestling and first-year to 4 years) or
adult (> 4 years). Sex of the birds was determined
based on morphology (Bortolotti 1984, Edwards &
Kochert 1986, Watson 2010) and, for a subset,
verified by genetic testing (n = 38; Doyle et al.
2014). Eagles were outfitted with 80–95 g solar-
powered GPS/GSM transmitters produced by Cel-
lular Tracking Technologies (Rio Grande, NJ,
USA) attached as backpacks using non-abrasive
Teflon ribbon harness (Bally Ribbon Mills, Bally,
PA, USA; Dunstan 1972, Kenward 1985). The
telemetry units were programmed to collect infor-
mation on GPS locations, altitude, speed, fix qual-
ity (2D or 3D fix), horizontal and vertical dilution
of precision (HDOP and VDOP) at either 15-min
or 30-s intervals. Data were stored on the units
and uploaded to the internet at regular intervals
through GSM (Global System for Mobile Commu-
nications) networks.

Telemetry data processing

We used a multi-step process to filter out inac-
curate and imprecise GPS fixes and to organize
our data for analysis. First, we removed 2D fixes
and fixes where HDOP or VDOP was ≥ 10
(D’Eon & Delparte 2005, Poessel et al. 2016).
Secondly, we subsampled all 30-s data to 15-min
intervals to standardize fix intervals. Thirdly, we
removed the few data points before 04:00 h and
after 19:00 h local time (UTC –8). Finally, we
associated Eagle locations with BCRs and a suite
of environmental data (see ’Data associations’
below for details). We eliminated from consider-
ation all telemetry data from BCRs with < 1000
GPS points or that were used by fewer than five
telemetered birds.

Our analysis focused on two response variables.
One described a dichotomous variable of being in
motion or not (the probability of being in motion)
and the other described behaviour in terms of the
hourly speed of motion (Welsh et al. 1996, Fletcher
et al. 2005). To calculate these variables, we used
the ‘Tracking analyst – Track interval to line tool’
(ArcGIS 10.3; ESRI, Redland, CA, USA) to con-
vert locations to ‘tracks’ by joining sequential GPS
locations. We then measured the length of each
track (in km) and the duration between GPS loca-
tions considered in a track (in h). We estimated the
total distance travelled by Eagles in an hour by
summing the lengths of all the tracks between the
GPS points nearest to start and end of each nomi-
nal hour (e.g. 06:00–07:00 h). Similarly, we esti-
mated total duration of travel in an hour by
summing the duration (time between two sequen-
tial GPS locations) of all the tracks within an hour.
We then calculated hourly speeds from these data
(in km/h) by dividing the total distance travelled by
Eagles by the total duration (Rus et al. 2017). We
classified the bird as either ‘moving’, when average
speed over the entire hour was ≥ 0.05 km/h, or
‘not moving’, when average speed was < 0.05 km/
h. The rationale for choosing this threshold is given
in Figure S1. This binomial variable (moving/not
moving) was our first response variable describing
the probability of being in motion. We then calcu-
lated hourly speed of motion only for the subset of
hours in which Eagles were moving. These data
became our second response variable.

Data associations

Many analyses of flight behaviour of birds focus on
evaluating response to a single category of environ-
mental variable (e.g. meteorological variables,
Sapir et al. 2011, Nagy et al. 2018; or topographic
variables, Katzner et al. 2012). We associated each
hourly speed measurement with multiple cate-
gories of covariates – demographic, topographic,
meteorological and diel – which we averaged
across all Eagle locations in an hour. The specific
covariates we considered were:

Demographic/locational/seasonal (hereafter simply
‘demographic’)
Age (sub-adult or adult), assessed at capture and
then adjusted for each subsequent year of tracking,
and sex (male or female). We described locational
information as BCRs (U.S. NABCI Committee
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2000). Our analysis included locations from four
BCRs: the Great Basin (BCR 9), Sierra Nevada
(BCR 15), Coastal California (BCR 32), and Sono-
ran and Mojave Desert (BCR 33; Fig. 1). A brief
description of each of these BCRs is provided in
Data S1; longer descriptions are provided by the
North American Bird Conservation Initiative (U.S.
NABCI Committee 2000). We also considered
month of the year provided by the GPS as a sea-
sonal covariate.

Topographic
Ground elevation above sea level (m), slope (de-
grees), aspect (degrees), terrain position index
(TPI; Jenness et al. 2013) and terrain ruggedness
index (TRI; Riley et al. 1999, Evans et al. 2014) at
30-m resolution. Values of these variables were
calculated within ArcGIS 10.3 (ESRI) from the
National Elevation Dataset (USGS 2015). To
avoid problems associated with analysis of circular
statistics, aspect was converted into northness and
eastness (Roberts 1986). TPI was converted to cat-
egorical variables as either ‘canyons’, ‘steep slopes’,
‘gentle slopes’ or ‘ridges’ using the Topography
Tools for ArcGIS (Jenness et al. 2013, Dilts 2015).
TRI, which reflects landscape roughness, was cal-
culated as the square root of the sum of the
squared differences between the elevation in a cell
and the elevation of its neighbouring cells (Riley
et al. 1999, Evans et al. 2014).

Meteorological
Downward solar radiation (DSR; W/m2), planetary
boundary layer height (PBLH; m), surface temper-
ature (Temp, °K), precipitation rate (Precip; kg/
m2/s), barometric pressure (Press in pascals; Pa),
relative humidity at 2 m above the ground (Hum;
%), sensible heat flux at the surface (SHF; W/m2),
surface lifted index at 500–1000 mb (SLI; °K), u-
wind and v-wind (m/s), and orographic (m/s) and
thermal updraft (m/s). We chose meteorological
variables that we thought would influence move-
ment behaviour of Golden Eagles. For example,
Temp, DSR, PBLH, SHF, barometric pressure and
SLI are all known to affect the development of
thermals in some way, and wind speed and wind
direction are known to affect thermal and oro-
graphic updrafts (Duerr et al. 2015, Miller et al.
2016, Shamoun-Baranes et al. 2016).

Values of the 10 meteorological parameters
were obtained from the Environmental-Data Auto-
mated Track Annotation system (Env-DATA;

Dodge et al. 2013) in MOVEBANK (Wikelski &
Kays 2016). Eight of these parameters (all except
orographic and thermal updraft) were derived
from the NCEP North American regional Reanaly-
sis (NARR) dataset collected at a spatial resolution
of 32 km. We calculated wind speed and wind
direction from raw wind components (u-wind and
v-wind) at 10 m above the ground (Duerr et al.
2015) using the formulae:

Wind speed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u-wind2 þ v-wind2

� �r
; ð1Þ

Wind direction ¼ ðATAN2ðv-wind=wind speed;

u-wind=wind speedÞ � 180=pÞ
þ 180:

ð2Þ

Orographic and thermal updrafts are derived
variables calculated at a spatial resolution of 0.7°

Figure 1. Map of GPS locations (black dots) of 68 Golden
Eagles tracked from 2012 to 2016 in western North America.
The four Bird Conservation Regions (shaded) are the Great
Basin (9), Sierra Nevada (15), Coastal California (32) and
Sonoran–Mojave Desert (33).
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and obtained from the Env-DATA system (Dodge
et al. 2013) in MOVEBANK (Wikelski & Kays
2016).

Diel
Hour of the day provided by the GPS.

Data analysis

Selecting covariates for inclusion in statistical models
We calculated bivariate Pearson correlation coeffi-
cients for all possible pairs of averaged, hourly
topographic and meteorological covariates
(Table S1). When two variables were correlated
with each other (|R| > 0.55), we only included
one of the two in our statistical models (Zuur
et al. 2009, Duerr et al. 2015). In these cases, our
approach was to retain the single variable that we
thought would provide the more logical ecological
interpretation (see Table S1 for details on our
decision-making process). To evaluate our assess-
ment of the choice of covariates, we also calcu-
lated the generalized variance inflation factor
(GVIF; Fox & Monette 1992, Zuur et al. 2010,
Tables S2 and S3). That analysis verified that there
was no multicollinearity among the variables used
in the analysis.

Testing for behavioural responses
After grouping our explanatory variables into cate-
gories, we then used a generalized linear mixed
model with a binary response variable and a logit
link to understand which variables in each of these
categories determined the probability that Eagles
would be in motion (our first research question;
function: glmer, package: lme4 1.1-15, in program
R; Pinheiro et al. 2015, R Core Team 2012). In
these models, our response variable was ‘moving’
or ‘not moving’; fixed and random effects in the
model are described below.

We subsequently used linear mixed effects
models to understand what factors determine the
movement behaviour of flying Golden Eagles (our
second research question; function: lmer, package:
lme4 1.1-15, in program R). In these models, our
response variable was hourly speeds of Eagles. We
log-transformed these speed data to conform to
the distributional assumptions of our modelling
tools. For each model we verified homogeneity of
variances by plotting the residuals of the model.

We built separate logistic regression and linear
mixed effects model sets for each group of the

demographic, topographic and meteorological
covariates listed above (Section: Data associations).
We included, in all models, random effects for bird
ID and for calendar year. Because of the number
of Eagle pairs and their geographical distribution,
we were unable to collect breeding activity data
on all birds and so we use age as an imperfect
proxy for sexual maturity. Likewise, because we
expected male and female Eagles to behave differ-
ently in the breeding season, we included in our
demographic models an interaction term describ-
ing the relationship between sex and month. To
control for temporal autocorrelation in our move-
ment data we included a lagged (lag1) response
covariate as a fixed effect (Fieberg & Ditmer 2012,
Van Cleave et al. 2018). We rescaled all continu-
ous meteorological and topographical variables by
subtracting the mean and dividing by twice the
standard deviation (Gelman 2008). We then used
the dredge function of the MuMIN package in R
(Barton 2019) to consider, for each type of
explanatory variable, a model set of all possible
combinations of sub-models (Doherty et al. 2012).
We ranked these sub-models based on the Akaike
information criterion (AIC) to identify the model
with the most support in the data (Anderson &
Burnham 2002, Anderson 2007). When no single
model had > 90% of model weights, we averaged
the top supported models (Anderson & Burnham
2002). We also calculated variable importance for
each fixed effect by summing the AIC weights
across all the models in the set where the particu-
lar covariate occurred. In the case of the linear
mixed effect models, although the global model
was fitted using restricted maximum likelihood
estimation (REML), when using the dredge
function, we fitted the models using maximum
likelihood (ML) estimation to allow us to compare
the models based on AIC (Zuur et al. 2009).
Model averaging was done based on models fitted
using ML.

We used mixed effects models to evaluate Eagle
response to within-day diel variation. In these
models, our two response variables were the prob-
ability that a bird would be in motion and hourly
speed (both as above), our fixed effects were hour
of the day, and we again included random effects
for bird ID and calendar year. Again, to account
for temporal autocorrelation in our movement
data, we included a lagged (lag1) response covari-
ate as a fixed effect. Although we would have pre-
ferred to include hour of the day as a fixed effect
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in the demographic, topographic and meteorologi-
cal models, doing so would have created an unrea-
sonably large number of fixed effects in those
models.

It would have been preferable to build a single
model set that considered all of these fixed effects
together. However, preliminary model runs sug-
gested that given the large number of predictors
we considered, such a modelling approach was not
computationally feasible. Therefore, to better iden-
tify the factors that influence probability of move-
ment and flight speed, we created a model set
using all the variables from each of our top demo-
graphic, diel, topographic and meteorological mod-
els. In this case we compared performance of
models by sequentially removing groups of vari-
ables (i.e. we ‘dredged’ groups of variables rather
than dredging individual variables). We again
ranked models based on AIC to identify those with
the most support in the data. These models were
again fitted using ML estimation. We also calcu-
lated t-statistics and P-values to identify the signifi-
cance of all independent variables from the top
model. For the logit models, the test statistics were
provided as a model summary within the lme4
package itself. For the linear mixed effect model
using hourly speed, we used Satterthwaite’s
method in the lmerTest package in R to calculate
test statistics (Giesbrecht & Burns 1985, Kuznet-
sova et al. 2017). We also calculated type III test
results for fixed effects; these provide insight into
the relative weight and importance of the different
covariates in the model (Duerr et al. 2015, Katz-
ner et al. 2015).

RESULTS

During 2012–2016, we tracked movements of 93
Golden Eagles (40 females and 53 males) cap-
tured in California (Table S4). The telemetry
devices collected a total of 2 875 265 GPS loca-
tions. After sub-sampling 30-s data and removing
poor quality points and points from the bird con-
servation regions that did not meet our sample
size criteria, we retained 872 652 locations
(Fig. 1). From these locations we calculated
248 564 daytime hourly speeds from 68 Golden
Eagles.

We interpreted 190 895 of those hourly speeds
as indicative of moving Eagles (hourly speed
> 0.05 km/h) and 57 669 as indicative of station-
ary Eagles. When the birds were moving, the

grand mean of their average hourly speed was
3.21 km/h, with a maximum speed during any 1-h
period of 87.31 km/h. Eagles generally had higher
hourly speeds between 11:00 and 14:00 h, with
maximum average hourly speed (grand
mean � se) at 12:00 h (5.19 � 0.29 km/h;
range = 0.05–71.47 km/h).

Probability of moving

All of the demographic variables were strong pre-
dictors of the probability of an Eagle being in
motion and, in this model set, the full model had
96% of the model weights (Table 1). This model
suggests that adult Eagles were slightly less likely
to move compared with sub-adults (Fig. 2a).
There was also a strong regional association, such
that Eagles were much less likely to be in motion
in the Great Basin BCR (Fig. 2b). We also
detected an intuitive and strong effect of an inter-
action between sex and month (Fig. 2c) such that,
although both sexes were less likely to be in
motion during the nesting season, that effect was
especially strong for females. Month had a strong
effect on Eagle movements, with a relatively
higher probability of birds being in motion in
spring and autumn and lower probability of move-
ment in summer and winter.

The probability of an Eagle being in motion
was also strongly associated with all topographic
variables we considered (Table 1, Fig. 3). In this
model set, the full model had model weight
≥ 0.99. This model suggested that when on more
north- and east-facing slopes, Eagles had relatively
lower probabilities of being in motion than when
on south- and west-facing slopes (Fig. a,b). Like-
wise, as topographic roughness increased, Eagles
were more likely to be in motion (Fig. 3c). Finally,
Eagles were most likely to be in motion over steep
slopes and less likely to be in motion over canyons,
ridges and gentle slopes (Fig. 3d).

Meteorological variables also had strong associa-
tions with the probability of an Eagle being in
motion (Table 1, Fig. 4). In this model set, the full
model had 64% of model weights and the top four
models 99% of model weights (Table 1). The only
difference between the top model and the next
three models was that those subsequent models
excluded fixed effects describing moisture – rela-
tive humidity, precipitation rate or both. Precipita-
tion rate also had the lowest relative variable
importance among the nine meteorological
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variables (Table S5). In general, the probability
that an Eagle was in flight was positively correlated
to downward solar radiation (Fig. 4a), planetary
boundary layer height (Fig. 4b), barometric

pressure (Fig. 4c), surface lifted index (Fig. 4d),
wind speed (Fig. 4e) and orographic updraft
(Fig. 4f). However, the probability that an Eagle
was in flight was negatively correlated with

Figure 2. Modelled estimates of the probability that Golden Eagles in California would be in motion, as predicted by demographic
parameters (a) age, (b) Bird Conservation Region (BCR), and (c) the interaction of sex and month for female and male Eagles. The
four BCRs are the Sierra Nevada (Sierra), Coastal California (Coastal), Sonoran–Mojave Desert (Desert) and Great Basin (Basin).
The plots use estimated values from the top demographic model predicting Eagle movement (Table 1).

Table 1. Top five models (ranked by ΔAIC) in model sets describing factors affecting the decision to move by Golden Eagles in Cali-
fornia, 2012–2016.

Model type Model set AICc ΔAIC wi

Demographic Age + BCR + Month + Sex + Month*Sex + lag 245 957.10 0.00 0.96
BCR + Month + Sex + Month*Sex + lag 245 964.42 7.32 0.02
Age + BCR + Month + Sex + lag 245 965.39 8.29 0.02
Age + BCR + Month + lag 245 968.96 11.86 0.00
BCR + Month + Sex + lag 245 972.65 15.55 0.00

Topographic Eastness + Northness + TPI + TRI + lag 238 172.20 0.00 ≥ 0.99
Eastness + Northness + TPI + lag 238 194.38 22.18 0.00
Northness + TPI + TRI + lag 238 357.70 185.50 0.00
Northness + TPI + lag 238 370.49 198.29 0.00
Eastness + Northness + TRI + lag 238 474.32 302.12 0.00

Meteorological DSR + Humid + Orographic + PBLH + Precip + Press
+ SLI + Wind speed + Wind direction + lag

241 348.00 0.00 0.64

DSR + Humid + Orographic + PBLH + Press
+ SLI + Wind speed + Wind direction + lag

241 349.22 1.22 0.35

DSR + Orographic + PBLH + Press
+ SLI + Wind speed + Wind direction + lag

241 359.08 11.08 0.00

DSR + Orographic + PBLH + Precip
+ Press + SLI + Wind speed + Wind
direction + lag

241 359.94 11.94 0.00

DSR + Humid + Orographic + PBLH + Precip
+ SLI + Wind speed + Wind direction + lag

241 361.76 13.76 0.00

We used logistic regression to evaluate what factors determine the probability that these birds would be in motion with demographic,
topographic and meteorological variables as fixed effects and bird ID and year as random effects. We also added a lagged-response
covariate (‘lag’) as a fixed effect. Model sets were composed of all possible combinations of all factors within each category
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Figure 3. Modelled estimates of the probability that Golden Eagles in California would be in motion, as predicted by the topographic
factors (a) northness, (b) eastness, (c) TRI and (d) TPI. The four TPI categories are canyon (canyon), gentle slope (gentle), ridge
(ridge) and steep slope (steep). The plot uses estimated values from the top topographic model predicting Eagle movement
(Table 1). Variables were rescaled for modelling purposes (see text). Grey bands represent 95% confidence intervals.

Figure 4. Modelled estimates of the probability that Golden Eagles in California would be in motion, as predicted bymeteorological factors
(a) downward solar radiation, (b) planetary boundary layer height, (c) barometric pressure, (d) surface lifted index, (e) wind speed, (f) oro-
graphic updraft, (g) precipitation rate and (h) wind direction. The plot uses estimated values from the top meteorological model predicting
Eaglemovement (Table 1). Variables were rescaled for modelling purposes (see text). Grey bands represent 95% confidence intervals.
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precipitation rate (Fig. 4g) and was not strongly
influenced by wind direction (Fig. 4h).

There were important diel cycles of an Eagle’s
probability of being in motion (F15 = 382.40,
P < 0.05). Eagles were most likely to be in motion
in the middle of the day, at approximately 11:00
or 12:00 h, and least likely to be in motion early
in the mornings and in the evenings (Table S6,
Fig. 5a). The probability of being in motion
increased at a steeper rate in the morning than it
decreased in the afternoon.

The lagged-response covariate was present in all
top models of the demographic, topographic, mete-
orological model sets, and in the diel model. This
parameter helped us to account for the effect of the
autocorrelation on the probability of being in
motion. Its presence in top models suggests that at a
given hour, the probability of being in motion was
strongly associated with the behaviour of the Eagle
in the hour before. This is not surprising, given that
the data came from individuals tracked over time
and points to the importance of including the
lagged-response covariate in this type of analysis.

Combinations of the top models suggested that
the probability of being in motion was best
explained by the full model with the lagged-
response covariate as well as all the factors from

our top demographic, topographic and meteoro-
logical models (Table 2). However, by combining
these separate models, we were able to rank vari-
ables, providing insight into the relative influence
of different types of variables on the probability
that an Eagle was in motion. Although effect esti-
mates for most variables were non-zero, the rele-
vance of topographic features stood out, primarily
because of the high absolute value of the t-statistic
and
F-value for northness and, to a lesser degree, of
TPI (Tables S7 and S8). Likewise, there were
comparatively strong effects of BCR and hour of
the day. Surprisingly, meteorological variables
tended to be relatively less influential, although
the height of the planetary boundary layer and
barometric pressure were the highest ranked of
such variables. Finally, age, sex and month of the
year were comparatively less influential, and effect
estimates for many of the sex by month interac-
tions were not different from zero.

Hourly speed

Demographic predictors strongly influenced hourly
speed of Golden Eagles (Table 3, Fig. 6). In this

Figure 5. Modelled estimates of the probability that Golden
Eagles in California would move, as predicted by hour of the
day (a), and estimated values of hourly speed (log-trans-
formed) of Golden Eagles in California as predicted by hour of
the day (b). Plots show modelled estimates and 95% confi-
dence intervals.

Table 2. Results of comparison of combinations of the top
models from Table 1, describing factors affecting the decision
to move by Golden Eagles in California, 2012–2016.

Probability of moving models AICc ΔAIC wi

Topo + Met + Hour + Demo 231 425.20 0.00 1.00
Topo + Hour + Demo 231 826.96 401.76 0.00
Topo + Met + Demo 231 999.69 574.49 0.00
Topo + Met + Hour 232 168.14 742.94 0.00
Topo + Hour 232 469.31 1044.11 0.00
Topo + Met 233 849.40 2424.20 0.00
Met + Hour + Demo 238 930.04 7504.84 0.00
Met + Demo 239 605.67 8180.47 0.00
Topo + Demo 237 407.89 5982.69 0.00
Hour 240 021.61 8596.41 0.00
Met + Hour 239 496.06 8070.86 0.00
Met 241 347.97 9922.77 0.00
Topo 238 172.19 6746.99 0.00
Hour + Demo 239 476.50 8051.30 0.00
Demo 245 957.08 14 531.88 0.00

We used logistic regression to evaluate what factors deter-
mine the probability that these birds would be in motion with a
combination of demographic (Demo), diel (Hour), topographic
(Topo) and meteorological (Met) variables from our top models
in Table 1 as fixed effects and bird ID and year as random
effects. We also added a lagged-response covariate as a fixed
effect. We used ascending ΔAIC to rank the models
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model set, the top model had 89% of model
weights, and the top two models 99% of model
weights (Tables 3 and S9). The top model suggests
that age had an association with hourly speed with
sub-adults moving slightly faster than adults
(Fig. 6a). We found a strong association of hourly

speed with BCR, with lowest hourly speeds in
Sierra Nevada and highest in the Great Basin
(Fig. 6b). Unlike our previous results we did not
detect strong effects of the interaction between
sex and month (Fig. 6c), with both sexes showing
similar variations in hourly speed with month of

Table 3. Results of the top five models describing factors affecting hourly speeds of Golden Eagles in California, 2012–2016.

Model type Model set AICc ΔAIC wi

Demographic Age + BCR + Month + Sex +Sex*Month + lag 700 059.70 0.00 0.89
BCR + Month + Sex +Sex*Month + lag 700 063.85 4.15 0.11
Age + BCR + Month + lag 700 073.93 14.23 0.00
Age + BCR + Month + Sex + lag 700 075.93 16.23 0.00
BCR + Month + lag 700 079.58 19.88 0.00

Topographic Eastness + Northness + TPI + TRI + lag 685 622.90 0.00 ≥ 0.99
Eastness + Northness + TPI + lag 686 131.03 508.13 0.00
Northness + TPI + TRI + lag 686 285.07 662.17 0.00
Northness + TPI + lag 686 859.94 1237.04 0.00
Eastness + Northness + TRI + lag 687 293.30 1670.40 0.00

Meteorological DSR + Humid + Orographic + PBLH + Precip
+ Press + SLI + Wind speed + Wind direction + lag

689 456.10 0.00 0.53

DSR + Humid + PBLH + Precip + Press + SLI
+ Wind speed + Wind direction + lag

689 456.39 0.29 0.46

DSR + Humid + Orographic + PBLH + Precip + SLI
+ Wind speed + Wind direction + lag

689 465.84 9.74 0.00

DSR + Humid + PBLH + Precip + SLI + Wind speed
+ Wind direction + lag

689 466.69 10.59 0.00

DSR + Humid + PBLH + Precip + Press + SLI
+ Wind direction + lag

689 511.03 54.93 0.00

We used linear mixed effects models with log-transformed hourly speeds of Eagles as the response variable, demographic, diel,
topographic and meteorological variables as our fixed effects, and bird ID and year as random effects as described in the text. We
also added a lagged-response covariate (‘lag’) as a fixed effect. We used ascending ΔAIC to rank the models.

Figure 6. Model estimated values of hourly speed (log-transformed) of Golden Eagles in California, as predicted by demographic
variables (a) age, (b) Bird Conservation Region (BCR) and (c) the interaction of sex and month for female and male Eagles. The four
BCRs are the Sierra Nevada (Sierra), Coastal California (Coastal), Sonoran–Mojave Desert (Desert) and Great Basin (Basin). The
plots use estimated values from the top demographic model predicting hourly speed (Table 3).
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the year. Month of the year seemed to have a
strong effect on hourly speed, with relatively
higher speeds during spring and autumn and lower
speeds in summer and winter.

Topographic predictors also had strong associa-
tions with movement behaviour of Eagles
(Table 3, Fig. 7). In this case, the full model had
model weight ≥ 0.99. The model suggested that
Eagles moved faster over south- and west-facing
slopes than on north- or east-facing slopes
(Fig. 7a). Although Eagles were more likely to be
in motion in rougher terrains (Fig. 3c), hourly
speed actually decreased with increased topo-
graphic roughness (Fig. 7c). The model also sug-
gested that Golden Eagles moved fastest over
steep slopes and ridges (Fig. 7d).

Meteorological predictors were also associated
with hourly speed of Eagles (Table 3, Fig. 8). In
this model set, the top model had 53% of model
weights while the second model had 46% of model
weights. The two models differed by inclusion or
exclusion of orographic updraft, the fixed effect
that had the lowest variable importance
(Table S10). Hourly speed of Eagles was positively
associated with meteorological variables conducive
to the formation of thermals, including downward
solar radiation (Fig. 8a), planetary boundary layer
height (Fig. 8b), surface lifted index (Fig. 8c) and
relative humidity (Fig. 8d). However, although
flight speed was slightly positively related to wind
speed (Fig. 8e) and orographic updraft (Fig. 8f), it
was strongly negatively related to precipitation rate

(Fig. 8g). Finally, hourly speed of Eagles was, to a
small degree, more influenced by winds from the
east, north and south than by winds from the west
(Fig. 8h).

We found diel trends in the hourly speed of
eagles (F15 = 1679.5, P < 0.05; Table S11). This
analysis suggested that hourly speed varied signifi-
cantly throughout the day with lowest speeds in
the early morning and late evening and highest
speeds in the afternoon between 11:00
and 14:00 h (Fig. 5b).

Finally, the lagged-response covariate was again
present in all top models. As before, this suggests
that the speed of the bird in any given hour was
strongly dependent on its speed in the hour
before. This observation is consistent with the
temporal patterns we observed in this parameter
(Fig. 5b).

Combinations of the top models again suggested
that hourly speed of Eagles was best explained by
all the factors from our top demographic, topo-
graphic, meteorological and diel models, as well as
the lagged-response covariate (Table 4). These
models also provided insight into the relative influ-
ence of different types of parameters on Golden
Eagle flight speed. The influence of topographic
features also stood out in this model and the
t-statistic and F-value of the topographic variables
northness, TPI, eastness and TRI had relatively
high absolute values (Tables S12 and S13). In con-
trast to the analysis of the probability of being in
motion, there were comparatively strong effects of

Figure 7. Model estimated values of hourly speed (log-transformed) of Golden Eagles in California, as predicted by topographical
variables (a) northness, (b) eastness, (c) TRI and (d) TPI. The four TPIs are canyon (canyon), gentle slope (gentle), ridge (ridge) and
steep slope (steep). The plot uses estimated values from the top topographic model predicting hourly speed (Table 3). The variables
were rescaled for modelling purposes (see text). Grey bands represent 95% confidence intervals.
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multiple meteorological variables including the
height of the planetary boundary layer, precipita-
tion rate and downward solar radiation. Finally,
BCR, hour of the day and month of the year were
comparatively less influential, and effect estimates
of many of these variables were not different from
zero.

DISCUSSION

There are many different hypotheses to explain
potential drivers of animal movement. Parsing out
the relative importance of these hypotheses
becomes even more difficult for birds that are
dependent on conditions both on the ground and

in the gaseous medium in which they move. Many
previous studies have generally evaluated a single
category of environmental variable (e.g. a suite of
either meteorological or topographic variables) as
potential drivers of movement response (e.g. Katz-
ner et al. 2012, Duerr et al. 2015, Harel et al.
2016, Pirotta et al. 2018, Poessel et al. 2018). Our
analyses suggest that focusing on a single category
of environmental variable, usually weather, as a
determinant of movement would have oversimpli-
fied understanding of this system. Instead, we saw
that many of the processes or parameters we
described function together to determine move-
ment behaviour and that weather variables were
unexpectedly less influential than were

Figure 8. Model estimated values of hourly speed (log-transformed) of Golden Eagles in California, as predicted by meteorological
variables (a) downward solar radiation, (b) planetary boundary layer height, (c) barometric pressure, (d) surface lifted index, (e) rela-
tive humidity, (f) wind speed, (g) precipitation rate and (h) wind direction. The plot uses estimated values from the top meteorological
model predicting hourly speed (Table 1). The variables were rescaled for modelling purposes (see text). Grey bands represent 95%
confidence intervals.
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topographic variables. Identifying these key covari-
ates of movement, and their interactions, allowed
us to improve our understanding and gain new
insights into the potential internal and external dri-
vers of movement. Finally, by comparing parame-
ters that differentially influenced the two distinct
response variables we considered, we also gained
fresh insights into the internal competition and
fundamental trade-offs animals face when making
decisions about when and how to move.

Internal state

The internal state of an animal can influence its
movement in many ways. Hunger, reproductive
status, age and many other factors can all deter-
mine movement decisions (Nathan et al. 2008).
We saw strong evidence that an individual Eagle’s
reproductive potential influenced its movement.
Although such evidence is expected by theory
describing species that engage in territorial
defence and parental care, such a movement
response is difficult to measure and thus has
rarely, if ever, been documented. Golden Eagles
in California start defending their territory as early

as October (Braham et al. 2015), and although
the nesting cycle in the southern part of the state
is earlier than that farther north, birds in both
regions generally are tending nests from January
to July. Our analyses indicated that both male
and female Eagles were less likely to be in motion
(i.e. they decreased their activity) as the nesting
season progressed (Fig. 2c). Even though we did
not have information on breeding success, we saw
that this was especially true for females that,
when nesting, incubate eggs and brood nestlings
for a greater proportion of time than do males.
That said, year-round, males were, on average,
more likely to be in motion than were females
(Fig. 2c).

We can draw several biological conclusions from
these sex-specific movement patterns. First, they
probably reflect seasonal changes in nesting biol-
ogy. Regardless of breeding status, the behaviours
most likely to decrease as the nesting season pro-
gresses are territory defence and nest building.
Both of these are energy-intensive behaviours that
are most prevalent during the period when Eagles
were most likely to be in motion – the earliest part
of the nesting cycle. In addition, our analyses
showed that Eagles were more likely to be in
motion in spring and autumn, the periods when
some of them make longer distance non-breeding
movements. Secondly, and perhaps less intuitively,
it seems that males, in general, move more than
females. Two broadly applicable mechanisms can
explain this pattern. First, during the nesting sea-
son when females are gravid or involved in station-
ary incubation behaviour, males are often engaged
in movement-intensive foraging or territory
defence behaviours. Secondly, these data also
could mean that, year-round, males may spend a
greater proportion of their time defending a terri-
tory. Although each movement behaviour may
have unique energetic costs (territorial displays are
often low-energy soaring, whereas hunting can
involve more energy-intensive soaring or flapping),
it is nevertheless true that when a bird needs to be
in motion more at one time of the year than other
times, that time of the year is likely to be rela-
tively more energetically expensive.

These interpretations explain the state-specific
behaviour of territorial adult Golden Eagles, but
they need further development to incorporate
behaviour of non-territorial birds. The age-related
differences we observed in the probability of being
in motion provide insight into how internal state,

Table 4. Results of comparison of combinations of the top
models from Table 3, describing factors affecting hourly
speeds of Golden Eagles in California, 2012–2016.

Hourly speed models AICc ΔAIC wi

Topo + Met + Hour
+ Demo

668 785.30 0.00 ≥ 0.99

Topo + Hour + Demo 670 102.90 1317.6 0.00
Topo + Met + Hour 670 121.02 1335.72 0.00
Topo + Met + Demo 670 268.05 1482.75 0.00
Topo + Met 674 653.24 5867.94 0.00
Met + Hour + Demo 682 511.72 13 726.4 0.00
Met + Demo 684 063.80 15 278.5 0.00
Topo + Demo 684 365.52 15 580.2 0.00
Met + Hour 683 601.26 14 816 0.00
Met 688 302.74 19 517.4 0.00
Topo + Hour 671 263.24 2477.94 0.00
Topo 685 622.87 16 837.6 0.00
Hour + Demo 684 623.49 15 838.2 0.00
Demo 700 059.57 31 274.3 0.00
Hour 685 872.62 17 087.3 0.00

We used linear mixed effects with log-transformed hourly
speeds of Eagles as the response variable, a combination of
demographic (Demo), diel (Hour), topographic (Topo) and
meteorological (Met) variables from our top models in Table 3
as fixed effects, and bird ID and year as random effects. We
also added a lagged-response covariate as a fixed effect. We
used ascending ΔAIC to rank the models
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manifested in territoriality, reproductive behaviour
and experience, probably influences animal move-
ment. Sub-adult birds, which are only rarely terri-
torial, were more likely to be in motion and, when
in motion, moved more quickly than adult birds.
This is consistent with these birds ranging more
widely than do territorial birds (a pattern that is
observed elsewhere; Miller et al. 2016). Likewise,
there is evidence that younger, non-territorial birds
of many species are more likely to make migratory
or pseudo-migratory movements even when they
are from putatively ‘sedentary’ populations (Bloom
et al. 2015). Such migratory movements involve
being in motion and are often faster than local
movements (Wheat et al. 2017). Finally, age-re-
lated differences in movement behaviour could
also be indicative of a potential role of experience.
In particular, there is good evidence from studies
of migration that adults fly more efficiently than
younger birds (Harel et al. 2016, Miller et al.
2016, Rus et al. 2017). Such efficiency can be
from in-flight improvements or, as suggested by
this work, by changes to the amount of time birds
spend in flight. Thus, exploring these patterns in
our data and their ecological significance helps our
understanding of how internal state serves as a
potential driver for Golden Eagle movement.

These state-related drivers of movement pro-
vide important and broadly generalizable insight
into ecological and evolutionary processes. For
example, we generally assume that foraging is the
most energetically demanding part of an animal’s
life cycle (Shepard et al. 2011). However, we
observed dramatic seasonal fluctuations in
the probability of being in motion and a decline in
adult movement as nestlings aged. This is counter-
intuitive, as this is the time period when nestling
food needs, and often prey availability, may be at
their maximum. These patterns suggest that terri-
tory defence may involve more movement, and
thus be more energetically taxing, than is provid-
ing food for offspring. This finding is unexpected,
as there is substantial evidence that energetic con-
straints limit productivity (e.g. supplemental feed-
ing of offspring increases reproductive output;
Ferrer et al. 2017). As such, our observations have
substantial implications for our understanding of
the causes and consequences of the energetic
limitations for monogamous territorial species in
general.

Likewise, the greater frequency of movements
by younger birds also provides insight into

potentially important demographic processes. For
example, it is well established that young of most
species experience higher mortality rates than
adults (Gotelli 1998). Our data suggest that one
of the reasons for this may be the greater risk and
energetic demands associated with increased move-
ment of younger birds. For example, mortality
rates for Black Kites Milvus migrans peak between
the first and second year of life (Sergio et al.
2011). Likewise, the benefits to an adult of finding
a territory may be not only because it increases
reproductive potential, but also, and perhaps coun-
terintuitively, because holding a territory decreases
requirements for movement and thus increases
survivorship.

External environment

We also saw strong evidence that the external
environment influenced Eagle movement. In fact,
because this response was so substantial and
because so many variables were relevant to this
response, these patterns illustrate the complexity
of the dependence of movement on the environ-
mental state and the relative insignificance of
weather to flight behaviour.

Most work on the movement of soaring birds
points to the substantial importance of weather in
determining flight behaviour (Duerr et al. 2015,
Vansteelant et al. 2015, Rus et al. 2017, Poessel
et al. 2018). It was therefore remarkable that this
dataset suggests that when topography and
weather are both considered, topographic features
more strongly influence flight behaviour compared
with weather variables. The difference between
our work and prior work may be that in many
cases, prior analysis has focused on a very few
weather variables (e.g. two variables, tailwind and
turbulent kinetic energy in Harel et al. 2016) and
few, if any, topographic parameters (Panuccio
et al. 2016, Poessel et al. 2018).

Our broadened focus illustrated that Eagle
movement responses to variation in both topogra-
phy and weather often were unexpectedly strong.
In particular, northness of a slope (Fig. 3a) and
increasing levels of orographic updraft (Fig. 4f),
downward solar radiation (Fig. 4a) and the height
of the planetary boundary layer (Fig. 4b) were all
tightly correlated to the probability of an Eagle
being in motion. Similar (although not identical)
variables were strongly related to hourly speed
(Figs 7 and 8). The unexpectedly narrow
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confidence intervals around many of these esti-
mates are informative because they suggest the
strong dependence of Eagle behaviour on these
parameters that alter the medium in which they
travel. They also suggest that Eagles are using
updraft resources in direct response to their avail-
ability, an implication consistent with regular
switching from one subsidy type to another (Katz-
ner et al. 2015). Other species such as California
Condors Gymnogyps californianus, which are even
less well suited to flapping flight, show similar
dependence, but to a substantially smaller suite of
environmental variables (Poessel et al. 2018).
These comparisons suggest the testable hypotheses
that species that are well adapted to flapping flight
respond to a relatively wider range of environmen-
tal variables, but with relatively weaker depen-
dence on any single variable compared with eagles
and condors.

Beyond weather and topography, the move-
ment responses we measured also varied across the
day and by ecoregions. Such responses contribute
to our understanding of the strong interdepen-
dence of environmental and state-based potential
drivers of flight behaviour. Diel cycles in beha-
viour, for example, probably reflect both diel
cycles in the environment (i.e. thermal updraft
strength generally peaks in the middle of the day,
probably driving the movement peak we observed;
Fig. a,b) and diel cycles in animal state (i.e. late in
the day, Eagles may feel pressure to find a safe
roost or to feed before roosting; Fig. a,b). Like-
wise, differences in behaviour in the five BCRs we
considered were a reflection of the external and
internal factors that affect the population of Eagles
that reside in these ecoregions. Therefore, the vari-
ation in behaviour we observed is also a reflec-
tion of both spatial variation in the environment
(i.e. desert climates are hotter, resulting in greater
thermal potential, probably explaining the fast
movement speeds in the desert BCRs; Fig. 6c) and
spatial variation in internal state (i.e. earlier nesting
in deserts means less movement earlier in the year;
potential migration in the Great Basin BCR, less
presumptive foraging effort, and less movement in
areas of the Sierra Nevada BCR with abundant
colonial ground squirrels; Fig. 6c). Although tem-
poral patterns in movement have been relatively
well studied (Omland & Hoffman 1996, Soutullo
et al. 2005, Cadah�ıa et al. 2007, Poessel et al.
2016), the population-level spatial variation we
measured in movement is not commonly

incorporated into those studies. In fact, accounting
for spatial variation in movement was central to
accurate interpretation of our data and may be an
important component to future work in this field.

Relative significance of different types
of variables

By comparing the combinations of variables that
influenced the two response variables we consid-
ered, we also gained new insight into the relative
influence of different variable types when making
decisions about when and how to move. Interest-
ingly, the combination of topographic and meteo-
rological variables that most influenced the
decision to move generally were also those that
affected hourly speed. For example, the variables
that had the greatest influence on both processes
were mostly those that supported the development
of updrafts (topographic features such as aspect,
roughness and, to a lesser degree, meteorological
factors). The relatively greater importance of
topography suggests that these soaring birds use
topographically generated updrafts even when
meteorological conditions were not optimal for
generation of thermal updrafts. Together, these
patterns suggest that movement responses are, to a
degree, consistent, suggesting that animals decide
to move for the same reasons they may be able to
move optimally.

CONCLUSION

An individual’s movement behaviour results from
the dynamic interaction of four factors: the ani-
mal’s capacity to navigate, its capacity to move, its
internal state and the external environment
(Nathan et al. 2008). In this study, the capacity to
navigate and to move were, for the purposes of
the data we considered here, essentially invariant.
However, the internal state of the animals and the
external environment they experienced were
highly variable. The models we used to describe
an animal’s movement response to its internal state
were, to a large degree, straightforward and inter-
pretable, with only a few variables (age, sex, loca-
tion, time of year) and interactions. In contrast,
the models we used to describe an animal’s move-
ment response to two different types of environ-
mental variation were far more complex.

Our analyses not only show how connections
between both of these variable types together
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influence animal movement but also provide hints
into the fitness value of different movement strate-
gies, and they generate testable hypotheses for
future study with a broader range of taxa. It is well
established that animals must balance constraints
of age, experience and reproduction. However, by
evaluating these effects in the context of move-
ment, we generated potential theories explaining
energetic constraints on territorial animals (i.e. ter-
ritorial defence may be more energetically
demanding than provisioning young), the benefits
of territoriality (i.e. improved survival of adults
over sub-adults may be driven in part by lower risk
and energetic expenditure resulting from moving
less) and how flight physiology may impact
response to weather (i.e. that adaption to flapping
flight influences the degree to which flight beha-
viour responds to environmental variation). Our
work also demonstrated that topographic influ-
ences are often more relevant than meteorological
influences in determining patterns in flight beha-
viour. These hypotheses thus form a possible
framework for further refinement of our under-
standing of the ecology of soaring birds and animal
movement.
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