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ABSTRACT

Wave propagation in scattering media is a complicated topic, but scattered elastic

waves carry important information about the internal structure of the medium. It

is a current topic of research and for the foreseeable future. Advances in theory

and applications described in this manuscript benefit from new ways to collect more

densely sampled, multicomponent, true-amplitude data.

Thus far, most fracture characterization experiments in the laboratory involve

contacting transducers as elastic wave sources and receivers. Similarly, rock properties

such as anisotropy and attenuation are also measured with contacting techniques.

These type of measurements are well-suited for time-of-flight measurements, but for

scattering experiments issues arise. These include coupling issues between transducers

and sample, ringing of the mechanical transducer, time-consuming steps to repeat

the measurements with different source/receiver locations, and the relatively large

sensor size. As a result, contacting techniques are less than ideal to the study of

heterogeneous and anisotropic media.

In this work, we show that contacting devices can successfully be replaced by

remote laser ultrasonic sources and receivers. Using fully non-contact measurement

techniques, we are able to avoid the aforementioned drawbacks, acquire high-quality

laboratory data with dense source and/or receiver locations, and with computer-
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controlled acquisition that is fully automated and takes on the order of hours to

complete.

First, we describe the experimental setup used throughout this work to acquire

laboratory data on small-scale samples. We show that using a novel laser inter-

ferometer design allows us to measure two components of the elastic displacement

field. Combined with a laser source, this results in a fully non-contacting system that

makes automated scanning acquisition possible with a source/receiver footprint small

compared to the wavelength.

Second, we study a single fracture, whose size is comparable to the elastic wave-

length, in an otherwise homogeneous medium. In a first step, we apply the linear slip

model to a single finite planar fracture under the Born approximation. We derive new

expressions for the scattering amplitude in the frequency domain and illustrate this

theoretical work with a laboratory experiment. We measure the scattering amplitudes

and estimate the compliance of a single fracture generated in a clear plastic sample,

which shows good agreement between the theoretical and experimental results. We

also show that the laser-based experimental setup allows us to directly excite elastic

waves at a fracture inside a solid sample. We measure the associated displacement

field, and use tip diffractions to estimate the size of the fracture.

Finally, we investigate the properties of an anisotropic medium with vertical trans-

verse isotropic (VTI) symmetry. We can accurately measure the P-wave arrival along

a dense range of angles, but also the S-wave arrival, for selected directions. We there-

fore estimate the elastic constants and Thomsen parameters of the medium, as well as

the attenuation anisotropy. This series of results demonstrate the potential of laser-

based ultrasonics for laboratory measurements. In particular, we are able to rapidly
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acquire high-quality, densely sampled data in situations where contacting transducers

would introduce issues related to their size, and ringing. These findings pave the way

for wider use of laser ultrasonics in rock physics applications.

viii



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Laser Generation and Detection of Ultrasounds . . . . . . . . . . . . 3

1.2 Scattered Waves from a Single Fracture . . . . . . . . . . . . . . . . . 4

1.3 Scattering Amplitude of a Single Fracture under Load . . . . . . . . . 5

1.4 Laser Excitation of a Fracture Source for Elastic Waves . . . . . . . . 5

1.5 Measurements of the Elastic Properties of Shales . . . . . . . . . . . . 6

2 LASER GENERATION AND DETECTION OF ULTRASOUNDS . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Description of the Sensor . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Point Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 A Preliminary Line Scan . . . . . . . . . . . . . . . . . . . . . . . . . 13

ix



2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 SCATTERED WAVES FROM A SINGLE FRACTURE . . . . . . . . . . 15

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 General Expressions for Scattering by a Fracture . . . . . . . . . . . . 17

3.3 Scattering Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Scattering by a Plane Crack . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Laboratory Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.1 Measurements on a Blank Sample . . . . . . . . . . . . . . . . 33

3.5.2 Fractured Sample . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.3 Scattering Amplitudes . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 SCATTERING AMPLITUDE OF A SINGLE FRACTURE UNDER LOAD 44

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.1 Unloaded Sample . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.2 Loading and Unloading of the Sample . . . . . . . . . . . . . . 51

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 LASER EXCITATION OF A FRACTURE SOURCE

FOR ELASTIC WAVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

x



5.2.1 Fracture Tip Travel Times . . . . . . . . . . . . . . . . . . . . 62

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 MEASUREMENTS OF THE ELASTIC PROPERTIES OF SHALES . . 67

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Theoretical Description . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.3 Laboratory Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4.1 Travel Time Analysis . . . . . . . . . . . . . . . . . . . . . . . 75

6.4.2 Amplitude Analysis . . . . . . . . . . . . . . . . . . . . . . . . 79

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A IN-PLANE FOCUS CHARACTERIZATION . . . . . . . . . . . . . . . . 100

A.1 Focus Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.2 Effect on H/V Ratio and Phase . . . . . . . . . . . . . . . . . . . . . 101

B EFFECTS OF REFLECTIVE TAPE ON LASER ULTRASONICS MEA-

SUREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xi



B.1 Influence of Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

B.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

C DETAILS OF THE SCATTERING AMPLITUDE DERIVATION . . . . 107

C.1 Derivation of Nijkl for an Isotropic Medium . . . . . . . . . . . . . . . 107

C.2 Derivation of the Scattering Amplitude . . . . . . . . . . . . . . . . . 108

C.3 F (k) for a Circular Crack . . . . . . . . . . . . . . . . . . . . . . . . 111

D TIP-DIFFRACTION TIMES FROM FORM FACTOR . . . . . . . . . . 113

D.1 Derivation of the Tip-Diffraction Times . . . . . . . . . . . . . . . . . 113

xii



LIST OF FIGURES

2.1 A diagram of the optical setup. . . . . . . . . . . . . . . . . . . . . . 9

2.2 Top view of the experimental setup with the generation beam marked

in red and the receiver beam in green. . . . . . . . . . . . . . . . . . . 11

2.3 Unfiltered signal recorded by the interferometer 77 mm away from the

source. Positive values are radially outward and up. . . . . . . . . . . 12

2.4 Line scan for the out-of-plane component (left), and the in-plane com-

ponent (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Amplitude ratio (left) and phase difference (right) as a function of

source-detector offset. The average and theoretical values are plotted

in red (solid line) and black (dashed line), respectively. . . . . . . . . 14

3.1 Definition of the normal vector f̂ to the fracture (shaded), the directions

n̂ and m̂ of the incoming wave and outgoing waves, respectively. These

vectors are also the polarization vectors in case of P-waves. For S-

waves, the polarization vectors of incoming and outgoing waves are p̂

and q̂, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Definition of distance R between the observation point x and the center

of the fracture, and the distance r between the observation point x and

the integration point s on the fracture. . . . . . . . . . . . . . . . . . 24

xiii



3.3 Definition of angles for incoming and outgoing waves from a fracture

(shaded area). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Polarization vectors for outgoing shear waves. . . . . . . . . . . . . . 30

3.5 Geometry of the experimental setup with the angles as defined in Fig-

ure 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Displacement field for a homogeneous PMMA sample. . . . . . . . . . 35

3.7 Displacement field for the homogeneous PMMA sample after f -k fil-

tering of the Rayleigh wave, highlighting the direct P-wave arrival. . . 36

3.8 Photograph of the laboratory sample and zoom around the disk-shaped

fracture, with ruler units in cm. The sample is longitudinally cut in half

to display the fracture without optical deformation by the curvature of

the sample. The diameter of the fracture is ∼ 7 mm, and the diameter

of the cylinder is 50.8 mm. . . . . . . . . . . . . . . . . . . . . . . . . 37

3.9 Displacement field for the fractured PMMA sample with the source at

normal incidence (after f -k filtering). . . . . . . . . . . . . . . . . . . 38

3.10 Schematic of the experimental setup with directions of maximum spec-

ular reflection for the two source positions. . . . . . . . . . . . . . . . 39

3.11 Displacement field for the fractured PMMA sample, where the source

is at ψ = 50◦ incidence (after f -k filtering). . . . . . . . . . . . . . . . 40

xiv



3.12 Scattering amplitude for the source at normal incidence in blue (ψ =

0◦). The best theoretical fit corresponding to ηN = 10−11 m/Pa is plot-

ted in a thick, dashed red line. We also show the theoretical amplitudes

corresponding to half (dotted orange) and twice (dotted purple) this

value of ηN . The ranges of angles where the field cannot be measured

are marked in gray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.13 Scattering amplitude for the source at ψ = 50◦ incidence in blue. The

theoretical curve for ηN = 10−11 m/Pa and ηT = 10−12 m/Pa is plotted

with a thick, dashed red line. We also show the theoretical amplitudes

corresponding to one tenth (dotted orange) and ten times (dotted pur-

ple) this value of ηT . We see here that the value of ηT is not well

constrained for this experimental configuration. The ranges of angles

where the field cannot be measured are marked in gray. . . . . . . . . 42

4.1 Schematic of the experimental setup. The source-receiver angle is fixed

and the fracture rotates in respect to both source and receiver. . . . . 48

4.2 Photograph of the laboratory setup, including the source laser beam,

laser receiver, load gauge above the sample and the load screw on top

of the assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Displacement field for the unloaded sample. Left: out-of-plane chan-

nel, right: in-plane channel. Dark and light green dashed lines mark

scattered arrivals, light green marks converted ones. Purple dashed

lines mark reflections from the backwall of the sample, blue dashed

lines mark mode conversions from the backwall. . . . . . . . . . . . . 49

xv



4.4 Measured (solid lines) and fitted amplitudes (dashed lines) for the P-

P and SV-SV scattered events with an unloaded sample. From the

fit, we get a = 3.14 ± 0.19 mm, ηN = 1.38 ± 0.20 · 10−11 m/Pa and

ηT = 2.69± 0.34 · 10−11 m/Pa. . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Covariance matrix resulting from the least square inversion of the un-

loaded scattering data. This matrix is computed with the parameters

expressed in units so that their values are between one and ten, with

a in mm, the compliances in 10−11 m/Pa, and θ0 in degrees. . . . . . 52

4.6 Measured (solid lines) and fitted amplitudes (dashed lines) for the P-P

and SV-SV scattered events with a loaded sample at 11.0 MPa. From

the fit we get a = 3.32± 0.22 mm, ηN = 0.77± 0.14 · 10−11 m/Pa and

ηT = 2.14± 0.29 · 10−11 m/Pa. . . . . . . . . . . . . . . . . . . . . . . 52

4.7 Estimates of the fracture radius a (in blue), and the normal and tan-

gential compliances, ηN (in red) and ηT (in green), respectively, during

the loading cycle. The errorbars correspond to the 95% confidence

intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.8 Amplitudes of the sample backwall reflection at zero and maximum

stress (11.0 MPa). While there is no significant change introduced

by the uniaxial stress, we observe a maximum in the reflected PP

amplitude at angles between 0 and 10◦, corresponding to the forward-

scattering direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xvi



4.9 Schematic of pore shape responses. Left, an elongated pore is com-

pliant to dynamic strains normal to the direction of elongation (blue

arrows). This is analog to an unloaded fracture. Right, after apply-

ing a static load (represented by red arrows), the pore shape becomes

round and stiff to the dynamic stain (blue arrows); this is analog to

the loaded fracture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Top view of the experimental setup for direct fracture excitation. The

laser source beam (red) excites elastic waves (blue) at S1. . . . . . . . 60

5.2 Displacement field generated by excitation of the fracture. fP is the P-

wave generated at S1 and traveling directly to the receiver. PfP is the

P-wave generated at S2 and scattered by the fracture before reaching

the receiver. fPP is the P-wave generated at S1, traveling away from

the receiver before bouncing back to the sample surface. Finally, PP is

the P-wave generated at S2, that travels across the sample and bounces

back to the receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Top view of the experimental setup for elastic-wave excitation at the

sample surface. The laser source beam (red) excites elastic waves (blue)

at S2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Displacement field generated by excitation at the sample interface.

Signal for t < 3 µs corresponds to noise generated by the laser source,

and to the direct P-wave traveling directly from the source S1 to the

receiver. Other arrivals are defined in Figure 5.2. . . . . . . . . . . . 63

5.5 Detailed view of the scattered (PfP) arrival. The orange curves repre-

sent the tip arrival times computed from Equation (5.1). . . . . . . . 64

xvii



5.6 Detailed view of the direct fracture excitation arrival. The purple

curves represent the tip arrival times computed from Equation (5.3). . 66

6.1 Top view of the two shale samples measured in this study. Lamina-

tion is clearly observed in sample MSH, while sample SHC has visible

cracks, but these are not captured in this photograph. . . . . . . . . . 70

6.2 Top view schematic of the experimental setup, with the directions used

here. x3 is the axis of rotational symmetry, and the plane (x1, x2)

is parallel to the beddings. The phase and group angles (θ and ψ,

respectively) are zero when the source and receiver are aligned with x3. 73

6.3 Photograph of the experimental setup from the top. The source laser

beam arrives from the upper left corner of the picture and reflects off

a mirror pointing towards the sample, while the laser receiver is at the

bottom of the photo. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 Laser ultrasonic waveforms for the MSH sample after normalization

and band-pass filtering between 50 kHz and 5 MHz. The black line

marks our first break picks. It is already apparent in this figure that

the central frequency of the first arrival increases from the slow to the

fast direction (group angle going from 0◦ to 90◦), while the attenuation

simultaneously decreases. . . . . . . . . . . . . . . . . . . . . . . . . . 75

xviii



6.5 Laser ultrasonic waveforms for the SHC sample after normalization

and band-pass filtering between 50 kHz and 5 MHz. The black line

marks our first break picks. The attenuation is high enough along

x3 (corresponding to a zero group angle) that picking the first break

becomes difficult. For this sample, variations in attenuation and fre-

quency content as a function of angle are even more obvious than for

sample MSH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.6 Measured laser ultrasonic P-wave velocity for MSH shale (black line).

The blue line represents the best group velocity fit to the data for a

c13=3.8 GPa. Squares are data acquired with transducers at three angles. 77

6.7 Measured laser ultrasonic P-wave velocity for MSH shale (black line).

The blue line represents the best group velocity fit to the data for

a c13=11.6 GPa and c55=10.6 GPa. Squares are data acquired with

transducers at three angles. . . . . . . . . . . . . . . . . . . . . . . . 78

6.8 Displacement field along the vertical (black) and horizontal (red) com-

ponents, measured in the slow direction (θ = ψ = 0). The gray bars

mark the first break pick for each component. The dotted blue line

is a signal acquired using shear transducers as source and receiver for

comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.9 Amplitude of the first break for sample MSH. The lack of smoothness of

the curve is due to the uncertainties in the amplitude measurement. We

can, however, distinctly identify two high-amplitude peaks for group

angles around 90◦ and 270◦, corresponding to the x1 direction and

consistent with velocity anisotropy observations. . . . . . . . . . . . . 81

xix



6.10 Experimental amplitude smoothed with a running average (blue), and

wave attenuation anisotropy least-square fit (red) for sample MSH,

using Equation (6.10). The best fit is obtained for δQ = −0.80± 0.23

and εQ = −0.67± 0.03. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.1 RMS noise displacement (in picometer) measured on the in-plane (cir-

cles) and out-of-plane (squares) channels as the beam looses focus. The

RMS value is taken over the 0-20 MHz bandwidth. . . . . . . . . . . 101

A.2 Ratio (squares) and phase difference (circles) dependency versus focus

quality for a Rayleigh wave detection at 50 mm offset. . . . . . . . . . 102

B.1 Time arrivals of a direct P-wave measured on an aluminum sample

with different tapes. The addition of copper or aluminum tape does not

modify the amplitudes, but adds a delay of 0.02 µs for the aluminum

tape and 0.06 µs for the copper tape. . . . . . . . . . . . . . . . . . . 105

B.2 Time arrivals of a direct S-wave measured on an aluminum sample with

different tapes. The addition of copper or aluminum tape does not

modify the amplitudes, but adds a delay of 0.16 µs for the aluminum

tape and 0.67 µs for the copper tape. . . . . . . . . . . . . . . . . . . 106

xx



LIST OF TABLES

6.1 Summary of the elastic coefficients (in GPa) and corresponding anisotropy

Thomsen parameters (unitless) for each sample. . . . . . . . . . . . . 78

xxi



1

CHAPTER 1:

INTRODUCTION

Characterizing the elastic properties of complex media with elastic waves is a challeng-

ing problem. Nevertheless, elastic waves propagating through either non-scattering

or scattering materials carry important information about their internal structure.

Generally, heterogeneities vary in size, but scatterers on the order of a wavelength

are an especially difficult topic. For example, faults and fractures are important

features of the subsurface. They can act as conduits or barriers to fluid flow of hydro-

carbons, water, and magma (Haney et al., 2005; Brandsdóttir and Einarsson, 1979).

Changes in the fracture system lead to changes in scattered waves (Groenenboom

and Fokkema, 1998; Groenenboom and van Dam, 2000; Pyrak-Nolte, 2000), as well

as wave attenuation and seismic anisotropy. Collettini et al. (2009) show that the

mechanical properties of fractures and fault zones are related to the fabric and micro-

structure of these features. Understanding the interaction of fractures with elastic

waves is crucial in order to characterize fracture properties remotely.

Historically, fractures have been studied for two end-member situations. When

the fracture size is small compared to the elastic wavelength, wave propagation

is expressed in terms of effective medium theory (Crampin, 1981; Hudson, 1981).
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Changes in fracturing lead to changes in coda waves as well as attenuation and seis-

mic anisotropy. Conversely, large fractures compared to the wavelength are treated

like regular interfaces, and are characterized by their reflection and transmission co-

efficients (Pyrak-Nolte et al., 1990b; Pyrak-Nolte and Nolte, 1992; Zhu and Snieder,

2002). On the other hand, for multiple sets of parallel fractures that are small com-

pared to the dominant wavelength, wave propagation can be expressed in terms of

effective medium theory (Crampin, 1981; Hudson, 1981; Schoenberg and Sayers, 1995;

Schoenberg and Douma, 1988). This theory accounts for an effective velocity and at-

tenuation across many parallel slip interfaces. Pyrak-Nolte et al. (1990b) show that

waves in such a medium are dispersive in nature and present laboratory anisotropy

measurements in agreement with effective medium theory. In the case of an effective

medium, fracture information can be obtained from laboratory measurements of rock

properties, including velocity and attenuation anisotropy (Hsu and Schoenberg, 1993;

Kachanov and Sevostianov, 2005).

Traditionally, laboratory measurements of elastic rock properties in general, whether

they intend to characterize fractures, attenuation, or anisotropy, are done using strain

gages at low frequencies (in the seismic range, up to a few tens of Hz), or, at ultra-

sonic frequencies, with contact transducers (Pyrak-Nolte et al., 1990b; Groenenboom

and Falk, 2000). Such laboratory setups allow for measurements in load cells, or

under confining pressure. However, their contacting character makes them subject to

coupling issues, rending experiments involving multiple sources and receiver locations

very time-consuming. Moreover, piezoelectric transducers at ultrasonic frequencies

have a narrow frequency response, and are sometimes prone to ringing. Their size is

often in the order of the wavelength, so they can act as scatterers themselves. Trans-
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ducers can also be used remotely in water-based experiments, where water is used as a

couplant between the studied material and the sources and receiver. In this case, the

wavefield is not strictly measured at the sample surface, but rather a some short dis-

tance away from it. To avoid some of these challenges, elastic waves in the ultrasonic

range can be generated and detected using laser beams. Laser sources and receivers

are marginally used for seismic modeling (Pouet and Rasolofosaon, 1990; Bretaudeau

et al., 2011), and anisotropy estimation (Lebedev et al., 2011). These measurements

involve a laser source that generates elastic waves via thermal expansion, and a laser

interferometer as a receiver.

In this dissertation, we use and advance this technique, known as laser ultra-

sonics, and apply it to rock properties measurements and fracture characterization.

Unprecedented data quality allowed us to push advances in understanding fractures

and anisotropic materials. Each of the chapters is briefly introduced next.

1.1 Laser Generation and Detection of

Ultrasounds

The development and characterization of the two-component laser interferometer used

throughout this work is detailed in Chapter 2. The majority of it is published as Blum

et al. (2010). We first describe how the laser ultrasonic interferometer collects light

scattered away from the angle of incidence to provide the absolute ultrasonic displace-

ment for both the out-of-plane and an in-plane component. We then calibrate this

new system by measuring the radial and vertical polarization of a Rayleigh wave in

an aluminum half-space. The estimated amplitude ratio of the horizontal and vertical
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displacement agrees well with the theoretical value. The phase difference exhibits a

small bias (∼ 10%) between the two components due to a different frequency response

between the two processing channels of the prototype electronic circuitry. The ac-

quisition of a line scan with the interferometer moving away from the Rayleigh wave

source demonstrates the scanning capabilities of the laboratory setup.

1.2 Scattered Waves from a Single Fracture

Chapter 3 first introduces an analytic expression of the scattering amplitude of cir-

cular fractures under some assumptions, and then describes the experimental results

confirming the theoretical results. It is for the most part published as Blum et al.

(2011b). While previous analytic descriptions of scattering mostly deal with very

large or very small fractures (compared to the dominant wavelength), in this chapter

we present an analytic solution for the scattering of elastic waves from a fracture

of arbitrary size. Based on the linear-slip model for a dry fracture, we derive the

scattering amplitude in the frequency domain under the Born approximation for all

combinations of incident and scattered wave modes. We then verify the theory by

performing laser-based ultrasonic laboratory measurements of a single fracture in

clear plastic. Our analytic results match the experimental data, and allow us to esti-

mate the orientation of the fracture, as well as quantify the normal component of its

compliance.
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1.3 Scattering Amplitude of a Single Fracture

under Load

In Chapter 4, we show that with a well-designed, non-contact experiment, we can

measure the amplitude of the displacement field scattered by a disk-shaped crack,

without and with static load. Moreover, by looking at both the P- to P-wave and

S- to S-wave scattering modes, we estimate the size, orientation, and both normal

and tangential components of the compliance of the crack, again assuming a linear-

slip behavior under the conditions described in Chapter 3. Finally, we show that by

increasing uniaxial static stress in the plane of the fracture, the normal compliance

decreases linearly.

1.4 Laser Excitation of a Fracture Source for

Elastic Waves

Beyond the study of scattering by the fracture of an incoming elastic wave, in Chap-

ter 5, published as Blum et al. (2011a), we show that elastic waves can be directly

excited at a fracture inside a transparent sample. Indeed, by focusing laser light

directly onto this fracture, we generate an internal source of elastic waves. The asso-

ciated displacement field, measured by our laser interferometer, has pronounced waves

that are diffracted at the fracture tips. We confirm that these are tip diffractions from

direct excitation of the fracture by comparing them with tip diffractions from scat-

tered elastic waves excited on the exterior of the sample, as in the previous chapters.

Being able to investigate fractures — in this case, in an optically-transparent material
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— via direct excitation opens the door to more detailed studies of fracture properties

in general.

1.5 Measurements of the Elastic Properties of

Shales

Finally, we present a laser-based, non-contacting method to measure elastic anisotropy

of horizontal shale cores. We estimate the elastic constants c11, c33, and c55 directly

from ultrasonic waveforms, and c13 from a least-squares fit of estimated to modeled

group velocities. Significant P-wave velocity and attenuation anisotropy in dry shales

are almost surely exaggerated by delamination of clay platelets and microfracturing,

but provide an illustration of the new measurement technique. While challenges lie

ahead to measure preserved shales at in situ conditions in the future, we discuss the

fundamental advantages of the proposed method over more traditional laboratory

measurements involving contact transducers. Chapter 6 is published as Blum et al.

(2013).
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CHAPTER 2:

LASER GENERATION AND DETECTION OF

ULTRASOUNDS

2.1 Introduction

Ultrasonic measurements are commonly used in scaled modeling for seismology. Con-

tacting piezoelectric transducers have traditionally been used as both source and

receiver, but using these can result in mechanical ringing and variations in coupling.

In addition, transducers are on the order of the size of the resonant wavelength, which

can make them scatter the wavefield. Laser-based ultrasound has become an alter-

native non-contacting technique to transducers (Scruby and Drain, 1990). Ultrasonic

laser interferometers and vibrometers have a broadband response, going from kHz to

GHz or more, and a sub-millimeter spot size. Since these laser-based sensors do not

require physical coupling, one can scan a surface under computer control.

Generating elastic waves is done by illuminating a solid sample with a high-energy

pulsed laser. We use a Q-switched Nd:YAG laser, generating a pulse of ≈ 15 ns at a

wavelength of 1064 nm. When an energy pulse from the laser hits an optically absorb-
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ing surface, part of that energy is absorbed and converted into heat. The resulting

localized heating causes thermal expansion, which in turn results in elastic waves in

the ultrasonic range (Scruby and Drain, 1990). The laser source has a repetition rate

of up to 8 Hz and generates highly repeatable pulses. The temperature distribution

resulting from localized laser heating is extensively described in Section 5.2 of Scruby

and Drain (1990). In particular, Figure 5.3 shows that in metals, the temperature

rise is steep, but then decreases to less than half the maximum within a time on

the order of the pulse length. In any case, the temperature increase due to a laser

pulse at the time just prior to the following pulse is on the order of a few hundredth

of a Kelvin, and we therefore neglect the temperature increase of the sample in the

following experiments.

Typically, only the out-of-plane component of the wavefield is recorded with laser-

based ultrasonic sensors. Nishizawa et al. (1998) performed two mutually orthogonal

laser measurements at 45◦ incidence in addition to a normally incident measurement

to get the in-plane component of the wavefield. Cand et al. (1994), on the other

hand, used a two-channel confocal Fabry-Perot interferometer and collected scattered

light in two symmetrical directions with respect to the plane of normal incidence.

Here, we show that a new interferometer design allows the detection of both the out-

of plane and the horizontal in-plane displacement components, simultaneously. As

an example, we describe calibration measurements of the Rayleigh wave in a large

aluminum sample.
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2.2 Description of the Sensor

The laser ultrasonic receiver is based on a constant-wave laser generating a stable

250 mW beam at a wavelength of 532 nm. The beam is split into a probe beam,

which is reflected by the sample surface, and a reference beam, which follows a fixed

optical path inside the device. The reference and object beam are combined in a

photo-refractive crystal to form a real-time hologram that diffracts each beam into

the direction of the other beam.

Figure 2.1: A diagram of the optical setup.

The optical setup is shown in Figure 2.1. We take advantage of the roughness of

the material surface by collecting the light scattered away from the angle of incidence,

which carries information on the in-plane displacement. After the reference and probe

wavefront interfere in the photo-refractive crystal, the circular beam goes through a

cylindrical lens and is imaged on a linear 16-element photodiode. The optical setup

is symmetric, so that elements can be treated in pairs corresponding to the same
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absolute angle. We number the elements e±i with i = 1 for the center pair and i = 8

for the outside pair; positive-numbered elements belong to one half of the photo diode

and negative-numbered elements to the other. Each detector element corresponds to

an angle θi at which the collected light is scattered by the sample surface. Since out-of-

plane motion is symmetric with respect to the probe beam axis, but in-plane motion

is asymmetric, the motion recorded by the element ei is s±i = cos(θi)uz ± sin(θi)ux,

where uz and ux are the displacements along the (out-of-plane) z-axis and (horizontal

in-plane) x-axis.

For small angles θi, we find that

uz = (si + s−i)/(2 cos(θi)) ≈ (si + s−i)/2

ux = (si − s−i)/(2 sin(θi)) ≈ (si − s−i)/2θi.

As a result, the out-of-plane displacement is obtained by summing over all elements.

For the in-plane motion, each element pair is treated with a differential amplifier

proportional to 1/θi, before the resulting signals are summed together.

To calibrate the measured particle displacements, a piezoelectric transducer mounted

with a mirror introduces a known displacement at a low frequency fc on the reference

beam. This signal is band-pass filtered and feeds an amplification loop controlled by

the reference voltage Vref, to calibrate the in- and out-of-plane signals at 100 mV/nm.

2.3 Point Measurement

We measure the amplitude and phase of a Rayleigh wave in a homogeneous aluminum

block (214 x 232 x 277 mm). Elastic waves are generated by the laser source. The
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Al sample

generation
laser

ultrasonic receiver

Figure 2.2: Top view of the experimental setup with the generation beam marked in
red and the receiver beam in green.

source beam is partially focused, resulting in a circular source spot approximately

4 mm in diameter and 77 mm away from the receiver (Figure 2.2). We band-pass

filter the signal between 300 and 900 kHz, so that all edges of the sample, as well as the

source spot, are tens of wavelengths away. We therefore consider the detection to be

in the far field, where the wave modes are fully established. The Rayleigh wave in this

effectively homogeneous isotropic half-space is characterized by elliptical retrograde

motion at the free surface; the horizontal and vertical components of the displacement

are 90◦ out of phase. Furthermore, the ratio between the maximum amplitudes of the

two components (the so-called H/V ratio) is 2
√

1− c2
x/β

2/ (2− c2
x/β

2), where β is the

shear wave velocity and cx the Rayleigh wave velocity (Malischewsky and Scherbaum,

2004; Stein and Wysession, 2002). Based on our data and previous studies in this
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sample, α = 6060 m/s, β = 3120 m/s and cx = 2905 m/s, resulting in an H/V ratio

of 0.64.
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Figure 2.3: Unfiltered signal recorded by the interferometer 77 mm away from the
source. Positive values are radially outward and up.

The absolute displacements from both channels are presented in Figure 2.3. We

estimate the H/V ratio to be 0.64 ± 0.02 from the discrete amplitudes in the power

spectrum and obtain the phase difference by subtracting the unwrapped phase angles

of the complex part of the Fourier transform, similarly to Cand et al. (1994). However,

the phase difference between the in- and out-of-plane wavefields is 97± 1◦, a bias of

7◦. All error bars represent the uncertainty at 2σ, where σ is the standard deviation

in the phase and amplitude calculation over all frequencies, respectively. The most

significant source of error in our H/V estimates is due to the in-plane signal, as

described in details in Appendix A.

The phase offset originates from a difference in the frequency response between

the electronic circuitry for calculation of the in-plane and out-of-plane signals, as
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Figure 2.4: Line scan for the out-of-plane component (left), and the in-plane compo-
nent (right).

explained previously. The phase difference might be eliminated by carefully matching

the frequency response of both in-plane and out-of-plane circuits.

2.4 A Preliminary Line Scan

We place the receiver on a motorized stage to record the ultrasonic signals at source-

detector offsets between 74 and 101 mm, acquired every half millimeter (Figure 2.4).

Once we focus the beam in the center of the acquisition line, the entire scan is

automatic and lasts on the order of minutes. Figure 2.5 displays an average H/V

ratio of 0.63 ± 0.05, and a phase difference of 100 ± 4◦. We attribute variations in

the scan results to small variations in detector focus caused by a variable distance to

the sample on the order of tens of µm. Because a large collecting angle is required

for good in-plane sensitivity, it is critical to be well positioned at the focus to achieve

accurate in-plane measurements. We measure this sensitivity to focus positioning in
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black (dashed line), respectively.

Appendix A.

2.5 Conclusion

A new laser interferometer takes advantage of the surface roughness of the sample

for light to scatter away from the angle of the incident laser beam. The reflected

light is recorded on a linear array of photo diodes, after which in- and out-of-plane

particle displacements are determined. First results indicate that the amplitudes

match theoretical calculations. The phase information is slightly biased because of a

difference in the frequency response of electronic circuitry to measure in- and out-of-

plane motion. The sensor allows for rapid scanning of the wavefield, which we will

illustrate in the following chapters.
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CHAPTER 3:

SCATTERED WAVES FROM A SINGLE

FRACTURE

3.1 Introduction

Faults and fractures in the subsurface can act as conduits or barriers to fluid flow of

hydrocarbons, water, and magma (Haney et al., 2005; Brandsdóttir and Einarsson,

1979). Changes in fracturing lead to changes in coda waves as well as attenuation

and seismic anisotropy. Collettini et al. (2009) show that the mechanical properties

of fractures and fault zones are related to the fabric and micro-structure of these fea-

tures. Understanding the interaction of fractures with elastic waves is crucial in order

to characterize fracture properties remotely. In hydrocarbon reservoirs, hydraulic

fractures are generated to stimulate production and can be monitored with active

or passive sources (Wills et al., 1992; Meadows and Winterstein, 1994). Moreover,

scattered waves can be used as a tool for monitoring fracture growth and fracture

evolution (Groenenboom and Fokkema, 1998; Groenenboom and van Dam, 2000;

Pyrak-Nolte, 2000). Besides geophysical applications, scattering from fractures is
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important in non-destructive testing applications (Langenberg et al., 2002).

Gubernatis et al. (1977a) derive the general integral equation for an elastic scat-

terer, which they solve using the Born approximation (Gubernatis et al., 1977b; Wu

and Aki, 1985). Their work is based on a volumetric flaw with specified contrast

in density and elastic properties. In contrast, the linear slip model handles planar

fractures of negligible aperture by linking the discontinuity of the displacement field

at the fracture plane to the traction at the slip interface (Schoenberg, 1980). This

model can be directly applied to fractures with a spatial extent comparable to the

wavelength. The extreme case where the fracture plane is infinite leads to frequency-

dependent reflection and transmission coefficients (Pyrak-Nolte et al., 1990b; Pyrak-

Nolte and Nolte, 1992; Zhu and Snieder, 2002). The linear slip model is often used

to describe dry fractures (Coates and Schoenberg, 1995), and can also be used for

fluid-filled fractures (Wu et al., 2005; Groenenboom and Falk, 2000). It was also

investigated experimentally (Pyrak-Nolte et al., 1992, 1996). In addition, Sánchez-

Sesma and Iturrarán-Viveros (2001) use the Sommerfeld optical diffraction theory to

derive an approximate analytic expression for the scattering of SH-waves by a planar

fracture of finite width (or opening) and infinite length. Fang et al. (2010) present

finite-difference numerical simulations of the scattering of P-waves by a finite circular

fracture.

For multiple sets of parallel fractures of a small size compared to the dominant

wavelength, wave propagation can be expressed in terms of effective medium the-

ory (Crampin, 1981; Hudson, 1981; Schoenberg and Sayers, 1995; Schoenberg and

Douma, 1988; Kachanov and Sevostianov, 2005). This theory accounts for an ef-

fective velocity and attenuation across many parallel slip interfaces. Pyrak-Nolte
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et al. (1990a) show that waves in such a medium are dispersive in nature and present

laboratory anisotropy measurements in agreement with effective medium theory.

Here, we apply the linear slip model to a single finite planar fracture under the

Born approximation. From this, we develop an analytic expression for the general

scattering amplitude without making assumptions about the fracture size or wave-

length, and therefore are not restricted to small scatterers as used in earlier studies

(e.g., Gubernatis et al. 1977b; Smyshlyaev and Willis 1994). We derive expressions

for the scattering amplitude in the frequency domain for every combination of incom-

ing and scattered body wave modes. We illustrate this theoretical work with a novel

laboratory experiment by estimating the components of the compliance for a single

crack generated in a clear plastic sample, and show that the measured scattering

amplitude is explained by values of the compliance that are consistent with values

reported in other studies.

3.2 General Expressions for Scattering by a

Fracture

We present the derivation in a frequency domain formulation based on the follow-

ing Fourier convention: f(t) =
∫
F (ω)e−iωtdω. For brevity, we do not make the

frequency-dependence explicit, and use the Einstein summation convention. We first

derive a general expression of the wave scattered by a fracture of arbitrary size. The

stress across the fracture is continuous, but the displacement across the fracture is

not necessarily continuous. We denote the discontinuity in the displacement by [u].

According to Equation (3.2) of Aki and Richards (2002), the displacement at location
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x due to the discontinuity of the displacement at the fracture Σ is given by

un(x) =

∫∫
Σ

[ui(s)] cijklfjGnk,l(x, s)d2s , (3.1)

where
∫∫

Σ
(· · · )d2s denotes the integration over the surface of the fracture, f̂ is the

normal vector to the fracture as shown in Figure 3.1, cijkl is the elasticity tensor, and

Gnk,l is the gradient of the displacement Green’s function defined as

Gnk,l(x, s) =
∂Gnk(x, s)

∂sl
. (3.2)

! 
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Figure 3.1: Definition of the normal vector f̂ to the fracture (shaded), the directions
n̂ and m̂ of the incoming wave and outgoing waves, respectively. These vectors are
also the polarization vectors in case of P-waves. For S-waves, the polarization vectors
of incoming and outgoing waves are p̂ and q̂, respectively.

We next relate the discontinuity in the displacement to the stress field. We follow

Schoenberg (1980) and assume that the slip discontinuity is related to the traction T

at the fracture by a compliance matrix η:

[ui] = ηirTr . (3.3)

Although this approximation may break down towards the edges of the fracture, it is
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commonly used in geophysics and considered accurate in far-field (Wu et al., 2005).

Expressing the traction in the stress σij and the normal vector to the fracture yields

[ui] = ηirσrsfs , (3.4)

hence

[ui] cijklfj = ηirfsfjcijklσrs . (3.5)

Renaming the indices (r → i, s → j, i → p, j → q) and inserting this result in

Equation (3.1) gives

un(x) =

∫∫
Σ

σijNijklGnk,l(x, s)d2s , (3.6)

with

Nijkl = ηpifjfqcpqkl . (3.7)

We assume that the properties of the fracture can be characterized by a normal

compliance ηN and a shear compliance ηT . In that case, one can use a dyadic decom-

position to write the compliance matrix as η = ηN f̂ f̂T + ηT (I − f̂ f̂T ), where I is the

identity matrix. This identity is, in component form, given by

ηij = ηNfifj + ηT (δij − fifj) , (3.8)

where δij is the Kronecker delta. We show in Appendix C.1 that this compliance

matrix in an isotropic medium gives

Nijkl = ληNfifjδkl + 2µ (ηN − ηT ) fifjfkfl + µηT (δikfjfl + δilfjfk) , (3.9)
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where λ and µ are the Lamé parameters. Inserting Equation (3.9) into Equation (3.6)

does not give the scattered waves because Expression (3.6) constitutes an integral

equation for the scattered field. (The stress σij in the integrand of Equation (3.6)

depends on the displacement field that we aim to compute.) We solve this integral

equation in the Born approximation by replacing the stress in the right-hand side of

Equation (3.6) by the stress σ
(0)
ij for a P-or S-wave propagating through a homogeneous

medium, depending on the type of incident wave. In that case, the scattered wave is

given by

un(x) =

∫∫
Σ

σ
(0)
ij NijklGnk,l(x, s)d2s . (3.10)

Since Nijkl is known, we can solve the scattering problem using the Born approxi-

mation. Replacing the stress field σij by the stress field σ
(0)
ij of the incident wave is

only valid when the perturbation of the stress state by the fracture is small. This is

certainly not valid in the case of fluid-filled fractures, because for such fractures the

shear traction vanishes at the fracture surface. For this reason, the theory presented

here is only applicable to dry fractures.

Consider first an incoming plane P-wave that propagates in the n̂-direction (Fig-

ure 3.1). Since such a wave is polarized in the longitudinal direction,

u(P )(s) = n̂eikα(n̂·s) , (3.11)

where

kα = ω/α , (3.12)

with α the P-wave velocity and ω the angular frequency. For an isotropic medium
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σij = λδij∂kuk + µ(∂iuj + ∂jui) and the stress associated with this plane P-wave is

σ
(P )
ij = ikα (λδij + 2µninj) e

ikα(n̂·s) . (3.13)

For a plane S-wave arriving from the n̂-direction and polarized in the p̂-direction

(Figure 3.1), the displacement is given by

u(S)(s) = p̂eikβ(n̂·s) , (3.14)

where

kβ = ω/β , (3.15)

and β is the S-wave velocity. The shear wave is transversely polarized, hence (p̂ · n̂) =

0. For an isotropic medium, the associated stress is given by

σ
(S)
ij = ikβµ (nipj + njpi) e

ikβ(n̂·s) . (3.16)

Inserting the stress (3.13) or (3.16) into Equation (3.10) gives the scattered field for

incoming P- and S-waves, respectively.

3.3 Scattering Amplitudes

The scattered field can effectively be expressed by a scattering amplitude (Merzbacher,

1970). According to Expression (3.10), the scattered field depends on Gnk,l, which is

the gradient of the Green’s function. Expression (4.29) of Aki and Richards (2002)

gives the gradient of the Green’s function in the time domain for a homogeneous,
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isotropic infinite space. Retaining the far-field terms only and replacing the time

derivative with −iω gives, in the frequency domain

Gnk,l(x, s) =
−iωmkmnml

4πρα3r
eikαr +

−iω(δnk −mkmn)ml

4πρβ3r
eikβr , (3.17)

where the unit vector m̂ defines the direction of the outgoing wave (Figure 3.1) and

r = |x− s| denotes the distance between the observation point x and the integration

point s on the fracture (Figure 3.2). In dyadic form, the term (δnk − mkmn) can

be written as I − m̂m̂T =
∑

pol q̂q̂T , where q̂ is the polarization of the outgoing

S-wave (Figure 3.1), and
∑

pol represents the sum over the two orthogonal shear

wave polarizations perpendicular to the direction of the outgoing wave. With this

replacement, Expression (3.17) can be written as

Gnk,l(x, s) =
−iωmkmnml

4πρα3r
eikαr +

−iω
∑

pol qnqkml

4πρβ3r
eikβr . (3.18)

We choose the origin of our coordinate system near the center of the fracture, and

denote the distance from the origin to the observation point by R (Figure 3.2). When

this distance is large compared to the size of the fracture, we can approximate

r = R− (m̂ · s) , (3.19)

where m̂ is the unit vector from the center of the fracture to the observation point

x (Figure 3.1), and s the location of the integration point on the fracture. Equa-

tion (3.18) varies most rapidly with r through the exponents eikr. For this reason, we

replace r by Equation (3.19) in the exponents, and replace r in the denominator by
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R. Inserting these results into Equation (3.10) gives the following expressions for the

radiated P- and S-waves:

u(P )
n (x) =

∫∫
Σ

σ
(0)
ij Nijkle

−ikα(m̂·s)d2s

(
−iωmnmkml

4πρα3

)
eikαR

R
, (3.20)

u(S)
n (x) =

∫∫
Σ

σ
(0)
ij Nijkle

−ikβ(m̂·s)d2s

(−iω∑pol qnqkml

4πρβ3

)
eikβR

R
. (3.21)

In these expressions, σ
(0)
ij is given by Equations (3.13) or (3.16), depending on whether

the incoming wave is a P-wave or S-wave. We next define the scattering amplitude f

for outgoing P- and S-waves by

u(P )
n (x) = f·P

eikαR

R
mn , (3.22)

u(S)
n (x) =

∑
pol

f·S
eikβR

R
qn . (3.23)

These equations are similar to the general expression of the scattering pattern in the

far-field for a heterogeneous inclusion, such as Equation (6.72) in Martin (2006), see

also Gubernatis et al. (1977a). Note the presence of the polarization vectors for both

types of waves (mn and qn, respectively). In the following, fP,P is the scattering

amplitude from a P-wave into a P-wave, fS,P is an S to P conversion, etc. Since

the incoming wave in Equations (3.22) and (3.23) can still be either a P-wave or

an S-wave, we use the dot (·) in the first argument of the scattering amplitudes. A

comparison with Equations (3.20) and (3.21) shows that the scattering amplitude is

given by

f·P =

∫∫
Σ

σ
(0)
ij Nijkle

−ikα(m̂·s)d2s

(
−iωmkml

4πρα3

)
, (3.24)



24

f·S =

∫∫
Σ

σ
(0)
ij Nijkle

−ikβ(m̂·s)d2s

(
−iωqkml

4πρβ3

)
. (3.25)
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Figure 3.2: Definition of distance R between the observation point x and the center of
the fracture, and the distance r between the observation point x and the integration
point s on the fracture.

In the following expressions, it is convenient to use a form factor F (k) that is

defined as

F (k) =

∫∫
Σ
ei(k·s)d2s∫∫

Σ
d2s

= A−1

∫∫
Σ

ei(k·s)d2s , (3.26)

where A is the surface area of the fracture. Explicit expressions for the scattering

amplitude follow by inserting Expressions (3.9) and (3.13) or (3.16) into the equations

above. From here on, the polarization of the outgoing S-wave is explicitly defined

along q̂, as shown in Figure 3.1. As shown in Appendix C.2, this gives the following
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scattering amplitudes for the different types of scattering

fP,P (n̂; m̂) =
ω2

4πρα4
AF (kα(n̂− m̂))

{
λ2ηN + 2λµηN

(
(n̂ · f̂)2 + (m̂ · f̂)2

)
+ 4µ2(ηN − ηT )(n̂ · f̂)2(m̂ · f̂)2

+4µ2ηT (n̂ · m̂)(n̂ · f̂)(m̂ · f̂)
}
,

(3.27)

fP,S(n̂; m̂, q̂) =
ω2

4πραβ3
µAF (kαn̂− kβm̂)

{
2ληN(m̂ · f̂)(q̂ · f̂)

+ 4µ(ηN − ηT )(n̂ · f̂)2(q̂ · f̂)(m̂ · f̂)

+2µηT (n̂ · f̂)
(

(n̂ · q̂)(m̂ · f̂) + (n̂ · m̂)(q̂ · f̂)
)}

,

(3.28)

fS,P (n̂, p̂; m̂) =
ω2

4πρα3β
µAF (kβn̂− kαm̂)

{
2ληN(n̂ · f̂)(p̂ · f̂)

+ 4µ(ηN − ηT )(n̂ · f̂)(p̂ · f̂)(m̂ · f̂)2

+2µηT (m̂ · f̂)
(

(p̂ · m̂)(n̂ · f̂) + (n̂ · m̂)(p̂ · f̂)
)}

,

(3.29)

fS,S(n̂, p̂; m̂, q̂) =
ω2

4πρβ4
µ2AF (kβ(n̂− m̂))

×
{

4(ηN − ηT )(n̂ · f̂)(p̂ · f̂)(m̂ · f̂)(q̂ · f̂)

+ ηT (n̂ · q̂)(p̂ · f̂)(m̂ · f̂) + ηT (n̂ · f̂)(p̂ · q̂)(m̂ · f̂)

+ηT (n̂ · m̂)(p̂ · f̂)(q̂ · f̂) + ηT (n̂ · f̂)(p̂ · m̂)(q̂ · f̂)
}
.

(3.30)

Note that the P to P scattering amplitude fP,P (n̂; m̂) depends only on the directions

of incoming and outgoing waves, respectively, because these directions determine the

polarization of the incoming and outgoing P-waves. In contrast, the P to S scattering

amplitude fP,S(n̂; m̂, q̂) depends explicitly on the polarization of the outgoing S-wave

as well. This dependence of the S-wave polarization appears whenever an S-wave is
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involved, either as incoming or outgoing wave. Expressions (3.27) through (3.30) do

not change when f̂ is replaced by −f̂ . This reflects the fact that both f̂ and −f̂ are

normal to the fracture, and reversing the direction of the normal vector should not

change the scattering of waves.

For all incoming and outgoing waves in Equations (3.27)–(3.30), the form fac-

tor (3.26) is evaluated at wavenumber kin − kout, where kin is the wavenumber

of the incoming wave and kout is that of the outgoing wave. It may appear that

F (kin − kout) violates reciprocity because it turns into its complex conjugate upon

interchanging kin and kout. Reciprocity is, however, not violated for the expressions

of the scattered waves in Expressions (3.22) and (3.23). The exponential in these

expressions is given by exp(ikoutR), and the form factor contains another exponential

exp (i(kin − kout) · s). The combination of the exponentials gives a total contribution

exp (ikoutR + i(kin − kout) · s). Using Expression (3.19), and using that kout = koutm̂,

the phase is given by koutr+kout ·s+(kin−kout) ·s = koutr+kin ·s. This expression is

the sum of the phase of the incident plane wave and the outgoing spherical wave for

every integration point on the fracture, and the total scattered field obeys reciprocity.

3.4 Scattering by a Plane Crack

We next derive explicit expressions for the scattering amplitudes in terms of the

directions of the incoming and scattered waves for the special case of a plane crack

that is either small or circular. We define a crack to be “small” when the argument

(k · s) in Expression (3.26) is much smaller than 1. This is the case when

k‖a� 1 , (3.31)
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where k‖ is the absolute value of the component of k parallel to the crack, and a is

the size of the crack. In Equation (3.28), the form factor is given by F (kαn̂− kβm̂).

The incoming P-wave has wave number kαn̂, while the outgoing scattered S-wave has

wave number kβm̂. The difference kαn̂ − kβm̂ thus denotes the change in the wave

number during the scattering. In Expressions (3.27)–(3.30), the form factor F (k)

is always evaluated at the wave number change during the scattering. Therefore,

condition (3.31) does not necessarily imply that the fracture must be small compared

to a wavelength. For example, for forward scattering of P-waves, k‖ = kα(n̂−m̂) = 0

in Expression (3.27), and condition (3.31) is satisfied for a fracture of any size. When

condition (3.31) is satisfied, the exponent in Equation (3.26) can be ignored and

F (k) = 1 (small fracture). (3.32)

We show in Appendix C.3 that for a circular fracture with radius a

F (k) =
2

k‖a
J1(k‖a) (circular fracture), (3.33)

where J1 is the Bessel function of order 1. In the following, we retain F (k), but

Expressions (3.32) and (3.33) can be inserted for small cracks and circular cracks,

respectively. According to Expression (11.5) of Arfken and Weber (2001), J1(x) =

x/2 +O(x2), hence Expression (3.33) reduces to Equation (3.32) for a small crack as

k‖a→ 0, and this holds independently of the incidence and scattering angles.

In order to express the scattering amplitude in the angles that define the incoming

and outgoing waves, we must define these angles and the orientation of the fracture.

We use a coordinate system where the z-axis is perpendicular to the fracture, and the
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x-axis is chosen in such a way that the incoming wave propagates in the (x, z) plane

coming from the −x direction (Figure 3.3). The direction of the incoming wave makes

an angle ψ with the z-axis, while the direction of the outgoing wave is defined by the

angles θ and ϕ that are commonly used in a spherical coordinate system. Referring

to Figure 3.3, this means that the vector normal to the fracture and the directions of

incoming and outgoing waves are given by

f̂ =


0

0

1

 , n̂ =


sinψ

0

cosψ

 , m̂ =


cosϕ sin θ

sinϕ sin θ

cos θ

 . (3.34)

For a circular crack, these angles determine k‖. For example, for P to S scattering, it

follows from Expression (3.28), the definition of k‖, and Equation (3.34) that

k‖ P,S = (kαn̂− kβm̂)‖ =
√

(kα sinψ − kβ cosϕ sin θ)2 + (kβ sinϕ sin θ)2 . (3.35)

In the following, we do not make this dependence on the angles explicit, but it should

be kept in mind that for a circular crack one needs to account for the directions of

incoming and outgoing waves in F (k).

We next specify the polarization vectors for shear waves. Using the terminology

for layered media, we define a polarization vector q̂SH to be parallel to the fracture

(Figure 3.4). Following Figures 3.3 and 3.4, the polarization vector for the SH-wave

satisfies

q̂SH =


− sinϕ

cosϕ

0

 . (3.36)
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Figure 3.3: Definition of angles for incoming and outgoing waves from a fracture
(shaded area).

The other S-wave polarization (q̂SV ) is oriented in the plane spanned by the normal

vector f̂ and the propagation direction m̂ (Figure 3.4), and is given by

q̂SV = m̂× q̂SH =


− cosϕ cos θ

− sinϕ cos θ

sin θ

 . (3.37)

Since the fracture is finite, the label SH should not be taken to mean that the shear

wave with this polarization is decoupled from the SV polarization and the P-waves.

Indeed, the diffraction from the edges of the fracture contributes to non-zero scattering

amplitudes fSH,P and fSH,SV . The polarization vectors from incoming shear waves



30

follow from Expressions (3.36) and (3.37); by replacing ϕ→ 0 and θ → ψ, this gives

p̂SH =


0

1

0

 , p̂SV =


− cosψ

0

sinψ

 . (3.38)
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Figure 3.4: Polarization vectors for outgoing shear waves.

Inserting the direction vectors (3.34) and polarization vectors (3.36) and (3.37)

into Expressions (3.27) through (3.30) gives the angular dependence of the scattering

amplitude. The scattering amplitude, which is different for the two S polarizations,
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is given by

fP,P (n̂; m̂) =
ω2

4πρα4
AF (kα(n̂− m̂))

×
{

(λ+ µ)2ηN + (λ+ µ)µηN (cos 2ψ + cos 2θ)

+µ2ηN cos 2ψ cos 2θ + µ2ηT sin 2ψ sin 2θ cosϕ
}
,

(3.39)

fP,SH(n̂; m̂, q̂) =
ω2

4πραβ3
AF (kαn̂− kβm̂)

×
{
−µ2ηT sin 2ψ cos θ sinϕ

}
,

(3.40)

fP,SV (n̂; m̂, q̂) =
ω2

4πραβ3
AF (kαn̂− kβm̂)

×
{

(λ+ µ)µηN sin 2θ + µ2ηN cos 2ψ sin 2θ

−µ2ηT sin 2ψ cos 2θ cosϕ
}
,

(3.41)

fSH,P (n̂, p̂; m̂) =
ω2

4πρα3β
AF (kβn̂− kαm̂)µ2ηT cosψ sin 2θ sinϕ , (3.42)

fSV,P (n̂, p̂; m̂) =
ω2

4πρα3β
AF (kβn̂− kαm̂)

×
{

(λ+ µ)µηN sin 2ψ + µ2ηN sin 2ψ cos 2θ

−µ2ηT cos 2ψ sin 2θ cosϕ
}
,

(3.43)

fSH,SH(n̂, p̂; m̂, q̂) =
ω2

4πρβ4
AF (kβ(n̂− m̂))µ2ηT cosψ cos θ cosϕ , (3.44)

fSH,SV (n̂, p̂; m̂, q̂) =
ω2

4πρβ4
AF (kβ(n̂− m̂))

(
−µ2ηT

)
cosψ cos 2θ sinϕ , (3.45)

fSV,SH(n̂, p̂; m̂, q̂) =
ω2

4πρβ4
AF (kβ(n̂− m̂))µ2ηT cos 2ψ cos θ sinϕ , (3.46)

fSV,SV (n̂, p̂; m̂, q̂) =
ω2

4πρβ4
AF (kβ(n̂− m̂))

×
{
µ2ηN sin 2ψ sin 2θ + µ2ηT cos 2ψ cos 2θ cosϕ

}
.

(3.47)
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Expressions (3.27) through (3.30) each contain a contribution 4(ηN − ηT ). In the

derivation of Equations (3.39) through (3.47), the contribution from the terms pro-

portional to 4(ηN − ηT ) is canceled by other terms containing ηT , which results in

a considerable simplification of the resulting expressions. Note that any scattering

coefficient with an SH-wave as an incoming or outgoing wave depends on µ and ηT ,

but not on λ and ηN , which reflects that SH-waves do not depend on the compres-

sive response of the medium. As a result, only the shear properties of the fracture

influence the scattering to and from SH-waves.

3.5 Laboratory Experiments

We carry out laboratory experiments in order to measure P- to P-scattering and test

our theoretical model. We use ultrasonic frequencies in plastic samples. The samples

are Poly(methyl methacrylate) (PMMA) cylinders with a diameter of 50.8 mm and

a height of 150 mm (Figure 3.5). Elastic waves are generated with a 5 MHz disk-

shaped piezoelectric transducer (PZT) with a diameter of 7.5 mm attached to the

curved surface of the cylinder using phenyl salicylate as a glue. Because this glue has

a melting point of 41.5◦C, slight heating is enough to melt it and use it to attach the

transducer to a curved surface. The PZT is driven by a 400 V pulse with maximum

energy at its natural frequency.

We measure the elastic displacement with the laser interferometer described in

Chapter 2. Since the sample material is transparent for green light, we apply a

reflective tape to the surface to reflect light back to the laser receiver.



33

f
^

ψ
source
PZT

θ

z

x

rin
g

 o
f re

c
e
iv

e
rs

δ

fracture

PZT source

Top view

x

z

y

Figure 3.5: Geometry of the experimental setup with the angles as defined in Fig-
ure 3.3.

3.5.1 Measurements on a Blank Sample

We first carry an experiment out on a sample with no cracks, also called a blank

cylinder. This measurement is used as a reference of the background field propagat-

ing in the absence of a scatterer. The sample is mounted on a computer-controlled

rotational stage. We focus the laser receiver beam on the sample in a plane normal to

the cylinder axis (taken as the y-axis). This plane also contains the PZT source, the

source and receiver are thus located in the (x, z) plane. By computer-controlled rota-

tion of the stage, we measure the elastic field in this plane every degree with respect

to the center of the cylinder, except for a small range of angles blocked by the PZT

source. The signal is digitized with 16-bit precision and a sampling rate of 100 MS/s

(mega samples per second) and recorded on a computer acquisition board. For each

receiver location, 256 waveforms are acquired and averaged after digitization.

Figure 3.6 shows the raw ultrasonic displacement field for all recorded azimuths.
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The horizontal axis represents the angle δ between the source and the receiver di-

rections, δ = θ + 180◦ (for θ defined in Figure 3.3; see also Figure 3.5). The main

events on this scan are the direct P-wave displacement with a curved moveout and

the Rayleigh wave traveling around the sample with a linear moveout. Some ringing

of the source is present after the direct arrival and is strongest for δ angles close to

180◦. The frequency content of these data ranges from 250 kHz to 1.2 MHz. In order

to remove the high-amplitude Rayleigh wave arrival, we apply an f -k filter to the

data. The resulting displacement field is presented in Figure 3.7. All measurements

following these are performed in the (x, z) plane and f -k filtered.

From these data, we find the P- and S-wave velocities of the material to be respec-

tively α = 2600 m/s and β = 1400 m/s. For a PMMA density of ρ = 1190 kg/m3,

these values correspond to Lamé coefficients λ = 3.4 GPa and µ = 2.3 GPa, respec-

tively.

3.5.2 Fractured Sample

We create a single fracture in a different cylinder of PMMA by focusing a high power

Q-switched Nd:YAG laser in the sample. The laser generates a short pulse (∼ 20 ns)

of infrared (IR) light that is absorbed by the sample material at the focal point and

is converted into heat. The sudden thermal expansion generates stress and forms a

fracture at the focal point location. Anisotropy in the elastic moduli, caused by the

extrusion process, results in a fracture with an orientation parallel to the cylindrical

axis. Zadler and Scales (2008) give a more extensive description of the fracture

generation process. The laser-generated fracture, shown in Figure 3.8, has a roughly

circular shape and a radius of approximately 7 mm. Figure 3.5 shows a diagram of
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Figure 3.6: Displacement field for a homogeneous PMMA sample.

the fractured sample and the geometry of the experimental setup.

We show in Figure 3.9 the ultrasonic displacement after f -k filtering, measured

with the PZT source at location S1 normal to the fracture plane (Figure 3.10). This

source location corresponds to an angle ψ = 0◦. In addition to the events present

with the blank sample, Figure 3.9 shows a wave arriving at about 20 µs; this ar-

rival corresponds to the P-P scattered field from the crack. The amplitude of this

event is maximum for δ = 180◦ (forward scattering), and δ = 0◦ (backscattering),

corresponding to the specular reflection (Figure 3.10). Note that this event is slightly

asymmetric: for receiver angles δ < 180◦, the scattering arrival is earlier than 20 µs,

whereas for angles δ > 180◦, the wave arrives slightly later than 20 µs. This is due

to the fact that the fracture is not perfectly centered on the y-axis. For forward
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Figure 3.7: Displacement field for the homogeneous PMMA sample after f -k filtering
of the Rayleigh wave, highlighting the direct P-wave arrival.

scattering, the scattered wave interferes with the direct wave (Figure 3.9), and the

scattering amplitude cannot be measured accurately. The presence of the source

transducer makes it difficult to measure the backscattered waves. For this reason,

Figure 3.12 does not show the scattering amplitude for scattering angles near forward

and backward scattering.

As we show in the next section, for this source position, the scattering amplitude

is a function of ηN only. In an attempt to estimate ηT , we perform a last experiment

with the PZT source at location S2, making an angle ψ ≈ 50◦ to the normal to

the fracture plane, but still in the (x, z) plane (see Figure 3.9). The corresponding

ultrasonic displacement field after f -k filtering is shown in Figure 3.11. Note that,
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Figure 3.8: Photograph of the laboratory sample and zoom around the disk-shaped
fracture, with ruler units in cm. The sample is longitudinally cut in half to display the
fracture without optical deformation by the curvature of the sample. The diameter
of the fracture is ∼ 7 mm, and the diameter of the cylinder is 50.8 mm.

as shown in Figure 3.10, the scattering amplitude is largest for angles slightly larger

than the specular reflection angle (corresponding to δ = 310◦).

3.5.3 Scattering Amplitudes

The theoretical scattering amplitudes for all combinations of waves are given by Ex-

pressions (3.39) through (3.47). Here, the source is at a fixed angle ψ to the normal

to the fracture, hence n̂ = sinψ x̂+cosψ ẑ. The receiver is always in the (x, z) plane,

therefore φ = 0◦ and m̂ = sin θ x̂ + cos θ ẑ.
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Figure 3.9: Displacement field for the fractured PMMA sample with the source at
normal incidence (after f -k filtering).

For the case of both incoming and scattered P-wave, Equation (3.39) simplifies to

fP,P (n̂; m̂) =
ω2

4πρα4
AF (kα(n̂− m̂))

×
[
ηN
(
(λ+ µ)2 + (cos 2ψ + cos 2θ)(λ+ µ)µ

+µ2(cos 2ψ cos 2θ)
)

+ ηTµ
2 (sin 2ψ sin 2θ)

]
. (3.48)

Moreover, for a circular fracture, Equation (3.33) reduces for this geometry to

F (kα(n̂− m̂)) ≈ 2α

aω(sinψ − sin θ)
J1

(ωa
α

(sinψ − sin θ)
)
. (3.49)
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Figure 3.10: Schematic of the experimental setup with directions of maximum spec-
ular reflection for the two source positions.

For the experimental case, the scattering amplitude is thus given by

fP,P (ψ, θ) =
ωa

2ρα3(sinψ − sin θ)
J1

(ωa
α

(sinψ − sin θ)
)

×
[
ηN{(λ+ µ)2 + (cos 2ψ + cos 2θ)(λ+ µ)µ

+ µ2(cos 2ψ cos 2θ)} +ηTµ
2 (sin 2ψ sin 2θ)

]
. (3.50)

Note that for a source at normal incidence, ψ = 0◦ and therefore the term containing

ηT vanishes. In this case, the scattering amplitude fP,P (ψ = 0◦, θ) depends only

on the normal component ηN of the compliance tensor. On the other hand, for a

non-normal incidence ψ, the scattering amplitude fP,P is a function of both ηN and

ηT .

To compare the experimental results with the analytic expression, we measure
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Figure 3.11: Displacement field for the fractured PMMA sample, where the source is
at ψ = 50◦ incidence (after f -k filtering).

the scattering amplitude. We apply a narrow band-pass filter centered around f0 =

1 MHz, corresponding to the dominant frequency of the scattered event. We then pick

the amplitude of the scattered arrival at its maximum for a range of angles excluding

traces close to the source, and for receivers facing the source, where the incident and

scattered field overlap. We normalize the scattering amplitude by the amplitude of

the direct P arrival at normal incidence, in order to compensate for differences in

source coupling and strength between the two source locations. The experimental

amplitudes for the valid range of angles are plotted in blue in Figures 3.12 and 3.13.

We compute the corresponding theoretical amplitudes for f0 = 1 MHz, and use the

Lamé coefficients computed from the measurement in the sample without fracture.
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Figure 3.12: Scattering amplitude for the source at normal incidence in blue (ψ = 0◦).
The best theoretical fit corresponding to ηN = 10−11 m/Pa is plotted in a thick, dashed
red line. We also show the theoretical amplitudes corresponding to half (dotted
orange) and twice (dotted purple) this value of ηN . The ranges of angles where the
field cannot be measured are marked in gray.

We assume the created fracture behaves as a circular fracture with radius a = 5 mm,

estimated visually. We first optimize the fit with the theoretical amplitude (displayed

in red in the figures) for the normal incidence data since for this angle of incidence the

scattering amplitude depends only on normal component of the compliance ηN , but

not on ηT . The best fit is obtained for ηN ≈ 10−11 m/Pa, corresponding to the thick

dashed red curve in Figure 3.12. We also display the computed scattering amplitude

for ηN = 2 · 10−11 m/Pa (dotted purple line) and ηN = 0.5 · 10−11 m/Pa (dotted

orange line) to show that the ηN = 10−11 m/Pa value is a robust fit. Note that

the fit with ηN only calibrates the overall amplitude of the scattering amplitude, but
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Figure 3.13: Scattering amplitude for the source at ψ = 50◦ incidence in blue. The
theoretical curve for ηN = 10−11 m/Pa and ηT = 10−12 m/Pa is plotted with a thick,
dashed red line. We also show the theoretical amplitudes corresponding to one tenth
(dotted orange) and ten times (dotted purple) this value of ηT . We see here that the
value of ηT is not well constrained for this experimental configuration. The ranges of
angles where the field cannot be measured are marked in gray.

that the dependence of the scattering amplitude on the scattering angle is completely

determined by the theory.

We then use this value for ηN to optimize the fit of the second dataset by changing

the shear compliance ηT . Figure 3.13 is a comparison between data and theoretical

curves for ηN = 10−11 m/Pa and three different values of the shear compliance:

ηT = 10−12 m/Pa (thick dashed red line) and ηT = 10−11 m/Pa (dotted purple line)

and ηT = 10−13 m/Pa (dotted orange line). While according to Equation (3.50)

the scattering amplitude depends on the shear compliance ηT , this dependence is
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weak. The best fitting shear compliance ηT = 10−12 m/Pa is an order of magnitude

smaller than the estimated normal compliance, and the uncertainty in the estimate

of the shear compliance ranges from 10−13 m/Pa to 10−11 m/Pa. These values of

compliances are, however, in the same range as η ∼ 10−13 − 10−9 m/Pa found in the

literature for the case of a single fracture in quartz monzonite (Pyrak-Nolte et al.,

1990b) and in various natural rocks (Worthington, 2007).

3.6 Conclusion

Because fractures play a key role in processes going from seismic activity to fluid

flow, fracture characterization is a critical step in time-lapse monitoring of fluid flow

in reservoirs. Based on a linear slip model, we derive the analytic expression of the

scattered amplitude of a plane fracture of arbitrary size under the Born approxima-

tion. Of particular interest are the results for fractures of comparable size to the

elastic wavelength. The theory provides scattering amplitudes for every combination

of incident and scattered wave mode, which are expressed as a product of a Bessel

function and trigonometric functions in the case of a circular fracture. Non-contacting

ultrasonic data acquired on a plastic laboratory sample for P-wave to P-wave scat-

tering from a circular fracture is in qualitative agreement with the theory, and the

estimated compliance of the fracture agrees with the range of values reported in the

literature. The theory presented here is not applicable to fluid-filled fractures, be-

cause the Born approximation used in Equation (3.10) and subsequent expressions

break down when the fluid in the fracture causes the shear traction at the fracture to

vanish.
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CHAPTER 4:

SCATTERING AMPLITUDE OF A SINGLE

FRACTURE UNDER LOAD

4.1 Introduction

Fully characterizing a fracture assuming linear slip behavior involves estimating both

the normal and tangential components of the compliance. Moreover, in exploration

geophysics, the ratio between normal and tangential compliance is used as a proxy

for the presence of fluids in the fracture (Hudson et al., 1997; Liu et al., 2000; Lubbe

et al., 2008). Monitoring the stress dependence of fractures is also of high interest. In

exploration, hydrocarbon (or possibly water) reservoirs see the local stresses change

as a result of production. Time-lapse monitoring of stress through fractures properties

could help assess reservoir conditions. Similarly, in volcanic environments, stresses

are related to volcanic activity, and dikes, local fractures, as well as the volcanic con-

duit all respond to changes in stress (Gudmundsson, 2006). In seismology, Sawazaki

and Snieder (2013) argue that the S-wave velocity recovery after earthquake-induced

velocity changes can be explained by the closing of cracks in the shallow subsurface
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caused by the earthquake dynamic strain.

In the previous chapter, we see that the estimation of the tangential compliance is

ill-defined using only the P-P scattered event. Here, we use a different experimental

setup and show that we can successfully measure the scattered field, including several

distinct wave modes, without the limitations of Chapter 3. We therefore indepen-

dently estimate the normal and tangential component of the compliance. This new

setup allows us to apply an uniaxial stress to the sample, and we use it to measure

the change in compliance of the fracture while increasing the static load.

4.2 Theoretical Background

We show in Chapter 3 that under the Born approximation and the assumption of

incoming plane waves, the P-P scattered amplitude from a single fracture in the linear

slip model is given in the frequency domain by Equation (3.27), where the angles ψ,

ϕ and θ, as well as the incoming and outgoing unit vectors n̂ and m̂ are defined in

Figure 3.3. Similarly, the SV-SV scattered amplitude under the same assumptions is

given by Equation (3.30). For the case of a plane circular fracture, the form factor F

is given by Equation (3.33). For the case of both incoming and outgoing waves in a

common plane normal to the fracture, we finally get the simplified expression

fP,P (ψ, θ) =
ωa

2ρα3(sinψ − sin θ)
J1

(ωa
α

(sinψ − sin θ)
)

×
[
ηN{(λ+ µ)2 + (cos 2ψ + cos 2θ)(λ+ µ)µ

+ µ2(cos 2ψ cos 2θ)} +ηTµ
2 (sin 2ψ sin 2θ)

]
, (4.1)
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for the P to P scattered wave, where ω is the angular frequency, α the P-wave velocity

and ρ the density of the material, λ and µ the Lamé parameters, a the radius of the

fracture, and ηN and ηT the normal and tangential compliances, respectively. The

angles ψ and θ are defined in Figure 3.3, and J1 is the first order Bessel function. In

a similar fashion, we get

fSV,SV (ψ, θ) =
ωa

2ρβ3(sinψ − sin θ)
J1

(
ωa

β
(sinψ − sin θ)

)
×
[
ηNµ

2 sin 2ψ sin 2θ + ηTµ
2 cos 2ψ cos 2θ cosϕ

]
(4.2)

for the SV to SV scattered wave, with β the S-wave velocity. As shown previously,

the ηN contribution of the P-P amplitude is maximum when θ or ψ are zeros, while

the ηT contribution is null in that case. For the SV-SV amplitude, on the other hand,

it is the opposite case where if θ or ψ is zero, the ηN contribution is null and the ηT

contribution maximum. This highlights the fact that for most geometries, the shear

wave is more sensitive to the tangential compliance than the primary wave. We will

use these expressions of the scattering amplitudes to compare with our experimental

results.

4.3 Experimental Setup

We use a similar sample to the one shown in Figure 3.8. Contrary to the experiment

described in Chapter 3, we use here the pulsed Nd:YAG laser as a source, therefore

we apply aluminum tape to the surface. The tape plays the role of the absorbing

medium on the source side, and reflects light back for a wide range of angles to the

laser receiver, allowing us to measure both out-of-plane and in-plane components.
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The cylindrical PMMA sample is mounted on a rotational stage, whereas the loca-

tions of the non-contacting ultrasonic source and receiver are fixed in the laboratory

frame of reference. The source-receiver angle δ (defined in Figure 4.1) is therefore

constant, here δ = 20◦, and only the orientation of the fracture with respect to the

frame of reference, characterized by the angle θ, changes. Moreover, the source and

receiver are focused on the sample in an (x, y) plane normal to the cylinder axis (z-

axis, Figure 4.1). While anisotropic, as mentioned above, the extruded PMMA is

transversely isotropic, and its elastic properties are therefore invariant with respect

to the defined angles of interest.

In order to put the sample under static stress, we furthermore load it by tightening

a screw, pushing the top of the cylinder down. We use a bearing to accommodate

the rotation of the loading screw, and insert a load gauge in between the bearing and

the sample to measure the compressional stress. A picture of the laboratory setup

is shown in Figure 4.2. We perform four measurements for different load settings; a

first measurement with zero load (baseline), we next load it to a mid-load position

corresponding to 5.5 Mpa, and then to full load position of 11.0 MPa, and finally a

second measurement at zero load.

4.4 Results

4.4.1 Unloaded Sample

We first measure the scattered amplitudes for a sample under no static stress. The

resulting out-of-plane and in-plane displacements are show in Figure 4.3. On the
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Figure 4.1: Schematic of the experimental setup. The source-receiver angle is fixed
and the fracture rotates in respect to both source and receiver.
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Figure 4.2: Photograph of the laboratory setup, including the source laser beam, laser
receiver, load gauge above the sample and the load screw on top of the assembly.
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right: in-plane channel. Dark and light green dashed lines mark scattered arrivals,
light green marks converted ones. Purple dashed lines mark reflections from the
backwall of the sample, blue dashed lines mark mode conversions from the backwall.
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out-of-plane channel, we first see the P-P scattered arrival around 18 µs, followed by

the converted SV-P scattered event around 27 µs. We also see the P-P reflected from

the back of the sample at 37 µs, and the converted SV-P reflection at 55 µs. The

weaker unmarked events are side reflections and multiples. On the in-plane channel,

we detect event with an outgoing SV phase, including the P-SV scattering conversion

at 27 µs, followed by the SV-SV scattered wave at 36 µs, the P-SV reflection from

the back of the sample at 55 µs, and finally the SV-SV reflection from the back of

the sample at 73 µs. In order to extract the scattered amplitudes, we first band-

pass the data around 1 MHz. We then pick the maximum amplitudes for two events

of interest: the P-wave scattered from an incoming P-wave, that is detected on the

out-of plane channel, and the SV-wave scattered from an incoming SV-wave, that is

detected on the in-plane channel. Both the scattered P and scattered SV amplitudes

are normalized by the amplitude of the wave with the same mode reflected from the

backwall of the sample, and corrected for geometrical spreading, effectively reducing

the scattered amplitude to a fraction of the incoming amplitude.

For this geometry, the amplitude of the P-P scattered is mostly sensitive to the

normal component of the compliance ηN (see Equation (4.1)). Conversely, amplitude

of the SV-SV scattered event is mostly sensitive to the tangential component ηT (see

Equation (4.2)). We use a joint least square regression to obtain the parameters giving

the best fit with the experimental data. We invert for the fracture radius a, the normal

and tangential compliance, and the orientation of the fracture, given by the angle θ0

relative to our best guess of θ = 0. This last parameter does not vary significantly

from one measurement to another. The measured amplitudes and corresponding fits

are shown in Figure 4.4. The covariance matrix resulting from the inversion is shown
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Figure 4.4: Measured (solid lines) and fitted amplitudes (dashed lines) for the P-P
and SV-SV scattered events with an unloaded sample. From the fit, we get a =
3.14± 0.19 mm, ηN = 1.38± 0.20 · 10−11 m/Pa and ηT = 2.69± 0.34 · 10−11 m/Pa.

in Figure 4.5.

4.4.2 Loading and Unloading of the Sample

The measured amplitudes and corresponding fits for the maximum load measurement

are shown in Figure 4.6. The results are summarized in Figure 4.7. We see that when

the load increases, the normal compliance ηN decreases. After the loading cycle, the

estimated compliance is not exactly equal to the baseline value, but it is still higher

than for the loaded case. The P-P and SV-SV backwall reflections stay constant

in time for each loading stage, ruling out changes in the elastic properties of the

homogeneous material.
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Figure 4.6: Measured (solid lines) and fitted amplitudes (dashed lines) for the P-P
and SV-SV scattered events with a loaded sample at 11.0 MPa. From the fit we get
a = 3.32±0.22 mm, ηN = 0.77±0.14 ·10−11 m/Pa and ηT = 2.14±0.29 ·10−11 m/Pa.
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compliances, ηN (in red) and ηT (in green), respectively, during the loading cycle. The
errorbars correspond to the 95% confidence intervals.
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4.5 Discussion

Again, the experimentally obtained scattering amplitudes are in good agreement with

the theory described in the preceding chapter, and the estimated components of the

compliance are on the same order of magnitude as the values obtained in Chapter 3.

Moreover, by recording the SV-SV scattering event, we are able to estimate ηT with

good confidence, and we observe ηN/ηT ∼ 0.5, as noted in other studies (Worthington,

2007; Lubbe et al., 2008). From the covariance matrix computed from the theoretical

expressions, we note that both components of the compliance are negatively corre-

lated to the fracture radius, and the estimated values represent a tradeoff between

compliance and radius. The joint-inversion, however, ensures that the radius estimate

is optimal for both P-P and SV-SV datasets.

As mentioned above, the reflection and scattering travel times stay constant with

the increase in load, and show that the mechanical properties of the sample in the

plane of the measurement are unchanged. We confirm it by looking at the amplitudes

of the reflections from the back of the cylinder at zero load and maximum load. The

resulting measurements, in Figure 4.8, do not show significant change between the

two states of stress, for either the reflected P and SV waves. We, however, observe an

increase in PP amplitude between 0 and 10◦, corresponding to the forward scattered

wave. The high variability of the measured reflected SS amplitude precludes us from

making a similar observation for this mode.

The static uniaxial load results show that the estimated radius is nearly constant

over the cycle of four measurements. This is in agreement with the assumption that

the effective area (area of the fracture where a discontinuity is present in the material)

of the fracture should not change for such stresses, as they are too weak to modify
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Figure 4.8: Amplitudes of the sample backwall reflection at zero and maximum stress
(11.0 MPa). While there is no significant change introduced by the uniaxial stress,
we observe a maximum in the reflected PP amplitude at angles between 0 and 10◦,
corresponding to the forward-scattering direction.

the structure of the fracture. We also observe a decrease in normal compliance as the

stress increases, and the final value of the normal compliance, for a null static stress,

is still lower than the initial ηT estimate. This effect could be due to a permanent

plastic change of the fracture cause by the uniaxial stress. Most published laboratory

studies of fractures involve uniaxial stresses normal to the fracture, and lead to a

decrease in compliance with increasing load (Pyrak-Nolte et al., 1990b), which can

be explained by the fracture becoming stiffer as the stress helps “closing” it, and

therefore increases the contact area of the fracture.

Here the stress axis is such that we would expect an opening of the fracture instead,

leading to an increase in compliance. For bigger openings, however, the stiffness of

round pores is greater than of fracture type shaped pores (Brie et al., 1985; Saleh

and Castagna, 2004); a schematic description is shown in Figure 4.9. By applying a

load along a direction parallel to the fracture plane, the shape of the fracture changes
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Figure 4.9: Schematic of pore shape responses. Left, an elongated pore is compliant to
dynamic strains normal to the direction of elongation (blue arrows). This is analog to
an unloaded fracture. Right, after applying a static load (represented by red arrows),
the pore shape becomes round and stiff to the dynamic stain (blue arrows); this is
analog to the loaded fracture.

from the ideal representation of a planar crack to a more rounded three-dimensional

shape. Although this effect is small for the static load considered here, we nevertheless

interpret the observed change in compliance as the result of a change in fracture shape

from planar to more round-like.

Finally, it is hard to interpret the tangential compliance estimates. For these

values, we are limited to relying only on the in-plane channel, which is susceptible

to a bias on top of the variance (see Chapter 2). It is hence harder to see significant

variations in the tangential component, and the errorbars shown in Figure 4.7 do not

encompass the unknown bias. Therefore, we cannot conclude about the change in

tangential compliance during the load of the fracture.

These results show that by combining measurements of two components of the

displacement field, we are able to estimate the size as well as the normal and tangential

compliance of the fracture, paving the way for measurements under confining pressure.
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CHAPTER 5:

LASER EXCITATION OF A FRACTURE

SOURCE FOR ELASTIC WAVES

5.1 Introduction

Being able to remotely sense the properties of fractures with elastic waves is of great

importance in seismology (e.g., Nakahara et al., 2011) and non-destructive testing

(e.g., Larose et al., 2010). For example, in geothermal and hydrocarbon reservoirs,

it is very common to use hydraulic fracturing methods to attempt to increase the

native permeability of the rocks above what is present in any naturally occurring

fractures. The microseismic events associated with the fracturing process typically

radiate seismic energy, which is recorded in nearby wells or at the surface. Much is left

to be understood about the nature of such fractures and their relationship to elastic

waves, but the scaling issues involved make numerical modeling a challenge. On

the other hand, laboratory studies of fractures or faults are used to investigate their

mechanical properties, such as stiffness (Pyrak-Nolte and Nolte, 1992), fracture slip-

rate, stress drop, or rupture propagation (Ben-David et al., 2010). Most microscopic
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fractures under laboratory investigation are either on the surface of samples, or the

result of new or growing fractures from an applied stress to induce fracture stick-slip

creep (Thompson et al., 2009; Gross et al., 1993). Other laboratory studies focus

on macroscopic fractures occurring naturally in rock samples (Pyrak-Nolte et al.,

1990b). In Chapter 3, we use non-contacting techniques to probe a fracture inside

a clear sample to recover the fracture compliance. A high-powered laser excites the

surface of the sample creating ultrasonic waves. These waves scatter from the fracture

and are recorded at the surface of the sample with a laser interferometer (Scruby and

Drain, 1990). Here, instead of only exciting the ultrasonic waves at the sample surface,

we focus a IR laser beam at the fracture location, turning it into an ultrasonic source.

This technique makes it possible to measure the fracture response as a function of

source energy, stress on the sample, or the laser beam size and location. By scanning

the fracture with a focused IR laser beam, it may be possible to measure spatial

variations in the fracture properties and delineate barriers and asperities (Scholz,

1990), which are concepts of great importance in earthquake dynamics for example.

A localized excitation, along the fracture, could also be used to excite interface waves

traveling along the fracture (Roy and Pyrak-Nolte, 1997; Gu et al., 1996) to probe

for properties such as fault gouge or the fluids filling the fracture. Here, we illustrate

the use of direct excitation of a fracture to investigate the elastic effective size of the

fracture by means of tip diffractions. To date, these are most commonly studied on

surface cracks (Masserey and Mazza, 2005).
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5.2 Experiment

We consider the same PMMA sample containing a single disk-shaped fracture de-

scribed in Section 3.5.2

Elastic waves are excited at the surface of the sample by using the high-power Q-

switched Nd:YAG laser with a partially focused beam. Typically, the laser is focused

on the outside of the sample — but as we explore here — the laser can also be focused

inside the sample. In this case, the planar fracture has a visible contrast with the

rest of the sample, seen as a darker region in Figure 3.8. The Nd:YAG pulsed laser

generates energy at a wavelength of 1064 nm, in the near IR. Therefore, we assume

that the optical contrast due to the fracture is also present at the IR wavelength,

leading to energy absorption and thermoelastic expansion at the fracture location.

We measure elastic displacement with the laser interferometer. The location of

the non-contacting ultrasonic source and receiver are fixed in the laboratory frame

of reference, but the PMMA sample is mounted on a rotational stage. The source-

receiver angle δ (defined in Figure 5.1) is therefore constant, here δ = 20◦, and only

the orientation of the fracture with respect to the frame of reference, characterized

by the angle θ, changes. Moreover, the source and receiver are focused on the sample

in an (x, y) plane normal to the cylinder axis (z-axis, Figure 5.1). While anisotropic,

as mentioned above, the extruded PMMA is transversely isotropic, and its elastic

properties are therefore invariant with respect to the defined angles of interest.

By computer-controlled rotation of the stage, we measure the elastic field in the

(x, y)-plane for values of θ in increments of 1 degree. The signal is digitized with

16-bit precision and a sampling rate of 100 MS/s (mega samples per second) and

recorded on a computer acquisition board. For each receiver location, 256 waveforms
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Figure 5.1: Top view of the experimental setup for direct fracture excitation. The
laser source beam (red) excites elastic waves (blue) at S1.

are acquired and averaged after digitization.

Figure 5.2 shows the ultrasonic displacement field for the source S1 at the fracture

for all recorded azimuths, after applying a 1-5 MHz band-pass filter. As defined in

Figure 5.1, the horizontal axis represents the angle θ between the normal to the

fracture and the source direction. Electromagnetic interferences are generated by the

high-power source laser when the light pulse is emitted, and leads to noise being

recorded for short arrival times (0 – 3 µs, highlighted in Figure 5.1). The arrival at

approximately 10 µs denoted fP corresponds to the wavefield excited at the fracture.

The fPP wave is excited at the fracture and reflects off the backside of the sample.

Next, we apply reflective tape where the source laser beam hits the sample surface

at S2, increasing the IR light absorption at the surface and lowering the amount of

energy reaching the fracture (Figure 5.3). We repeat with this configuration the

acquisition procedure used in the first experiment (Figure 5.4). The PfP wave is
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Figure 5.2: Displacement field generated by excitation of the fracture. fP is the
P-wave generated at S1 and traveling directly to the receiver. PfP is the P-wave
generated at S2 and scattered by the fracture before reaching the receiver. fPP is
the P-wave generated at S1, traveling away from the receiver before bouncing back
to the sample surface. Finally, PP is the P-wave generated at S2, that travels across
the sample and bounces back to the receiver.
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Figure 5.3: Top view of the experimental setup for elastic-wave excitation at the
sample surface. The laser source beam (red) excites elastic waves (blue) at S2.

generated at the surface of the sample, and then scattered by the fracture, while PP

is scattered from the backside of the sample. PfP and PP phases are stronger than

fP and fPP in Figure 5.2, confirming that more of the thermoelastic expansion takes

place at the surface of the cylinder.

5.2.1 Fracture Tip Travel Times

The waves fP and PfP in Figures 5.2 and 5.4 show a distinct lenticular pattern. For

source angles θ = −10◦ and 170◦, the PfP phase is a specular reflection, and the ampli-

tude is a maximum. For intermediate angles, the scattered amplitude decreases (see

in Chapter 3). Note splitting of the wave at intermediate angles into wavelets arriv-

ing before and after the specular reflection (see Figure 5.5). These waves have the

travel time and phase of waves diffracted by the crack tips. In particular, for θ = 70◦,

the receiver is in the plane of the fracture, and therefore the travel time difference

between the tips of the fracture that are the closest and the farthest to the receiver
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Figure 5.4: Displacement field generated by excitation at the sample interface. Signal
for t < 3 µs corresponds to noise generated by the laser source, and to the direct P-
wave traveling directly from the source S1 to the receiver. Other arrivals are defined
in Figure 5.2.
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Figure 5.5: Detailed view of the scattered (PfP) arrival. The orange curves represent
the tip arrival times computed from Equation (5.1).

is largest (Figure 5.3).

Equation (3.27) shows that the P to P scattered amplitude for a planar fracture in

a linear-slip model under the Born approximation can be written in the frequency do-

main as a product of a scaling factor, a factor depending on the mechanical properties

of the fracture and the propagation medium, and a form factor that depends on the

fracture shape and the wave number change from the fracture scattering. Only this

last factor carries time information. We show in Appendix D that the corresponding

traveltimes are

ttip-sc =
R

α

(
2± a

R
(sin θ(1 + cos δ) + sin δ cos θ)

)
, (5.1)

where a is the radius of the fracture and R the radius of the cylinder. The P-wave

velocity is α = 2600 m/s (Section 3.5.1). Figure 5.5 shows the PfP arrival overlain by

the computed traveltimes from equation (5.1) with a fracture radius aPfP = 3.3 mm.
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For the arrival time of the fP wave that is excited at the fracture, we consider

the geometry of rays originating from the fracture tips and traveling directly to the

receiver. The raypaths are shown in Figure 5.1. Using this geometry, the travel time

can be expressed as

ttip-direct =

√
a2 ± 2aR sin(θ) +R2

α
. (5.2)

Due to the fact that the size of the fracture is small compared to the radius of the

sample, this travel time is to leading order in a/R given by

ttip-direct =
R

α

(
1± a

R
sin(θ)

)
. (5.3)

Figure 5.6 shows the fracture-source displacement field overlain with the tip arrival

time (in purple) computed from Equation (5.3). Just as in Figure 5.5, the theoretical

time for a radius afP = 3.3 mm agrees well with the arrival time of the fP wave,

and the observed size in Figure 3.8. The good agreement with the visually estimated

radius confirms that the whole visually fractured area is mechanically discontinuous

and capable of being excited by elastic waves.

5.3 Conclusions

Laser-based ultrasonic techniques can not only excite and detect elastic waves at the

surface, but can also be used to directly excite heterogeneities (such as fractures)

inside an optically transparent sample. This result opens up possibilities for diag-

nosing the mechanical properties of fractures by directly exciting them. Here, we

estimate the effective elastic size of the excited fracture. By scanning the fracture
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Figure 5.6: Detailed view of the direct fracture excitation arrival. The purple curves
represent the tip arrival times computed from Equation (5.3).

with a focused IR laser beam, it may be possible to measure spatial variations in

the fracture properties and delineate barriers and asperities. These concepts are of

great importance in earthquake dynamics, although hard to investigate in the field

or numerically.
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CHAPTER 6:

MEASUREMENTS OF THE ELASTIC

PROPERTIES OF SHALES

6.1 Introduction

Shale formations comprise about seventy-five percent of the clastic fill of sedimen-

tary basins and recent interest to exploit shales as potential reservoirs requires better

understanding of their elastic behavior. Accurate estimation of elastic moduli has

implications in understanding response and distribution of stress in shales (Dewhurst

and Siggins, 2006; Holt et al., 2011), as well as in hydraulic fracturing (Suarez-Rivera

et al., 2006). Shales can be represented as thin isotropic layers with a symmetry axis,

also called transversely isotropic (TI), or hexagonal. Wave propagation in a trans-

versely isotropic medium can be described with five elastic constants, and the ratios

among these parameters quantify the rock anisotropy (Thomsen, 1986; Tsvankin,

2001).

Shale anisotropy in the laboratory has been widely studied with transducer ul-

trasonic systems at variable saturation and pressure conditions (Jones and Wang,
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1981; Vernik and Nur, 1992; Johnston and Christensen, 1995; Hornby, 1998; Wang,

2002; Dewhurst and Siggins, 2006; Bayuk et al., 2009; Sondergeld and Rai, 2011;

Holt et al., 2011). Three directions of wave propagation on core samples are the

minimum requirement to estimate the five elastic constants of the stiffness tensor.

For measurements with transducers, this is achieved by cutting three samples at 0◦,

45◦ and 90◦ from the shale layers (Vernik and Nur, 1992; Hornby, 1998; Sondergeld

and Rai, 2011) or by using one core plug with transducers attached at these three

angles (Wang, 2002; Dewhurst and Siggins, 2006). Frequency dependence of the elas-

tic constants has recently been the topic of stress-strain and ultrasonic laboratory

experiments. Results are mixed, probably due to sample heterogeneity and satura-

tion conditions. Duranti et al. (2005) conclude that the measured West Africa shales

display frequency dispersion while Sarker and Batzle (2010) observe no changes in

the elastic stiffness constants with frequency in an organic rich shale. The measure-

ments described above have been mostly performed on saturated shales, whereas the

measurements presented in this dissertation are currently only recorded on dry sam-

ples. Recently, Miller et al. (2012) show that for fast anisotropic formations, sonic

logs measure the group velocity, and that measurements at different angles from a

deviated well can be used to directly estimate all the elastic constants.

We propose a new methodology to measure the directional dependence of elas-

tic velocity and amplitude on one horizontal shale core plug by acquiring dense and

high-quality velocity data. The method, described in details in Chapter 2, uses a

non-contacting laser source and receiver, which has the following advantages over

transducer acquisition: 1) transducer coupling and ringing do not affect the data,

2) sampling is as dense as one trace every 0.25 mm, 3) acquisition is fast and auto-
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mated, and 4) for the case of transversely isotropic media, the fast and slow velocity

directions do not need to be known or assumed before acquisition. The current sys-

tem measures the sample properties at room conditions; however, our laboratory is

developing capabilities to measure rock samples under pressure.

Guilbaud and Audoin (1999) and Ogi et al. (2003) use laser ultrasonics to mea-

sure the elastic properties of anisotropic materials. Scales and Malcolm (2003) observe

directional P-wave velocity anisotropy in a fractured granite sample by using laser

sources and receivers. Velocity (Dewangan et al., 2006), as well as amplitude (Zhu

et al., 2007), or polarization (Lebedev et al., 2011) measurements in phenolic mate-

rials are studied using transducer sources and a laser receiver. In this chapter we

outline the procedure and summarize observations of source-receiver laser ultrasonic

measurements on horizontally cored shales, and compare these data to transducer

ultrasonic measurements.

Figure 6.1 is a photograph of the two horizontal shale samples measured in this

study. Sample MSH is an oil shale from an outcrop in Montana with a density of

1.70 g/cm3 and shale SHC has a density of 2.40 g/cm3. Because the samples are

measured dry and at room conditions, the anisotropy estimates do not represent

that of shales in situ. However, the purpose of this chapter is to describe a new

methodology to estimate elastic constants, which can be implemented on preserved

samples and under reservoir conditions in future work.

6.2 Theoretical Description

A medium is called vertical transversely isotropic (VTI) if the symmetry axis is defined

in the vertical direction for a specific coordinate system (x3 in our study). The stiffness
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1 cm

MSH

SHC

Figure 6.1: Top view of the two shale samples measured in this study. Lamination is
clearly observed in sample MSH, while sample SHC has visible cracks, but these are
not captured in this photograph.

tensor for a VTI media has five independent elastic constants, namely c11, c13, c33, c55,

and c66 (Rudzki, 1911; Helbig, 1958; Tsvankin, 2001). The velocity of a P- (VP0) and

two polarized S- (VSV 0 and VSH0) waves propagating along the symmetry axis (x3,

θ=0◦, see Figure 6.2) are defined as

VP0 =

√
c33

ρ
, VSV 0 =

√
c55

ρ
, VSH0 =

√
c55

ρ
, (6.1)

where ρ is the rock’s bulk density. For propagation parallel to the symmetry plane

(θ = 90◦), the velocities correspond to

VP90 =

√
c11

ρ
, VSV 90 =

√
c55

ρ
, VSH90 =

√
c66

ρ
. (6.2)
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The P-wave anisotropy of a VTI medium can be described with Thomsen’s pa-

rameters ε and δ (Thomsen, 1986). ε quantifies the velocity difference for wave prop-

agation along and perpendicular to the symmetry axis, while δ controls the P-wave

propagation for angles near the symmetry axis:

ε =
c11 − c33

2c33

, (6.3)

δ =
2(c13 + c55)2 − (c33 − c55)(c11 + c33 − 2c55)

2c2
33

. (6.4)

These expressions are general and δ has not been simplified for the weak anisotropy

case (δ � 1). The P-wave phase velocity as a function of phase angle (θ) and elastic

constants for a VTI medium is (Tsvankin, 2001)

VP (θ) =

√
(c11 + c55) sin2θ + (c33 + c55) cos2θ + D

2ρ
, (6.5)

where

D =
{[

(c11 − c55) sin2θ − (c33 − c55) cos2θ
]2

+ 4(c13 + c55)2 sin2θ cos2θ
}1/2

, (6.6)

and the constant c13 is physically bound by the following relation (Tsvankin, 2001):

c13,max =
√
c33c11 . (6.7)

Although most transducer experiments measure the phase velocity (Dellinger and

Vernik, 1994; Hornby, 1998), our experimental setup, described in the following sec-
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tion, measures the propagation along a straight line between source and receiver. This

results in a measurement of the group velocity as a function of group angle. Tsvankin

(2001) shows that the P-wave group velocity UP is given as a function of phase angle

θ by

UP (θ) = VP (θ)

√
1 +

(
1

VP (θ)

dVP
dθ

)2

, (6.8)

and the group angle ψ is given by

tanψ = tan θ

1 +

1
VP (θ)

dVP
dθ

sin θ cos θ
(

1− tan θ
VP (θ)

dVP
dθ

)
 . (6.9)

Equations 6.8 and 6.9 highlight that for θ = 0◦ and θ = 90◦ (the “slow” and “fast”

directions, respectively), we have ψ = θ and UP = VP . Thus, of the five independent

elastic constants, c13 is the only parameter sensitive to whether we measure phase or

group velocity. We estimate c13 from Equations 6.5 and 6.6, but because we measure

group angles and velocities we use Equations 6.8 and 6.9 to compare the measured

group velocity data to predicted phase velocity.

6.3 Laboratory Setup

In this chapter, we use the partially focused laser source beam on the shale samples

and get a circular source with a diameter of approximately 6 mm. We measure

the resulting waves with the two-component laser ultrasonic receiver described in

Chapter 2. Since our shale samples are dark materials, reflective tape on the sample

enhances the amount of light reflected back to the laser receiver. We use aluminum

tape that is 90 µm thick. The effect of the tape on the measurement is described in
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Appendix B. We will consider here that it introduces a phase delay of ∼ 0.02 µs for

the out-of-plane channel, and of ∼ 0.16 µs for the in-plane channel, both accounted

for during data processing.

x1

x3

x2

sample rotation

laser source (fixed) laser receiver (fixed)

shale sample

Figure 6.2: Top view schematic of the experimental setup, with the directions used
here. x3 is the axis of rotational symmetry, and the plane (x1, x2) is parallel to the
beddings. The phase and group angles (θ and ψ, respectively) are zero when the
source and receiver are aligned with x3.

As sketched in Figure 6.2, the shale plug is mounted in the center of a rotational

stage and the source and receiver beams are aligned on antipodes for a transmission

experiment. The lasers and the sample are positioned on an optical bench with vibra-

tion isolation, and a photograph of the experimental setup is presented in Figure 6.3.

The rotational stage is computer-controlled and the output of the interferometer is

acquired at 10 MegaSamples/s and digitized at 16-bit precision. By using a PCI dig-

ital oscilloscope card, we are able to fully automate the data acquisition. In order to

increase the signal-to-noise ratio, 200 measurements are summed for each angular po-

sition. The acquisition time is approximately 4 hours per sample. This experimental

setup provides a direct measurement of the propagation along the ray direction, and

hence leads to an estimation of the group velocity as a function of the group angle,

as shown in Figure 1.1 of Tsvankin (2001).
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Figure 6.3: Photograph of the experimental setup from the top. The source laser
beam arrives from the upper left corner of the picture and reflects off a mirror pointing
towards the sample, while the laser receiver is at the bottom of the photo.

6.4 Results

Wavefields as a function of group angle are presented in Figure 6.4 and 6.5 for sample

MSH and SHC, respectively. The amplitudes represent absolute particle motion and

data are filtered between 50 kHz and 5 MHz. The dominant frequency of the mea-

sured waves is 500 kHz in the fast direction, and approximately 250 kHz in the slow

direction. The observed events correspond to the direct P-wave followed by surface

waves and scattered P- and S-waves. It is clear from Figures 6.4 and 6.5 that both

samples have significant P-wave velocity anisotropy, and based on the acquisition ge-

ometry, there is data symmetry every 180◦. The data also show a significant decrease

in amplitude in the direction perpendicular to the layering compared to the direction

parallel to the layering. Next, we analyze these travel time and amplitude variations.
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Figure 6.4: Laser ultrasonic waveforms for the MSH sample after normalization and
band-pass filtering between 50 kHz and 5 MHz. The black line marks our first break
picks. It is already apparent in this figure that the central frequency of the first arrival
increases from the slow to the fast direction (group angle going from 0◦ to 90◦), while
the attenuation simultaneously decreases.

6.4.1 Travel Time Analysis

Direct P-wave arrivals are automatically picked when the signal exceeds more than

1% of the maximum direct wave amplitude. Dividing travel time picks by the distance

traveled, we estimate the velocities plotted in Figures 6.6 and 6.7. Because of the

dense spatial sampling, the slow (θ = ψ = 0◦) and fast (θ = ψ = 90◦) directions can

be accurately estimated to provide good estimates of c11 and c33.

Once the slow direction is defined, we measure the in-plane (horizontal) component

of the wavefield at that location on the sample with the laser light that is reflected

off-axis (see Chapter 2).

The horizontal component of the waveform is used to estimate the shear wave
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Figure 6.5: Laser ultrasonic waveforms for the SHC sample after normalization and
band-pass filtering between 50 kHz and 5 MHz. The black line marks our first break
picks. The attenuation is high enough along x3 (corresponding to a zero group angle)
that picking the first break becomes difficult. For this sample, variations in atten-
uation and frequency content as a function of angle are even more obvious than for
sample MSH.

velocity along the axis of symmetry, VSV 0, from which we estimate c55 with Equa-

tion 6.1. As described in Appendix A, the measurement of the in-plane component is

very sensitive to the focal position of the laser receiver. For this reason, we perform a

careful measurement of both components in the slow direction (θ = 0). The measured

waveforms on sample MSH are shown in Figure 6.8.

After the relatively straightforward estimation of c11, c33, and c55, we invert for

c13 by performing a least squares fit to our measured group velocity data with the

theoretical group velocity for a VTI medium using Equations 6.8 and 6.9. To obtain

realistic values for c13, we bound our inversion to the theoretical maximum value

for c13 obtained with Equation 6.7. This procedure is successfully applied to sample
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Figure 6.6: Measured laser ultrasonic P-wave velocity for MSH shale (black line).
The blue line represents the best group velocity fit to the data for a c13=3.8 GPa.
Squares are data acquired with transducers at three angles.

MSH, giving the parameters shown in Table 6.1. However, the strong attenuation at

ψ = 0 is preventing us from estimating c55 for sample SHC. Because we were unable

to estimate c55 with laser data on this sample, we perform a joined least square fit

to estimate both c13 and c55. Although the density seems to play a role in the fit of

Equation 6.5, it is not the case for velocity data, as measured velocities are converted

to cij’s and then back into velocity, resulting in density cancellation.

We estimate the uncertainties of the measured physical quantities, and propagate

them to the elastic constants. The uncertainties for the constants, estimated by a least

square fit (c13 for both samples, and c55 for SHC), correspond to the 95% confidence

interval. Figures 6.6 and 6.7 show the experimental and theoretical velocities, where

the black line is the data and the blue line is the best group velocity fit to the data for

samples MSH and SHC. We observe that the velocity prediction is good for almost
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Figure 6.7: Measured laser ultrasonic P-wave velocity for MSH shale (black line).
The blue line represents the best group velocity fit to the data for a c13=11.6 GPa
and c55=10.6 GPa. Squares are data acquired with transducers at three angles.

every direction. Estimates of the elastic constants for samples MSH and SHC are

summarized in Table 6.1.

Table 6.1: Summary of the elastic coefficients (in GPa) and corresponding anisotropy
Thomsen parameters (unitless) for each sample.

Sample c11 c33 c13,est c13,max

MSH 18.0± 0.4 11.1± 0.2 4.1± 1.9 14.2
SHC 52.8± 2.6 8.8± 0.3 9.5± 0.6 21.5

Sample c55 ε δ
MSH 3.3± 0.1 0.31± 0.02 −0.27± 0.22
SHC 11.7± 0.5 2.52± 0.19 6.62± 0.43

We also use transducers to measure the compressional wavefield at 0◦, 45◦, and

90◦. The resulting velocities are marked with squares in Figures 6.6 and 6.7. For
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Figure 6.8: Displacement field along the vertical (black) and horizontal (red) com-
ponents, measured in the slow direction (θ = ψ = 0). The gray bars mark the first
break pick for each component. The dotted blue line is a signal acquired using shear
transducers as source and receiver for comparison.

sample SHC, the transducer velocity for ψ = 45◦ is 34% higher than the measured

laser ultrasonic velocity.

6.4.2 Amplitude Analysis

We also study the wave attenuation anisotropy for sample MSH. Figure 6.9 is the

extracted absolute amplitude of the trough following the first break, after band-pass

filtering the processed laser ultrasonic data between 150 and 250 kHz. In order to

get a qualitative analysis of the attenuation anisotropy, we compare the experimental

amplitudes to the theoretical expression derived in the weak-attenuation anisotropy
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approximation from Equation 36 in Zhu and Tsvankin (2006):

AP = AP0

(
1 + δQ sin2 θ cos2 θ + εQ sin4 θ

)
, (6.10)

where AP0 is the normalized attenuation coefficient giving the decay per wavelength

in the symmetry direction (x3). δQ and εQ are unitless Thomsen-style parameters

defined in Zhu and Tsvankin (2006), where “the parameter δQ is responsible for the

attenuation coefficient in near-vertical directions, while εQ controls A near the hori-

zontal plane.” The attenuation coefficient is often estimated using the spectral-ratio

method, requiring an additional amplitude measurement under identical conditions

for a non-attenuative reference sample (Zhu et al., 2007). However, our laser source

characteristics depend on the sample properties, and would be different on a reference

sample. This prevents us from estimatingAP0 and thus from getting absolute attenua-

tion. Instead, we fit the relative attenuation coefficient to estimate the Thomsen-style

attenuation parameters. We use the symmetry of the setup to average the two halves

of the amplitude data, and then apply a smoothing running average normalized by

the group wavenumber. Finally, a least-square inversion gives the best-fitting param-

eters with a 95% confidence interval as δQ = −0.80 ± 0.23 and εQ = −0.67 ± 0.03,

and the resulting fit is shown in Figure 6.10.

6.5 Discussion

Laser-based ultrasonic measurements of shale (or other VTI media) anisotropy offer

several advantages over a traditional setup with contacting transducers. The tech-

nique presented requires only one core drilled perpendicular to the axis of symmetry
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Figure 6.9: Amplitude of the first break for sample MSH. The lack of smoothness
of the curve is due to the uncertainties in the amplitude measurement. We can,
however, distinctly identify two high-amplitude peaks for group angles around 90◦

and 270◦, corresponding to the x1 direction and consistent with velocity anisotropy
observations.

of the shale. Moreover, the measurements are non-contacting with a small receiver

footprint. This allows us to record densely-spaced waveforms under computer con-

trol. The resulting waveforms provide estimates of the group velocity. Dellinger and

Vernik (1994) discuss whether transducer transmission experiments are more likely to

measure group or phase velocity. They conclude — based on geometrical arguments

— that velocity measurements on core should yield the phase velocity, when the ratio

of travel distance H to transducer width D is H
D
< 3; while the measurements yield

the group velocity when H
D
> 20. Unlike contacting transducers, our ultrasonic laser

receiver has a small footprint on the order or 50 µm, resulting in a H
D
� 100 for both

samples, clearly yielding the group velocity from this criterion. Note that with the
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Figure 6.10: Experimental amplitude smoothed with a running average (blue), and
wave attenuation anisotropy least-square fit (red) for sample MSH, using Equa-
tion (6.10). The best fit is obtained for δQ = −0.80± 0.23 and εQ = −0.67± 0.03.

small laser receiver spot size, we avoid the “gray zone” 3 < H
D
< 20 encountered by

many transducer experiments on core. This zone poses difficulty in the interpreta-

tion of our transducer measurements. The transducer setup for sample SHC has a

H
D
≈ 4, close to the transition from group to phase velocity. As a result, the velocity

estimated from the transducer at θ = 45◦ is close to the expected phase velocity,

but deviates from our group velocity estimation with the laser method. For sample

MSH, the ratio H
D
≈ 6 is also in the transition zone, but we do not observe significant

velocity difference at θ = 45◦ when comparing laser and ultrasonic data. This may

be because the anisotropy of this sample is weaker, so that phase and group velocity

differ less than for sample SHC.

We checked if our samples are truly VTI materials with the symmetry axis corre-
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sponding to our laboratory acquisition coordinate system. We measure the P-wave

velocity propagation on the x2-axis by placing the laser source and receiver on the

sides of the samples parallel to the (x1, x3) plane (see Figure 6.2). If the sample is

described by a VTI media in the acquisition coordinate system, the x2-velocity should

be equal in magnitude to the fast P-wave velocity observed in Figures 6.6 and 6.7.

For both samples, the measurements match closely, confirming that in this case, a

VTI representation is an accurate approximation of shale anisotropy.

The observed velocity and amplitude anisotropy in shales can be due to clay min-

eral composition and alignment (Jones and Wang, 1981; Johnston and Christensen,

1995; Wang, 2002; Dewhurst and Siggins, 2006), layered or lenticular distribution of

organic mater and kerogen (Vernik and Nur, 1992; Mba and Prasad, 2010; Sondergeld

and Rai, 2011); and the negative value of the δ parameter can be theoretically ex-

plained by the alignment and distribution of clay platelets and compliance of the

regions between them (Sayers, 2004). The magnitude of our velocity and attenuation

anisotropy are almost surely enhanced by delamination and the formation of micro-

fractures parallel to the bedding, resulting from samples drying and in situ stress

being released at the surface (Sondergeld and Rai, 2011). In particular, sample SHC

has a visible crack parallel to the bedding. As such, the measurements in this publi-

cation are meant to illustrate the data acquisition method, and not to be taken as a

proper in-situ analysis of these particular shale samples.

P-wave amplitude anisotropy is more difficult to measure than velocity anisotropy,

but is shown here to be stronger than velocity anisotropy. In it lies a growing realiza-

tion that amplitude information has strong potential in understanding the subsurface,

even though reliable amplitude information is typically harder to obtain.



84

The attenuation of waves in the direction perpendicular to layering is observed by

Deng et al. (2009) and modeled by Carcione (2000), in agreement with our observa-

tions. Moreover, Zhu et al. (2007) also report large negative values for δQ and εQ in

a laboratory study of an anisotropic phenolic sample. We note here that we do not

truly satisfy the weak anisotropy conditions assumed in Equation 6.10, since none

of δ, ε, δQ, or εQ is � 1 in modulus. They are, however, small enough to give us a

qualitative idea of the attenuation anisotropy using the weak anisotropy assumptions.

The data summarized in Table 6.1 agree with published data at room conditions

and on dry core (Vernik and Nur, 1992; Bayuk et al., 2009). With these current

results in hand, we aim to expand the methodology to preserved shale cores with

minimal alteration to the preserving jacket (wax), while keeping the shale from drying.

After that, we will address the problem of making these measurements under in situ

conditions.

6.6 Conclusions

Non-contacting laser ultrasonics allows us to obtain computer-controlled measure-

ments of the wavefields in shales. These measurements are densely sampled in space

and time. This technique reduces problems with cutting samples at angles with a

priori unknown symmetry axes, provides robust estimates of the fast and slow di-

rection of group velocity. In addition to rock properties obtained from travel times,

measured amplitudes are absolute and provide attenuation estimates that also relate

to the internal structure of the rock. Here, we report anisotropy estimates in ve-

locity and relative attenuation in dry shales, but this is merely a starting point for

measurements on preserved samples, and eventually under reservoir conditions.
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CHAPTER 7:

CONCLUSION

7.1 Overview

Laser ultrasonic measurements provide a powerful tool to study rock properties and

wave propagation in scattering media. The small source and receiver size, as well

as the non-contacting characteristics provides numerous advantages over traditional

transducer techniques. Throughout this dissertation, we report advances in laser ul-

trasonics that allows us to test new scattering theory, and develop new paradigms to

probe fractures and study rock physics. These datasets are obtained via automatic

scans set up under computer control, and are free from ringing and coupling issues

common to contacting measurements. We are also able to directly get the abso-

lute displacement field in two component (vertical and horizontal), without need to

recalibrate the sensor for each measurement.

We first present a novel laser-based sensor design, adding the capability to record

two components of the wavefield simultaneously. After detailing the principles of the

method, we demonstrate its use by retrieving the (known) ellipticity of the Rayleigh

wave in a homogeneous medium. Although the amplitude of the in-plane component



86

is more sensitive to the sensor focus than the out-of-plane one, it can be successfully

used to measure in-plane displacements on the order of tens of nanometers.

We then apply this laboratory technique to the measurement of scattered waves.

We derive a new analytic expression of the scattering amplitude from a single frac-

ture, based on the linear slip model. In an initial step, we use a laser receiver only

to test the theoretical results, and find that they are in good agreement with the

experimental amplitudes. The estimation of the normal compliance is in the same

magnitude range as previously published results for different materials. By modifying

the experimental setup, we acquire and analyze both components of the displacement.

The in-plane component provides additional information about the SV-SV scattering

from the fracture, and, combined with a well-chosen acquisition geometry, improves

the estimation of the tangential compliance ηT . A joint-inversion of data from both

components then yields estimates of the orientation, size, and compliances of the

fracture. By also performing measurements under uniaxial load, we demonstrate the

potential of the technique for measurements of rocks undergoing changes in their

stress field.

While we first cover applications of the laser receiver, optically-generated elastic

waves also presents advantages over traditional sources. We demonstrate one of those

in Chapter 5, by directly focusing the source laser inside the sample at the fracture

location, effectively turning the fracture into a source of elastic waves. We confirm this

by looking at the displacement generated from the tips of the fracture, and compare

it to the scattered displacement as studied before. This technique opens the way

to localized buried sources for laboratory experiments, with potential applications in

earthquake dynamics and material testing.
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A classical rock property measurement also illustrates the advantages of laser-

based ultrasonic measurements. While elastic constants for VTI materials are typ-

ically estimated by using transducer measurements on rocks cut at three different

angles, in Chapter 6 we obtain the group traveltime for every degree between the

fast and slow direction. The dense velocity data allow for a better estimation of the

elastic constants. We simultaneously estimate the attenuation anisotropy from the

absolute amplitude of the displacement.

7.2 Future Directions

The non-contacting laboratory setup described in the applications above presents

numerous advantages over traditional contacting techniques. The small size of the

source and receiver, as well as the absence of ringing issues make it a well-suited tool

for the investigation of elastic scattering, since the instrumentation cannot act as a

scatterer itself. The non-contacting property allows to perform computer-controlled

scans with dozens of source and/or receiver locations, effectively mimicking active

seismic surveys, in relatively short acquisition times (on the order of hours to few tens

of hours for two-dimensional laboratory surveys). Such a remote-sensing technique

is in principle ideally suited to be applied to measurements in hostile conditions, in

particular under extreme temperatures and/or pressures. Using optical windows in

pressure vessels, it would be possible to measure the elastic properties at reservoir

conditions for rocks such as (preserved) shales. It could also be used to further

investigate the influence of stress changes on fractures. In a similar fashion, we could

apply laser ultrasonics to the characterization of elastic properties of ice at very low

temperatures without the need to submit the sensors to these temperatures. I foresee
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these advantages opening a realm of geophysical laboratory applications for laser-

based elastic wave propagation and detection.



89

REFERENCES

Aki, K, and Richards, P. G. 2002. Quantitative Seismology. 2nd edn. Sausalito, CA:

Univ. Science Books.

Arfken, G. B, and Weber, H. 2001. Mathematical methods for physicists. 5th edn.

Amsterdam: Harcourt.

Bayuk, I. O, Chesnokov, E, Ammerman, M, and Dyaur, N. 2009. Elastic properties

of four shales reconstructed from laboratory measurements at unloaded conditions.

SEG Technical Program Expanded Abstracts, 28, 241–245.

Ben-David, O, Cohen, G, and Fineberg, J. 2010. The Dynamics of the Onset of

Frictional Slip. Science, 330(6001), 211 –214.

Blum, T. E, van Wijk, K, Pouet, B, and Wartelle, A. 2010. Multicomponent wavefield

characterization with a novel scanning laser interferometer. Rev. Sci. Instrum.,

81(7), 073101.

Blum, T. E, van Wijk, K, Snieder, R, and Willis, M. E. 2011a. Laser Excitation of a

Fracture Source for Elastic Waves. Phys. Rev. Lett., 107, 275501.

Blum, T. E, Snieder, R, van Wijk, K, and Willis, M. E. 2011b. Theory and laboratory



90

experiments of elastic wave scattering by dry planar fractures. J. Geophys. Res.,

116, B08218.

Blum, T. E, Adam, L, and van Wijk, K. 2013. Noncontacting benchtop measurements

of the elastic properties of shales. GEOPHYSICS, 78(3), C25–C31.
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APPENDIX A:

IN-PLANE FOCUS CHARACTERIZATION

Summary

In order to better characterize the in-plane measurement sensitivity to focus of the

interferometer described in Chapter 2, we present here a study of noise versus focus,

and how it affects the Raleigh wave ellipticity measurement.

A.1 Focus Sensitivity

We first measure the noise level for both channels as function of focus. Figure A.1

shows how quickly the in-plane noise level increases, and therefore the signal-to-noise

ratio (SNR) degrades, when moving out of focus. The focus positioning accuracy is

not as critical for the out-of-plane detection, therefore we still get a good SNR on the

out-of-plane when out-of-focus.
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Figure A.1: RMS noise displacement (in picometer) measured on the in-plane (circles)
and out-of-plane (squares) channels as the beam looses focus. The RMS value is taken
over the 0-20 MHz bandwidth.

A.2 Effect on H/V Ratio and Phase

To understand one source of the variance in the amplitude and phase measurements,

we investigate the focus of the light at a single source-detector distance of 50 mm.

For each focus setting, we record the RMS value of the noise on the in-plane channel.

We consider the measurement with the least amount of noise as the best focus, and

present other points by their relative RMS noise increase compared to the best focus in

percent. Furthermore, negative values of RMS noise increase represent measurements

for which the focal plane is ahead of the sample surface. Conversely, measurements

with a focal plane behind the sample surface are noted with a positive RMS noise

increase. The signal is filtered as in Section 2.4. The results are presented in Fig-
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ure A.2. We see here that the value of the ratio for the measurement considered

optimally focused is 0.64 ± 0.02, but quickly changes with the focal position. The

phase difference, on the other hand, does not seem to be affected by the noise level

(and therefore focal position), and stays between 96◦ and 100◦ for the range of focal

positions covered here. In conclusion, a focal error of 10 µm or more is enough to get

a wrong estimate of the in-plane displacement amplitude.
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Figure A.2: Ratio (squares) and phase difference (circles) dependency versus focus
quality for a Rayleigh wave detection at 50 mm offset.
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APPENDIX B:

EFFECTS OF REFLECTIVE TAPE ON LASER

ULTRASONICS MEASUREMENTS

Summary

For most of the laboratory measurements presented in this work, we use metallic tape

in order to reflect the receiver laser light from dark or transparent samples, but also for

the latter to absorb the source infrared light. While the description of laser ultrasonic

sources is out of the scope of this work, we seek to characterize the influence of the

tape on the receiver side. We compare two tapes: a copper tape and an aluminum

tape. Both tapes have a metal layer 50 µm thick for a total thickness with adhesive

backing of 90 µm. In our laboratory measurements, we do not encounter wavelengths

shorter than one millimeter. Therefore, the tape thickness is always less than a tenth

of the wavelength, and should not act as an interface for elastic waves. The added

thickness can however bring a time-delay. We investigate this effect here, and show

that the aluminum tape has small effects on the amplitude, and introduces a short

time-delay taken in account during processing steps.
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B.1 Influence of Tape

We use a piezolectric transducer as a source, which generates a central frequency of

500 kHz. The transducer is coupled to a piece of aluminum, 145 mm thick; it is thick

enough to assume an incoming plane wave. We compare the two tapes by recording

signal without any tape, and then separately with each kind of tape. We first use a

compressional transducer to measure the P-wave response of the tapes, and measure

the response on the out-of-plane signal of the interferometer. The comparison between

each surface is shown in Figure B.1. We see that both tapes introduce a small delay

and we estimate it by measuring the time of the maximum in the cross-correlation of

a signal with tape and the signal with the bare sample. We get a delay of 0.02 µs for

the aluminum tape and 0.06 µs for the copper tape.

We then perform a similar measurement with a shear transducer and measure

the S-wave arrival on the in-plane channel. The resulting comparison is shown in

Figure B.2. The delays are in this case 0.02 µs for the aluminum tape and 0.06 µs

for the copper tape.

We also notice that the presence of tape changes the amplitude of the signal. For

the out-of-plane component measured with the P-wave source, the aluminum tape

increases the amplitude of the signal by approximately 8%, and the copper tape by

23%. For the in-plane component measured using the S-wave transducer, the changes

are higher. The signal amplitude is increased by 48% with the aluminum tape, and

decreased by 18% with the copper tape.
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Figure B.1: Time arrivals of a direct P-wave measured on an aluminum sample with
different tapes. The addition of copper or aluminum tape does not modify the ampli-
tudes, but adds a delay of 0.02 µs for the aluminum tape and 0.06 µs for the copper
tape.

B.2 Conclusion

The aluminum tape introduces minimal delays compared to the period of the signals

of interests. We opt to use this tape and nonetheless compensate for the introduced

delay during the processing steps. The wide amplitude variations for the S-wave

arrival can be explained by the high sensitivity of the in-plane channel to the focal

position, as shown in Appendix A. The amplitude of the in-plane component is solely

used in Chapter 4. In that case, we normalize the scattered arrival by the reflected

arrival, and assume that the bias in amplitude stays the same for both events.
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Figure B.2: Time arrivals of a direct S-wave measured on an aluminum sample with
different tapes. The addition of copper or aluminum tape does not modify the ampli-
tudes, but adds a delay of 0.16 µs for the aluminum tape and 0.67 µs for the copper
tape.
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APPENDIX C:

DETAILS OF THE SCATTERING AMPLITUDE

DERIVATION

Summary

In this appendix, we give in detail three steps of the derivation of the scattering

amplitude. We first show how to get the Nijkl used in Equation (3.9). We then show

how to derive the scattering amplitudes in Expressions (3.27)–(3.30). Finally, we

describe the simplification of F (k) for a circular crack.

C.1 Derivation of Nijkl for an Isotropic

Medium

Inserting the expression for the elasticity tensor for an isotropic medium and Equation

(3.8) into definition (3.7) of Nijkl gives

Nijkl = {ηNfpfi + ηT (δpi − fpfi)} fjfq {λδpqδkl + µδpkδql + µδplδqk} . (C.1)
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Carrying out the multiplication and summing over the variables of the delta functions

gives

Nijkl =λδkl {ηNfpfifjfp + ηTfjfi − ηTfpfifjfp}

+ µ {ηNfkfifjfl + ηT δikfjfl − ηTfkfifjfl}

+ µ {ηNflfifjfk + ηT δilfjfk − ηTflfifjfk} . (C.2)

Since the vectors f̂ , n̂, p̂, m̂ and q̂ are unit vectors

fjfj = njnj = pjpj = mjmj = qjqj = 1 . (C.3)

Using this in Equation (C.2), and combining terms, leads to Expression (3.9).

C.2 Derivation of the Scattering Amplitude

In order to derive fPP , the stress (3.13) of an incoming P wave and Equation (3.9)

combine to give

σ
(P )
ij Nijklmkml = ikαe

ikα(n̂·s)

×
{
λ2ηNfifimkmk + 2λµ(ηN − ηT )fififkflmkml

+ λµηTfiflmiml + λµηTfifkmkmi + 2λµηNninjfifjmkmk

+ 4µ2(ηN − ηT )ninjfifjfkflmkml + 2µ2ηTninjfjflmiml

+2µ2ηTninjfjfkmimk

}
. (C.4)
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Combinations, such as nifi, are dot products and reduce to (n̂ · f̂). Using this, and

the normalization (C.3) in Expression (C.4), gives after combining terms

σ
(P )
ij Nijklmkml = ikαe

ikα(n̂·s) ×
{
λ2ηN + 2λµηN

(
(n̂ · f̂)2 + (m̂ · f̂)2

)
+ 4µ2(ηN − ηT )(n̂ · f̂)2(m̂ · f̂)2

+4µ2ηT (n̂ · m̂)(n̂ · f̂)(m̂ · f̂)
}
. (C.5)

Inserting this in Equation (3.24), using that kα = ω/α and definition (3.26) for F (k),

gives Expression (3.27).

Similar steps for P to S scattering give

σ
(P )
ij Nijklqkml = ikαe

ikα(n̂·s)

×
{
λ2ηNfifiqkmk + 2λµηNfifjninjqkmk

+ 2λµ(ηN − ηT )fififkflqkml

+ 4µ2(ηN − ηT )ninjfifjfkflqkml

+ λµηTfiflqiml + 2µ2ηTninjfjflqiml

+λµηTfifkqkmi + 2µ2ηTninjfjfkqkmi

}
. (C.6)

The polarization of the outgoing S wave is perpendicular to the direction of propa-

gation, hence

qkmk = (q̂ · m̂) = 0 , (C.7)

hence the first two terms in the right hand side of Expression (C.6) vanish. Using
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this, and the normalization (C.3), gives

σ
(P )
ij Nijklqkml = ikαe

ikα(n̂·s)

×
{

2λµηN(m̂ · f̂)(q̂ · f̂) + 4µ2(ηN − ηT )(n̂ · f̂)2(m̂ · f̂)(q̂ · f̂)

+2µ2ηT (n̂ · f̂)(m̂ · f̂) ((n̂ · q̂) + (n̂ · m̂))
}
. (C.8)

Using this in Expression (3.25) leads, with definition (3.26), to Equation (3.28).

For S to P scattering, we use Expression (3.16) for the stress, hence

σ
(S)
ij Nijklmkml = ikβe

ikβ(n̂·s)

× {λµηNnipjfifjmkmk + λµηNnjpififjmkmk

+ 2µ2(ηN − ηT )nipjfifjfkflmkml

+ 2µ2(ηN − ηT )njpififjfkflmkml

+ µ2ηTnipjfjflmiml + µ2ηTnjpifjflmiml

+µ2ηTnipjfjfkmimk + µ2ηTnjpifjfkmimk

}
. (C.9)

Using Expression (C.3), this can be reorganized as

σ
(S)
ij Nijklmkml = ikβe

ikβ(n̂·s)

×
{

2λµηN(n̂ · f̂)(p̂ · f̂) + 4µ2(ηN − ηT )(n̂ · f̂)(p̂ · f̂)(m̂ · f̂)2

+2µ2ηT (m̂ · f̂)
(

(n̂ · m̂)(p̂ · f̂) + (p̂ · m̂)(n̂ · f̂)
)}

. (C.10)

Inserting this in Equation (3.24) leads with Expression (3.26) to the S to P scattering

amplitude (3.29).
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Finally, the S to S scattering amplitude follows from the same steps:

σ
(S)
ij Nijklqkml = ikβe

ikβ(n̂·s)

×
{
λ2µηNnipjfifjqkmk + λ2µηNnjpififjqkmk

+ 2µ2(ηN − ηT ) (nipjfifjfkflqkml + njpififjfkflqkml)

+ µ2ηTnipjfjflqiml + µ2ηTnjpifjflqiml

+µ2ηTnipjfjfkqkmi + µ2ηTnjpifjfkqkmi

}
. (C.11)

The polarization vector q̂ of the outgoing S wave is perpendicular to the direction of

propagation, hence qkmk = (m̂ · q̂) = 0, and the terms proportional to λ vanish. The

remaining terms are, in vector notation, given by

σ
(S)
ij Nijklqkml = ikβe

ikβ(n̂·s)µ2

×
{

4(ηN − ηT )(n̂ · f̂)(p̂ · f̂)(m̂ · f̂)(q̂ · f̂)

+ ηT (n̂ · q̂)(p̂ · f̂)(m̂ · f̂) + ηT (n̂ · f̂)(p̂ · q̂)(m̂ · f̂)

+ηT (n̂ · m̂)(p̂ · f̂)(q̂ · f̂) + ηT (n̂ · f̂)(p̂ · m̂)(q̂ · f̂)
}
. (C.12)

Using this, and definition (3.26), in Expression (3.25) gives Equation (3.30).

C.3 F (k) for a Circular Crack

Following definition (3.26), the form factor for a circular crack with radius a is given

by

F (k) = A−1

∫∫
Σ

ei(k·s)d2s = A−1

∫ a

0

∫ 2π

0

eik‖s cos ξdξsds , (C.13)
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where ξ is the angle between the projection of k on the fracture and the integration

variable s. The integral representation of the Bessel function as given in Expression

(11.30c) of Arfken and Weber (2001)
(

2πJ0(x) =
∫ 2π

0
eix cos ξdξ

)
reduces Expression

(C.13) to

F (k) = A−1

∫∫
Σ

ei(k·s)d2s =
2π

A

∫ a

0

sJ0(k‖s)ds , (C.14)

where J0 is the Bessel function of order zero. We next use the recursive relation

d(xnJn(x))/dx = xnJn−1(x) (C.15)

(Equation (11.15) of Arfken and Weber (2001)). Setting n = 1 and x = k‖s gives

sJ0(k‖s) = k−1
‖

d

ds

(
sJ1(k‖s)

)
. (C.16)

Inserting this in expression (C.14) yields

F (k) =
2π

k‖A

∫ a

0

d

ds

(
sJ1(k‖s)

)
ds =

2π

k‖A
aJ1(k‖a) . (C.17)

Using that A = πa2 gives Equation (3.33).
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APPENDIX D:

TIP-DIFFRACTION TIMES FROM FORM

FACTOR

Summary

This appendix shows how we obtain the tip-diffraction times used in Chapter 5, from

the form-factor introduced in Chapter 3.

D.1 Derivation of the Tip-Diffraction Times

Equation (3.27) shows that the P to P scattered amplitude for a planar fracture in a

linear-slip model under the Born approximation is

fP,P (n̂; m̂) =
ω2

4πρα4
AF (kα(n̂− m̂))

{
λ2ηN + 2λµηN

(
(n̂ · f̂)2 + (m̂ · f̂)2

)
+4µ2(ηN − ηT )(n̂ · f̂)2(m̂ · f̂)2 + 4µ2ηT (n̂ · m̂)(n̂ · f̂)(m̂ · f̂)

}
, (D.1)
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where ω is the angular frequency, α the P-wave velocity, ρ the density of the material,

λ and µ the Lamé parameters, A the surface area of the fracture, and ηN and ηT the

normal and tangential compliances, respectively, for the linear-slip model. The unit

vectors n̂ and m̂ denote the directions of incoming and outgoing waves, respectively,

and f̂ is the unit vector normal to the fracture (see Figure 5.3).

The prefactor (ω2/4πρα4)A does not carry time information. The factor in curly

brackets contains the angular dependence of the scattering amplitude, and depends

only on the mechanical properties of the fracture ηN and ηT of the sample material,

and on the directions of the incoming and outgoing waves relative to the fracture

orientation. The form factor F (kα(n̂− m̂)) depends on the fracture size and shape,

and contains travel time information. For the case of a circular fracture, the form

factor can be expressed as Equation (3.33):

F (kα(n̂− m̂)) =
2

k‖a
J1(k‖a) , (D.2)

where a is the radius of the fracture, k‖ the projection of the wavenumber change

during the scattering onto the fracture plane, and J1 the first order Bessel function.

According to Equation (20.53) of Snieder (2009), the asymptotic development of the

Bessel function is

Jm(x) =

√
2

πx
cos
(
x− (2m+ 1)

π

4

)
+O(x−3/2) , (D.3)

For the geometry described in Figure 5.3, the wavenumber change can be expressed

as

k‖ =
ω

α
(sin θ(1 + cos δ) + sin δ cos θ) . (D.4)
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Inserting Equations (D.3) and (D.4) into Expression (D.2), and expanding the cosine

in exponentials gives

F (k) ∝
(
eiπ/4eiωT + e−iπ/4e−iωT

)
, (D.5)

where T = (a/α) (sin θ(1 + cos δ) + sin δ cos θ). T and −T quantify the delay time of

the tip diffraction arrivals relative to the arrival time t = 2R/α for a ray reflecting

at the center of the fracture. Therefore, the total tip diffraction travel times for

the scattered arrival are given by Equation (5.1). Note that this expression predicts

a phase shift exp(±iπ/4) for these waves that is characteristic of edge diffracted

waves (Keller, 1978).


