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ABSTRACT 

Studies across multiple spatial and temporal scales will improve understanding of 

the drivers of global change including habitat degradation, invasive species, and climate 

change. How global drivers affect the ecology of wintering raptors in western North 

America and the Great Basin may have important implications for changes in distribution 

and abundance, and consequently population persistence. I examined the winter 

distributions of six western North America raptor species using Christmas Bird Count 

data from 1975-2011 to assess range shifts over time and in relation to temperature. Also, 

I considered whether population patterns within Bird Conservation Regions (BCR) were 

best explained by changes in distribution or changes over time. I used an historical 

dataset from 1991-1994 and current information from 2010-2012 to examine whether 

wintering raptor occupancy patterns were consistent with regional changes in distribution 

and climate or habitat conditions within a local management unit, the Morley Nelson 

Snake River Birds of Prey National Conservation Area (NCA). All six wintering raptor 

distributions in western North American have shifted north over time and five of six 

raptor species tended to winter further north during warmer winters. Northward shifts 

were predictive for 39% of regional population indices, and locally I observed increased 

occupancy for most wintering raptors in the NCA despite continued habitat degradation. 

Three raptor species also changed their habitat use over time by using more or less 

agriculture or more areas dominated by invasive plants. Changes in habitat use may at 

least partially mediate their apparent response to climate change. Raptors may be 
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particularly responsive to warming winters because of life history flexibility, high 

competition for nesting sites that drives males to winter farther north, or both. Organisms 

with broad geographic ranges that are flexible in their habitat use stemming from 

changing landscapes appear better able to respond to global forces such as climate 

change. Our ability to manage bird populations within local bird conservation regions and 

management areas will fundamentally change as more species exhibit ecological changes 

in response to global change.
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INTRODUCTION 

How do climate and habitat changes interact on a local and broader level to 

influence populations? Numerous studies have shown the effects of climate change on a 

variety of taxa including phenological (i.e. earlier breeding times; Gordo 2007) and 

distribution shifts (i.e. further north; Hitch and Leberg 2007). However, while scientists 

are beginning to understand the effects of climate change on the natural world, there is 

still little known about the actual management implications behind these effects, and how 

they may interact with habitat change. We as scientists need to move beyond the effects 

of climate change, and focus on understanding how we can manage for these effects and 

their implications. Focusing on large-scale changes because of anthropogenic activities is 

one important part of that. One such ecosystem undergoing rapid change because of 

anthropogenic activities is the sagebrush steppe of the Great Basin. These changes 

include habitat alteration via increased human development, invasion by exotic species 

such as cheatgrass (Bromus tectorum), and climate change. 

Cheatgrass and other exotic annuals initially and successfully colonized the 

severely overgrazed and damaged sagebrush landscape around the turn of the twentieth 

century (Mack 1981, Yensen 1981). Invasion by these exotic plants may be the most 

damaging and long-lasting threat facing native shrub-steppe habitat and is interrelated to 

both fire management schemes and livestock grazing (D’Antonio and Vitousek 1992, 

Jones and Longland 1999). Combined with overgrazing, cheatgrass quickly spread as 

ranchers began setting fires to promote new growth (Yensen 1981). Native sagebrush 

habitat has a fire cycle of at least every 40-100 years, with long periods of succession and 

re-establishment needed for native seeds to take hold (Kochert and Pellant 1986, 
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Epanchin-Niell et al. 2009). Because cheatgrass dominated sites are 500 times more 

likely to burn than other habitat types (Yensen 1981), the fire-return interval has been 

increased to approximately 10 years (Epanchin-Niell et al. 2009). The increased fire 

frequency does not provide sufficient time for the native vegetation to recover between 

wildfire occurrences. This increased frequency of fire, coupled with overgrazing practices 

that leave native vegetation more susceptible to invasion (Jones and Longland 1999, 

Bock et al. 2007), led to approximately 25% of native sagebrush habitat in the Great 

Basin containing cheatgrass by 1999 (Epanchin-Niell et al. 2009). Cheatgrass is also 

more likely to invade areas that are close to agriculture, power lines, and roads (Bradley 

2010). 

Greater sage-grouse (Centrocercus urophasianus) have been championed as an 

umbrella species for protecting sagebrush ecosystems from the various threats they face 

(Rowland et al. 2006). However, because guilds and species differ in their response to 

environmental disturbances, it is worth investigating the effects of habitat loss and 

fragmentation on other guilds within the sagebrush ecosystem. In particular, diurnal 

raptors (Accipitriformes, Falconiformes) have long been known as an environmental 

indicator group given their high mobility and position at the top of the food chain (Sergio 

et al. 2006). Piute ground squirrels (Spermophilus mollis; formerly Townsend’s ground 

squirrel Spermophilus townsendii), which are the main prey of several breeding raptor 

species, will feed on and use cheatgrass habitat when it is green (Yensen et al. 1992). 

However, while cheatgrass can be very productive in wet years, it senesces faster than 

native vegetation and will become inedible during dry years making the habitat very 

unstable for squirrel populations (Yensen et al. 1992). Similar to greater sage-grouse, 
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black-tailed jackrabbits (Lepus californicus) prefer native shrubs such as big sagebrush 

(Artemisia tridentata) while burned areas that are more susceptible to cheatgrass invasion 

contain less suitable habitat (Smith and Nydegger 1985, Knick and Dyer 1997). Less 

studied but still an important foundational prey group for raptors, mice and microtine 

rodents have reduced densities in areas of high habitat patchiness with increased 

distances between native shrubs (Feldhamer 1979, Hanser and Huntly 2006). 

The sagebrush steppe of southwest Idaho and the Great Basin is home to large 

breeding and non-breeding populations of raptors that prey on a diversity of organisms 

(Kochert and Pellant 1986). Non-breeding, and more specifically, wintering raptors are 

much more difficult to study given they are not tied to a central location (i.e nest) and are 

highly mobile. This makes drawing inferences about the ecology of wintering raptors 

challenging, and therefore we know relatively little about the effects of climate and 

habitat change on raptors during this crucial time of temperature and food stress. Indeed, 

many species have higher mortality rates during winter (Mihoub et al. 2010, Elliot et al. 

2011), while the effects of surviving winter can also carry over into breeding populations 

by reducing an individuals body condition at the start of the breeding season (Sherry and 

Holmes 1996, Wilson et al. 2011). How populations respond to climate and habitat 

change over time on a local, regional, continental, and global level will be vital to our 

understanding of how these populations should be managed at different spatial scales. For 

example, the sagebrush ecosystem will continue to be negatively impacted by climate 

change, cheatgrass invasion, and land use change, but the risk level associated with each 

other these threats differs by geographical location (Bradley 2010).  



4 

 

 

In Chapter 1 I present wintering raptor distribution and regional population trend 

data from the Christmas Bird Counts (CBCs) of western North American from 1975 to 

2011. The goal of this study was to first determine if winter raptor distribution shifts in 

relation to climate change have occurred and then determine if population indices within 

Bird Conservation Regions (BCRs) were explained by any distribution shifts. I modeled 

the latitudinal center of a raptors’ wintering distribution in relation to year and 

temperature while also modeling the population index within a BCR in relation to year 

and distribution. Population indices are a measure of relative abundance during a given 

winter within a BCR. This is the first study to examine distribution shifts in western 

North American raptors and to determine if regional population trends are explained by 

distribution shifts. 

In Chapter 2 I present findings from an observational study I conducted on 

wintering raptors in the Morley Nelson Snake River Birds of Prey National Conservation 

Area (NCA) during the 2010-2011 winters combined with historical data from the 1991-

1994 winters. The goal of this study was to assess if changes in raptor occupancy and 

habitat use over time were related to distribution shifts related to climate change or local 

habitat change. I modeled raptor occupancy at point count sites in relation to time period 

and habitat type to determine whether regional, local effects, or both influenced raptor 

occupancy in the NCA.  

To conclude this thesis, I discuss how important it was for my study to assess 

winter raptor populations on multiple spatial scales and at two points in time. I also 

provide local and regional management recommendations for particular raptor species’ 

given their responses to climate and habitat change. Given these results, future avenues of 
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research and management are explored that may aide in determining how raptor 

populations are fluctuating and responding to continued climate and habitat change.  
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CHAPTER 1: DISTRIBUTION SHIFTS HELP EXPLAIN REGIONAL CHANGES IN 

WINTERING RAPTORS: IMPLICATIONS FOR INTERPRETING POPULATION 

TRENDS. 

Abstract 

Studies of multiple taxa across broad-scales suggest that species distributions are 

shifting poleward in response to global climate change. Understanding the influence of 

distribution shifts on regional population indices will be an important part of interpreting 

population trends within local management units because, compared to a time when 

distribution were less dynamic, changes in population indices may be less likely to reflect 

local environmental conditions. I examined the latitudinal center of abundance for the 

winter distributions of six western North America raptor species using Christmas Bird 

Counts from 1975-2011. I predicted that birds wintered further north during warmer 

winters and that winter raptor distributions have shifted north over time. Also, I 

considered whether population indices within North American Bird Conservation 

Regions (BCR) were explained by distribution shifts. All six wintering raptors shifted 

their distributions north over time and five of six raptor species tended to winter further 

north during warmer winters. Northward shifts explained 44% of regional population 

trends emphasizing the importance of understanding how distribution shifts and 

population indices interact on a regional scale. Raptors may be particularly responsive to 

warming winters because of flexible migration behavior, high intraspecific competition 

for nesting sites that drives males to winter farther north, or both. If population-level 
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processes are driving distributional changes, then trends within some management units 

may not reflect changes in local habitat suitability. The ability to manage bird populations 

within local bird conservation regions will fundamentally change as more species 

experience changes in distribution in response to global climate change. 

Introduction 

Animal distribution shifts in relation to climate change have been well 

documented (Leech and Crick 2007, Doswald et al. 2009, DesGranges and Morneau 

2010) with many comparative studies focusing on a large number of taxa across a broad 

geographic area (Hitch and Leberg 2007, La Sorte and Thompson 2007, Huntley et al. 

2008). While this large-scale, inclusive approach advances our understanding of 

distribution shifts in a broad sense, rate of change estimates may depend on species- or 

population-specific life histories (Both and Visser 2001, Visser et al. 2003, Végvári et al. 

2010), geography (Gordo et al. 2005, Hulbert and Lang 2012), or regional climate change 

patterns (Saether et al. 2003).  

Examining distribution shifts on a biologically relevant scale may contribute to a 

better understanding of population change over the same time period. As species 

distributions shift, long-term monitoring projects will likely detect changes in population 

index estimates. Indeed, avian wintering studies have found differing regional population 

trends at the Bird Conservation Region (BCR) level (Link et al. 2006, Sauer et al. 2008). 

Link et al. (2006) found regionally specific population trends in American Black Ducks 

(Anas rupripes) with population increases in northern regions and population declines in 

central and southern regions, while overall population indices remained stable. These 

regional population trend differences may be difficult to interpret, but could be partly 
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explained by distribution shifts since overall population indices remained stable over 

time. Bart et al. (2007) examined the population trends of wintering North American 

shorebirds and attempted to explain regional population trends. They concluded that 

wintering population declines were most likely a result of declining breeding populations, 

but they could not rule out the possibility of changing shorebird movements explaining 

the observed population declines. Warmer winters may allow birds to winter closer to, or 

stay on nesting grounds and birds may benefit from early arrival at nesting sites by 

securing higher quality territories (Drent et al. 2006, Berthold et al. 2005, Heath et al. 

2012).  

Many raptors are monitored with migration and non-breeding bird surveys 

because it is difficult to adequately sample breeding birds (Dunn et al. 2005). Raptors 

may be particularly responsive to warming winters because of their flexible migration 

behavior, high intraspecific competition for quality nest sites that drives protandry 

(earlier male arrival to breeding areas than female), or both (Espie et al. 2000, Heath et al. 

2012). In addition, raptor distribution shifts may vary regionally because many species 

have strong north-south patterns of migratory connectivity (Hoffman et al. 2002) and 

weaker east-west population connectivity. Individual species of raptors may also vary in 

their response to climate change patterns given that projected changes are greatest at 

higher latitudes. Several raptor species breed at arctic latitudes exclusively (Bechard and 

Swem 2002), while other species’ ranges encompass arctic and temperate regions 

(Kochert et al. 2002) or only temperate regions (Steenhof 1998). Finally, climate change 

patterns vary with distance from the coast (Intergovernmental Panel on Climate Change 
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2007), and this may also correspond to regional differences in distribution responses 

given the widespread, continental distribution of most raptor species. 

I selected six raptor species that are common in western North America, highly 

detectable in surveys, and whose wintering distribution is fairly well sampled by 

Christmas Bird Counts (CBC): American kestrels (Falco sparverius), golden eagles 

(Aquila chrysaetos), northern harriers (Circus cyaneus), prairie falcons (Falco 

mexicanus), red-tailed hawks (Buteo jamaicensis), and rough-legged hawks (Buteo 

lagopus). My objectives were to investigate species-specific shifts in western North 

America wintering distributions over time and in relation to climate change and to 

compare these rates of shift to continental estimates, and assess whether distribution 

shifts accounted for regional population trends. I predicted that most raptor species would 

show a northern shift in their latitudinal center of abundance while also wintering further 

north during warm winters. I also predicted that some population indices within Bird 

Conservation Regions (BCRs) would be best explained by distribution shifts. 

Methods 

I used North American CBC data (National Audubon Society 2012) to evaluate 

distribution shifts and population trends for western North America raptors. I selected the 

CBC circles from the central 95% of the latitudinal distribution of each species’ 

wintering range. The northern study area boundaries ranged from 51.2 to 53.5°N, and 

southern boundaries ranged from 27.8 to 31.9°N. I selected longitudinal divides based on 

banding and recovery data from the North American Bird Banding Program and previous 

studies of raptor flyways (Hoffman et al. 2002). Northern harriers and American kestrels 

rarely migrated across the Rocky Mountains so we selected the continental divide as their 
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eastern range boundary. Red-tailed hawks and rough-legged hawks were generally north-

south migrants, and we chose the eastern edge of the Rocky Mountains as their eastern 

range boundary (102.0°W) to incorporate all three (Pacific, Intermountain, Rocky 

Mountain) western North American migratory flyways (Hoffman et al. 2002). Golden 

eagles and prairie falcons were generally restricted to the western United States and Great 

Plains region during winter (Steenhof et al. 2005), and I chose 95.0°W, roughly the 

eastern border of Oklahoma and Kansas, as their eastern range boundary. 

I used CBC data from 1975 to 2011 because reporting of observer effort became 

relatively consistent after 1975 (La Sorte and Thompson 2007). CBC surveys were 

conducted by Audubon volunteers that surveyed a circular area with a radius of 12 km for 

24 h during a two week period around 25 December. I modified La Sorte and 

Thompson’s (2007) approach of selecting circles sampled at least once during a 

minimum of 9 of 12, 3-year time periods (e.g., 1975-1977, 1978-1980, …, 2008-2011; 

Table 1.1) to ensure adequate sampling. The 2008-2011 time-period contained four 

survey years. I included CBC circles even if a species was not detected in a given survey 

year unless an individual of a specific species was never counted on a circle. I removed 

data from select circles during years when zero or aberrant observer effort or raptor count 

data was present (n = 319, Peterson 1995). 

I obtained continental estimates of distribution shifts from La Sorte and 

Thompson (2007; Appendix A) for all species except golden eagles, which were not 

analyzed. I estimated the annual latitudinal center of abundance for each species’ 

wintering distribution (La Sorte and Thompson 2007). I calculated effort-corrected 

counts for each species because effort is not constant over the history of a CBC circle and 
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observer-count relationships were likely to be species-specific (Link and Sauer 1999). I 

converted the raw count and effort data to the log scale following previous work (Link 

and Sauer 1999) and then assessed the relationship between count and effort. A quadratic 

relationship between count and effort was the best fit for all species, however the nature 

of this relationship varied by species. I used the following effort-corrected count to 

calculate the weighted center of latitudinal abundance following La Sorte and Thompson 

(2007): 

        

((            )  (             ))
 

I calculated CBC-based population trends for individual BCRs within a species 

western wintering range. BCRs with ≤100 total surveys years, corresponding to ≤3 CBC 

circles within the BCR, were merged with neighboring BCRs containing >100 total 

survey years (see Table 1.2) to avoid difficulties with model convergence characteristic 

of small sample sizes. While choosing to merge BCRs with ≤100 total survey years was 

arbitrary, I do not think this biased the results of my study. The Sierra Nevada and BCRs 

along a species range boundary were most often merged to increase sample sizes. I 

examined overall population trends to determine if this was correlated with any observed 

distribution shifts and to determine if trends within BCRs were representative of the 

entire study area. 

I obtained regional climate data in the form of daily minimum air temperature 

anomalies from the Global Historical Climatology Network gridded dataset 

(HadGHCND; http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/; Casesar et al. 2006). 

The use of anomaly values versus recorded temperatures allowed for a standardized 

representation of climate change across a variety of locations with different minimum 

http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/
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temperatures (Heath et al. 2012). I chose grid locations within the HadGHCND from a 

species breeding range within our species-specific longitudinal CBC divide (e.g. breeding 

range arctic grid cells west of 102°W for rough-legged hawks). I averaged daily 

minimum air temperature anomalies for each wintering period prior to when most CBCs 

are surveyed, 15 November – 31 December from 1974 to 2010, to represent annual 

winter minimum temperatures.  

Statistical Analysis 

For all analyses I used general linear models and an information-theoretic 

approach with second-order Akaike’s Information Criterion (AICc; Burnham and 

Anderson 2002). For wintering distribution analyses I created independent models for the 

latitudinal center of abundance for each species. I assessed the linear fit of the predictor 

variable temperature on the center of abundance prior to model selection and used the 

best fit for all further analyses. A priori predictor variables included scaled year and mean 

annual minimum air temperature anomaly. I calculated Pearson correlations between year 

and temperature for each species to check for multicollinearity in the same model set 

(Table 1.1). If a Pearson correlation was above 0.7 then I removed the least biologically 

relevant variable from the set. 

For population trend and BCR analyses I created independent models for yearly 

effort-corrected count for each species. Predictor variables included in models were year, 

BCR, and the interaction between year and BCR. After finding a significant interaction 

between year and BCR for all species, I used BCR-specific linear models with the 

independent variable year to predict effort-corrected counts. I assessed the linear fit of 

year on count for each BCR to determine any quadratic trends in population change. I 
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examined whether regional population indices were best explained by distribution shifts 

or change over time by comparing evidence from linear models with the annual 

latitudinal center of abundance and year (change over time) as predictor variables. Year 

and annual latitudinal center of abundance were correlated and not included in the same 

model. 

For each model in a given set, I calculated an AICc value along with an Akaike 

Weight (Burnham and Anderson 2002).  For each latitudinal center of abundance model 

including year, temperature, or both in a set, I summed the weights to produce a weight 

of relative importance for that set (Lavoue and Droz 2009). I calculated 85% confidence 

intervals for parameter estimates to be compatible with an AIC approach (Arnold 2010). 

All other distribution and population trend estimates are presented as means ± SE unless 

otherwise noted. All statistical analyses were run with software from the R Development 

Core Team (2011). 

Results 

Pearson correlations between year and temperature in all distribution models 

ranged from 0.20 to 0.34 indicating a weak positive association between year and 

minimum temperature anomaly. Models including year as the predictor of the latitudinal 

center of abundance received the most support for all species and the relative weight of 

evidence for a year effect was high (>0.90; Table 1.2). All species showed evidence for a 

shift north in the latitudinal center of abundance over time (Fig. 1.1), however the degree 

of northward shift I observed varied from continental estimates (La Sorte and Thompson 

2007, Table 1.1). This distribution shift ranged from 66.2 ± 11.9 km north for northern 

harriers to a 254.5 ± 22.2 km shift north for rough-legged hawks. Temperature was 
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positively associated with the latitudinal center of abundance for American kestrels, 

golden eagles, northern harriers, red-tailed hawks, and rough-legged hawk (Table 1.1), 

although the relationship was relatively weak compared to year. There was little evidence 

for this relationship in prairie falcons (Table 1.1).  

One explanation for an apparent northern shift in distribution may be that the 

locations of CBC circles have shifted north over time. However, because I only included 

long-term circles surveyed in at least 9 of 12, 3-year time periods there was no correlation 

between year and latitude of CBC circles (northern harriers and American kestrels: r = 

0.01, df = 7,142, P = 0.26; rough-legged hawks: r = 0.02, df = 9,847, P = 0.11; red-tailed 

hawks: r = 0.02, df = 9,513, P = 0.12; golden eagles: r = 0.01, df = 13,628, P = 0.36; 

prairie falcons: r = 0.01, df = 13,499, P = 0.36). 

Relationships between regional population indices, winter distributions, or time 

depended on species and BCR. There was evidence that distribution shifts explained 

regional population indices in golden eagles, northern harriers, and rough-legged hawks 

(Table 1.3). Alternatively, changes over time best explained regional population indices 

for American kestrels, prairie falcons, and red-tailed hawks (Table 1.3). Across all 

species, 38% of the overall model weights provided evidence for population changes over 

time, while 44% of the overall model weights provided evidence for distribution shifts. 

The remaining 18% of model weights provided no evidence for either (Table 1.3). For all 

species except rough-legged hawks a quadratic trend estimating overall winter population 

changes from 1975 to 2011 provided the best model fit (Fig. 1.1). These include negative 

quadratic relationships for golden eagles, northern harriers, prairie falcons, and red-tailed 

hawks and a positive quadratic relationship for American kestrels. Rough-legged hawks 
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showed a negative linear overall population trend, however this may have been caused by 

a lack of adequate sampling of northern populations as I found evidence for a negative 

relationship between the yearly latitudinal center of abundance and yearly average 

abundance. In other words, as rough-legged hawk distributions shift poleward, the ability 

to monitor the wintering population of birds decreases because of CBC survey 

limitations. 

Discussion 

All six raptor species showed a shift north in their western winter distributions. 

This is consistent with results from continental studies on wintering birds (La Sorte and 

Thompson 2007). However, my findings differ in the degree to which raptors have 

shifted north. For species that I was able to directly compare with La Sorte and 

Thompson’s (2007) findings, I found larger northern distribution shifts for American 

kestrels, prairie falcons, and rough-legged hawks and smaller shifts for northern harriers 

and red-tailed hawks. My findings highlight the need to focus on regional populations as 

they may experience different climate change patterns (Intergovernmental Panel on 

Climate Change 2007).  

I also found evidence for five of the six species wintering further north during 

warm winters supporting results reported in the northeastern United States (Zuckerberg et 

al. 2011). However, an alternative explanation for an apparent northern shift in wintering 

distributions is differential land-use change in southern regions contributing to southern 

habitat loss effectively “pushing” raptors further north to areas that have not experienced 

as much habitat loss (Zuckerberg et al. 2011). Although I cannot rule out this 

explanation, my results show support for temperature contributing to raptors wintering 
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further north (Table 1.1). However, there was a strong year effect in the center of 

abundance models with temperature indicating there were other variables affecting the 

change in distribution. Anthropogenic factors such as increasing human populations and 

development should not be overlooked when assessing causes of range shifts (Zuckerberg 

et al. 2011). Other variables not assessed in this study that could influence raptor 

distribution include differential habitat loss, prey distribution and abundance, snow cover, 

precipitation, and other weather variables (Tingley et al. 2009, Zuckerberg et al. 2011). 

There are several possible explanations for why raptors are shifting their winter 

ranges further north. As demonstrated in my study, warmer winter temperatures partly 

predict wintering further north, but this is not the only variable influencing range shifts 

given its low relative importance to year. Several previous studies have demonstrated 

decreased migration distances in American kestrels (Goodrich et al. 2012, Heath et al. 

2012) associated with warming temperatures. Decreased migration distances, migratory 

“short-stopping”, and increased winter residency are all possible explanations for my 

observed distribution shifts. It is advantageous for raptors to decrease their migration 

distances and winter further north or to stay on breeding grounds through the winter 

because early arrival to the breeding grounds can positively predict territory quality and 

reproductive success in species such as prairie falcons (Steenhof et al. 2005), merlins 

(Falco columbarius; Espie et al. 2000) and American Kestrels (Strasser 2010).  

Distribution shifts, changes in population size, or both may explain regional 

population indices. I found evidence that distribution shifts explained some regional 

population indices of rough-legged hawks, golden eagles, and northern harriers. 

Approximately 75% of rough-legged hawk BCR population indices were explained by 
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distribution shifts. Rough-legged hawks and golden eagles also had the largest northward 

distribution shifts and had the largest parameter estimates for the effects of minimum 

temperature on center of abundance. If temperature functions as a mechanism influencing 

migratory distance (Visser et al. 2009), then I would expect to see those species most 

affected by temperature changes to show the most evidence for distribution shifts. 

Population trends in northern BCRs increased while trends in southern BCRs decreased, 

providing less direct evidence that distribution shifts explained regional population 

indices. However, this pattern was not always indicative of distribution shifts driving 

population trends. For example, American kestrels showed similar increases in northern 

BCRs and decreases in southern BCRs, however, there was little evidence that these 

trends were explained by distribution, with the exception of the Great Basin BCR. 

I found evidence that for some regions, changes in population indices were best 

explained by time. A little less than half of the American kestrel and red-tailed hawk 

BCR population indices showed population changes over time. The BCRs showing the 

most consistent support for population indices explained by time across species included 

the Great Basin, Badlands and Prairies, Shortgrass Prairie, and Central Mixed-grass 

Prairie BCRs. Data on breeding populations could provide additional evidence that 

population changes explained regional population indices. However, evidence on 

breeding populations is extremely difficult to obtain for many species whose breeding 

ranges extend into Canada and the high arctic where fewer long-term breeding surveys 

are conducted (Booms et al. 2010). Another difficultly in connecting breeding population 

changes to wintering distributions and populations is the inability to accurately know 

from which areas wintering birds originate. I did not attempt to explain changes in 
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wintering distributions and populations from data on breeding raptors because of these 

difficulties.  

Evidence for distribution shifts or changes in population size over time explaining 

regional population indices varied by species and by geographic location of BCRs. 

Golden eagles and rough-legged hawks have extensive arctic breeding populations and 

both provided the most support for distribution shifts explaining regional population 

indices suggesting long-distance arctic migrants may be more likely to experience 

distribution shifts that influence regional population indices. At the BCR level, the Great 

Basin and Great Plains BCRs provided the most evidence for population changes 

explaining regional population indices while the Prairie Potholes and southern most 

regions, including the Coastal California, Sonoran and Mohave Deserts, Sierra Madre 

Occidental BCRs, provided the most evidence for distribution shift explaining population 

indices. All other BCRs provided either little or substantial evidence for both modes 

explaining population indices.  

These results further demonstrate the importance of viewing distribution shifts on 

a species-specific and regional, instead of continental, level. In light of this land 

managers may better focus their conservation efforts away from regional areas 

experiencing winter population declines caused by distribution shifts. For instance, I 

found evidence for golden eagles, prairie falcons, and rough-legged hawks experiencing 

winter population declines in some southern BCRs where indices were best explained by 

distribution shifts. Without an understanding of range-wide distribution shifts, land 

managers could misinterpret these declines and attempt to improve habitat or other 

environmental conditions. If the entire range of a species has shifted further north, no 
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amount of habitat restoration will compensate for the improved climatic conditions now 

found further north. In regions experiencing declines not caused by distribution shifts, 

additional research should focus on determining causes behind wintering population 

declines and how we can mitigate for them. Finally, I observed several instances of 

model selection uncertainty between our two competing modes of regional population 

change. This was observed most often in golden eagles and demonstrates the difficultly in 

separating these in species with complex migratory patterns (Hoffman and Smith 2003). 

Prairie falcons also exhibit complex migratory patterns (Steenhof et al. 2005) and are 

generally counted at low densities at migration stations and on Breeding Bird Survey 

routes (Hoffman and Smith 2003), making statistical inference difficult. Given this, and 

the inability to clearly differentiate between distribution shifts or actual population 

changes explaining regional population indices, continued monitoring of prairie falcon 

breeding populations and movement patterns is critical. 

An apparent decline in overall population size could result if some northern 

wintering populations are not effectively sampled in our analysis or by a lack of adequate 

sampling in extreme northern locations by CBC circles. If winter distributions have 

shifted so far north that they are now outside of the CBC sampling area, I would expect to 

see evidence for a decline in wintering populations. I saw evidence for this in only one of 

the six-raptor species: rough-legged hawks. This suggests that the apparent western 

population decline I observed in rough-legged hawks may be because of an inadequately 

sampled northern wintering population. Perhaps this area is not adequately sampled by 

the CBC or was eliminated by my analysis method. However, I know of no other study 

that has assessed rough-legged hawk populations directly. Moreover, little to no research 
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has been conducted on rough-legged hawk breeding populations in the past two decades 

(Swem 1996) to help test my hypothesis of a stable western wintering population moving 

north. Rough-legged hawks may be a model species for how climate change can impact 

distributions, populations, and movements given their extensive arctic breeding range and 

the large winter distribution shift documented in this study.  

Future studies and analyses of wintering raptors in the western United States 

should attempt to explore how human population growth and change are influencing 

distribution shifts and regional population trends. Teasing apart climate, human 

populations, and distribution shifts may be difficult as human population growth tends to 

be highest in warmer, southern areas such as California and Arizona that exhibit 

declining raptor population trends not caused by distribution shifts. As the global climate 

continues to warm, species wintering ranges may continue to shift further north. As a 

consequence, land managers in northern regions may become increasingly responsible for 

managing a higher proportion of a species wintering population. This will have 

implications for future population persistence given the importance of winter survival on 

avian population demographics. 
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Table 1.1. The number of Christmas Bird Count circles (Num. CBCs), continental estimates for the effect of year on latitude center of 

abundance (Continental Lat. CA; from La Sorte and Thompson 2007), and parameter estimates with 85% confidence intervals (7.5
th

 – 

92.5
th

 percentiles) for the effect of year and minimum temperature anomaly (Temp) used to explain winter distributions of six raptor 

species from 1975 to 2011 in western North American using Christmas Bird Counts. The continental estimate of change in latitude 

center of abundance was not available for golden eagles. 

Species Num. CBCs 

Continental Lat. CA
 

Latitude Center of Abundance 

Year Year
a 

Temp
b 

American kestrel 211 0.44 1.90 (1.57, 2.31) 4.16 (1.15, 7.16) 

golden eagle 353 

 

5.22 (4.54, 5.89) 16.94 (8.68, 25.20) 

northern harrier 212 3.94 1.79 (1.33, 2.25) 4.93 (1.88, 7.97) 

prairie falcon 330 1.03 2.21 (1.52, 2.91) 3.76 (-4.02, 11.55) 

red-tailed hawk 295 6.95 3.33 (2.97, 3.68) 6.70 (1.19, 12.20) 

rough-legged hawk 279 5.94 6.88 (6.02, 7.74) 10.90 (2.37, 19.43) 

a
 = all year estimates are in km yr-1; 

b
 = all temperature estimates are in km °C-1. 
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Table 1.2. Model sets for predicting the latitude center of abundance in relation to year and annual minimum temperature anomaly 

(temp) for six wintering raptor species from 1975 to 2011 in western North America using Christmas Bird Counts; k = number of 

parameters. Models are ordered according to the support received from Akaike’s information criterion (AICc) and from Akaike 

weights (wi); ΔAIC = AICci – minimum AICc.  

Species Model k AICc ΔAIC wi 

American kestrel 

year 3 -38.86 0.00 0.53 

year + temp 4 -38.59 0.28 0.47 

temp 3 -2.75 36.11 0.00 

null 2 -1.15 37.71 0.00 

golden eagle 

year + temp 4 11.92 0.00 0.72 

year 3 13.78 1.87 0.28 

temp 3 61.57 49.65 0.00 

null 2 67.42 55.50 0.00 

northern harrier 

year + temp 4 -15.42 0.00 0.55 

year 3 -15.05 0.37 0.45 
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temp 3 3.56 18.99 0.00 

null 2 6.53 21.95 0.00 

prairie falcon 

year 3 16.09 0.00 0.78 

year + temp 4 18.61 2.52 0.22 

null 2 31.07 14.98 0.00 

temp 3 32.93 16.85 0.00 

red-tailed hawk 

year 3 -33.43 0.00 0.72 

year + temp 4 -31.54 1.90 0.28 

temp 3 30.76 64.19 0.00 

null 2 31.49 64.92 0.00 

rough-legged hawk 

year 3 31.52 0.00 0.78 

year + temp 4 34.05 2.52 0.22 

temp 3 86.30 54.78 0.00 

null 2 87.34 55.82 0.00 
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Table 1.3. Delta AICc and Akaike weights (in parentheses) for separate models including the effect of distribution shifts (Shift) or 

change over time (Year) explaining Christmas Bird Count population indices within Bird Conservation Regions for western North 

American raptors. Models with the highest weight in a model set are in bold. (-) indicate Bird Conservation Regions for each species 

outside of the wintering range analyzed in this study. See footnotes for combined Bird Conservation Regions because of insufficient 

samples sizes.  

Species Models 

Northern 

Pacific 

Rainforest 

Great 

Basin 

Northern 

Rockies 

Prairie 

Potholes 

Sierra 

Nevada 

Southern 

Rockies/Colorado 

Plateau 

Badlands 

and 

Prairies 

American 

kestrel 

Shift 5.2 (0.07) 0.0 (0.85)
a 1.3 (0.28) - - 8.1 (0.02) - 

Year 0.0 (0.93) 3.4 (0.15) 2.0 (0.19) - - 0.0 (0.98) - 

Intercept 15.5 (0.00) 41.0 (0.0) 0.0 (0.53) - - 14.3 (0.00) - 

northern 

harrier 

Shift  0.0 (0.45) 13.8 (0.00) 0.0 (0.83) - 0.4 (0.34) 0.9 (0.25) - 

Year 0.4 (0.37) 0.0 (1.00) 4.9 (0.07) - 1.0 (0.25) 0.2 (0.35) - 

Intercept 1.8 (0.18) 29.7 (0.00) 4.3 (0.10) - 0.0 (0.41) 0.0 (0.40) - 

rough- Shift  0.0 (0.52) 0.0 (0.98)
b 1.4 (0.32) 0.0 (0.77)

c - 0.0 (1.00) 3.0 (0.19) 
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legged 

hawk 

Year 0.2 (0.48) 8.4 (0.01) 0.0 (0.66) 2.4 (0.23) - 12.0 (0.00) 0.0 (0.81) 

Intercept 36.0 (0.00) 9.9 (0.01) 7.4 (0.02) 22.6 (0.00) - 33.7 (0.00) 33.9 (0.00) 

red-tailed 

hawk 

Shift  0.0 (0.99) 14.6 (0.00) 10.1 (0.01) - 1.2 (0.28) 0.5 (0.43) 4.2 (0.11)
d 

Year 10.1 (0.01) 0.0 (1.00) 0.0 (0.99) - 1.7 (0.22) 0.0 (0.57) 0.0 (0.89) 

Intercept 38.4 (0.00) 73.7 (0.00) 48.6 (0.00) - 0.0 (0.50) 30.2 (0.00) 27.4 (0.00) 

prairie 

falcon 

Shift  0.5 (0.37) 6.3 (0.04)
e 

0.0 (0.94) 1.4 (0.33) - 2.0 (0.21) 1.6 (0.20) 

Year 2.2 (0.16) 0.0 (0.95) 6.6 (0.03) 0.0 (0.67) - 0.0 (0.57) 0.5 (0.35) 

Intercept 0.0 (0.47) 8.9 (0.01) 7.0 (0.03) 14.1 (0.00) - 1.9 (0.22) 0.0 (0.45) 

golden 

eagle 

Shift  2.2 (0.20) 0.0 (0.78) 2.2 (0.25) 0.0 (0.69)
f 2.1 (0.21) 2.4 (0.19) 0.0 (0.87) 

Year 2.4 (0.19) 3.4 (0.14) 0.0 (0.75) 1.6 (0.31) 2.3 (0.19) 2.3 (0.19) 4.2 (0.11) 

Intercept 0.0 (0.61) 4.8 (0.07) 11.9 (0.00) 9.3 (0.01) 0.0 (0.60) 0.0 (0.62) 7.6 (0.02) 

Overall 

Shift  0.43 0.44 0.44 0.60 0.28 0.35 0.34 

Year 0.36 0.54 0.45 0.40 0.22 0.44 0.54 

Intercept 0.21 0.01 0.11 0.00 0.50 0.21 0.12 
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a
 = Sierra Nevada merged with Great Basin; 

b
 = Sierra Nevada merged with Great Basin; 

c
 = Boreal Taiga Plains merged with Prairie 

Potholes; 
d
 = Boreal Taiga Plains and Prairie Potholes merged with Badlands and Prairies; 

e
 = Sierra Nevada merged with Great Basin; 

f
 = Boreal Taiga Plains merged with Prairie Potholes
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Table 1.3 continued. 

Central 

Mixed-

grass 

Prairie 

Oaks and 

Prairies 

Eastern 

Tallgrass 

Prairie 

Coastal 

California 

Sonoran 

and 

Mohave 

Deserts 

Sierra 

Madre 

Occidental 

Chihuahuan 

Desert 

Gulf Coast 

Prairie 

Average 

Weight 

- - - 29.0 (0.0) 1.9 (0.22) 0.7 (0.29) - - 0.25 

- - - 0.0 (1.0) 2.2 (0.19) 0.0 (0.42) - - 0.55 

- - - 47.9 (0.0) 0.0 (0.59) 0.8 (0.28) - - 0.20 

- - - 0.5 (0.37) 0.9 (0.32) 1.4 (0.27) - - 0.35 

- - - 2.1 (0.16) 2.4 (0.16) 2.3 (0.17) - - 0.32 

- - - 0.0 (0.47) 0.0 (0.52) 0.0 (0.56) - - 0.33 

- - - 0.0 (1.00) 0.0 (1.00) 0.0 (0.97) 0.0 (0.96) - 0.79 

- - - 23.4 (0.00) 13.2 (0.00) 7.0 (0.03) 6.1 (0.04) - 0.21 

- - - 49.8 (0.00) 37.9 (0.00) 19.2 (0.00) 23.8 (0.00) - 0.00 

- - - 0.0 (0.71) 0.0 (0.82) 0.0 (0.73) 4.0 (0.11) - 0.38 
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- - - 2.0 (0.26) 3.0 (0.18) 2.0 (0.27) 0.0 (0.87) - 0.57 

- - - 6.5 (0.03) 14.4 (0.00) 13.9 (0.00) 7.7 (0.02) - 0.05 

3.1 (0.17) 2.2 (0.16)
g 

2.2 (0.20)
h 

0.0 (0.64) 3.4 (0.10) 0.0 (0.63) 1.9 (0.20) - 0.30 

0.0 (0.81) 0.9 (0.33) 2.4 (0.19) 3.1 (0.14) 0.0 (0.56) 1.1 (0.37) 1.1 (0.30) - 0.45 

7.2 (0.02) 0.0 (0.51) 0.0 (0.61) 2.1 (0.22) 1.1 (0.33) 17.2 (0.00) 0.0 (0.50) - 0.25 

0.5 (0.43) 0.3 (0.46)
i 

0.9 (0.30) 0.0 (0.73) 0.0 (0.56) 0.0 (0.89) 0.1 (0.42) 2.3 (0.19) 0.48 

0.0 (0.57) 0.0 (0.53) 1.6 (0.22) 3.6 (0.12) 0.5 (0.43) 4.7 (0.09) 2.2 (0.15) 2.4 (0.19) 0.28 

21.9 (0.00) 9.3 (0.01) 0.0 (0.48) 3.2 (0.15) 11.6 (0.00) 7.2 (0.02) 0.0 (0.44) 0.0 (0.62) 0.24 

0.30 0.31 0.25 0.58 0.50 0.63 0.42 0.19 0.44 

0.69 0.43 0.21 0.28 0.25 0.23 0.34 0.19 0.38 

0.01 0.26 0.55 0.15 0.26 0.14 0.24 0.62 0.18 

g
 = Edwards Plateau, West Gulf Coastal Plain/Quachitas, and Tamaulipan Brushlands merged with Oaks and Prairies; 

h
 = Prairie 

Hardwood Transition merged with Eastern Tallgrass Prairie; 
I
 = Edwards Plateau, West Gulf Coastal Plain/Quachitas, and Tamaulipan 

Brushlands merged with Oaks and Prairies. 
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Figure 1.1. The relationship between year and latitudinal center of abundance (° latitude), 

winter minimum temperature anomaly (°C) and latitudinal center of abundance, and year 

and effort corrected count for American kestrels, golden eagles, northern harriers, prairie 

falcons, red-tailed hawks, and rough-legged hawks in western North American Christmas 

Bird Counts from 1975 to 2011. Presence of a line indicates a predictive relationship.
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Figure 1.1.  
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Figure 1.1 continued. 
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CHAPTER 2: FLEXIBLE HABITAT USE MAY FACILITATE REGIONAL CLIMATE 

CHANGE RESPONSES IN WINTERING RAPTORS 

Abstract 

There is widespread evidence that multiple drivers of global change, such as 

habitat degradation, invasive species, and climate change, are impacting wildlife. 

Understanding how these drivers interact or affect species may be difficult because 

effects depend on the magnitude and duration of environmental changes and the life 

history of the organism. In addition, different environmental threats may be evaluated and 

managed at different spatial scales. I used a historical dataset from 1991-1994 and current 

information from 2010-2012 to examine whether wintering raptor occupancy patterns 

were consistent with regional changes in distribution and climate and/or habitat 

conditions within a local management unit, the Morley Nelson Snake River Birds of Prey 

National Conservation Area (NCA). I predicted that if local populations reflected 

regional trends, then raptor occupancy within the NCA would be higher compared to 

historical estimates and birds would show different habitat use over time. Alternatively, if 

local populations were determined by habitat conditions, then I predicted raptor 

occupancy within the NCA would be lower compared to historical estimates and birds 

would show little change in habitat use. Results support the hypothesis that northward 

distribution shifts in response to warming climates were influencing wintering raptor 

populations in southwest Idaho to a greater extent than local habitat degradation because 

wintering raptors in recent years had higher occupancy rates compared to the historical 
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time period and habitat suitability decreased as the proportion of invasive grasses 

increased and native shrubs decreased over time. Higher occupancy was associated with 

changes in habitat use compared to historical use patterns. Organisms in degrading 

landscapes that are flexible in their habitat use may be better able to respond to 

continental forces such as climate change. Results support the hypothesis that habitat or 

prey specialists may be poorly equipped to handle such rapid, large-scale global change. 

Further, Grinnellian niche models that forecast species response to climate change by 

mapping current habitat use to forecasted vegetation types should consider plasticity in 

habitat use and changes in life history cost and benefit trade-offs. 

Introduction 

Anthropogenic activities are now recognized as drivers bringing about global 

change (Chapin et al. 2000), and there is increasing evidence that habitat degradation 

(Wilcove et al. 1998, Debinski and Holt 2000, Fahrig 2003), invasive species (Knapp 

1996, Bradley 2010), and climate change (Parmesan and Yohe 2003) impact species 

distributions and abundance. The relative importance of each of these drivers may vary 

by species (Jiguet et al. 2007, Rubidge et al. 2011) or across ecosystems (Bradley 2010) 

depending on the magnitude and duration of environmental change. In addition, drivers 

may have interactive effects on species distributions (Rubidge et al. 2011) and abundance 

(Van Horne et al. 1997, Steenhof et al. 1999), but these relationships can be difficult to 

evaluate.  

The relative effect of these drivers also depends on spatial scale (Kim et al. 2008, 

Chapter 1). For example, local or continental climatic factors such as temperature and 

precipitation (Kim et al. 2008), regional habitat change caused by increased urbanization, 
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or both (Zuckerberg et al. 2011) may influence local abundance patterns. Highly mobile 

animals, such as birds, may change their distribution as they stay within a shifting 

“climate niche” (Tingley et al. 2009). However, changes in climate and habitat may lead 

to changes in cost and benefit trade-offs for species. There is empirical evidence 

supporting the hypothesis that species using a variety of habitat types may be better 

suited to cope with environmental changes (Sundell et al. 2012). Other species that 

exhibit specialist habitat affinities may experience steeper population declines (Julliard et 

al. 2003), especially if these affinities are not phenotypically plastic.  

The Great Basin sagebrush steppe is an example of an ecosystem undergoing 

rapid change as a result of anthropogenic activities. Shrub-steppe may be one of the most 

threatened ecosystems in North America for a variety of reasons including expanding 

human development and the presence of invasive species (Knick et al. 2003). Invasive 

annual plants including cheatgrass (Bromus tectorum) and medusahead (Taeniatherum 

caput-medusae) now infest millions of hectares in this region and their negative 

ecological impacts lead to a reduction in native biodiversity, modification of ecosystem 

processes, and a massive alteration of the fire regime (Steenhof et al. 2006, Beck et al. 

2009, Bradley 2010). Populations of Piute ground squirrel (Spermophilus mollis; 

formerly Townsend’s ground squirrel Spermophilus townsendii) are unstable and occur at 

lower densities in cheatgrass and other invasive communities (Yensen et al. 1992, 

Steenhof et al. 2006). The climate of the Great Basin has also changed significantly with 

increased temperatures since 1979 (Intergovernmental Panel on Climate Change 2007). 

There has also been a decline in the proportion of precipitation that falls as snow and 

snow cover since 1984 (Harpold et al. 2012). Climate change is expected to continue and 
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the Great Basin is projected to warm further and experience increased precipitation as 

rain instead of snow (Abatzoglou and Kolden 2011). 

Predatory raptors use specific habitat types because prey availability differs 

between habitat types and food may be limiting during periods of high energetic demand 

such as reproduction, migration, or overwintering (Marzluff et al. 1997); thus, raptors are 

susceptible to environmental change. For example, major fires causing negative 

vegetation and prey effects on a territory reduced reproductive success of golden eagles 

(Aquila chrysaetos; Kochert et al. 1999) post-burn, and increased anthropogenic 

landscape features avoided by rough-legged hawks (Buteo lagopus) reduced local 

wintering populations (Schmidt and Bock 2005). Raptors are also responding to climate 

change: raptors wintered farther north during warm winters (Olson and Arsenault 2000; 

Kim et al. 2008; Chapter 1) and have shifted their distributions farther north over time 

(La Sorte and Thompson 2007, Chapter 1). These continental distribution shifts in 

response to climate change have resulted in regionally increasing winter raptor 

populations in the Great Basin (Chapter 1). Distribution shifts may result from shorter 

migration distances (Heath et al. 2012), increased winter residency, or both (Goodrich et 

al. 2012), allowing raptors to reduce migratory costs and stay closer to their breeding 

grounds.  

Given raptor responses to climate change and their dependence on prey 

availability, they are an interesting group for studies about the interactive effects of 

climate and habitat change. I used an historical dataset from 1991-1994 and current 

information from 2010-2012 to examine whether wintering raptor occupancy patterns 

were consistent with regional changes in distribution and climate or habitat conditions 
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within a specific management area, the Morley Nelson Snake River Birds of Prey 

National Conservation Area (NCA). I predicted that if local populations of American 

kestrels (Falco sparverius), golden eagles, northern harriers (Circus cyaneus), prairie 

falcons (Falco mexicanus), red-tailed hawks (Buteo jamaicensis), and rough-legged 

hawks reflected regional trends, then raptor occupancy within the NCA would be higher 

compared to historical estimates and birds would show difference in habitat use over 

time. Alternatively, if local populations were determined by habitat conditions, then I 

predicted raptor occupancy within the NCA would be lower compared to historical 

estimates, with little change in habitat use in remaining raptor populations. 

Methods 

Study Area 

The U.S. Bureau of Land Management’s Morley Nelson Snake River Birds of 

Prey National Conservation Area is located approximately 32 km south of Boise, in 

southwestern Idaho, USA. The NCA is approximately 196,000 ha along 130 km of the 

Snake River and is part of the larger sagebrush steppe ecosystem of the Great Basin of 

North America (U.S. Department of the Interior 2008). The NCA contains the largest 

concentration of non-colonial nesting raptors in the world (Kochert and Pellant 1986). 

Common raptors that breed and overwintered in the NCA included American kestrels, 

golden eagles, northern harriers, prairie falcon, and red-tailed hawks (Kochert and Pellant 

1986). The NCA wintering populations of these species contained a mix of resident and 

migrant birds. Of these, prairie falcons were the only species whose northern breeding 

limit did not extend into the boreal forest of Canada and Alaska (Steenhof 1998). Rough-

legged hawks were the only common wintering raptor that did not breed in the NCA, as 
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their breeding range was located in the Alaskan and Canadian arctic (Bechard and Swem 

2002). Thus all wintering rough-legged hawks in the NCA were most likely migrants.  

Native habitat in the NCA is characteristic of shrubsteppe and was dominated by 

big sagebrush (Artemisia tridentata), green rabbitbrush (Chrysothamnus viscidiflorus), 

shadscale (Atriplex confertifolia), and winterfat (Krascheninnikovia lanata), along with 

native grasses (Pseudoroegneria spicata, Poa secunda; U.S. Department of the Interior 

1996). Over the decades, numerous wildfires destroyed approximately 50% of the native 

shrub habitat (Kochert and Pellant 1986) creating areas now dominated by exotic grasses 

(Bromus tectorum) and forbs (i.e. Salsola tragus, Sisymbrium altissiumum). Topography 

of the NCA is generally flat or rolling with a few isolated rocky outcroppings (Steenhof 

et al. 1999). Climate was semi-arid with hot, dry summers and cool, wet winters when 

most of the annual 15-25 cm of precipitation fell. Livestock grazing occurred throughout 

the NCA and the Idaho Army National Guard conducted training within the NCA on the 

56,000 ha Orchard Training Area (OTA). 

Field Methods 

I obtained historical data for wintering raptors across 190 point count sites within 

the Integration Study Area (ISA) used in the Bureau of Land Management/Idaho Army 

National Guard (BLM-IDARNG) research project (U.S. Department of the Interior 

1996). The ISA encompasses roughly two-thirds of the northwest NCA on the north side 

of the Snake River (Figure 2.1). Watson et al. (1996) surveyed point counts from 15 

November through 28 February during the 1991, 1992, and 1993 winters. They identified 

point count sites via a stratified random sample by first excluding areas within a 1-km 

buffer of the study area, on either side of the OTA boundary, and north of the Snake 
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River canyon rim. They divided the study area into 12 regions (six each located within 

and outside the OTA) distinguished by their distance from the Snake River and from the 

East-West midline within the ISA. A total of 200 point count sites were identified and the 

number of sites selected from within each region was proportional to the size of that 

region. They reduced the final number of sites selected to 190 based on accessibility and 

visibility. Watson et al. (1996) visited sites during the morning, midday, and afternoon 

for a total of 3 visits during each winter to account time of day effects (Bunn et al. 1995). 

They surveyed all sites once before a second round of visits was made leaving roughly 1 

month between survey visits at a specific site. They conducted point counts for 20 min 

centered on a 1,000 m radius circle and alternated intensive 90 degree scans using 10x42 

binoculars with 360 degree naked eye scans. They did not conduct point counts during 

heavy precipitation or when visibility was less than 1,000 m.  

I conducted wintering raptor surveys at these same historical point count sites 

during the 2010-11 and 2011-12 winters. Because of logistical constraints during this 

time, I surveyed approximately half of the sites 3 times during each winter to total 3 visits 

at all 179 sites during both winters combined (n = 100 in 2010 and n = 79 in 2011). 

Because of burning after the 2010 winter (n = 10) and accessibility issues (n = 1), 11 

historical sites were not surveyed in 2011. I surveyed point count sites using the same 

sampling protocol as Watson et al. (1996), however I altered the timing of survey visits in 

2010 and 2011. I modified the timing of survey visits by reducing the duration between 

visits to better account for raptor availability (the probability that a raptor can be detected 

during a count) as previous work suggested this would enhance the ability to detect 

species’ with large home ranges (MacKenzie and Royle 2005). I surveyed one of the 12 
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sections of sites 3 times within one week before moving on to another sampling section. I 

also surveyed 50 sites in 2011 using both historical and the modified sampling schemes 

to assess how the difference in duration between visits affected detectability (probability 

of sampling, availability, and detectability) of each raptor species. If duration between 

visits did not affect detection estimates I assumed constant detectability between the 

historical and modified sampling periods. Given evidence for climate change, I also 

examined whether the 15 November - 28 February historical study season coincided with 

the current timing and duration of winter. I collected local winter weather data from 1990 

to 2011 including weekly heating degree days and snow cover from the Boise Airport 

(KBOI) weather station located approximately 15 km north of the NCA 

(www.wunderground.com).  

I obtained habitat data by estimating the proportion of vegetation cover within 

1,000 m (314 ha) of a point count site. To maintain consistency with previous work 

(Watson et al. 1996, Knick et al. 1997) I categorized the habitat around sites into 6 types 

based on dominant vegetation cover: agriculture – any irrigated or developed land; 

sagebrush - ≥5% sagebrush cover; rabbitbrush - ≥5% rabbitbrush cover; shadscale - ≥5% 

shadscale cover; winterfat - ≥5% winterfat cover; invasive - ≤5% shrub cover. I used a 

plot frame method (Daubenmire 1959) to train my eyes to assess percent vegetation cover 

in a shrub stand and then mapped vegetation cover at each site (henceforth referred to as 

‘habitat field data’).  

I used a combination of satellite and aerial imagery from 1991, 2010, and 2011 to 

map my habitat field data. I obtained 3 Landsat 5 TM images from March to July for both 

1991 and 2010 (Path 41/Row 30; 30 x 30 m pixels, 0.09 ha; U.S. Geological Survey 

http://www.wunderground.com/
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2012) along with the 2011 National Agricultural Imagery Program (NAIP) Digital 

Orthoimagery Series of Idaho (1 x 1 m, 0.0001 ha; natural color and false color; Idaho 

Geospatial Data Clearinghouse 2012). I did not use Landsat 5 TM images from 2011 

because of a lack of cloud-free imagery. For the 2010 habitat analysis I outlined my 

habitat field data in ArcMap 10.1 (Environmental Systems Research Institute, Redlands, 

CA). I only outlined habitat polygons that were at least 90 x 90 m in size (equivalent to 3 

x 3 Landsat pixels) to limit classification of small vegetation patches (Congalton and 

Green 2009). I was conservative in outlining my habitat data and ambiguous habitat field 

data was not mapped digitally. To increase the sample size of each habitat category, I 

used the 2011 NAIP imagery to manually outline additional habitat polygons within the 

NCA. I was also conservative around edges of additional habitat polygons to compensate 

for pixel size differences between NAIP and Landsat imagery. For the 1991 habitat 

analysis I compared habitat field data collected in 2011 to that collected in 1991 by 

Watson et al. (1996) to find areas of little change, including areas already infested with 

invasives. I digitally outlined these habitat polygons along with additional polygons 

obtained by comparing 1991 Landsat imagery to 1991 habitat field data. I also used 1991 

Landsat imagery to outline additional habitat polygons within the NCA. 

For both 1991 and 2010, I used a layer stacking procedure to compile 18 

calibrated Landsat images (Singh and Glenn 2009). I used 6 bands each (Landsat 5 TM 

bands 1, 2, 3, 4, 5, and 7) from 3 images taken between March and July of each year to 

capture the full spectral variability of invasive plants. The Landsat images were 

calibrated to at-sensor reflectance using ENVI. I used the Geospatial Modelling 

Environment v. 0.7.2.1 RC2 (GUI; www.spatialecology.com/gme/, accessed on 8 Sep 

http://www.spatialecology.com/gme/
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2012) to randomly select habitat polygons for training and accuracy (Congalton and 

Green 2009) in a supervised maximum-likelihood habitat classifier. I used the remote 

sensing program ENVI 5.0 (ITT Visual Information Solutions, Boulder, CO) for all 

further habitat classification. I was unable to accurately classify the rabbitbrush and 

shadscale habitat categories and therefore assigned each pixel in the 18-band Landsat 

composites to 1 of 4 collapsed habitat categories: 1) sagebrush-rabbitbrush complex; 2) 

shadscale-winterfat complex; 3) invasive; and 4) agriculture. Because sagebrush and 

winterfat also exist as a complex, I assigned these habitats to categories based on which 

shrub type covered the majority of a site. My habitat classification technique of the NCA 

had an overall accuracy of 80% and 81% in 1991 (Table 2.1) and 2010 (Table 2.2), 

respectively (kappa values ranged from 0.68 to 0.65). After the classification was 

complete, I used the Geospatial Modelling Environment to calculate habitat proportions 

within a 1,000 m radius surrounding each point count site. 

Data Analysis 

Unless otherwise noted, I used an information-theoretic approach with second-

order Akaike’s information criterion (AICc; Burnham and Anderson 2002) and software 

from the R Development Core Team (2012) for all statistical analyses. I used package 

unmarked to assess whether detection was different between my two sampling schemes 

by creating a dummy survey covariate for sampling scheme and comparing this to the 

null model. I assumed constant detection between time periods if the effect of sampling 

scheme was within 2 ΔAICc of the null model. Given climate change patterns, I evaluated 

whether the timing or duration of winter had changed from 1 November 1990 to 28 

March 2012 to ensure a reliable winter sample in both historical and recent years. I 
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defined my winter weather metrics in the following ways: 1) winter duration as the 

number of weeks between the first and last weeks with ≥ 200 heating degree days, and 2) 

winter median as the median week of winter duration. One heating degree day is 

accumulated for every whole degree Fahrenheit that the mean daily temperature is below 

65° F (18.3° C; Steenhof et al. 1997), and a 200 heating degree day week corresponds to 

an average weekly temperature of roughly 36° F (2.2° C).  

I then compared raptor occupancy using naïve occupancy across all sites surveyed 

from 1991 to 1993 and from 2010 to 2011 because low detection probabilities (less than 

0.15) in the 1990s created unreliable occupancy estimates (MacKenzie et al. 2002). I used 

generalized linear mixed models from the lme4 package for all further raptor occupancy 

and habitat use analyses. I created species-specific independent models for raptor 

presence or absence by including sampling period (historical or recent) as a predictor 

variable, the month of February as a fixed variable, and point count site as a random 

variable to assess whether raptor occupancy depended on sampling period. I used the 

month of February as an a priori fixed variable (i.e., a block) as this is roughly the time 

when Piute ground squirrels begin to emerge from their burrows, and I had reason to 

believe this affected the occupancy of raptors.  

Habitat differences were non-normal so I ran a non-parametric Wilcoxon signed-

rank test for each of my 4 habitat categories to assess proportion of habitat change at 

point count sites. I only analyzed changes in occupancy and habitat use when naïve 

occupancy was >0.10 in a given sampling period to avoid difficulties with small sample 

sizes. I created species-specific independent models for raptor presence or absence by 

including sampling period (historical or modified), habitat type, and the interaction 
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between sampling period and habitat as predictor variables, the month of February as a 

fixed variable, and point count site as a random variable to assess whether habitat use 

depended on sampling period. I created separate model sets for each vegetation type 

because of multicollinearity between proportions of vegetation within sample plots. 

When the interaction between sampling period and habitat type was the top model, I used 

independent models for each sampling period and habitat type to predict raptor 

occupancy. When the interaction between sampling period and habitat type was not the 

top model, I combined both sampling periods to predict raptor occupancy in a given 

habitat type. For each model in a given set I calculated an AICc value along with an 

Akaike Weight (Burnham and Anderson 2002). I assessed raptor occupancy and habitat 

use from these models using parameter estimates and 85% confidence intervals (85% CI) 

to achieve full AIC compatibility (Arnold 2010). I considered habitat covariates with 

85% CI that did not overlap 0 as biologically informative.  

Results 

I assumed a constant detection probability between the historical and modified 

sampling techniques because the effect of sampling scheme was within 2 ΔAICc of the 

null model for all 4 species (Table 2.3). I also found no change in winter duration (ω = 

0.35,β = −0.06, 85% CI = −0.14, 0.02) or the median week of winter (ω = 0.23,β = 

0.01, 85% CI = −0.03, 0.05). After controlling for the effect of February, I observed an 

increase in occupancy between sampling periods for golden eagles (ω = 0.73,β = 0.32, 

85% CI = 0.09, 0.55), northern harriers (ω = 1.00,β = 1.60, 85% CI = 1.40, 1.79), 

prairie falcons (ω = 1.00,β = 1.48, 85% CI = 1.25, 1.72), and rough-legged hawks (ω 

= 1.00,β = 1.08, 85% CI = 0.89, 1.27; Fig. 2.2). American kestrel and red-tailed hawk 
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historical occupancy was ≤0.10, however raw data suggested they were also more 

common in recent years compared with historical data (Table 2.4).  

I observed changes in vegetation cover within point count sites between 1991 and 

2010 (Fig. 2.3). Median sagebrush-rabbitbrush and shadscale-winterfat cover decreased 

by 3.91% (T = 5208, P = 0.002, 95% CI = −6.61, −1.72) and 5.88% (T = 2753, P < 

0.0001, 95% CI = −8.41, −3.89), respectively. Median invasive and agriculture cover 

increased by 11.59% (T = 13565, P < 0.0001, 95% CI = 8.00, 15.60) and 0.69% (T = 

6037, P < 0.0001, 95% CI = 0.30, 1.08), respectively (Fig. 2.3).  

Changes in raptor occupancy within habitat types varied over time by species and 

habitat type (Fig. 2.4). Golden eagle occupancy within agriculture differed between 

sampling periods (1990s:β = −0.98, 85% CI = −2.26, 0.30; 2010s: β = −4.84, 85% CI = 

−8.20, 1.48; Fig. 2.4a), although occupancy tended to be lower with higher proportions of 

agriculture. Golden eagle occupancy was positively associated with sagebrush-

rabbitbrush (β = 1.05, 85% CI = 0.71, 1.38), but negatively associated with invasive (β 

= −1.12, 85% CI = −1.47, −0.78) during the entire study period (historical and modified). 

Golden eagle occupancy was not associated with shadscale-winterfat during the entire 

study period (β = 0.39, 85% CI = −0.01, 0.79). Northern harrier occupancy was 

positively associated with agriculture, although this relationship was more pronounced in 

recent years (1990s:β = 1.78, 85% CI = 0.82, 2.74; 2010s: β = 3.27, 85% CI = 2.22, 

4.34; Fig. 2.4b). Harrier occupancy within invasive (1990s:β = −1.20, 85% CI = −1.65, 

−0.75; 2010s: β = −0.57, 85% CI = −1.06, −0.10) and shadscale-winterfat (1990s:β = 

−2.11, 85% CI = −2.84, −1.38; 2010s: β = −0.45, 85% CI = −1.24, 0.34) differed 

between sampling periods, however these relationships tended to be negative. Harrier 
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occupancy within sagebrush-rabbitbrush also differed between sampling periods (1990s:

β = 1.71, 85% CI = 1.31, 2.10; 2010s: β = 0.04, 85% CI = −0.46, 0.53) with no recent 

occupancy association. The direction of prairie falcon occupancy estimates within 

invasive (1990s:β = −0.66, 85% CI = −1.13, −0.20; 2010s: β = 0.38, 85% CI = −0.16, 

0.92; Fig. 2.4c) and agriculture (1990s:β = 1.90, 85% CI = 1.09, 2.71; 2010s: β = 

−2.10, 85% CI = −3.75, −0.45) were opposite between sampling periods. Prairie falcon 

occupancy was not associated with shadscale-winterfat (β = 0.11, 85% CI = −0.72, 0.94) 

or sagebrush-rabbitbrush (β = −0.06, 85% CI = −0.41, 0.29) in either study period. The 

direction of rough-legged hawk occupancy estimates within invasive (1990s:β = −0.24, 

85% CI = −0.62, 0.14; 2010s: β = 1.27, 85% CI = 0.67, 1.88; Fig. 2.4d) and agriculture 

(1990s:β = 1.86, 85% CI = 1.12, 2.60; 2010s: β = −0.64, 85% CI = −2.09, 0.81) were 

also opposite between sampling periods. Rough-legged hawk occupancy within 

sagebrush-rabbitbrush decreased between sampling periods (1990s:β = −0.02, 85% CI = 

−0.39, 0.36; 2010s: β = −0.99, 85% CI = −1.64, −0.35). Rough-legged hawk occupancy 

was negatively associated with shadscale-winterfat (β = −0.62, 85% CI = −1.02, −0.22) 

during both study periods. Finally, American kestrel (β = 8.23, 85% CI = 5.48, 10.99) 

and red-tailed hawk (β = 4.29, 85% CI = 0.27, 8.32) occupancy was positively 

associated with agricultural in the 2010s, but showed no association with other habitat 

types. 

Discussion 

All wintering raptors showed evidence for an increase in occupancy from the 

1990s to the 2010s in the NCA. The amount of native shrub cover at sample sites 



51 

 

 

decreased between 1991 and 2010 while open areas dominated by invasive grasses and 

forbs increased. All raptor species exhibited changes in habitat use between the two time 

periods, however the degree of change varied by species. Together, these results 

supported my hypothesis of regional population responses to climate change, and not 

local vegetation change, influencing wintering raptor populations in southwest Idaho. The 

results also supported the prediction that as local raptor occupancy increased habitat use 

patterns would change. This may suggest that the overall costs for raptors occupying 

alternative habitats do not out-weigh the benefits conferred by favorable climatic 

conditions. 

Changes in local wintering raptor populations in the NCA are consistent with 

studies of regional population changes in the Great Basin (Chapter 1). Many raptors in 

western North America are wintering further north, partly because of range shifts 

facilitated by warming winters (Chapter 1). These northward shifts may result from a 

combination of decreased migration distances or migratory “short-stopping”, and 

increased wintering residency. Studies have demonstrated a decrease in fall raptor 

migration distances associated with warming temperatures (Heath et al. 2012). Raptors 

may benefit from decreased migration distances through a reduction in migratory costs 

and the ability to stay closer to, or on the breeding grounds, through winter. For many 

species including merlins (Falco columbarius; Espie et al. 2000) and American kestrels 

(Strasser 2010) early arrival to the breeding grounds has been shown to positively predict 

reproduction success.  

Within my study area, the ability of raptor species’ to shift their occupancy 

patterns to reflect changes in landscape composition may have partially mediated their 
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apparent regional response to climate change. For example, golden eagles exhibited the 

smallest occupancy increase with little change in their habitat use between study periods. 

The lack of habitat use change by golden eagles, coupled with their positive association 

to sagebrush-rabbitbrush and negative association with invasive may be one reason why 

their change in occupancy was lower than other species. Previous work in the NCA 

showed that golden eagles were capable of shifting to a broader diet during declines in 

their primary prey (black-tailed jackrabbits Lepus californicus; Steenhof and Kochert 

1988) in the nesting season. However, if golden eagles are unable to use different habitat 

types to find prey then they may be more susceptible to continued habitat degradation 

within the NCA, regardless of flexibility in diet. Population levels of wintering golden 

eagles may eventually decline if primary prey and native shrub habitat continues to 

degrade from encroaching invasive plant species. 

Northern harriers, prairie falcons, and rough-legged hawk all exhibited large 

occupancy increases and showed substantial changes in habitat use between study 

periods. As regional wintering raptor populations in some northern areas such as the 

Great Basin increase because of distribution shifts facilitated by climate change (Chapter 

1), these three species may even increase in areas with degrading landscapes by having 

the ability to shift their habitat use. Another hypothesis is that the large occupancy 

increase created a carrying capacity in preferred habitats with a finite area, causing other 

individuals to occupy sub-optimal habitats (Bowers & Matter 1997, Hanski & 

Ovaskainen 2000) because of inter or intraspecific interactions (Schmidt and Bock 2005, 

Olson 2006). This hypothesis seems unlikely however, especially in instances where 

associations with particular habitats were opposite between time periods. In recent years 
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for example, prairie falcons had a negative association with agriculture and a nearly 

positive association with invasive. These associations were opposite those of the 

historical period. Horned larks (Eremophila alpestris) and western meadowlarks 

(Sturnella neglecta) are important components of prairie falcon winter diets (Steenhof 

1998), and although I did not collect data on prey availability or consumption, I regularly 

observed prairie falcons hunting large horned lark flocks in open grassland. During the 

breeding season, horned larks of the sagebrush-steppe prefer areas with reduced shrub 

cover and more invasives (Earnst and Holmes 2012), and have exhibited increased 

abundance in post-fire areas (Earnst et al 2009). The abundance of wintering horned larks 

in invasive areas is unknown, but may be a contributing factor in the observed change in 

prairie falcon habitat use. 

Northern harriers and rough-legged hawks prey on small mammals (Koivula and 

Viitala 1999, Littlefield and Johnson 2005); yet despite this similarity, each species 

exhibited different habitat use over time, possibly because of differences in their 

tolerance of anthropogenic landscape features (Berry et al. 1998). My results suggest that 

compared to the 1990s northern harriers in the 2010s occupied areas dominated by 

sagebrush less but increased their use of agricultural areas around the edge of the NCA. 

Unlike areas high in cheatgrass cover and fragmented sagebrush, some agricultural areas 

with more edge habitat may contain higher densities of small mammals than surrounding 

areas (Renwick and Lambin 2011, Sullivan et al. 2012). Tolerance of harriers to 

anthropogenic features (Berry et al. 1998, Cardador et al. 2012) may have allowed this 

species to increase use in agriculture. Although rough-legged hawks also occupied 

sagebrush habitat less in the 2010s compared with the 1990s, they are now negatively 
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associated with this habitat type and use agricultural areas less than historically. In 

contrast to harriers, rough-legged hawks are now positively associated with invasive 

habitat. Previously research has suggested rough-legged hawks avoid human settlements 

(Berry et al. 1998, Schmidt and Bock 2005). Although agricultural habitat around the 

edges of the NCA increased slightly, if the amount of other anthropogenic features 

including new home development has increased during this same time then this increased 

anthropogenic infrastructure may have been one reason why rough-legged hawks are now 

using agricultural areas less than in historical times (1990s). Another cause of this change 

in habitat use may have been increased competitive exclusion because of interspecific 

interactions (Schmidt and Bock 2005, Olson 2006) with winter populations of red-tailed 

hawk (Chapter 1), which are increasing in agricultural areas. 

Although habitat specialists are more susceptible to population declines from 

large-scale drivers such as climate change and habitat degradation (Julliard et al. 2003, 

Jiguet et al. 2007); habitat use over the long-term should be considered. If I had just 

assessed data from 2010 and 2011, I may have concluded that northern harriers were the 

most specialized habitat user as they showed a strong positive association with 

agriculture. I might have incorrectly concluded that harriers were more susceptible to 

population declines. By assessing habitat use and its change over time I have put forward 

the hypothesis that it was not habitat specialization per se that influenced a species 

response to climate change. Instead, the ability of a species to be flexible in its habitat use 

allowed it to exploit the changing landscape in the face of global climate change. Future 

studies should explore how prey populations are responding to changing predation 
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pressure given the large increase in raptor presence and use of different habitat types I 

observed. 

Management Implications 

In our changing world, the ability to parse out the relative contributions of climate 

and landscape change on populations is becoming increasingly important. In this study, 

winter raptor populations may be increasing in northern regions despite continued 

landscape degradation in the Great Basin sage-steppe ecosystem. The ecological 

consequences of this increase on overall ecosystem health are unknown but warrant 

future study. Increases in raptor populations are facilitated by range shifts partly because 

of warming winters (Chapter 1). As species decrease migration distances and increased 

winter residency, northern conservation areas and public lands such as the Morley Nelson 

Snake River Birds of Prey National Conservation Area will become increasingly more 

important for population persistence. Many researchers have wondered about the 

potential management effects and implications of climate change, and my research 

provides evidence that organisms flexible in their habitat use stemming from changing 

landscapes appear better able to respond to global and continental forces such as climate 

change. The implication is that less flexible habitat or prey specialists, such as the golden 

eagle, may not be as well equipped to handle such large-scale forces. Further, niche 

models that forecast a species distribution response to climate change (Doswald et a. 

2009) by using current habitat preferences to forecasted vegetation types (Heikkinen et 

al. 2010) should consider flexibility in habitat preferences and other life-history 

strategies. 
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Table 2.1. Error matrix for the 1991 supervised maximum likelihood classification of the 

Morley Nelson Snake River Birds of Prey National Conservation Area. Matrix numbers 

correspond to number of pixels in each of 4 habitat categories: sagebrush/rabbitbrush 

complex (sage), shadscale/winterfat (shad), invasive (invs) and agriculture (agri). 

Numbers in parentheses represent the number of habitat polygons used as reference or 

classified data. 

    1991 Reference Data   

    sage (57) shad (90) invs (50) agri (25) Row Total 

1991 

Classified 

Data 

sage (82) 39765 735 15176 2 55678 

shad (97) 2094 20210 12020 2 34326 

invs (66) 4489 7982 107416 6092 125979 

agri (31) 14 0 701 24760 25475 

 

Column Total 46362 28927 135313 30856 241458 

  

Overall Accuracy = 79.6%, Kappa = 0.677 

 

  

Producer's Accuracy User's Accuracy 

 

 

sage 85.8% 71.4% 

 

 

shad 70.0% 58.9% 

 

 

invs 79.4% 85.3% 

   agri 80.2% 97.2%   

 1 
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Table 2.2. Error matrix for the 2010 supervised maximum likelihood classification of the 

Morley Nelson Snake River Birds of Prey National Conservation Area. Matrix numbers 

correspond to number of pixels in each of 4 habitat categories: sagebrush/rabbitbrush 

complex (sage), shadscale/winterfat (shad), invasive (invs) and agriculture (agri). 

Numbers in parentheses represent the number of habitat polygons used as reference or 

classified data. 

    2010 Reference Data   

    sage (299) shad (100) invs (153) agri (15) Row Total 

2010 

Classified 

Data 

sage (100) 64620 343 23003 39 88005 

shad (127) 1703 12596 2889 3 17191 

invs (50) 18473 6754 156424 435 182086 

agri (22) 507 19 4619 12067 17212 

 

Column Total 85303 19712 186935 12544 304494 

  

Overall Accuracy = 80.7%, Kappa = 0.646 

 

  

Producer's Accuracy User's Accuracy 

 

 

sage 75.8% 73.4% 

 

 

shad 63.9% 73.3% 

 

 

invs 83.7% 85.9% 

   agri 96.2% 70.1%   

 1 
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Table 2.3. Model sets predicting probability of detection in relation to sampling scheme 

(method) for four wintering raptor species in the Morley Nelson Snake River Birds of 

Prey National Conservation Area, 2011. Models are ordered according to the support 

received from Akaike’s information criterion (AICc) and from Akaike weights (wi); k = 

number of parameters; ΔAIC = AICci – minimum AICc. 

Species Model k AICc ΔAIC ωi 

golden eagle 

null 2 181.16 0.00 0.68 

method 3 182.71 1.54 0.32 

northern harrier 

method 3 380.57 0.00 0.61 

null 2 381.49 0.91 0.39 

prairie falcon 

null 2 282.27 0.00 0.74 

method 3 284.31 2.04 0.26 

rough-legged hawk 

null 2 294.07 0.00 0.72 

method 3 295.96 1.89 0.28 
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Table 2.4. Species, average raw count total per year (n/year and n), number of birds per 

site (n/site), and naïve occupancy (Ψ) with 95% confidence intervals of wintering raptors 

at 175 commonly surveyed point count sites in the Morley Nelson Snake River Birds of 

Prey National Conservation Area, Idaho. Sites were surveyed three times each year from 

1991 through 1993 and three times each year in 2010 or 2011. 

Species 

1991-1993 2010-2011 

n/year n/site Ψ n
a
 n/site Ψ 

American kestrel
b
 8 0.05 0.05 65 0.38 ± 0.41 0.20 ± 0.18 

golden eagle 69.33 ± 26.56 0.40 ± 0.15 0.28 ± 0.14 87 0.49 ± 0.56 0.34 ± 0.24 

northern harrier 75.67 ± 79.35 0.43 ± 0.45 0.31 ± 0.23 222 1.25 ± 1.39 0.65 ± 0.52 

prairie falcon 44.00 ± 25.21 0.25 ± 0.14 0.22 ± 0.14 119 0.67 ± 0.54 0.51 ± 0.60 

rough-legged hawk 78.00 ± 78.20 0.45 ± 0.45 0.31 ± 0.31 191 1.05 ± 3.98 0.53 ± 0.86 

red-tailed hawk 19.67 ± 36.20 0.11 ± 0.21 0.10 ± 0.19 40 0.24 ± 0.83 0.16 ± 0.63 

 1 

   
a
175 total sites were surveyed between 2010 and 2011.  

b
Site-specific data only available from 1991, 2010, and 2011 for American kestrels.  



66 

 

 

Figure 2.1. The Integration Study Area (ISA) and randomly selected points within the 

Morley Nelson Snake River Birds of Prey National Conservation Area that represent the 

center of a 1,000 m radius point count survey area. From the BLM-IDARNG research 

project (US Department of the Interior 1996). 

 

Figure 2.2. Probability of naïve raptor occupancy from generalized linear mixed models 

with sampling period as a predictor variable (1991-1993 or 2010-2011), month of 

February as a fixed variable, and point count site as a random variable for wintering 

golden eagles (A), northern harriers (B), prairie falcons (C), and rough-legged hawks (D) 

in the Morley Nelson Snake River Birds of Prey National Conservation Area, Idaho. 

Probability of occupancy was back-transformed after holding the effect of the fixed 

variable February at zero. 

 

Figure 2.3. The average ground cover proportion with 95% confidence intervals of 4 

habitat categories within a 1,000 m radius of point count sites (n = 190) from a Landsat 

maximum likelihood classification of the Morley Nelson Snake River Birds of Prey 

National Conservation Area, Idaho, 1991 (circles) and 2010 (triangles). 

 

Figure 2.4. Probability of naïve raptor occupancy from generalized linear mixed models 

with sampling period (1991-1993 or 2010-2011) and habitat type as predictor variables, 

month of February as a fixed variable, and point count site as a random variable for 

wintering golden eagles (A), northern harriers (B), prairie falcons (C), and rough-legged 

hawks (D) in the Morley Nelson Snake River Birds of Prey National Conservation Area, 
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Idaho. Grey and black lines and dots represent the 1990s and 2010s, respectively when an 

interaction was present between habitat use and sample period. When an interaction was 

not present, solitary black lines represent 1990s and 2010s combined habitat use. 85% 

confidence intervals (dashed lines) indicate there was a predictive relationship between 

habitat type and raptor occupancy. Probability of occupancy was back-transformed after 

holding the effect of the fixed variable February at zero.
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Figure 2.1.  
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Figure 2.2.  
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Figure 2.3. 
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Figure 2.4. 
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Figure 2.4 continued.  
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CONCLUSION 

Assessing population responses to changing environmental conditions, including 

habitat and climate change, should encompass multiple spatial scales and time periods 

whenever possible. Choosing a single spatial scale or time period can limit biologically 

informative inferences. Local and regional population responses may differ from each 

other, and from continental responses. Without knowledge that winter raptor distributions 

were shifting north across western North America (Chapter 1), the locally increasing 

raptor populations I observed in southwest Idaho (Chapter 2) would have been difficult to 

understand. Inclusion of long-term data or data from multiple time periods also helps 

scientists grasp how population responses change over time. Habitat use of wintering 

raptors in my study area varied across time periods (Chapter 2) and helped to elucidate 

the differential response of raptors to climate and habitat change. Because of budgetary 

and logistical challenges it can be difficult to monitor population responses at multiple 

spatial scales and time periods. However, resources are available such as public data from 

long-term, broad-scale citizen science based projects (i.e. the Christmas Bird Count) to 

alleviate this limitation. 

Using publically available Christmas Bird Count (CBC) data, I discovered a 

northward shift in the wintering distribution of six western North American raptor species 

in Chapter 1. These northward shifts were predictive of some regional population indices 

in Bird Conservation Regions (BCR). However, some regional population indices were 

not explained by northward shifts and warrant further discussion. American kestrels and 
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golden eagles are two species thought to be declining across much of their range 

(Hoffman and Smith 2003, Smith et al. 2008). Across western North American CBCs, I 

found evidence for an initial range-wide population decline in American kestrels from 

1975 to 2000. However, the kestrel population appeared to stabilize and may even be 

increasing after the year 2000. Regionally, the negative population trends observed in the 

Southern Rockies/Colorado Plateau and Coastal California BCRs were best explained by 

changes in population over time. Given this information, researchers and management 

agencies in these regions should focus their work to determine the causes behind 

wintering population declines.  

My results of an overall decline in golden eagle western populations since the 

mid-1990s corroborate previous research (Hoffman and Smith 2003, Smith et al. 2008). 

This is concerning given the historical sensitivity of eagles to environmental disturbance 

(Watson et al. 2002) and the potential threats golden eagles now face from wind power 

(Smallwood and Thelander 2008), lead poisoning (Stauber et al. 2010, Kelly et al. 2011), 

and others. I found competing evidence between distribution shifts and population 

changes explaining indices for regionally declining populations of golden eagles. 

However, BCRs that were partly explained by population change were more often 

located towards the periphery of the golden eagles winter range (i.e. the Central Mixed-

grass Prairie and Sonoran and Mohave Desert BCRs). This may suggest that golden eagle 

winter populations are declining in areas outside their core range or from individuals that 

migrate further distances from the breeding grounds (i.e. juvenile), contributing to the 

recent decline in the overall western North American golden eagle winter population. 
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In Chapter 2 I used historical and recent data to assess changes in raptor 

occupancy and habitat use over time at a local level in the Morley Nelson Snake River 

Birds of Prey National Conservation Area (NCA), Idaho. Given the large increase I 

observed in occupancy of some wintering raptors coupled with continued habitat 

degradation begged the question: what is the response of the raptor prey base in the 

shrub-steppe food web of the NCA? Habitat change alone is not always the best predictor 

of population sizes, and some studies have suggested food-web models were better 

predictors of response to habitat change (see Gotelli and Ellison 2006). I realized the 

importance of considering the entire food web, and while I did not directly assess prey 

fluctuations as part of my shrub-steppe system, some views on prey population responses 

are offered. The implications of changing habitat associations for wintering raptors are 

that they are now exploiting either the same or a different prey resource in a new habitat. 

How prey populations are responding to the changing and increasing predation pressure 

of the NCA is unknown, but research has shown potential consequences may include 

reduced prey populations (Morris et al 2011) and changes in prey habitat use (Sundell et 

al 2012). 

Golden eagles only showed a marginal occupancy increase while also being the 

most inflexible habitat user, with little change over time. Golden eagles have been shown 

to diversify their diet during black-tailed jackrabbit declines (Steenhof and Kochert 

1988), and if they have done this, what has been the effect on other prey taxa within their 

preferred native shrub communities? All eagles are known to scavenge, and golden 

eagles were observed scavenging on stillborn cattle fetuses and placenta from livestock 
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grazed in the NCA. In much the same way bald eagles do, perhaps this population is now 

relying more heavily on scavenging to survive the non-breeding months.  

Prairie falcons may be becoming more reliant on horned larks populations for 

winter survival, however little is known about wintering horned lark populations and the 

potential carry-over effects of this prey resource into the breeding season. Further, how 

late-winter emergent ground squirrel populations are affecting the fitness of breeding 

falcons given continued habitat degradation is also unknown. Northern harriers strong 

preference for agricultural areas may also be a preference for an increased amount of 

edge habitat created by these anthropogenic features. How this large increase in wintering 

harriers is affecting small mammal communities in exurban areas is not well understood. 

Finally, rough-legged hawks in the NCA are now using open invasive areas more than 

their availability, and were the only species to do so. Small mammal diversity and density 

decline in invasive landscapes (Hanser and Huntly 2006), so why rough-legged hawks 

are selecting this habitat is puzzling. Given these changes in habitat use coupled with 

raptor population increases more research is needed to determine how prey populations 

are responding, and how these responses are affecting the body condition of raptors in the 

breeding season, and their reproductive success (fitness). 

It appears that area already dominated by cheatgrass and other invasive plant 

species within the sagebrush-steppe ecosystem are here to stay (Davies et al. 2011). Thus, 

more research is needed to determine how animal and plant populations are responding 

and possibly adapting to landscapes dominated by invasive plants. The use of invasive 

dominated areas, a potentially sub-optimal habitat, by rough-legged hawks may have 

negative carry-over effects into the breeding season if individuals surviving to the 
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breeding season are in poor body condition (Sherry and Holmes 1996). Results from 

Chapter 1 suggest the size of wintering populations of rough-legged hawks in western 

North America appear to be declining, at least partly because of large northward range 

shifts affecting adequacy of long-term Christmas Bird Count surveys in the northern 

wintering range of the species. Research is now needed to determine the status of 

breeding populations given these declines, their use of sub-optimal winter habitat, and 

possible increased competitive exclusion (Schmidt and Bock 2005) from increasing 

populations of larger conspecifics such as red-tailed hawks (Chapter 1). 

In summary, I found evidence that some winter raptor populations are increasing 

in northern regions despite continued landscape degradation in the Great Basin sage-

steppe ecosystem. These increases were facilitated by range shifts partly because of 

warming winters. My research over multiple spatial-scales and time-periods provided 

some evidence that organisms flexible in habitat use associated with changing landscapes 

appear better able to respond to global and continental forces such as climate change. 

How northern ecosystems are responding to increasing wintering raptor populations is 

unknown but warrants future study. As species winter further north and habitat continues 

to degrade and fragment, northern conservation areas and public lands such as the Morley 

Nelson Snake River Birds of Prey National Conservation Area and others are likely to 

become refugia for population persistence. The long-term implications of such events 

will require further study. 
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