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Abstract

Glacier surges are periodic episodes of mass redistribution characterized by dramatic increases in
ice flow velocity and, sometimes, terminus advance. We use optical satellite imagery to document
five previously unexamined surge events of Sít’ Kusá (Turner Glacier) in the St. Elias Mountains
of Alaska from 1983 to 2013. Surge events had an average recurrence interval of ∼5 years, making
it the shortest known regular recurrence interval in the world. Surge events appear to initiate
in the winter, with speeds reaching up to ∼25 m d−1. The surges propagate down-glacier over
∼2 years, resulting in maximum thinning of ∼100 m in the reservoir zone and comparable
thickening at the terminus. Collectively, the rapid recurrence interval, winter initiation and
down-glacier propagation suggest Sít’ Kusá’s surges are driven by periodic changes in subglacial
hydrology and glacier sliding. Elevation change observations from the northern tributary show a
kinematic disconnect above and below an icefall located 23 km from the terminus. We suggest the
kinematic disconnect inhibits drawdown from the accumulation zone above the icefall, which
leads to a steady flux of ice into the reservoir zone, and contributes to the glacier’s exceptionally
short recurrence interval.

1. Introduction

Glacier surges are periodic instabilities that result in increased surface velocities, mass redistri-
bution and terminus advance (Meier and Post, 1969). Although <1% of glaciers worldwide are
classified as surge-type (Jiskoot and others, 1998; Sevestre and Benn, 2015), Alaska and west-
ern Canada are home to 113 confirmed surge-type glaciers (Sevestre and Benn, 2015). There
are also notably high concentration of surge-type glacier in Svalbard, East Greenland, the
Pamir and Karakoram Mountains (Sevestre and Benn, 2015). Surge events have the potential
to strongly influence glacier mass balance, as they transport mass from the reservoir zone,
across the dynamic balance line, to the lower elevation receiving zone (Meier and Post,
1969; Dolgoushin and Osipova, 1975; Raymond, 1987), where ablation rates are higher and
mass loss is accelerated (Aðalgeirsdóttir and others, 2005). Surge events have been documen-
ted at both marine-terminating (e.g. Murray and others, 2003; Sevestre and others, 2018) and
land-terminating glaciers (e.g. Kamb and others, 1985), after the collapse of ice-shelves (e.g. De
Angelis and Skvarca, 2003), and at outlet glaciers of Arctic ice caps (e.g. Dunse and others,
2015; Willis and others, 2018). Glacier surges are one example of a spectrum of fast-flow
events (Clarke, 1987a; Herreid and Truffer, 2016) including ice streaming (e.g. Blankenship
and others, 1987), the tidewater glacier cycle (e.g. Meier and Post, 1987), ice-avalanching
(e.g. Gilbert and others, 2015) and glacier collapse (e.g. Kääb and others, 2018; Jacquemart
and others, 2020). While each of these instabilities have unique characteristics and physics
that control them, they all are marked by their stark departure from steady-state dynamics
and are inextricably linked to basal processes. Glacier surges present a prime natural laboratory
to study ice instabilities given the high frequency at which they occur (cf., ice streaming, tide-
water glacier cycle) and the wealth of existing research into the mechanisms that control these
instabilities (e.g. Kamb, 1987; Fowler and others, 2001; Jay-Allemand and others, 2011).

There are presently two main hypotheses to explain why glacier surges occur. One hypoth-
esis is the polythermal switch; when cold ice frozen to the bed rapidly transitions to warm ice
detached from the bed, triggering acceleration (Fowler and others, 2001). The polythermal
switch mechanism is commonly proposed for surge-type glaciers in Svalbard (Murray and
others, 2003), but has also been documented at polythermal glaciers in Yukon, Canada
(Clarke, 1976) and smaller surge-type glaciers in East Greenland (Jiskoot and Juhlin, 2009).
According to the polythermal switch model of glacier surging, for glaciers with little to no slid-
ing at the terminus, surging will initiate up-glacier from the terminus and the surge front will
propagate down-glacier. This down-glacier propagation is supported by observations at land
terminating surge-type glaciers Bakaninbreen (Murray and others, 1998) and Usherbreen
(Hagen, 1987) in Svalbard. In contrast, for marine-terminating thermally regulated surge-
glaciers, the ‘activation wave’ at the onset of a surge is faster than ice flow, and there is no
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observed down-glacier propagation of the surge front (Fowler and
others, 2001; Murray and others, 2003). For surge-type polyther-
mal glaciers in Svalbard, which represent the most extensively
observed polythermal surge-type glaciers, the average repeat inter-
val is estimated to be ∼50–100 years based on the few glaciers
with repeat surge observations.

The second hypothesis, the hydrologic switch, explains surge
motion through the transition from an efficient drainage system
with low water pressure, to an inefficient system with high basal
water pressure and enhanced basal sliding (Kamb, 1987). The
hydrologic switch mechanism for surging was initially proposed
for a temperate hard bedded glacier (Kamb, 1987) but subsequent
research suggests the plastic deformation of subglacial till can
cause surge initiation (e.g. Truffer and others, 2000; Minchew
and Meyer, 2020). For hydraulically regulated surges, the surge
front propagates down-glacier (Meier and Post, 1969;
Dolgoushin and Osipova, 1975). The hydrologic switch mechan-
ism is supported by observations of subglacial water pressure and
proglacial discharge at Variegated Glacier (Kamb and others,
1985; Kamb, 1987) as well as speed and thickness change obser-
vations for Variegated Glacier (Eisen and others, 2005), Lowell
Glacier (Bevington and Copland, 2014), Bering Glacier (Fatland
and Lingle, 2002), and Donjek Glacier (Kochtitzky and others,
2019) in Yukon/Alaska. For land-terminating Alaskan surge-type
glaciers, where this is the dominant mechanism, the average surge
recurrence interval is ∼15 years (Harrison and Post, 2003;
Sevestre and Benn, 2015). Repeat surge cycle observations of
both speed and elevation change are only available for the four
aforementioned glaciers, limiting our understanding of temperate
glacier surge kinematics.

Recent work has focused on the development of unifying the-
ories of surging able to explain the variety of dynamics across
regions and irrespective of mechanism. From their statistical
study on climatic and geometric controls on the distribution of
surge-type glacier, Sevestre and Benn (2015) were the first to pro-
pose an enthalpy formulation for glacier surges. The enthalpy of a
glacial system is defined by the internal energy, which is a func-
tion of liquid water content and temperature within the ice
(Aschwanden and others, 2012; Sevestre and Benn, 2015).
Sevestre and Benn (2015) suggest that climate regimes that inhibit
a steady-state enthalpy balance are prone to surging. Benn and
others (2019) expanded on the enthalpy-based framework of
Sevestre and Benn (2015) by coupling equations for glacier thick-
ness and enthalpy in a lumped parameter model. The enthalpy
balance model produces the self-sustained oscillation in thickness
and velocity typical of glacier surges (Benn and others, 2019). The
abundance of non-surging glaciers in climate regimes favorable to
surging suggests, however, that local geology and geometry (i.e.
slope, substrate, etc.) exert a strong control on surging (e.g.
Post, 1969; Clarke, 1991; Jiskoot and others, 2000; Crompton
and others, 2018).

Here we make use of the exceptionally short surge recurrence
interval of Sít’ Kusá in southeast Alaska, which has surged five
times between 1983 and 2013, to investigate the kinematics of
multiple surge events. Post (1969) noted the possible surge-type
nature of Sít’ Kusá based on surface morphology, which was
later corroborated by McNabb and Hock (2014) based on its
multiyear cycles of advance and retreat. Our analysis of Sít’
Kusá is the first to look at the kinematics of the individual
surge events in detail and represents the densest record of
surge events in the satellite-era for a single glacier to date.
Using terminus position change and velocity data for all surge
cycles, and elevation data from 2001 to 2013, we show that
surge events initiate in the winter and propagate down-glacier,
providing support for the hydrologic switch model of surge
initiation.

2. Study site

The southern coast of the St. Elias Mountains is characterized by
large annual snowfall totals of more than 3 m water equivalent
(Marcus and Ragle, 1970). These high snowfall totals contribute
to fast-flowing glaciers (e.g. Burgess and others, 2013), many of
which reach the ocean (e.g. McNabb and others, 2015). Sít’
Kusá (60° 02′N, 139° 39′W) is one of only a few known surge-type
tidewater glacier in Alaska (Post, 1969; McNabb and Hock, 2014).
The indigenous Tlingit name Sít’ Kusá means Narrow Glacier
(Thornton, 2010). Sít’ Kusá lies within Wrangell-St Elias
National Park in the St. Elias Mountains of Alaska, USA. The gla-
cier is ∼30 km long, ∼2 km wide and covers an area of 177 km2

(RGI Consortium, 2017). Terminating on the western bank of
Disenchantment Bay, it has a maximum elevation of 4144 m
a.s.l. and a median elevation of 1297 m a.s.l. (RGI Consortium,
2017). The climate is sub-polar maritime, as supported by
mean annual temperature of 4.7°C and mean annual precipitation
of 385 cm from 1980 and 2015 at the coastal town of Yakutat ∼50
km to the southeast (http://climate.gi.alaska.edu/acis_data).

The surface of Sít’ Kusá is characterized by extensive crevas-
sing and abundant debris cover. Heavy rock fall activity and
erosion, characteristics of the St. Elias Mountains, are likely
responsible for the abundant debris cover. The glacier’s main
trunk (lower 17 km) is fed by two sources: the northern (32.5
km long) and southern (24 km long) tributaries (Fig. 1). The nor-
thern tributary is marked by an ice-fall located 23 km from the
terminus. Sít’ Kusá flows over a hanging valley, 2 km from its ter-
minus, to sea-level, creating the unique terminus lobes to the
north and south of the valley walls (Figs 1, 2). A partially-
subaerial moraine is often evident at the terminus, limiting
ocean access to the glacier. At present (2020), calving is observed
only along the southern half of the terminus (Fig. 2a). Preliminary
observations from a September 2020 field campaign suggest
the glacier was surging at that time (Bartholomaus, 2020).
Long-term progradation of Sít’ Kusá’s morainal bank into
Disenchantment Bay suggests that the sediment production and
transport rates beneath the glacier are high throughout both the
quiescent and active phases of the surge events (Goff and others,
2012).

3. Data and methods

Our analysis used time series of glacier terminus position, surface
velocity and surface elevation extracted from optical satellite
imagery. We used the Landsat archive to map terminus position
from 1980 to 2017 and surface velocity from 1984 to 2013.
These observations were paired with sparser digital elevation
models (DEM) constructed from a variety of satellite and airborne
platforms to quantify surface elevation changes through time.
Details on each of these datasets and the methodologies used
for their analysis are presented below.

3.1. Terminus delineation

Four Landsat 2 Multi Spectral Scanner (MSS), one Landsat 3 MSS,
seven Landsat 4 MSS, one Landsat 4 Thematic Mapper (TM), 163
Landsat 5 TM, 178 Landsat 7 Enhanced Thematic Mapper Plus
(ETM+), and 78 Landsat 8 Operational Land Imager (OLI)
SWIR-1, NIR, Red false color composites were used to map the
terminus position of Sít’ Kusá from 24 June 1980 to 4 June
2017. The orthorectified L1 T scenes were downloaded from
the United States Geological Survey’s Earth Explorer (https://
earthexplorer.usgs.gov). Landsat 7 products containing scan-line
errors were used if the scan line gaps were small enough that lin-
ear interpolation across the gaps did not distort the terminus
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shape with respect to the terminus geometry closest in date.
Because of Sít’ Kusá’s lobate terminus, we manually delineated
the terminus position between two fixed tie points located on
the lateral margins of the glacier (Fig. 2a) and then closed the ter-
minus polygons to analyze changes in terminus area over time.

For the Landsat images used in our analysis, we assumed the
mixed pixel effect (i.e. error in delineations due to pixels that
overlap both the glacier terminus and the surrounding terrain/
embayment) to be the largest source of uncertainty in terminus
delineations. To account for this effect, we assumed that the
mapped positions could be in error by up one pixel. We summed
the number of pixel intersections along each delineation and
multiplied by the pixel resolution of the corresponding image to
produce an estimate of uncertainty (Silverio and Jaquet, 2005;
Rivera and others, 2007). Thus, uncertainty in the terminus pos-
ition is a function of the area of each pixel (3600 m2 for Landsat
2–3 MSS and 900 m2 for Landsat 4–5, 7 and 8; Fig. 2).

3.2. Velocity mapping

Surface flow velocities were mapped from 23 April 1984 to 7 October
2013 using 31 pairs of orthorectified level one Landsat 5 TM, 7 ETM+
and 8 OLI scenes. We used Band 4 (30m) scenes for Landsat 5 and
Band 8 (15m) scenes for Landsat’s 7 and 8 to produce our velocities.
We did not use Landsat 7 products containing scan-line errors in our
velocity analysis. Extensive cloud cover limited the imagery from
which velocities could be extracted, requiring scenes from different
path/row combinations to be used in our analysis.

Manual examination of nine scene pairs revealed registration
errors that needed to be addressed prior to velocity extraction. To
fix these, we matched the poorly coregistered scenes to the ground
control scenes used by the USGS for the corresponding path/row
(LE07_L1TP_061018_20010719_20160929_01_T1 for 61/18,
LE07_L1TP_062018_20010608_20160929_01_T1 for 62/18). To
find potential matches, we used normalized cross-correlation on a

grid with 400 pixel spacing, matching a 101-pixel kernel within a
401-pixel search window. To avoid erroneous coregistration matches
on the moving glacier surfaces, clouds or shadow, we masked glaciers
using the Randolph Glacier Inventory 6.0 outlines (RGI Consortium,
2017), and cloud/shadow using the Landsat Quality Assessment
(BQA) band provided with each scene. Potential static point matches
were filtered based on the strength of the correlation and their fit to a
2-D affine transformation between the images estimated using ran-
dom sample consensus (Fischler and Bolles, 1981), implemented
using the scikit-image python package (Van der Walt and others,
2014). Using the successfully-matched control points and the
TanDEM-X 90m Global DEM (Rizzoli and others, 2017), we then
transformed each scene using a first-order rational function model
(RFM) transform for L1TP scenes, and a third-order RFM for
L1GT/L1GS scenes (e.g. Tao and Hu, 2001). If necessary, the L1GS
scenes were then orthorectified based on the methods described in
Gao and others (2009).

After all scene-pairs were adequately coregistered, we used
NASA’s Ames Stereo Pipeline to perform normalized cross-
correlation of repeat satellite imagery following the approach of
Shean and others (2016). Normalized cross-correlation was com-
puted in the spatial domain using a Gaussian pyramid approach,
where correlation is computed on sub-sampled images and the
disparities from sub-sampled images are used to seed finer-
resolution disparity maps (Shean and others, 2016). As this
Gaussian pyramid approach automatically determines the search
window size, for each pair we chose the size of the correlation
window (i.e. kernel) between 9 and 35 pixels based on the surface
conditions and observed flow velocities that produced the most
spatially-extensive velocity maps (Table 1). Images with limited
surface features and/or low contrast (e.g. snow on surface of gla-
cier or limited illumination) produced the best results with a ker-
nel > 21 pixels. Images with more distinct surface features (e.g.
heavy crevassing, debris cover) produced the best results when
correlated with a kernel size < 21 pixels. Sensitivity tests of kernel

Fig. 1. Sít’ Kusá (60° 02′N, 139° 39′W), St. Elias Mountains,
Alaska. Sít’ Kusá is located in Disenchantment Bay, at the
toe of Hubbard Glacier to the east. Flowlines shown here
are used for velocity and elevation profiles. Black circles
mark the distance from the maximum terminus position
(ξ) in kilometers, plotted at 1 km intervals. Background
imagine is from Sentinel-2 on 31 August 2018 projected
on a UTM 7N grid.
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size indicate that variations in kernel size have limited effect on
quiescent velocity maps, as any difference in velocity between ker-
nel choices were well within our uncertainty bounds (Fig. S1). For
the active phases, larger kernel sizes resulted in slower velocities
because more of the glacier’s static margins were included in
the kernels (Fig. S2). Since spatial smoothing decreases with ker-
nel size, smaller kernel sizes resulted in faster but noisier active-
phase velocities (Shean and others, 2016). Therefore, we manually
selected the smallest kernel size that returned the most accurate
velocities (i.e. sufficient spatial averaging to reduce random uncer-
tainties but not enough to bias estimates; Fig. S2; Table 1).

We estimated the error of our velocity products by measuring
the apparent displacement (in the x and y directions) over bare
ground, as determined by the union of a glacier mask (RGI
Consortium, 2017), a bare ground mask (Hansen and others,
2013) and the BQA bands for the Landsat scenes. The effects
of displacements in the x and y directions on our velocities
were then corrected by subtracting the median displacement
over the identified bare ground surfaces from the displacement
measurements used to compute velocities. We used the median
apparent displacement (over bare ground surfaces) as our bias
metric and one median absolute deviation (MAD) as our uncer-
tainty metric (Table 1), as they are robust against outliers caused
by clouds, shadows and/or rising snow-lines. Nonetheless, the
average bias (plus or minus average MAD) prior to displacement
corrections was − 0.04 ± 0.60, − 0.06 ± 0.53 and 0.74 ± 0.55 m d−1

in the x, y and magnitude components, respectively (Fig. 3;
Table 1). These uncertainties apply to regions with abundant sur-
face features (e.g. chaotic crevasses), including the ablation zone
below ξN = 21 km and the accumulation zone above ξN = 25 km.
Uncertainties are likely larger across the icefall, however, where
the ‘standing-wave’ of crevasses causes the correlation algorithm
to fail; a phenomena known as ‘surface-locking.’ Across the icefall
‘surface-locking’ results in erroneous speed estimates of ∼0 m d−1.

After we corrected for median offsets over stable ground, we
filtered our velocity products using a signal to noise ratio > 3.5

Fig. 2. Area and velocity observations of Sít’ Kusá from 1984 to 2017. (a) Worldview 2 image (Imagery copyright 2016 DigitalGlobe, Inc.) from 10 May 2016 overlain
by maximum glacier extent during the five (A1– A5) surge events (Table 2). Black circles mark the distance from the maximum terminus position (ξ) in kilometers,
plotted at 1 km intervals. (b) Area change calculated relative to the first observation (4 June 1980). Uncertainty due to mixed pixels is indicated by gray shading.
Vertical lines correspond to the date of the maximum terminus area mapped in (a). (c) Surface velocity. Sampling points are denoted by the flow following coord-
inate system ξ. Points are connected with straight lines only to make the visualization of the velocity variations easier and should not be interpreted as indicative of
trends over time.

Table 1. Landsat 5 TM (LT05), 7 ETM+ (LE07) and 8 OLI (LC08) scenes and the
associated correlation window (i.e. kernel) size used to produce the velocity
maps

Velocity date pair information Error metrics over stable
ground (m d−1)

Scene one Scene two

Sat. Kernel Date Path Date Path vm ± MAD

LT05 29 16/10/1984 061 01/11/1984 061 1.33 ± 1.12
LT05 13 29/06/1985 061 15/07/1985 061 0.77 ± 0.60
LT05 23 11/09/1986 062 29/10/1986 062 0.55 ± 0.45
LT05 9 13/08/1987 062 29/08/1987 062 0.87 ± 0.66
LT05 35 23/03/1990 061 26/05/1990 061 0.51 ± 0.43
LT05 23 21/06/1991 062 30/06/1991 061 1.78 ± 1.34
LT05 23 02/07/1992 061 10/08/1992 062 0.30 ± 0.20
LT05 21 10/08/1992 062 04/09/1992 061 0.46 ± 0.35
LT05 23 07/04/1993 062 23/04/1993 062 1.10 ± 0.82
LT05 23 26/04/1994 062 31/07/1994 062 0.28 ± 0.21
LT05 23 01/06/1998 061 24/06/1998 062 0.71 ± 0.49
LE07 15 14/07/1999 061 06/08/1999 062 0.45 ± 0.36
LE07 15 30/06/2000 061 07/07/2000 062 1.56 ± 1.02
LE07 23 21/09/2001 061 07/10/2001 061 0.48 ± 0.41
LE07 25 01/04/2002 061 08/04/2002 062 1.64 ± 1.08
LE07 21 08/04/2002 062 17/04/2002 061 0.89 ± 0.77
LE07 21 17/04/2002 061 19/05/2002 061 0.48 ± 0.34
LE07 17 19/03/2003 061 11/04/2003 062 0.75 ± 0.52
LT05 23 17/04/2005 061 19/05/2005 061 0.84 ± 0.74
LT05 25 22/05/2006 061 29/05/2006 062 1.58 ± 1.24
LT05 23 29/05/2006 062 14/06/2006 062 0.68 ± 0.48
LT05 27 10/06/2007 061 19/07/2007 062 0.47 ± 0.34
LT05 17 19/07/2007 062 13/08/2007 061 0.42 ± 0.32
LT05 17 27/05/2008 061 05/07/2008 062 0.46 ± 0.35
LT05 23 05/07/2008 062 31/08/2008 061 0.47 ± 0.30
LT05 23 01/03/2011 061 18/04/2011 061 0.57 ± 0.43
LT05 23 18/04/2011 061 27/05/2011 062 0.74 ± 0.53
LC08 13 10/06/2013 061 12/07/2013 061 0.31 ± 0.27
LC08 15 12/07/2013 061 28/07/2013 061 0.38 ± 0.34
LC08 19 28/07/2013 061 13/08/2013 061 0.20 ± 0.18
LC08 17 13/08/2013 061 07/10/2013 062 0.30 ± 0.24

Scene pair dates (DD/MM/YYYY) and paths (all scenes were from row 18) are also
listed. Bias and uncertainty metrics for the magnitude components of the velocity
are listed.
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threshold (Paul and others, 2017). Then, velocities (x and y) were
filtered for orientation following the approach used by Burgess
and others (2012). First, we calculated the angle θ between each
velocity vector vi,j and the median vector within a neighborhood
of width w = 7 pixels, ṽwi,j:

u = cos−1
vi,j · ṽwi,j
vi,j
∣∣ ∣∣ ṽwi,j

∣∣∣
∣∣∣

⎛
⎝

⎞
⎠. (1)

We iteratively removed vectors whose θ was above a thresh-
old of 24, 18 and 12 degrees. The remaining velocity vectors
were filtered for magnitude so that vi,j − ṽwi,j

∣∣∣
∣∣∣ . 30% of the

mean velocity were removed. Finally, these filtered velocity pro-
ducts (in the x and y directions) were used to create the velocity
maps, which were smoothed with a Gaussian kernel of size 7 ×
7 pixels to minimize the influence of noise in our interpret-
ation. Velocity measurements were manually extracted from
individual pixels along the northern, central and southern flow-
lines (Fig. 1). We defined a flow following coordinate system ξ,
originating (ξ = 0 km) at Sít’ Kusá’s maximum terminus pos-
ition. At the confluence of the two tributaries (ξ = 16 km), we
split ξ into two separate coordinates, ξN and ξS, following the
center flowlines of the north and south tributaries, respectively.
In this coordinate system, the heads of the northern and south-
ern tributaries are at ξN = 33 km and ξS = 24 km, respectively.
We report the average and standard deviation in observed vel-
ocities for all three flowlines from the terminus to ξ = 16 km.
The reported velocities were restricted to ξ ≤ 16 km so that
the averages were unbiased by differences in flowline length
and data coverage. On average, velocities were mapped for
86% of the three flowlines over the lower 16 km, with poorer
data coverage farther inland at higher elevations. Additionally,
as described below, the upper portion of the northern tributary
(ξ ≥ 23 km) was not affected by the surges and the inclusion of
velocities from this portion of the glacier would bias inter-surge
velocity analysis (Figs 6, 8).

3.3. Digital elevation models

Surface elevation changes were documented using four
Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER), one Satellite Pour l’Observation de la
Terre 5 (SPOT5), one Interferometric Synthetic Aperture
Radar Alaska (IFSAR-Alaska) and two Digital Globe
WorldView-1 DEMs. We used MMASTER to create ASTER
DEMs with ∼10 m vertical uncertainty and 30 m spatial reso-
lution from April 2001, May 2003, March 2006 and July 2012
stereo imagery (Girod and others, 2017). We used two
ArcticDEM strips, derived from WorldView stereo pairs
acquired in May and December 2013 (Porter and others,
2018). These 2 m-resolution DEMs have an estimated vertical

Fig. 3. Median offset (m d−1) over bare ground in the x and y directions prior to dis-
placement corrections for all velocity pairs. Marker symbol denotes the path/row
combination of the scene-pair and color denotes the kernel size used for correlation.

TABLE 2. Transition between active (A) and quiescent (Q) phases of Sít’ Kusá from 1984 to 2013

Terminus change Velocities

Transition between phases Surge stage Duration (years) Area change (km2) Velocity (ma−1) Location (ξ(km))

01/09/1981–15/02/1983

31/03/1987–22/08/1987

04/05/1991–20/05/1991

25/05/1993–12/07/1993

08/04/1999–10/05/1999

08/06/2001–24/06/2001

03/02/2002–16/03/2002

13/07/2002–15/08/2002

14/02/2006–23/02/2006

05/07/2008–30/08/2008

27/03/2012–12/04/2012

09/06/2013–28/07/2013

⋮ ⋮ ⋮ ⋮ ⋮

A1 5.6 ± 1.9 +2.0 ± 1.0 9.81 ± 0.45 ξ = 2.2

Q1 4.1 ± 0.2 −3.4 ± 0.6 0.39 ± 0.96 ξ = 0–16

A2 2.1 ± 0.2 +3.2 ± 0.6 26.15 ± 0.82 ξ = 2.0

Q2 5.9 ± 0.2 −3.8 ± 0.6 0.62 ± 0.74 ξ = 0–16

A3(P1) 2.2 ± 0.1 +4.1 ± 0.6 17.74 ± 1.03 ξ = 0.6

Q3(P1) 0.7 ± 0.1 −1.1 ± 0.7 0.38 ± 0.36 ξ = 0–16

A3(P2) 0.4 ± 0.2 +1.2 ± 0.7 14.05 ± 1.08 ξ = 14.1

Q3(P2) 5.6 ± 0.1 −2.2 ± 0.8 0.79 ± 0.84 ξ = 0–16

Q4 2.4 ± 0.2 +3.0 ± 0.8 27.66 ± 1.24 ξ = 10.9

R4 3.7 ± 0.2 −2.6 ± 0.8 0.85 ± 1.14 ξ = 0–16

Q5 1.2 ± 0.2 +2.6 ± 0.8 19.04 ± 0.27 ξ = 2.0

⋮ ⋮ ⋮ — —

The duration (in years) of the surge phase (as inferred by terminus change) and associated terminus change (km2) are listed with corresponding uncertainties. For the active phase, speeds
reported are the maximum observed speeds with location of corresponding speeds. For the quiescent phase, we report mean velocities over the trunk (j = 0− 16 km) of the glacier.
Transition between phases are separated by a solid line. Date format is DD/MM/YYYY.
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accuracy of ∼3 m (Noh and Howat, 2015; Shean and others,
2016). We downloaded a 5 m-resolution, 3 m vertical uncer-
tainty IFSAR-Alaska DEM acquired in late summer 2012
from Earth Explorer (https://earthexplorer.usgs.gov/). Finally,
we downloaded a September 2007 SPOT5 DEM with a vertical
uncertainty of 6 m from the SPIRIT project (https://theia-land-
sat.cnes.fr; Korona and others, 2009). See Table S2 for full gran-
ule names and acquisition dates. All of the DEMs were
resampled to 30 m spatial resolution using bilinear interpol-
ation, and coregistered to the 2013 WorldView-1 DEM using
the methods of Nuth and Kääb (2011). Average elevation uncer-
tainties along the flowlines were calculated as:

1h = 1.96sDz�����
L/C

√ , (2)

where σΔz is the standard deviation of the elevation change mea-
surements, L is the length over which they were measured, and C is
the autocorrelation length (500 m; Howat and others, 2008).

4. Results

4.1. Surge chronology overview

To explore the general characteristics of the surge events (A1–A5),
we used terminus area changes to identify the initiation and ter-
mination of surge events (Fig. 2), since the terminus change
record is more temporally dense than the velocity and elevation
datasets (Table 1; Figs 2, 4). Because surges are defined by changes
in flow, not necessarily terminus position, we would ideally use
our velocity record to constrain the timing of surge events. For
properly tidewater surge-type glaciers in Svalbard terminus retreat
does not necessarily mean the end of the active phase, just a
increase in frontal ablation (Mansell and others, 2012).

However, cloud cover in coastal Alaska prevents the construction
of a velocity record with sufficiently dense temporal sampling to
confidently identify surge initiation and termination from
changes in flow speed.

The rate of terminus position change is calculated as

dL
dt

= �vs − �va, (3)

where L is the glacier length, �vs is the width-averaged speed at the
terminus, and �va is the width averaged rate of frontal ablation
(sum of calving and submarine melting). We observe that ter-
minus advance (A1–A5) consistently begins between February
and June (Table 2; Fig. 4). Assuming there is no dramatic periodic
decrease in �va that initiates the terminus advance every ∼5 years,
then increases in L (A1–A5) must be driven by an increase in
advection toward the terminus (�vs). Thus, we hypothesize that
the periodic advance of the terminus through the winter and
into spring indicates changes in ice flow toward the terminus.
Based on the terminus change time series, paired with velocity
and elevation time series when available, we identify five surge
events (A1–A5) since 1980 (Table 2; Figs 2, 4). The surge events
have an average recurrence interval of ∼5 years and an active
phase of ∼2 years (Table 2). Observations from each surge
event are described in detail below.

4.2. 1983–1986 Surge event (A1)

While surge events presumably occurred prior to 1983, we are not
confident in the data quality and temporal density prior to 1980.
We first observe terminus advance between September 1981 and
September 1982 (Table 2, Fig. 2 and 4), with the terminus
advancing until late summer 1984. Our first speed observation,

Fig. 4. Timing of surge initiation and termination for five surge events (A1–A5). The shaded area is the temporal uncertainty of when the changes occurred. The time
when the terminus is advancing is denoted by the black brackets.
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in fall 1984, was 0.46 ± 0.37 m d−1 over the trunk of the
glacier (Fig. 5). In summer 1985 the mean speed was 2.58 ±
2.05 m d−1, with the largest increase at the confluence
(j = 10− 15 km) of the tributaries (Fig. 5). Terminus advance
began again in spring 1986 accompanied by a 11.4-fold increase
in mean speed by fall 1986 (Table 2; Figs 4, 5). Terminus advance
ceased in spring/summer 1987, ending a 5.6 ± 1.9 year surge event
that caused the glacier to advance 2.0 ± 1.0 km2 (Figs 2, 4;
Table 2). Velocity maps from August 1987 show quiescent speeds
over the whole glacier, except for slightly elevated speeds for ξ <
5 km (Fig. 5).

4.3. 1991–1993 Surge event A2

The glacier appeared to be in quiescence in spring 1990, with a
mean speed of 0.61 ± 0.81 m d−1 over its trunk (Figs 6a–c;
Table 2). Terminus advance began in May 1991, after retreating
3.4 ± 0.6 km2 since 1986 (Fig. 4; Table 2). Terminus advance
was accompanied by a 7.8-fold increase in mean speed in June
1991, as compared to spring 1990 (Figs 6a–c). Elevated surface
speeds continued through 1992 and reached a maximum of
26.15 ± 0.82 m d−1 at the terminus in April 1993 (Table 2; Figs
6a–b). Terminus retreat commenced again in 1993 and we
observed quiescent speeds through summer 1994 (Table 2; Figs
2, 4, 6a–c). The surge event lasted 2.1 ± 0.2 years, and resulted
in a 3.2 ± 0.6 km2 increase in glacier area (Table 2; Fig. 2).

4.4. 1999–2002 Surge event (A3)

The glacier was in quiescence through 1998, with a mean speed of
0.61 ± 0.61 m d−1 over its trunk in June 1998. The terminus began
to advance in April 1999, ending 3.8 ± 0.6 km2 of terminus retreat
since the termination of the last surge (Table 2; Figs 4, 2). By sum-
mer (14 July–6 August) 1999, the glacier speed increased 15-fold,
reaching a peak of 12.52 ± 0.36 m d−1 at ξ = 7.9 km (Fig. 7.)
Elevated speeds continued through July 2000, reaching a peak
of 17.74 ± 1.03 m d−1 at the terminus (Fig. 7; Table 2). In June
2001, we observed terminus retreat, and by fall of 2001, we
recorded quiescent-like speeds of 0.39 ± 0.36 m d−1 over the gla-
cier trunk (Figs 2, 4, 7). This portion of the surge lasted 2.1 ±
0.1 years, and resulted in a 4.1 ± 0.6 km2 increase in glacier area
(Figs 2, 4; Table 2).

Terminus retreat continued until early spring (3 February–16
March) 2002 (Figs 2 and 4), resulting in a total retreat of 1.1 ±
0.7 km2 (Table 2). There was a ∼14-fold increase in mean speed
by early April 2002, as compared to quiescent speeds from sum-
mer 2000 (Fig. 7). Active-phase speeds continued through
mid-April 2002, reaching 20 times the quiescent speeds, with
down-glacier propagation of the surface speed maximum
(Fig. 7). Terminus advance ceased during the summer of 2002,
for a total advance of 1.2 ± 0.7 km2 since March 2002 (Table 2;
Figs 2, 4), and the glacier slowed to quiescent speeds by spring
2003 (Fig. 7).

Fig. 5. 1984–1986 surge speed observations. Speeds extracted
along the northern (a), central (b) and southern (c) flowlines
with dates for all profiles shown in subplot d. Active phase
speeds are denoted in bold on the legend in subplot (b). The
vertical grey line at ξ = 9.25 km is the approximate location of
the dynamic balance line. The vertical grey line at ξN = 23 km
in (a) is the approximate location of the icefall located on the
northern tributary. Date of image pairs plotted on the timeline,
with the color of the boxes corresponding to the lines in sub-
plots a–c.
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From April 2001 to 2003, surface elevations decreased by an
average of 6.9 ± 1.4 m from j = 0− 5 km across all three flowlines
(Figs 7d–e, pink shading). Over the same time period, there was
an average increase in elevation of 8.8 ± 0.4 m for all three flow-
lines above ξ = 5 km (Figs 7d–f, blue shading). Surface elevation
increase along the northern flowline was confined to below the
icefall at ξ = 23 km (Fig. 7d).

4.5. 2006–2008 Surge event (A4)

Terminus advance in winter 2006 ended a 5.6 ± 0.1-year quiescent
period during which the terminus retreated 2.2 ± 0.8 km2

(Table 2; Figs 2, 4). By May 2006, the glacier had sped up
22.6-fold over its trunk (Fig. 8), reaching a peak of 27.6 ±
1.2 m d−1 at ξ = 10.9 km (Table 2; Figs 8a–c). Active-phase speeds
continued through summer 2007, with a surface speed maximum
(of 18.49 ± 0.32 m d−1) at ξ = 2.7 km (Fig. 8). By summer 2008,
velocities decreased ∼65% relative to summer 2007, and the ter-
minus began to retreat (Table 2; Figs 2, 4, 8a–c). The surge
event lasted 2.4 ± 0.2 years and was associated with a 3.0 ±
0.8 km2 increase in area (Fig. 2; Table 2).

From 20 May 2003 to 3 March 2006, a time period including
both the quiescent phase and surge initiation, the glacier
surface elevation increased by an average of 28.7 ± 1.1 m above
ξ = 9.3 km (Figs 8d–f, blue shading). For all three flowlines, the
surface elevation decreased over j = 0− 10 km by an average of
28.9 ± 1.5 m (Figs 8d–e, pink shading). The along-flow patterns
of surface elevation change were reversed from March 2006 to
September 2007, during the active phase of the surge. Surface
elevations increased over j = 0− 7 km by an average of 54.5 ±
3.8 m, with a maximum increase of 141 ± 12.0 m at the terminus
(Figs 8d–f, dark blue line). Above the dynamic balance line (ξ =
9.25 km), the surface lowered by 56.9 ± 2.0 m on average, with a
maximum thinning of 123.6 ± 12.0 m at ξN = 18.1 km (Fig. 8d).
Over both time periods (May 2003 to March 2006 and March
2006 to September 2007), little change occurred above ξN =
23 km, the approximate location of the icefall (Fig. 8d).

4.6. 2011–2013 Surge event (A5)

The glacier was in quiescence for 3.7 ± 0.2 years, through
spring of 2011, during which the glacier retreated 2.6 ± 0.8 km2

(Table 2; Figs 2, 9a–c). While quiescent speeds were uniform

Fig. 6. 1991–1993 surge speed observations. Speeds
extracted along the northern (a), central (b) and south-
ern (c) flowlines with dates for all profiles shown in sub-
plot b. Quiescent (active) speeds are colored in green
(purple) and become darker in time. Active phase
speeds are denoted in bold on the legend in subplot
(b). The vertical grey line at ξ = 9.25 km is the approxi-
mate location of the dynamic balance line. The vertical
grey line at ξN = 23 km in (a) is the approximate location
of the icefall located on the northern tributary. Date of
image pairs plotted on the timeline (d), with the color
of the boxes corresponding to the lines in subplots a
a–c.
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below ξ < 10 km, we see an increase in speed at the confluence of
the two tributaries (j = 10− 15 km) through the spring of 2011
(Figs 9a–c). Terminus advance began in spring 2012.

We first observed active-phase speeds in June 2013, a ninefold
increase from early-spring 2011, with a surface speed maximum
of 19.04 ± 0.27 m d−1 at ξ = 2 km (Figs 9a–c). Speeds decelerated,
propagating downglacier, through the summer of 2013
(Figs 9a–c). Our final observation from fall 2013 shows quiescent
speeds over the entire glacier, except ξ < 5 km where mean speeds
were 1.68 ± 0.24 m d−1. Terminus retreat began in early summer
2013, signaling the end of a 1.2 ± 0.2 year surge event, where
the glacier advanced 2.6 ± 0.8 km2.

Elevation observations from September 2007 to July 2012
(spanning the quiescent period) show a mean surface lowering
of 59.93 ± 0.4 m from j = 0− 9 km and an average thickening
of 31.6 ± 1.1 m above ξ = 9 km (Figs 9d–f). From July 2012 to
late August 2012, the glacier surface lowered by 3.0 ± 0.4 m
above ξ = 10 km and thickened by 32.9 ± 0.7 m below ξ = 10 km
on average (Figs 9d–f). The May 2013 DEM only covers the low-
est 9 km of the glacier, but shows an average thickening of 45.9 ±
4.3 m as compared to August 2012 (Figs 9d–f). From May to

December 2013, surface elevation decreased by an average of
26.6 ± 1.2 m over ξ = 0− 9 km (Figs 9d–f).

4.7. Inter-surge comparison

Sít’ Kusá surged five times between 1980 and 2017, making it one
of the most active surge-type glacier currently known in the world
(Table 2; Fig. 2; Sevestre and Benn, 2015). We find that, on aver-
age, surge events have an active phase of ∼2 years and a recur-
rence interval of ∼5 years (Table 2; Fig. 2). We observe as
much as 20-fold increases in speed (e.g. A2, A4) during the active-
phase. Preceding surge-initiation, we observe increased surface
speeds at the confluence (j = 10− 15 km) of the two tributaries
(e.g. Figs 5, 6, 8, 9). Terminus advance consistently begins between
February and May (Table 2; Fig. 4). During the active-phase of
surge events, we observe surface-speed maximums propagate
down-glacier (Figs 5–9). Elevation change observations suggest
the boundary between the reservoir zone and the receiving zone
(i.e. dynamic balance line) is at ξ≈ 9 km (Figs 8 and 9). For the
northern tributary, the inland extent of the reservoir zone coincides
with the base of the icefall located at ξN = 23 km (Figs 7, 8). Surface

Fig. 7. 1999–2002 surge speed and elevation change observations. Speeds and elevations extracted along the northern (a, d), central (b, e) and southern (c, f)
flowlines with dates for profiles shown in subplots b and e. Quiescent (active) speeds are colored in green (purple) and become darker in time. DEMs are plotted
with the color of the velocity map closest to the date range of the differenced DEMs. Date pairs exhibiting active phase speeds are denoted in bold on the legend in
subplot (b). The vertical grey line at ξ = 9.25 km (ξN = 23 km) is the approximate location of the dynamic balance line (northern tributary icefall). Date of speed
scene pairs plotted on the timeline (g), with the color of the (solid) boxes corresponding to the lines in subplots a–c. The thinner (dotted) boxes are the time
span of DEM pairs.
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elevation profiles from the 2006–2008 surge event (A4) suggest the
reservoir zone extends over the entire southern tributary above ξ =
9 km (Fig. 8f). Based on the extent of surface elevation gain during
the 2006–2008 (A4) and 2011–2013 (A5) surge events, we infer that
the receiving zone extends from ξ≈ 9 km to the terminus.

5. Discussion

5.1. Probable surge mechanism

Our sparse sampling of velocities is dictated by extensive cloud-
cover in southeast Alaska. Therefore, we note that our maximum
speeds only represent what we are able to observe, and do not
coincide with the actual maximum speed of the glacier during
each surge event. Nonetheless, elevated speeds over the entire gla-
cier (excluding the area above the icefall) during the active phase
support our use of terminus position change as an indicator of
surge advance, since enhanced flow toward the terminus will
result in terminus advance in the absence of an equivalent change
in calving and/or submarine melting (Eqn (3)). While McNabb
and others (2015) document variations in frontal ablation for
Sít’ Kusá, their estimates are based solely on surface velocities

and changes in terminus position. Because McNabb and others
(2015) did not have coincident elevation change observations,
we cannot partition their rates of frontal ablation between oceanic
forcing and glacier dynamics. We observe terminus advance con-
sistently beginning between February and May (Table 2; Fig. 4),
suggesting surge events initiate in late winter at Sít’ Kusá. Late
winter surge initiation has been observed for a number of glaciers,
including Variegated Glacier (Kamb and others, 1985; Eisen and
others, 2005), Medvezhiy Glacier (Dolgoushin and Osipova,
1975), West Fork Glacier (Harrison and others, 1994), Bering
Glacier (Roush and others, 2003) and Sortebræ (Pritchard and
others, 2005), and is commonly attributed to pressurization of
an inefficient subglacial hydrologic network and enhanced basal
sliding (Kamb, 1987). For hydrologically-regulated surges, the
surge front propagates down-glacier (Meier and Post, 1969;
Dolgoushin and Osipova, 1975), which we also observe at Sít’
Kusá (Figs 5–9). Thus, we interpret the apparent winter initiation
in conjunction with down-glacier propagation to suggest the
hydrologic switch as the mechanism responsible for Sít’ Kusá’s
surges. Both observational (e.g. Clarke and others, 1984; Truffer
and others, 2000; Woodward and others, 2003) and theoretical
studies (e.g. Clarke, 1987b; Minchew and Meyer, 2020) suggest

Fig. 8. 2006–2008 surge speed and elevation change observations. Speeds and elevations extracted along the northern (a, d), central (b, e) and southern (c, f)
flowlines with dates for profiles shown in subplots b and e. Quiescent (active) speeds are colored in green (purple) and become darker in time. Differenced
DEMs (d–f) are plotted with the color of the velocity map closet to the date range of the differenced DEMs, with thickening shaded in blue and thinning in
red. Date pairs exhibiting active phase speeds are denoted in bold on the legend in subplot (b). The vertical grey line at ξ = 9.25 km (ξN = 23 km) is the approximate
location of the dynamic balance line (northern tributary icefall). Date of speed scene pairs plotted on the timeline (g), with the color of the (solid) boxes corre-
sponding to the lines in subplots a–c. The thinner (dotted) boxes are the time span of DEM pairs.
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the deformation of till to be a critical component in the initiation
and propagation of surge events, while till has also been proposed
as the mechanism controlling the fast flow of icecaps in Iceland
(e.g. Boulton and Hindmarsh, 1987; Kjær and others, 2006;
Minchew and others, 2016) and ice streams in Antarctica (e.g.
Blankenship and others, 1987; Tulaczyk and others, 2000).
Given the high sediment production rates at Sít’ Kusá (Goff
and others, 2012), it likely overlies a soft bed of deformable sedi-
ments, which could play an important role in surge initiation and
propagation. We currently lack sufficient observations to make
conclusions about the till, highlighting the importance of future
work here to understand the subglacial environment.

5.2. Controls on surge recurrence intervals

While the kinematics of Sít’ Kusá’s surge cycle are similar to its
land-based Alaskan counterparts, its recurrence interval is excep-
tionally short. The typical surge recurrence interval in Alaska for
temperate, hydrologically-regulated surge events is about 15 years
(Sevestre and Benn, 2015). Variegated Glacier’s surge recurrence
interval is 13–18 years (Eisen and others, 2001), for Lowell
Glacier between 11 and 18 years (Bevington and Copland, 2014),

and 9–12 years for Donjek Glacier (Kochtitzky and others, 2019).
Environmental conditions (thermal regime and precipitation)
have been suggested as an explanation for regional differences in
the length of the surge cycles between Svalbard (50–100 year qui-
escent period and 3–10 year active phases) and Alaska/Yukon
(10–15 year quiescent period and 1–2 year active phases;
Dowdeswell and others, 1991; Murray and others, 2003).
However, environmental and geometric factors that influence reser-
voir evacuation also likely influence surge recurrence intervals. For
example, the 1995 surge of Variegated terminated early with respect
to previous surges (Eisen and others, 2005) and the next surge
occurred only 9 years later in 2003/2004, a recurrence interval
much shorter than the previously observed 13–18 years (Harrison
and others, 2008). This anomalously short surge interval has
been attributed to the early termination of the 1995 surge, which
resulted in only partial evacuation of the reservoir zone and reduced
the mass accumulation required to reach the critical stress threshold
for surge initiation (Eisen and others, 2005; Harrison and others,
2008). While environmental conditions are clearly important, it
remains difficult to isolate their impact on the surge cycle.

Given Sít’ Kusá’s location in southeast Alaska, an area charac-
terized by high accumulation rates (Marcus and Ragle, 1970), it is

Fig. 9. 2011–2013 surge speed and elevation change observations. Speeds and elevations extracted along the northern (a, d), central (b, e) and southern (c, f)
flowlines with dates for profiles shown in subplot b and e. Quiescent (active) speeds are colored in green (purple) and become darker in time. Differenced
DEMs (d–f) are plotted with the color of the velocity map closet to the date range of the differenced DEMs, with thickening shaded in blue and thinning in
red. Date pairs exhibiting active phase speeds are denoted in bold on the legend in subplot (b). The vertical grey line at ξ = 9.25 km (ξN = 23 km) is the approximate
location of the dynamic balance line (northern tributary icefall). Date of speed scene pairs plotted on the timeline (g), with the color of the (solid) boxes corre-
sponding to the lines in subplots a-c. The thinner (dotted) boxes are the time span of DEM pairs.
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important to understand the influence of climate and mass bal-
ance on Sít’ Kusá’s surge kinematics. While glacier surges are
known to be caused by internal dynamics, climate is an important
control on the distribution of surge-type glaciers (Sevestre and
Benn, 2015), surge recurrence intervals (Eisen and others, 2001;
Striberger and others, 2011), the vigor of the active phase
(Frappé and Clarke, 2007) and regional changes in the number
of surge-type glaciers (Dowdeswell and others, 1991; Copland
and others, 2011). The link between climate and surge recurrence
is supported by geologic evidence of glaciers that were formerly
surge-type under more suitable climatic conditions (Hoinkes,
1969) and the correlation of surge recurrence intervals with
centennial to millennial climatic variability (Striberger and others,
2011). Accumulation data, from one ablation stake, for Variegated
Glacier shows a threshold of 43.5 ± 1.2 m must be reached for
surge initiation to occur, a quantity that remains constant despite
variations in the length of the recurrence interval (Eisen and
others, 2001). Sít’ Kusá is located ∼ 20 km away from
Variegated Glacier, just across Disenchantment Bay. While Sít’
Kusá is a much larger glacier (177.0 versus 36.3 km2; RGI
Consortium, 2017) and extends to higher elevations (Fig. 10)
where we know little about the mass-balance profile, it experi-
ences similar regional climatic conditions to Variegated.
Therefore, if mass balance were the sole factor dictating a glacier’s
ability to reach the critical basal shear stress needed for
surge-initiation, we would expect Sít’ Kusá and Variegated to
surge at similar frequencies. The fact that they do not demonstrate

that external forcings alone are insufficient to cause a glacier to
surge or explain the heterogeneity in surge kinematics within a
geographic region (i.e. Sít’ Kusá versus Variegated).

5.3. Possible explanations for Sít’ Kusá’s exceptional
recurrence interval

Eisen and others (2005) hypothesize that surge events initiate
when the reservoir zone fills sufficiently and reaches a critical
basal shear stress. This assumes the driving stress equates to the
basal shear (τb) stress:

tb ≈ FrgH sina, (4)

where F is a shape factor, ρ is the ice density, g is the acceleration
due to gravity, H is ice-thickness and α is the surface slope. This
assumption has been shown to be invalid during surge-initiation
(Schoof, 2005), when the driving stress and basal shear stress do
not equate, due to rapid changes in effective pressure.
Nonetheless, we use this crude approximation for a conceptual
discussion of the quiescent period leading to surge-initiation.
Changes in ice-thickness (H) with time are dictated by:

∂H
∂t

= ∇ · Q+ ḃ, (5)

both the flux divergence (∇ · Q) and the mass balance (ḃ).
Assuming the mass balance between Sít’ Kusá and Variegated
are similar enough to be insufficient to explain the dramatically
different surge-recurrence intervals, we suggest that geometric
factors that control the flux-divergence (∇ · Q) play a role in Sít’
Kusá’s exceptionally short recurrence interval.

Velocity and surface elevation observations, from the 2006–
2008 surge in particular, show surge speed and mass redistribu-
tion confined to jN = 0− 22 km by the icefall at ξN = 23 km
(Figs 7–9). The observed disconnect in kinematics above and
below the icefall is in line with the observations of large flow
speed changes and mass redistribution below icefalls at a number
of glaciers in Alaska (e.g. McNabb and others, 2012; Armstrong
and others, 2017; Durkin and others, 2017; Enderlin and others,
2018) and previous observations of glacier surges confined by an
icefall (e.g. Echelmeyer and others, 1987; Pritchard and others,
2003). This disconnect in kinematics likely inhibits draw down
of ice volume from the accumulation zone during a surge event,
as supported by the minimal observed elevation changes above
ξN = 23 km during the 2006–2008 surge (Fig. 8). Although our
velocity observations are temporally sparse, the data suggest
that advection from the northern tributary’s accumulation
zone is either relatively steady or slightly elevated after surges
(Figs 7–9), enabling rapid accumulation of ice in the reservoir
zone between surge events. Due to the likelihood of surface lock-
ing across the icefall, which may bias our velocity time series in
this location, we cannot confidently interpret temporal variations
(or lack thereof) in speed across the icefall (jN ≈ 22− 24 km).
However, Sít’ Kusá’s extensive crevassing enables successful offset
tracking in the isolated accumulation zone above the icefall (Figs
5–9). It is unlikely that surge events initiate at the icefall, but the
icefall does appear, in part, responsible for the rapid filling of the
reservoir zone leading to surge initiation. The elevated surface
speeds on the main trunk of the glacier (Figs 5, 6, 8, 9), which
propagate down-glacier (Figs 8, 9), suggest surge events initiate
somewhere along the confluence of the two tributaries
(j = 10− 15 km).

Flowers and others (2011) note a similar kinematic disconnect
during surge events above and below a pronounced bedrock ridge
of a small surge-type glacier in Yukon, Canada. While the

Fig. 10. Hypsometry for Sít’ Kusá and Variegated Glacier. Curves show the normal-
ized distribution of ice area with elevation, such that the area under each curve is
equal. Elevation data comes from IFSAR-Alaska DEM from August 2012. Long dashed
lines indicate the mean elevations and short dashed lines indicate plus or minus one
standard deviation.
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kinematic disconnect does not alter the recurrence interval for the
glacier in that study, prognostic numerical modeling simulations
under a warming climate suggest the bedrock ridge contributes
to the glacier’s ability to form a reservoir zone even when climatic
conditions are sufficiently negative to inhibit surging (Flowers and
others, 2011). Therefore, glacier geometry, especially bedrock top-
ography, not only affects surge characteristics, it may also influ-
ence (locally) if and how a glacier will surge under a warming
climate.

In summary, our analysis of several surge cycles of Sít’ Kusá is
consistent with a model of surging where surge propagation is
facilitated by an inefficient subglacial drainage system (Kamb,
1987; Eisen and others, 2005; Harrison and others, 2008). We
do not have sufficient data to fully assess the role of glacier geom-
etry on Sít’ Kusá’s surge characteristics, but we interpret the
muted surface velocity and surface elevation changes inland of
the northern tributary’s icefall (at ξN = 23 km) as an indicator
that the underlying topography strongly influences the character-
istics of the glacier’s surges. Although it is well known that an
interplay between climate and geometry influence surge behavior,
we recommend future investigation of Sít’ Kusá’s exceptionally
short recurrence interval with more detailed observational data
to gain unique insights into controls on glacier surging.

6. Conclusion

From our analysis of optical satellite archives, we document five
surge events of Sít’ Kusá between 1980 and 2013. Surge events
lasted ∼2 years on average with an average ∼5-year recurrence
interval between surges, representing the shortest known regular
recurrence interval in the world (Table 2). We observe terminus
advance to consistently begin between February and May, corre-
sponding to hydrologic winter, for the 1991–1993, 1999–2002,
2006–2008 and 2011–2013 (A2–A5) surge events (Fig. 4).
Velocity observations from the A1–A5 surge events (Figs 5–9)
show down-glacier propagation of surface speed maximums
over the course of each surge event. Surface elevation observations
from the 2006–2008 (A4) and 2011–2013 (A5) surge events reveal
the dynamic balance line to be 9 km from the terminus with the
reservoir zone extending over the entire southern tributary while
mass redistributions are confined below the icefall along the nor-
thern flowline at ξN = 23 km (Figs 8–9). Based on the winter ini-
tiation, down-glacier propagation, and geographic location, we
believe Sít’ Kusá’s surge events are hydrologically regulated. The
kinematic discontent above and below the icefall (ξN = 23 km)
may explain the rapid recurrence interval of Sít’ Kusá. In order
to understand what drives the recurrence interval, and therefore
surge initiation, more detailed investigation to the fluxes coming
from the isolated reservoir zone is needed. Additionally, charac-
terization of basal properties, glacier dynamics, and surface accu-
mulation and melt during quiescent and active phases will
facilitate an improved understanding of hydrologic controls on
surging at Sít’ Kusá. Given similarities between Sít’ Kusá’s surge
characteristics and other Alaskan surge-type glaciers, we recom-
mend that future studies of glacier surging leverage Sít’ Kusá’s
exceptionally short recurrence interval to advance not only the
understanding of surge initiation and propagation at this particu-
lar glacier, but all glaciers that undergo dynamic instabilities
attributed to rapid changes in subglacial hydrology.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2021.29

Data availability. All Landsat imagery used in our analysis is available
from https://earthexplorer.usgs.gov/. The terminus position timeseries

(Fig. 2), filtered velocity products and DEMs (Figs 5–9) are archived online
at https://zenodo.org/record/4382724.
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