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The end-Permian extinction event (EPEE) considered to have been caused by the eruption
of the Siberian Large Igneous Province (SLIP), the age of which is critical for extinction-SLIP
model evaluation. The Tunguska Basin flora during this time, in accordance with the EPEE
model, supposed to have been killed by the massive injection into the atmosphere of
poisonous substances such as methane, sulfates, mercury and massive combastion of
coals. In addition, supposed numerous fires presumably devastated the regional flora.
However, the diversity of the Tunguska Basin flora drasticly increased at the beginning of
Induan or slightly earlier and become diverse at the species level in the Olenekian and
Anisian, when the main phase of basalt eruption and associated intrusive activity occurred.
The overall magmatic activity during the latest Permian and Early Triassic did not kill the
flora, but rather stimulate their diversity. The geomagnetic secular variations from the
intrusions revealed the similarity of paleomagnetic directions of the Norilsk group layered
intrusions with those of the upper Olenekian and lower Anisian Mokulaev and Kharaelakh
volcanic formations and intrusions of the Talnakh group with the Olenekian Moronga-
Mokulaev formations. The U-Pb dates and the geomagnetic secular variations data
expose the obvious discrepancy between these two datasets. The paleomagnetic data
suggest that the Norilsk-1 intrusion is younger than the Talnakn and Kharaelakh intrusions,
but the U-Pb dates indicate the opposite. The data from layered intrusions in Norilsk and
the other regions suggest their prolonged duration and multi-stadial formation. The U-Pb
dates from the intrusions of the Norilsk region roughly constrain the onset of the SLIP and
generally postdate the end-Permian extinction.
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INTRODUCTION

Recent advances in zircon CA-IDTIMS dating resolve many
important geological problems especially those dealing with the
rates of different geological and biological processes. One such
problem is the end-Permian extinction event (EPEE) that has
been widely debated since the recognition of this event (Newell,
1963). Myriad hypotheses regarding the scale and causes of the
extinction have been and continue to be suggested e.g. (Hallam and
Wignall, 1997; Bond and Grasby, 2017 and references therein). The
current commonly acceptedmodel links the EPEE to themagmatic
activity that produced the Siberian Large Igneous Province (SLIP),
because of the its enormous scale and supposed coincidence of the
SLIP magmatism with the extinction in South China (Campbell
et al., 1992; Svensen et al., 2009; Shen et al., 2011; Ernst and Youbi,
2017). The model become even more popular when CA-IDTIMS
(Chemical Abrasion Isotope Dilution Ionization Mass
Spectrometry) dates were obtained from the intrusions and sills
in the SLIP region (Burgess and Bowring, 2015). These dates
suggested to confirm the coincidence of the SLIP magmatism in
the Tunguska Basin with the onset of the marine extinction in
South China (Burgess and Bowring, 2015). The latest Permian-
Early Triassic magmatism that created the Siberian traps, including
the products of the explosion and interaction of the magmas with
regional volcanic and sedimentary rocks (coal, evaporite and
sulfates), is now considered by many authors to be the main
driving force of the EPEE (Hoenisch et al., 2012; Bond and
Wignall, 2014; Sobolev et al., 2015; Bond and Grasby, 2017;
Burgess et al., 2017; Rothman 2017; Ernst et al., 2021, in press).
This extinction model suggests that the large scale of the SLIP
volcanic explosions and intrusive/sill emplacement within the
Tunguska Basin released large volumes of CO2, but also
induced metamorphism of the sedimentary succession
surrounding the intrusive and sills, that released sediment-
derived hazardous volatiles into the atmosphere through the
numerous pipe and vent structures throughout the basin
(Svensen et al., 2009; Black et al., 2021, in press). According to
recent investigations the intrusive/sills contact metamorphism
generated 4.0–9.2 times more CO2 compared with the expected
normal degassing of sills (mantle CO2) (Retallack and Jahren, 2008;
Svensen et al., 2018). Therefore, the time frame of the SLIP
intrusive magmatism relative to the age of the EPEE is very
critical for this model evaluation. At the same time the
assessment of the impact of the SLIP on the environments and
biota mostly focused on the geochemical proxies (Black et al., 2021,
in press; Mather and Schmidt 2021, in press). The radioisotopic
dates from the Permian-Triassic transition in the Tunguska Basin
have never been integrated with the palaeontologic,
biostratigraphic, and lithostratigraphic data. The existing sources
(published and unpublished) are reviewed and analyzed in this paper
to investigate the claims that the Siberian Traps are
contemporaneous with the end-Permian extinction. In this paper
we are assessing and analyzing paleontological, biostratigraphic,
lithostratigraphic and magnetostratigraphic data within a
framework of the intrusive/sill emplacement in the entire
Tunguska Basin. The floral richness and dynamics of origination
and extinction were obtained and analyzed to understand the

regional floral evolutionary processes and the relationship of
these processes with Siberian Traps magmatism during the
Permian-Triassic transition in the Tunguska Basin.

GEOLOGICAL SETTING

Tunguska Basin occupied the central and western parts of Siberian
Platform and consists of Norilsk through, Tunguska syneclise and
western part of the Angara anteclise. The basin bounded in east with
the Anabar anteclise and with Baikit and Nepsko-Botuoba anteclises
in the south. The Tunguska Basin is one of the largest reserves of coal
in the world. It is filled with Upper Proterozoic, and Phanerozoic
sediments of total thickness 3.5–8.5 km (Kontorovich et al., 1994).
The late Paleozoic Siberian coal-bearing deposits unconformably
overlie the marine to marginal marine sabkha evaporates, carbonate
and siliciclastic sediments of lower-middle Paleozoic and
Mississippian age. Most of the Tunguska Basin coal-bearing
strata are unconformably overlain by the Triassic volcanics. In
some areas, the Triassic rocks variably overlie Ordovician,
Pennsylvanian, Lower, Middle and Upper Permian deposits. Only
to the northeast and in central parts of the basin (Norilsk and Tura in
Nizhnyaya Tunguska areas) the Triassic rocks resting on the Upper
Permian with minimal unconformity (Kovrigina, 2000;
Cherepovskiy, 2001).

The Norilsk region, where the Permian-Triassic transition is
essentially complete (Kazakov, 2002), occurs on the northern edge of
the Siberian Platform (Figure 1A). It is bounded on the west and
north by the Yenisei–Khatanga troughs. This trough is characterized
by the increased mobility throughout the history of development
with a deep structure characteristic of riftogenic systems. The trough
is separated by mantle faults from the Tunguska and Taymir blocks,
which have a common platform structure (Afanasenkov et al., 2016).
This individualized tectonic continental crustal block of lower
thickness consists of a crystalline basement and
sedimentary–volcanic cover (Figure 1B). A series of positive and
negative structures and major fault zones dominate in the Norilsk
region (Figures 1B,C). Important from the point of view of
mineralization are the Norilsk- Kharaelakh and Imangda faults,
which both are NNE-trending, and the North Kharaelakh fault,
which forms the southern boundary of the Yenisei–Khatanga
trough. Seismic evidence indicates that these major faults extend
to the base of the crust (Krivolutskaya 2016).

STRATIGRAPHY AND BIOSTRATIGRAPHY

The uppermost Permian in the Norilsk region (Ivakinian Regional
Stage [RS] of Siberia) is assigned to the Ivakin Formation (Figure 2)
(Budnikov et al., 2020). The formation includes titanium-augite
trachybasalts, trachy-andesite basalts, labrador porphyrite, tuffs,
tuffites, agglomerate tuffs and tuff breccias. Sandstones, gravel
conglomerates, and carbonaceous siltstone occur in subordinate
quantities within basaltic trachy-andesites. Basalts form several
lava flows within the formation. The total thickness of the Ivakin
Formation varies from 30 up to 350m (Kovrigina 2000; Paderin
et al., 2016). The plants Todites evenkensis Radczenko, Cordaites
insignis (Radczenko) S. Meyen, Javorskia mungatica Radczenko,

Frontiers in Earth Science | www.frontiersin.org May 2021 | Volume 9 | Article 6351792

Davydov and Karasev P-T Magmatism and Flora in Siberia

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Sarpolithus candalepensis (Zalessky), S. Meyen, Pecopteria
tajmyrensis Schwedov, and Paracalamites sp. suggest the Permian
age of this formation (Meyen, 1966; Sadovnikov, 1987b; Mogucheva
and Naugolnykh, 2010). The Ivakin Formation correlates with the
upper Tailugan and lowerMaltsev formations of the Kuznetsk Basin
the late Permian ages of which recently were established with CA-
IDTIMS dates (Davydov et al., 2021). The Ergalakh intrusive sill
complex (Figure 3) has been proposed to be a feeder of the
volcanism of the Ivakin Formation (Ryabov et al., 2001; Rad’ko,
2016; Latyshev et al., 2019).

In the Tunguska Basin, the Lower Triassic volcanic and
volcaniclastic successions known as Tutonchana Fm in most

cases unconformably overlies units of the uppermost Permian
Ivakinian RS and the older sediments (Kazakov, 2002; Paderin
et al., 2016). The chronostratigraphic Tutonchanian RS, correlates
with the Induan of the International Geologic Time Scale
(Figure 2). A significant turnover in the biota (flora, bivalves,
conchostracans, ostracods, fishes) occurs at the boundary between
the Ivakinian and Tutonchanian RS (Ragozin, 1958; Betekhtina
et al., 1988; Sadovnikov, 2008; Mogucheva andNaugolnykh, 2010).
The wet-dominated cordaites forest disappeared across this
boundary and was replaced by dry-dominated conifer-fern flora.
The turnover is interpreted as a climate shift from the cool and wet
into warmer and drier (Dobruskina, 1994; Meyen, 1997). In the

FIGURE 1 | Location and position of the Norilsk region within the geologic, stratigraphic and structural content. (1) - Geologic map of the north-western corner of
Siberian Platform (from Petrov, 2016). (2) - Cross-section of the northern Siberian Platform along the line Dikson city (A) – Khantai lake (B) - white dashed line on
Figure 1A [modified from Afanasenkov et al. (2016)]; (3) - Simplified geologic map of Norilsk region with main layered intrusions, fromwhich Burgess and Bowring (2015)
obtained the U-Pb ages [modified from Krivolutskaya (2016), Rad’ko (2016) Dark blue boxes - samples of Latyshev et al., 2020].
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Norilsk region the lower Tutonchanian RS (Syvermin Formation)
contains only the fern Cladophlebis sp., but biota in the middle and
upper Tutonchanian is more abundant and includes the plants
Pecopteris julii Radczenko, Cladophlebis kirjamkensis Prynada,
Cladophlebis adnata (Goeppfrt), Cladophlebis denticulata
Brongniart, Cladophlebis gorbiatchiana Mogutcheva,
Cladophlebis dogaldensis Mogutcheva, Neokoretrophyllites
linearis (Prynada), Schizoneura altaica Vladimirovich et
Radczenko, Paracalamites triassica Radczenko, Pecopteris
pseudotchichatchevii Vladimirovich, Tungussopteris sphenopteroides
Vladimirovich, Katasiopteris oblongata Vladimirovich, and
Taeniopteris prynadae Mogutchev; the non-marine ostracods
Darwinula regia Mischina, D. postparallela Mischina); the
conchostracans Rohdendorfium (Bipemphigus) gennisi (Novozhilov),

Cyclotunguzites gutta (Lutkevich), Concherisma tomiensis Novojilov,
Estherites evenkensis Lutkevich, E. tungussensis Lutkevich, and
Lioestheria aequele (Lutkevich); and the non-marine bivalves
Utschamiella tungussica Ragozin, U. babikamensis Ragozin, and U.
obrutschevi Ragozin (Ragozin, 1958; Mogucheva, 1973; Kazakov, 2002;
Sadovnikov, 2008, Sadovnikov, 2016). Conchostracan Cyclotunguzites
gutta is the most diagnostic species in this assemblage as it is found in
many regions in the lowermost Triassic, i.e., in the Induan Calvörde
Formation, Lower Buntsandstein, Germanic basin, in the lower
Vokhmian RS of the East European Paltform (slightly above
Induan tetrapod Tupilakosaurus), in the upper Kayitou Formation
in South Chin and Sunjiagou Formation in North China (Chu et al.,
2019; Davydov et al., 2020; Scholze et al., 2020). This taxon is
considered as the index of the Induan Stage in continental facies
(Schneider et al., 2019). The Tutonchanian RS in the Central Tunguska
Basin and Kuznetsk Basin is characterized by a similar flora and fauna
and directly correlates with the Tutonchanian of the Norilsk region
(Vladimirovich, 1967; Betekhtina et al., 1986; Dobruskina, 1994;
Sadovnikov, 2008; Mogucheva, 2016; Davydov et al., 2021).

FIGURE 2 | Correlation of Permian-Triassic transition of Norilsk region
with the International Geologic Time Scale (IGTS) (Henderson et al., 2012).
White dashed lines - correlation according to regional flora and fauna. The
data on the paleomagnetic (P/M) analysis of the geomagnetic secular
variations recorded in the intrusions and their correlation with the Siberian
Traps volcanic sequences in Norilsk region is modified from Latyshev et al.
(2020); the paleomagnetic data combined with the CA-IDTIMS U-Pb dates
obtained from Norilsk group intrusions (Norilsk-1, and Chernogorsky-1) and
from Talnakh and Kharaelakh intrusions are from Burgess and Bowring
(2015). Distribution of coals from Cherepovskiy (2001); distribution of traps
and their thickness and the chroniostratigraphic position of sills and intrusions
in left column (1) according to Krivolutskaya (2016), Rad’ko (2016), Ryabov
et al. (2014) and in right column (2) by Burgess and Bowring (2015).

FIGURE 3 | Chronostratigraphic summary of high-precision U–Pb
dating results of zircon from intrusive rocks of the mixed superposition (cross-
cutting intrusive layers) at Norilsk-1 intrusion and Neoarchean Stillwater
Complex of Montana. (A), distribution of U–Pb ages in well G22, (Distler
et al., 1999) Norilsk-1 intrusion [data from Burgess and Bowring (2015)] (B),
Stillwater Complex (Wall et al., 2018); (C), the relationship of Norilsk and
Ergalakh intrusive complexes in Kuramakit area (modified from Sereda et al.,
2020), where the younger Norilsk intrusive complex intruded within and
underneath the older Ergalakh complex.
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We compiled the data on the floral distribution within the
Norilsk and Nizhnyaya Tunguska areas from numerous sources,
including publications by the specialists on flora working in
Siberia (Radchenko and Schwedov, 1940; Schwedov, 1961,
Schwedov, 1963; Meyen, 1966; Sadovnikov, 1967; Prinada,
1970; Mogucheva, 1973; Sadovnikov, 1987a, Sadovnikov,
1987b; Porokhovichenko, 2006; Sadovnikov, 2008;
Mogucheva and Krugovykh, 2009; Mogucheva and
Naugolnykh, 2010; Mogucheva, 2016) and adjust taxonomy
towards the recent systematics. Besides, we analyzed and
unified the occurrences of flora in different stratigraphic
units (formations) with respect to the detailed local
stratigraphy and chronostratigraphy. The obtained floral
richness in comparison with trap thickness is illustrated in
Figure 4. The recent secular variation of paleomagnetic data
from the Permian and Triassic for the first time suggested the
direct correlation of intrusive and extrusive rocks in the
Tunguska Basin (Latyshev et al., 2020).

DISCUSSION

CA-IDTIMS Dates and Magnetic Secular
Variation
Traditionally, the Permian-Triassic boundary in the Tunguska
Basin has been placed at the base of the Tutonchanian RS because
of the most drastic sedimentologic and biotic change in the
Permian-Triassic of Siberia (Vladimirovich, 1967; Prinada,
1970; Betekhtina et al., 1984; Betekhtina et al., 1986;
Dobruskina, 1994; Sadovnikov, 2008; Mogucheva, 2016). This
position of the boundary was utilized in the all of the official
geologic maps in the Tunguska Basin of Russia (Kovrigina, 2000;

Permyakov et al., 2012; Paderin et al., 2016; Lipenkov et al., 2018;
Varganov et al., 2018).

The CA-IDTIMS U-Pb dates were obtained from the layered
intrusions and sills in Tunguska Basin and Taymir (Figures 1–3).
Seventeen sill/intrusion samples within the Tunguska Basin
yielded dates ranging from 251.813 ± 0.065 to 251.354 ±
0.088 Ma (Burgess and Bowring, 2015). Although Burgess and
Bowring (2015) claimed that the eruptions were before and
during the mass extinction, most of the obtained ages with the
uncertainties postdate the onset of the extinction at 251.941 Ma
established in South China (Burgess et al., 2014). The oldest range
of the uncertainty from the sample G22-63 from the Norilsk
intrusion 251.907 ± 0.067 Ma slightly overlaps the onset of the
extinction determined in South China (Burgess 2014). Two U-Pb
dates, sample KZ1799-1195, 251.801 ± 0.088 Ma from the
Talnakh intrusion and sample G22-65, 251.813 ± 0.065 Ma
from the Norilsk intrusion, (Distler et al., 1999) slightly
overlap the cessation of the extinction as determined in South
China (Burgess et al., 2014). In addition to the lack of the Permian
radioisotopic ages for the Tunguska Basin sills and intrusions, the
relationship of the intrusive rock with the Triassic volcano-
sedimentary succession in the region was assumed but has
never been precisely constrained. (Paderin et al., 2016; Rad’ko,
2016). According to the data of Burgess and Bowring (2015),
most of the studied sills and intrusions are of Induan (Early
Triassic) in age, whereas all traps were placed in the Permian
(Figure 2, column 2, see also Figure 3 in Burgess and Bowring,
2015). The latter would mean that an extensive pre-extrusive
feeder intrusive-sills system of the of Permian age must be existed
in the region, but that one is unknown. Only the small Ergalakh
intrusive complex, which is developed around the Norilsk area,

FIGURE 4 | The taxonomic richness and dynamics of the extinction and origination of flora in Norilsk and Kuznetsk Basins calculated using functions implemented
in the R-package divDyn (Kocsis et al., 2019). A similar pattern of these parameters is observed in both regions. The floral richness and species origination in the
Tunguska and Kuznetsk basins roughly correpsponds with the onset of the mafic magmatism (Late Permian) and climatic optimum in both regions.
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has been proposed to be a potential feeder for the latest Permian
Ivakin Fm, because of the cross-cutting relationship with the
Paleozoic rocks only (Kovrigina, 2000; Ryabov et al., 2001). The
scale of the Ergalakh intrusive complex within the entire
Tunguska Basin is minimal.

The cross-cutting relationships, petrology, and geochemistry
of most of the intrusions in the Norilsk region suggest co-
magmatic relationships of the intrusive and extrusive rocks
(Zolotukhin et al., 1986; Zolotukhin and Al’Mukhamedov,
1991; Ryabov et al., 2014; Krivolutskaya, 2016). Therefore,
according to these data most of the traps are supposed to be
Triassic in age. A recent study of the mean geomagnetic
directions of the Norilsk group layered intrusions (Norilsk 1,
Norilsk 2, and Chernogorsky; Figures 1–3) and Talnakh group of
layered intrusions (Talnakh, Oganer, and Zayachiy Creek)
disclose their similarity to the geomagnetic signature of the
upper Olenekian – lower Anisian Mokulaev (4.3°–5.9°) and
Kharaelakh formations (2.9°–4.9°) of Anisian age (Figure 2).
At the same time paleomagnetic directions of the intrusions of
the Talnakh group of layered intrusions (Talnakh, Oganer, and
Zayachiy Creek) reveal the lowest angular differences with the
Olenekian Moronga-Mokulaev formations (2.1°–3.5°) (Figure 2)
(Latyshev et al., 2020). This difference between formations and
intrusions suggest the comagmatic emplacement of these lavas
and intrusions as previously suggested by the cross-cutting
relationship and the geochemistry (Ryabov et al., 2014;
Krivolutskaya, 2016) (Figure 2).

The U-Pb dates from the intrusions (Burgess and Bowring,
2015) integrated with the geomagnetic secular variation data
(Figure 2, column 1), manifest the discrepancy between these
two datasets especially with regards to the succession of the
extrusive rocks and radioisotopically dated intrusives
(Davydov, 2021 in press). The geomagnetic secular variation
was measured in the open pit (Medvezhyi Creek), the
underground Skalistyi and Oktyabrskyi mines and on several
natural outcrops (Figure 1C) (Latyshev et al., 2020), whereas
U-Pb dates were obtained from the wells at different location
(Figure 1C) (Burgess 2014), and the correlation between these
two datasets (geomagnetic secular variation and U-Pb dates),
except when that they were collected from several multi-layered
intrusive bodies, is not possible (Figure 1C).

Radioisotopic U-Pb ages in well G22 in the Norilsk-1 intrusion
occur in the opposite direction of the supposed stratigraphy in the
well, i.e. the oldest age from sample G22-63-5 occurs near the top
and the youngest age from sample G22-105-2 is near the bottom
(Davydov, 2021 in press). This suggests a complicated internal
structure of the multilayers and their different origin during at
least a half-million or more years (Figure 3A). A similar case was
reported recently in the Norilsk region, where the Norilsk-type
layered intrusive has been intruded into the Ergalakh intrusive
complex (considered to be late Permian) and thus the latter is
interlayered with the former timewise in an upside-down position
(Figure 3C) (Sereda et al., 2020). All this suggests that to
recognize the true age of the geomagnetic secular variation,
their measurements and the radioisotopic dating must be
obtained from the same samples.

The layered intrusions from the other regions are similar in
their internal structure, i.e. Precambrian layered intrusions of
southern Montana (Figure 3B), where some layers were
constructed out of stratigraphic superposition (Wall et al.,
2018). This is certainly similar to the 0.3–0.4 Myr case in the
Norilsk-1 cross-cut layered intrusive, which was crystallized in
multiple phases over a timeframe of about half a million years,
and the timing and nature of interaction with the surrounding
sedimentary rocks was much more complicated than proposed in
recent models (Svensen et al., 2018). A comprehensive
radioisotopic calibration in the main multi-layered intrusive
complexes in Tunguska Basin is required to prove the link
between intrusive magmatism in the region with the end-
Permian mass extinction in South China and elsewhere.

Three more CA-ID-TIMS dates from the intrusions in the
Taymir Peninsula, northern Siberia, were reported recently. All of
them are yielded the Triassic ages: TP-55 - 251.64 ± 0.11; TP-42 -
251.46 ± 0.13 and TP-43 - 250.60 ± 0.22 (Augland et al., 2019). The
latter sample reveals a non-overlapping clustering in the age
distribution, whereas the older cluster possessing a large
uncertainty 251.67 ± 0.41, the maximum age of which slightly
overlapped with the end-Permian extinction. This cluster is
interpreted to represent initial crystallization in the magma
system and probably emplacement of an early pulse of magma.
The younger cluster represent the final emplacement and
crystallization of the monzonite-diorite horizon within the
Dumtalei layered intrusive complex (Augland et al., 2019). These
data are quite consistent with the data from the Tunguska Basin
(Burgess and Bowring, 2015), but also suggest generally a post-
extinction age of the intrusivemagmatism in Taymir. Besides, at least
two (or more) magmatic crystallization events (magma pulses) are
proposed in the Dumtalei layered intrusive complex, like multiple
crystallization events in the Norilsk-1 layered intrusion (see
discussion regarding G-22 well, Figures 3A,C). The extrusive
volcanism in Taymir also appears in the late Changhsingian
Syradasai and Shaitan formations with the late Permian flora
Cordaites candalepensis (Zalesskyi), Zamiopteris schmalhausenii
Schwedov, Nephropsis ingenta Schwedov (Proskurin et al., 2015).
This age is consistent with the Changhsingian volcanism in the
Ivakin Fm of the Tunguska Basin.

Thus, although the U-Pb dates from the intrusions of the Norilsk
and Taymir regions only roughly constrain the onset of the SLIP,
what we can conclude at this point is that SLIP generally postdates
the end-Permian extinction. Furthermore, inferences about the
volcanic, biotic, environmental, and climatic events associated
with SLIP need to be reconsidered and better and more directly
documented. The layered intrusive rocks in the Tunguska Basin and
Taymir regions represent a complex multi-stadial crystallization
within an intrusive body and cannot be employed for the
evaluation of the sedimentary, and biotic processes during
Permian-Triassic transition until their crystallization history can
be precisely calibrated with the CA-IDTIMS method. The minimal
influence of the intrusive rocks on the surrounding pre-Triassic
sedimentary succession and especially on the Carboniferous-
Permian coals in the Tunguska Basin is documented in the
recent review paper (Davydov, 2021 in press).
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The only coal gap in the Earth history lasted from
approximately 252.94 (the extinction event in South China)
through the late Anisian-Ladinian and is known to be of
global scale (Retallack et al., 1996). The very last coal in the
Permian of the Norilsk region is documented in the upper Ivakin
Fm (Paderin et al., 2016; Rad’ko, 2016). No coals are known or
ever been documented in the Tutonchanian, Dvurogian and
Putoranian RS in the entire Tunguska Basin (Cherepovskiy,
2001). The first thin, cm-scale coal layers are documented in
the volcaniclastic upper Anisian and Ladinian. The coals are
gettingmore frequent in the Upper Triassic (Kazakov, 2002). This
coal record in the Tunguska Basin is consistent with the Triassic
age of the trap’s succession in the Tunguska Basin.

Trap Volcanism in the Tunguska Basin
Throughout the Permian-Triassic Transition
According to the Burgess and Bowring (2015) model, the
pyroclastic eruption started sometime around 255.58 Ma or
even earlier, but this hypothesis requires additional confirmation.
Only acidic volcanism has been documented in the coal-bearing
successions of the Tunguska Basin (Cherepovskiy, 2001; Paderin et al.,
2016). Burgess and Bowring (2015) suggested that almost the entire
sedimentary-traps succession, except the Samoed Formation in the
Norilsk region is Permian in age (Figure 2, column 2, see Figure 3 in
Burgess and Bowring, 2015), although none of the Permian plant
fossils ever been found in the traps (Radchenko and Schwedov, 1940;
Mogucheva, 1973; Gor, 1985; Mogucheva and Krugovykh, 2009).

Flora is one of the most sensitive indicators of environments
and hence of climate change (Taylor et al., 2009). The abnormally
large Siberian LIP volcanism at the Permian-Triassic transition that
caused, as proposed, the most severe of global extinctions (Svensen
et al., 2009; Hinojosa et al., 2012; Clapham, 2013; Retallack, 2013;
Black et al., 2014; Bond andWignall 2014; Burgess et al., 2014; Chu
et al., 2016; Svensen et al., 2018; Clapham and Renne, 2019; Shen
et al., 2019; Feng et al., 2020; Vajda et al., 2020) is supposed to have
caused even stronger extinction in the region of this LIP, i.e. in
Tunguska Basin (Jones, 2015; Black et al., 2021, in press; Mather
and Schmidt 2021, in press). The reality, at least with the flora in
the Tunguska Basin, is the opposite of what most people proposed.

The Permian and Triassic flora record in the Tunguska Basin
and surrounding regions (Kuznetsk Basin, East Kazakhstan,
Taymir, Verkhoyanie) and has been well studied for more than
100 years, because it is the primary correlation tool in these
commercially important regions (coal, oil, gas, diamonds)
(Zalessky, 1912, Zalessky, 1918; Zalessky and Tchirkova, 1935;
Radchenko and Schwedov, 1940; Neiburg, 1948; Andreeva et al.,
1956; Neiburg, 1958; Meyen, 1966; Sadovnikov, 1967;
Vladimirovich, 1967; Radchenko, 1969; Mogucheva, 1973;
Radchenko, 1973; Orlova and Sadovnikov, 1974; Vladimirovich,
1980, Vladimirovich, 1981; Meyen, 1982; Betekhtina et al., 1984;
Betekhtina et al., 1986; Sadovnikov, 1987b; Dobruskina, 1994;
Dobruskina and Durante, 2004; Sadovnikov, 2008; Mogucheva
and Krugovykh, 2009; Mogucheva, 2016; Sadovnikov, 2016).

The biostratigraphic and paleomagnetic data suggests that the
Tutonchanian and lower Dvurogian RS belongs to the Induan and

that the rest of the Dvurogian and lower Putoranian RS correlates
with Olenekian, while the rest of the Putoranian and Uskelterian RS
correlates with the Anisian (Figure 2) (Kazakov, 2002; Mogucheva,
2016). This correlation is generally consistent with the Ivakinian-
Tutonchanian co-magmatism of the Ergalakh intrusive system and
with the Putoranian co-magmatism of the Norilsk, Talnakh,
Kharaelakh and most other intrusions in the Norilsk regions
(Zolotukhin et al., 1986; Ivanov et al., 2013; Ryabov et al., 2014;
Krivolutskaya, 2016; Rad’ko, 2016; Latyshev et al., 2020).

FLORA IN THE PERMIAN-TRIASSIC
TRANSITION IN THE TUNGUSKA BASIN
AND COMPARISON WITH FLORA IN THE
KUZNETSK BASINS

Paleophytogeography and Paleoclimate
Two provinces are recognized within the Angarian paleofloristic
Realm -- Siberian and Sub-Angarian that are divided into several
subprovinces: Verkhoyanian, Tunguska-Verkhoyanian and
Taymir-Kuznetsk (Figure 5C) (Meyen, 1990; Krassilov, 2003;
Dobruskina and Durante, 2004). The Tunguska Basin is a part of
the Tunguska-Verkhoyanian province, except for the Norilsk
region, which belongs to the Taymir-Kuznetsk subprovince.
The distinctive feature of the Tunguska-Verkhoyanie
subprovince during the late Permian is the occurrence of the
pteridosperms Comia, Callipteris and Compsopteris along with
numerous ferns. The Tunguska-Verkhoyanie “cordaites”
dominate in almost all localities and horsetails are found in
greater numbers. We suggest including those into the
Vojnovskyales order as a group of enigmatic gymnosperms.
This assumption came from the fact that these “cordaites” are
often associated with generative organs of Vojnovskya (Neiburg,
1955; Meyen, 1990).

The flora of the Taymir-Kuznetsk subprovince during this
time is characterized by the voinovskian-peltasperms assemblage
(Kaierkan and Ambarnaya Fms in Norilsk region), which
comprises numerous voinovskians, including Rufloria, and
abundant seeds of the genus Tungussocarpus, and the
appearance of Samaropsis and Condomajella seeds (Gor, 1965;
Gor, 1985). The ferns are rare, poor in diversity and include
Pecopteris, Prynadaeopteris jmj Todites. The occurrence of
Psygmophyllum foliage suggests similarity of the late Permian
flora of Taymir and Norilsk with that of the Preuralian and
Pechora basins (Pukhonto et al., 1998; Naugolnykh, 2007).

The late Permian Euromerian flora in the Northern arid belt
along the northern slope of the Variscan orogenic belt (Germany,
France, Caucasus) was predominantly xerophytic suggesting
relatively warm and dry climate with no coal accumulation
(Chumakov and Zharkov, 2003; Roscher and Schneider, 2006;
Naugolnykh, 2007). The climate in the Angaran Realm was
temperate and very wet with abundant coals that occur up to
the top of the middle Changhsingian (Figure 2) (Cherepovskiy,
2001; Dobruskina and Durante, 2004; Davydov, 2021; Davydov
et al., 2021). The upper Permian in the Kuznetsk Basin possessed

Frontiers in Earth Science | www.frontiersin.org May 2021 | Volume 9 | Article 6351797

Davydov and Karasev P-T Magmatism and Flora in Siberia

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


the thickest coals (wet environments) in the entire Siberia
(Cherepovskiy, 2001). The occurrence of the number of a late
Permian provinces and subprovinces in the Angara Realm,
suggests that the climate in the realm was also quite
differentiated, similar to the current climate with a comparable
differentiation of recent terrestrial biomes (Figure 5) (Foley et al.,
2005; Dinerstein et al., 2019). Both the Taymir and Norilsk regions
during late Permian – Early Triassic were located approximately at
the latitude of the Kuznetsk Basin (Figure 4) and the flora from the
Taymir and Norilsk regions directly correlates with the late Permian
flora of the Kuznetsk Basin (Gor, 1965; Porokhovichenko, 2006;
Mogucheva and Naugolnykh, 2010).

The major climate change occurs in Tunguska and in the
Kuznetsk Basin sometimes during the second half of the

Changhsingian, around 252.75 Ma (Davydov et al., 2021). At
this time, the biomes differentiation is sharply decreased and the
Euramerian -- Angaran Realms boundary shifted northward
approximately to 15°. No provinces or subprovinces are
recognized in the Angaran Realm at this time (Figure 5B).
The provinciality decrease is distinguished by the distribution
of Early Triassic plant associations known in all paleofloristic
realms-provinces. For example, the widely distributed Early
Triassic genus Pleuromeia and lycopsids with Annalepis-like
scales have been found in both tropical and temperate
(Siberia) climatic zones (Dobruskina, 1994; Retallack, 1997;
Grauvogel-Stamm and Lugardon, 2001; Grauvogel-Stamm and
Ash, 2005). The taxonomic composition of the Triassic conifer-
fern flora testifies to the widest migration of plants to the
central regions of Angarida both from the peripheral parts of
the Angara kingdom and from the tropical belt (Mogucheva,
1996, Mogucheva, 2016). Such a migration, obviously,
indicates a sharp weakening of floristic differentiation, and
elimination of most paleofloristic barriers between different
paleofloristic realms and the provinces-subprovinces that
existed in the Late Paleozoic (Dobruskina and Durante,
2004). The latest-Permian - Early Triassic in the Angaran
realm is associated with the climatic optimum, i. e. warmer and
drier climate that is similar to the mid-Holocene climatic
optimum in the region (Monserud et al., 1998). The current
global climate warming is also resulting in a shift of the current
temperate forest and boreal biomes northwards (D’Orangeville
et al., 2016).

Flora Richness and Dynamics of Extinction
and Origination in the Tunguska and
Kuznetsk Basins
Progressive decline of the floral richness is observed in both
basins during the late Permian (Figure 4). In the Tunguska Basin,
the Wuchiapingian flora is quite diverse (94 species and 41
genera), but drastically reduced in richness in the
Changhsingian to 38 species and 24 genera (Figure 4). The
chronostratigraphy in the Tunguska Basin is not as precise as
in Kuznetsk Basin and the turnover in the region occurs
somewhere within the Ivakinian - Early Tutonchanian time
(Changhsingian-Early Induan) (Figure 4). The floral richness
(over 100 species) that is observed in the middle-late
Tutonchanian is highest within the late Permian and Triassic
in the region (Figure 4). The origination rate there is quite high,
and the extinction rate is very low. Since the early Olenekian the
extinction predominates over the origination and floral richness
progressively declined towards the end of the Anisian. In the late
Anisian only origination is observed in Tunguska Basin
(Figure 4).

In the Kuznetsk Basin the floral richness is also declines, but
slower and progressively towards the early Changhsingian. The
essential taxonomic floral turnover in Kuznetsk Basin occurs in
the mid-Changhsingian at approximately 252.75Ma and ∼800 kyr
before the Permian-Triassic boundary in South China (Davydov
et al., 2021) (Figure 4). This level coincides with the boundary

FIGURE 5 |Phytogeographic maps of circumpolar Arctic area during the
late Permian and Early Triassic compared with the recent phytogeography.
The maps are compiled and modified from Krassilov (2003), Dobruskina and
Durante (2004) and Elias (2020). The phytogeographic differentiation
and the late Permian climate are quite similar with the current Arctic provincial
differentiation and climate (A,C), although the recent provinces are latitudinally
narrower than during the late Permian. The phytogeographic differentiation
during the climatic optimum in the Early Triassic (B)was strongly reduced, and
only Realms with no provinces are recognized at that time.
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between the Tailugan and Maltsev formations and this is the former
position of the regional Permian-Triassic boundary in Siberia that
was utilized for many years and distinguished by the extinction of
one small group of the wet-preferrable Vojnovskyales (“cordaites”)
and by the appearance of many new taxa of ferns, cicades,
pteridosperms, lycopsids, sphenopsids and other (Vladimirovich,
1967; Mogucheva, 1973; Betekhtina et al., 1986), All Paleozoic
“cordaitian” (Vojnovskyales) at this time disappear and were
replaced by more diverse new conifer-fern flora (46 species and
34 genera). The flora richness and origination in the Kuznetsk Basin
in the Triassic progressively increased in Induan and Olenekian and
no other extinction observed there (Figure 4). In the Kuznetsk Basin
the floral origination in the region strongly predominates over
extinction during Early Triassic and util early Anisian.
Accordingly, the floral richness in Kuznetsk Basin in Triassic
progressively increased and reaches the maximum in the early-
middle Anisian, when it is stabilized. The volcanic activity in the
Tunguska Basin ceased in the latest Putoranian (Naldrett et al., 1996;
Fedorenko et al., 2000; Krivolutskaya, 2016; Paderin et al., 2016). The
Late Triassic floral record overall is poor for the Tunguska Basin and
in all of Siberia (Mogucheva, 2005).

CONCLUSION

1) Abundant and rich biota in the Permian-Triassic transition
in the Tunguska Basin suggests a Changhsingian and Early-
Middle Triassic age of the Tunguska traps.

2) The layered intrusion in the Norilsk region possessed a
complicated internal structure and a multi-timing origin of
the layers during at least a half-million ormore years. The co-
magmatism of extrusive and intrusive rocks utilizing
geomagnetic secular variation measurements would be
reliable when the samples for the latter studies and
radioisotopic dating are obtained from the same spots.

3) The discrepancy between paleomagnetic-geochemical and
paleontological data from extrusive rocks on one side and
radioisotopic U-Pb dates from intrusive ricks on the other,
suggests that the problem with the Tunguska Basin
magmatism and Permian-Triassic extinction in South
China is still unresolved and more complicated than
has been considered by many.

4) The very last coal in the Permian of the Norilsk region is
documented in the upper Ivakin Fm (Changhsingian). No
coals are known or have ever been documented in the
Tutonchanian, Dvurogian and Putoranian RS in the entire
Tunguska Basin. This interval (Tutonchanian-Putoranian
Regional Stages) precisely coincides with coal gap
documented in many regions globally.

5) The number of late Permian provinces and subprovinces
in the Angara Realm suggests a latitudinally differentiated
climate causing the differentiation of terrestrial biomes.

6) The major climate change from cool and wet into warmer
and drier occurs in the Tunguska and in Kuznetsk basins

sometimes during the second half of the Changhsingian
around 252.75 Ma. The differentiation of biomes sharply
decreased and the Euramerian -- Angaran Realms
boundary shifted northward approximately to 15°. No
provinces or subprovinces are recognized in the
Angaran Realm during Triassic.

7) The floral richness in the Tunguska and Kuznetsk basins
progressively declined starting from the Capitanian
towards the mid-Changhsingian. At this level, only wet-
dominated Vojnovskyales disappears, whereas the other
(conifers, cycades, ferns, lycopsids, pteridosperms and
sphenopsids) are diversified. Floral origination is greatly
exceeds the extinction in the Tunguska Basin from about
the late Changhsingian to Induan. In the Kuznetsk Basin
this turnover occurs at the mid-Changhsingian and
extended to the end of the Olenekian. A similar pattern
of these parameters is observed in both regions.

8) The floral richness and origination in Tunguska and
Kuznetsk basins roughly correpsponds with the onset of
the mafic magmatism and climatic optimum in both
regions.
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