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ABSTRACT 

Snow and ice are substantial components of the global energy balance and 

hydrologic cycle. Seasonal snow covers an area of 47 million km
2 

at its average 

maximum extent, 98% of which occurs across the Northern Hemisphere. The earth’s 

radiation budget is largely controlled by the fraction of absorbed solar energy, a 

parameter that is dependent upon snow surface albedo. Mountain snowpacks act as 

natural reservoirs, storing large quantities of water throughout the winter until eventual 

release during the melting phase. Accurate characterization of snow-covered area (SCA) 

and snow water equivalent (SWE) in such terrain could substantially improve the 

estimation of timing and volume of melt water runoff. However, knowledge of these 

hydrologic states is limited in part by scarcely populated in situ observation networks and 

logistical constraints in field survey sampling. Thus, satellite remote sensing observations 

are often employed in conjunction with simulation models to improve the estimation of 

snowpack states and resultant fluxes. This study attempts to merge complementary 

datasets in order to predict spatially variable snow processes at high resolution in basins 

exhibiting complex terrain. Specifically, the goal is to provide a means to downscale 

existing remote sensing and snow modeling datasets using computationally efficient 

methods that utilize physiographic information regarding terrain and land cover.  

A linear combination model is proposed for downscaling fractional SCA from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) instrument from its native 
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resolution (500 m) to a hillslope-scale resolution (e.g., 10-30 m), preserving the predicted 

snow cover fraction at the basin scale. The model is calibrated to 30 m Landsat 

observations using elevation and incoming solar radiation indices for a study area in 

southwestern Idaho. Validation is performed with data not used during calibration. 

Results depict favorable model performance when comparing downscaled MODIS snow 

cover to Landsat binary observations. An “ideal” validation test is performed in which 

Landsat aggregate 500 m snow fraction informs the model with similarly positive results. 

The use of such an algorithm might benefit applications from flood forecasting to SWE 

reconstruction. 

In a snowmelt modeling application, the satellite-derived snow cover downscaling 

algorithm is applied as a binary mask to constrain spatial melt runoff data from the 

SNOw Data Assimilation System (SNODAS). Differential solar radiation, forest canopy, 

and snow albedo estimates are also used to further downscale the modeled melt. 

Comparison with available field lysimeter data show proper spatial disaggregation of 

modeled melt onto opposing hillslopes, though timing and magnitude issues exist. 

Implications for resolving snowmelt at hillslope scales are briefly discussed. 
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CHAPTER ONE: PROJECT MOTIVATION AND OVERVIEW 

Snow and ice are substantial components of the global energy balance and 

hydrologic cycle. Globally, snow covers an area of 47 million km
2 

at its average 

maximum extent, 98% of which occurs across the Northern Hemisphere (Armstrong and 

Brun, 2008). The earth’s radiation budget is largely controlled by the fraction of absorbed 

solar energy, a parameter that is dependent upon the surface albedo of snow (Stroeve et 

al., 2006). Hydrologically, melt from glaciers and seasonally snow-covered regions is of 

critical importance, delivering water to more than one-sixth of the world’s population 

(Barnett et al., 2005). In the western United States, high-elevation snowpacks act as 

natural reservoirs, storing water in the mountains for later release when spring melt 

begins (Pavelsky et al., 2012). This snowmelt delivers an estimated 75% of annual runoff 

to streams and rivers in this region (Palmer, 1988). Warming trends in many western US 

regions have led to an earlier onset of snowmelt and stream runoff, presumably due to 

anthropogenic increases in atmospheric greenhouse gases (Cayan et al., 2001; Barnett et 

al., 2008). Moreover, climatic changes have brought about a gradual breakdown in the 

relevance of statistical relationships that have historically been used to forecast catchment 

response and water supply (Milly et al., 2008). Therefore, it is becoming increasingly 

essential to accurately estimate the explicit spatial and temporal distribution of snow 

water equivalent (SWE) and snow-covered area (SCA) in order to make sound 

hydrologic predictions. However, the ability to predict these variable snow states is 

limited in part by scarcely populated in situ observation networks (Martinec and Rango, 
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1981; Bales et al., 2006) and logistical constraints in field survey sampling (Elder et al., 

1991). Thus, satellite remote sensing observations are often employed in conjunction 

with simulation models to improve the estimation of snowpack states and resultant 

fluxes.  

This study addresses a notion that existing, publically-available datasets can be 

merged in order to predict spatially variable processes of snowmelt at increased 

resolution in areas of complex terrain. Specifically, the goal is to provide a means to 

downscale modeled and remotely-sensed snow data using simple, computationally 

efficient methods that utilize physiographic information regarding terrain and land cover. 

In Chapter 2, a method is proposed for downscaling 500 m fractional SCA from 

the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. An algorithm 

is used by which the MODIS snow fraction informs a linear model to generate binary 

snow cover estimates of increased spatial resolution. The model is calibrated to Landsat 

observations for a semi-arid, mid-latitude region in southwestern Idaho using two indices 

that are presumed to strongly influence the spatial distribution of snow cover: 1) 

elevation and 2) incoming solar radiation. The model is tested against data not used in 

calibration and shown to perform favorably in some areas while failing in others. 

Difficulties exist in identifying specific reasons for failure, though it is suspected that 

forest canopy and wind re-distribution play a crucial role in snow cover, variables not 

implemented in this model. It is suggested that the addition of canopy and wind 

parameters would possibly be a way forward. 

Chapter 3 proposes a method seeking to downscale Snow Data Assimilation 

System (SNODAS) snowmelt output from 1-km to hillslope (e.g., 10-30 m) scales. This 
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method makes use of the snow cover downscaling framework outlined in Chapter 2 as a 

binary mask, updating the coarse snowmelt data with higher resolution, spatially explicit 

snowmelt estimates. Additional variables used to further disaggregate the modeled melt 

include: 1) differential incoming solar radiation, 2) snow surface albedo, and 3) forest 

canopy fraction. Timing of solar radiation is used to downscale the temporal pattern of 

snowmelt at the pixel scale under a sinusoidal framework. Albedo is prescribed according 

to a simple time-decay function that uses time since snowfall as its input. An ensemble 

method is explored, generating a range of possible modeled albedos and constraining 

them to satellite-observed albedo estimates. Forest canopy fraction is used simply to 

attenuate solar radiation with a variation of Beer’s Law. No adjustments for long-wave 

radiation are assumed. The model is compared with paired snowmelt lysimeters (n = 4) 

on opposing hillslopes in Dry Creek Experimental Watershed (DCEW) in southwestern 

Idaho, the same domain in which the calibration methodology is performed for Chapter 2. 

Results depict relatively successful disaggregation of SNODAS melt for differential 

hillslopes. However, temporal and magnitude differences in the initial model’s pulses of 

snowmelt limit the ability of the downscaling procedure to come to notable agreement 

with the observations. Overall, the downscaled melt estimates, and the original estimates, 

tend to underestimate the magnitude of melt observed at the lysimeters.  

Chapter 4 concludes the document, providing a synopsis of the work described in 

the document. Implications of the proposed methods for use in hydrologic modeling are 

briefly discussed. 
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CHAPTER TWO: A PHYSIOGRAPHIC APPROACH TO DOWNSCALING 

FRACTIONAL SNOW COVER DATA IN MOUNTAINOUS REGIONS 

2.1 Introduction 

2.1.1 Background 

Accurate characterization of snow-covered area (SCA) and snow water equivalent 

(SWE) in complex terrain could substantially improve estimation of streamflow timing 

and volume. Since more than one-sixth of the world’s population depends on glacial and 

seasonal snowmelt for water resource supply (Barnett et al., 2005), predicting the 

spatiotemporal evolution of snow processes is of great importance for conveying reliable 

hydrologic information to those who demand it. Accumulation and melting of snow occur 

variably, producing heterogeneity in snowpack disappearance, which must be modeled 

with accuracy in order to estimate melt runoff for a catchment (Clark et al., 2011).  

However, the ability to predict these variable snow processes is limited in part by 

scarcely populated in situ observation networks (Martinec and Rango, 1981; Bales et al., 

2006) and logistical constraints in field survey sampling (Elder et al., 1991). Thus, 

satellite remote sensing observations are often employed in conjunction with simulation 

models to improve the estimation of snowpack states and resultant fluxes. For example, 

studies assimilating satellite-derived areal snow cover information into hydrologic 

models have demonstrated improvements to simulated streamflow and SWE (Rodell and 

Houser, 2004; Clark et al., 2005; Thirel et al., 2011). In other studies, snowmelt depletion 
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curves have been accurately constructed using similar SCA information in combination 

with energy balance melt modeling (Homan et al., 2011). Retrospective analysis of SCA 

data combined with distributed temperature-index and energy balance snowmelt 

modeling has also been used to reconstruct basin-wide SWE at the time of maximum 

accumulation, comparing favorably with results of intensive field campaigns (Martinec 

and Rango, 1981; Cline et al., 1998; Durand et al., 2008; Molotch, 2009).  

The space-borne Landsat remote sensing system is capable of retrieving areal 

snow cover data for hydrologic studies at the catchment scale (Dozier and Marks, 1987; 

Dozier, 1989; Rosenthal and Dozier, 1996). Similarly, the Moderate Resolution Imaging 

Spectroradiometer (MODIS) instrument, aboard NASA Aqua and Terra satellites, can be 

used to map SCA (Hall et al., 1995; Justice et al., 1998; Painter et al., 2009; Salomonson 

and Appel, 2004, 2006). These products are highly valuable for their utility in updating 

and constraining distributed snow models (e.g., Luce et al., 1998, 1999; Clark et al., 

2005; Thirel et al., 2011). However, each of these snow cover products has spatial or 

temporal limitations. For instance, Landsat has an ideal (i.e., cloud-free) return interval of 

16 days with a spatial resolution of 30 m. Conversely, estimates from MODIS can be 

derived daily at a 500 m spatial resolution. Fractional snow cover products derived from 

MODIS (Hall et al., 2006; Salomonson and Appel, 2004, 2006) provide a sub-grid 

approximation by estimating the percentage of each pixel that is snow-covered, but do 

not explicitly resolve SCA at sub-pixel scales. Since snow cover varies within these 

spatiotemporal boundaries, it is desirable in many applications to have higher spatial and 

temporal resolution.   
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2.1.2 Objective 

The objective of this work is to develop and describe an efficient model to 

downscale melt-season fractional snow-covered area (fSCA) data from MODIS (spatial 

resolution 500 m) to a higher resolution (spatial resolution 30 m), yielding a spatially 

explicit binary snow cover grid. The derived high-resolution snow cover product is meant 

to be used to constrain snow cover in future simulation modeling. The proposed model is 

based on the hypothesis that the distribution of SWE and snow-covered areas in a 

partially snow-covered region is non-random and can be predicted using terrain 

physiographic features like elevation, slope, and aspect (or combinations thereof). 

Further, it relies on the notion that snow distribution patterns tend to occur in similar 

patterns from year to year (Sturm and Wagner, 2010). The developed algorithm is based 

on physiographic characteristics that can be derived from ancillary data products, 

principally digital elevation models (DEMs). The algorithm assigns binary snow cover to 

a grid that is coincident with a 30 m DEM that is used to derive normalized potential 

incoming solar radiation (insolation) and normalized relief within each 500 m MODIS 

pixel. The method preserves the predicted snow cover fraction at the 500 m scale. We 

calibrate and test the model against a number of available Landsat images for a region in 

southwestern Idaho.  

2.1.3 Relevant Theory and Outline 

A melting snowpack can be conceptualized as the net effect of energy input and 

output to the system. The rate of internal energy change, 
  

  
, within the system is 

typically modeled as the sum of all energy terms in the overall balancing equation 
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                                                       (1) 

where     is net short-wave radiation,     is net long-wave radiation,    is heat energy 

advected by precipitation,    is ground heat flux,    is sensible heat flux,    is latent 

heat flux, and    is heat energy advection from meltwater removal (Gray and Male, 

1981; Tarboton and Luce, 1996; Dingman, 2002). The relative importance of each of 

these terms varies depending on latitude, topography, synoptic weather, and season (Male 

and Gray, 1981). Anderson (2011) showed that differential solar radiation (as a result of 

complex topography) played a large role in spatially varying SWE on the ground in a 

catchment in Southwestern Idaho, which is the regime over which this work is employed 

(further described in the next section). Furthermore, elevation is also identified as having 

a significant effect on snow distribution due to orographic controls on temperature and 

precipitation (Gray and Male, 1981; Anderson, 2011). In the aforementioned Idaho 

catchment, precipitation lapse rates ranged from 0.5042 to 0.4807 mm/m for the 2009 and 

2010 water years, respectively. Also, temperature lapse rates ranged from -4.3 to -5.2 

°C/km for the 2009 and 2010 water years, respectively (Anderson, 2011). These lapse 

rates are assumed to act in a balanced manner in terms of snow accumulation and 

ablation across elevation gradients. Accordingly, the proposed approach assumes that 

potential insolation and elevation are locally dominant controls on the spatial distribution 

of snow cover. The approach clearly neglects other terms from the energy budget. But we 

suggest in the discussion that a similar approach (or one of increased complexity) could 

be developed for other regions, based on terrain or energy indices reflecting other factors 

controlling the distribution of snow cover in these regions. 
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In Section 2, we describe the satellite and terrain datasets used in this study. 

Section 3 outlines algorithm design, development, and procedures used for calibration 

and validation. Model results are presented in Section 4 and we provide a brief synopsis 

of the results, implications, and model limitations in Section 5. 

2.2 Datasets 

The goal of this work is to develop a downscaling algorithm for fractional snow-

covered area data derived from MODIS multispectral observations. The method is driven 

by operational, accessible soft datasets from remote sensing platforms. This section 

provides a brief outline of the data used in this study. 

2.2.1 Remotely Sensed Snow Cover: Hillslope Scale 

As of this writing, the Landsat Program is celebrating 40 years of high-resolution, 

global data observation, offering a unique retrospective and near real-time data record for 

many applications. Multispectral band information from the Landsat Thematic Mapper 

(TM) and Enhanced Thematic Mapper (ETM+) instruments is often used for automated 

mapping of snow cover. The Normalized Difference Snow Index (NDSI) has been used 

in efforts to distinguish snow-covered pixels from other land surfaces, leveraging the 

high and low reflectance of snow in the visible and short-wave infrared portions of the 

electromagnetic spectrum, respectively (Dozier, 1989). This ratio is described as 

      
          

          
                                                       (2) 

where      represents reflectance in a visible band and       is reflectance in a short-

wave infrared band. The NDSI is an analog to the previously defined (Tucker, 1979) and 

ubiquitously used Normalized Difference Vegetation Index (NDVI), which utilizes 
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similar principles to estimate vegetation properties. Other studies have exploited spectral 

mixture analyses to classify snow-covered and snow-free pixels, utilizing spectral 

libraries for pure end-member reflectance values and solving a set of linear combinations 

of their relative fractions for the observed reflectance in each pixel (e.g., Nolin et al., 

1993; Rosenthal and Dozier, 1996; Painter et al., 2003). 

In this study, a series of Landsat scenes over a mid-latitude, semi-arid region in 

southwestern Idaho (path/row 41/30) are compiled over a range of winter and spring 

season dates between 2000 and 2011. We employ the NDSI to estimate binary snow 

coverage. These scenes serve as high-resolution calibration and validation data for the 

development of the downscaling routine. A combination of Landsat TM and ETM+ 

scenes are chosen in which cloud cover is minimal (i.e., < 20% for whole scene) and 

qualitatively inspected such that any incident cloud cover does not occur over the 

mountainous regions of interest (Table 1). Within the Landsat scenes, we choose subsets 

known to retain seasonal snow cover for calibration and validation regions and that are of  

interest for modeling exercises (Figure 1). Subset (a) in Figure 1 contains the Dry Creek 

Experimental Watershed (DCEW), a 27 km
2
 watershed north of Boise (Stieglitz et al., 

2003; McNamara et al., 2005; Tyler et al., 2008; Kelleners et al., 2010; Kunkel et al., 

2011; Graham et al., 2012), while subset (b) contains Reynolds Creek Experimental 

Watershed (RCEW), a 239 km
2
 watershed in the Owyhee mountains that is maintained 

by the USDA Agricultural Research Service (Johnson and Hanson, 1995; Marks et al., 

2001; Winstral and Marks, 2002; Flerchinger et al., 2010; Reba et al., 2011). Figure 2 

shows Landsat-derived snow cover across subset b. Methods for classification of Landsat 

snow-covered pixels are described in further detail in Section 3. 
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2.2.2 Remotely Sensed Snow Cover: Macro-Scale 

MODIS MOD10A1 Level 3 Version 5 (Hall et al., 2006) data are obtained in 

hierarchical data format (HDF) for downscaling. This product is a daily retrieval of fSCA 

based on data in visible and short-wave infrared bands from the MODIS sensor onboard 

the NASA Terra satellite. The MOD10A1 product produces fSCA estimates based on an 

empirical linear relationship between MODIS NDSI and pixel snow fraction, inferred 

from Landsat data using an NDSI threshold approach. Figure 3 illustrates MOD10A1 fSCA 

over subset b. The Aqua satellite MODIS sensor is used to derive a similar product 

(MYD10A1), but we choose to use the Terra version in this study. In validation, Terra 

fractional snow cover estimates performed better than Aqua in terms of root-mean-

squared error, largely due to a pixel misregistration issue between NDSI bands in the 

Aqua MODIS instrument (Salomonson and Appel, 2006).  Recent work suggests that the 

MOD10A1 fractional snow cover potentially overestimates snow cover fraction in some 

regions, particularly in North America (Rittger et al., 2012). A more recent fSCA product, 

the MODIS Snow-Covered Area and Grain size (MODSCAG) model, utilizes 

spectral mixture analysis with MODIS reflectance data to estimate fSCA and has 

demonstrated promising results in validation (Painter et al., 2009; Rittger et al., 2012). 

However, since the purpose of this study is not to evaluate the skill of a particular remote 

sensing product, and since the MODSCAG products are not readily available at present, 

we use Terra MOD10A1 data for simplicity. Future work will explore the utilitiy of the 

downscaling approach with other snow remote sensing products. 
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Figure 1. Landsat band 2 image (path/row: 41/30) for 18 March 2010 with SW 

Idaho location inset. The model is calibrated over subset a and validated over 

subsets b and c. 
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Figure 2. Binary snow cover at 30 m resolution from Landsat across subset b on 

18 March 2010. Snow cover is assigned using the normalized difference snow index. 

 

 

 

 

Table 1. Image calibration dates and sensors utilized with corresponding cloud 

coverage for the Landsat scenes used in this study. All scenes are path 41, row 30. 

Scene # Date TM 5 ETM+ 7 Cloud Cover % 
1 02/03/2000 x  0 
2 02/19/2000  x 0 
3 03/01/2001  x 0 
4 04/18/2001  x 4 
5 05/04/2001  x 0 
6 02/16/2002  x 2 
7 03/04/2002  x 2 
8 04/08/2003  x 6 
9 05/10/2006 x  0 
10 04/27/2007 x  0 
11 03/12/2008 x  20 
12 05/15/2008 x  13 
13 02/01/2011 x  6 
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2.2.3 Terrain Data 

We use Shuttle Radar Topography Mission (SRTM) elevation data acquired from 

the Global Land Cover Facility. This dataset was acquired by the Space Shuttle 

Endeavour on mission STS-99 during February 2000 and provides nearly global high-

resolution coverage. The WRS-2 tile edition of the 30 m DEM, which is coincident with 

the Landsat scene of interest was obtained, substantially easing comparisons between 

modeled and observed Landsat snow covered/snow free pixels during the calibration and 

validation phases of the study. This DEM grid is subset into the same regions as 

described for the Landsat scenes. Fig ures 4, 5, and 6 show the elevation across subsets a, 

b, and c, respectively, with the 500 m MODIS grid mesh overlain. Local topographic 

slope 

(gradient in direction of steepest descent) and aspect (cardinal direction of steepest 

descent) are extracted using the topographic modeling tools in ENVI. A mountain slope 

solar radiation algorithm (Swift, 1976) is applied to these terrain data in MATLAB to 

produce indices for daily, integrated potential incoming solar radiation (insolation). 

Details concerning the radiation computation and treatment are discussed in the 

methodology section of this paper. 
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Figure 3. Fractional Snow-Covered Area at 500 m resolution from MOD10A1 

across subset b on 18 March 2010. 
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Figure 4. SRTM digital elevation model at 30 m resolution across subset a with 

MODIS 500 m grid mesh overlay. See Figure 1 for context. 
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Figure 5. SRTM digital elevation model at 30 m resolution across subset b with 

MODIS 500 m grid mesh overlay. 
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Figure 6. SRTM digital elevation model at 30 m resolution across subset c with 

MODIS 500 m grid mesh overlay. 

 

2.3 Methods 

Described in this section is the downscaling model used to derive 30 m binary 

snow cover maps using 500 m  fSCA estimates from MODIS. The developed algorithm 

makes several important assumptions about drivers of variable snow cover in the study 

region, which are enumerated here:  
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 (1) Two variables, potential insolation and elevation, dominantly control the 

differential ablation of snow cover throughout spring melt at the 30m to 500 

m scales investigated here (Anderson, 2011), 

 (2) Snow will disappear from pixels prone to increased solar radiation 

exposure before those that are more obscured, 

 (3) Higher elevation pixels will retain a deeper snow pack due to orographic 

effects during initial accumulation and temperature lapse rates during melt 

onset. This effect should be preserved during ablation, as lower elevation 

pixels melt before higher ones.  

The degree to which these predictor variables affect the snow cover distribution is a 

question that is addressed by this study and is likely a function of the spatial resolution at 

which the fSCA observation occurs (e.g., 500 m in the case of individual MOD10A1 grid 

cells). Figure 7 provides qualitative insight into the importance of the aforementioned 

predictor variables within 500 m MODIS cells of varying snow cover fractions.  

This section is organized as follows. First, the calculation of solar radiation 

indices is described. Next, the derivation of the 30 m binary snow covered maps from the 

Landsat scenes shown in Table 1 is discussed. Reprojection and subsetting of the MODIS 

data for the region is presented. The downscaling routine is then described, followed by 

the parameter calibration and validation methods. 
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Figure 7. Landsat snow cover across DCEW with MODIS grid mesh overlay (upper left). Radiation slope factor and 

elevation index histograms within three subset MODIS cells of varying fSCA. For each cell, the histogram for all slope factor 

and elevation (ALL) are shown juxtaposed with those only with snow cover (SC). 
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2.3.1 Solar Radiation Index 

To calculate solar radiation, an algorithm is employed requiring Julian date, 

latitude, slope inclination,  and aspect as inputs to estimate daily potential integrated 

irradiation at each model pixel (Swift, 1976). Terrain slope and aspect data are extracted 

from a 30 m DEM as presented in Section 2. The radiation model does not account for 

atmospheric attenuation due to changes in optical depth or aerosol presence, making only 

a series of trigonometric adjustments to the extraterrestrial solar constant. Nor does the 

model account for shading from adjacent blocking ridges. See Appendix A.1 for details 

concerning the radiation calculations. We are interested in the relative comparison of 

insolation values over complex terrain within MODIS grid pixels and thus do not attempt 

to adjust for attenuation effects, assuming constant atmospheric conditions across the cell 

at any given time. In order to achieve a relative value for solar radiation, each pixel’s 

potential value is normalized to that of a horizontal plane in the same location. That is 

     
      

      
                                                          (3) 

where        and        are pixel-scale potential insolation on the local slope and 

horizontal plane, respectively, and     is the normalized term referred to as the slope 

factor. We compute the slope factor for every day over each subset domain depicted in 

Figure 1. For the computed time-series of     over each subset region, there occur 

domain-wide minimum and maximum values calculated value throughout the snowmelt 

season. This is due to the dynamic range of solar declination angles throughout the year 

and the distribution of slopes and aspects in a given region of complex terrain. These 

extreme values are stored, denoted by    
   

 and    
   

 representing the maximum and 
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minimum observed slope factors, respectively, for each subset’s seasonal time-series. 

These values are used in a normalization process during the downscaling routine 

described in Section 2.3.5. 

2.3.2 Landsat Binary Grid Processing 

An empirical method is used to identify snow-covered pixels within Landsat 

subset grids. We employ the NDSI with a threshold criteria test similar to the SNOMAP 

algorithm (Hall et al., 1995). NDSI is computed via Eqn. 2 with      and       

corresponding to Landsat bands 2 and 5, respectively. Pixels are classified in binary 

manner according to the following criteria: 

   {
                                  
                                 

                                        (4) 

where    represents the classified state of the observed pixel. Dozier (1989) suggests 

other criteria for shadowed areas and cloud discrimination, but these are neglected here, 

relying on (1) the NDSI to reduce effects of viewing geometry over complex terrain and 

(2) our qualitative cloud cover selection criteria. 

2.3.3 MODIS Grid Processing 

MODIS MOD10A1 data are acquired in hierarchical data format (HDF). We 

subset the data over the study region and re-project from its native Sinusoidal grid into a 

UTM coordinate system using the MODIS Reprojection Tool (MRT) from the NASA 

Land Processes Distributed Active Archive Center (LP-DAAC). Although a snow cover 

grid exists for each day, regions and days are frequently corrupted by cloud cover and 

poor sensor viewing geometry. To combat this issue, temporal smoothing splines can be 

employed to estimate snow cover fraction during data gap periods (e.g., Dozier and Frew, 
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2009). In this study, we execute preliminary downscaling on a MODIS fSCA image that 

temporally coincides with 30 m data from a clear Landsat overpass (18 March, 2010), 

which is used for preliminary validation. Since Landsat and MODIS obtained cloud-free 

observations on this date, no temporal smoothing is necessary.  

For simplicity, we remap the 500 m MODIS fSCA product onto a 30 m resolution 

grid that is coincident with the SRTM DEM. It is on this geospatial template that the 

binary snow-covered classification is assigned. A two-dimensional nearest-neighbor 

interpolation is used to register the MODIS fSCA grid to the resolution and position of the 

DEM. The 30 m resolution grids, which include the remapped MODIS fSCA, Landsat 

binary snow cover, slope factor, and elevation, are cropped to the MODIS grid 

boundaries, eliminating a small number of pixels at the grid margins. Because the 

boundaries of the reprojected MODIS grid do not perfectly align with the boundaries of 

the SRTM DEM and Landsat multispectral images, there is an approximate geolocation 

offset of 9.96 m between the grids. It should be noted that this offset is well below the 

MODIS geo-location uncertainty of approximately 50 m at nadir (Wolfe et al., 2002). 

Results depicting differences between MODIS fSCA and the fSCA at 500 m computed from 

Landsat binary snow cover show approximately zero mean and normally distributed 

disparities, suggesting that the grid offset does not produce systematic errors that would 

influence the calibration of the downscaling routine. 

2.3.4 Downscaling Routine 

Downscaling is performed over the MODIS grid on a pixel-by-pixel basis. Within 

each 500 m pixel, the corresponding 30 m elevations ( ) and insolation slope factors (   ) 

are selected. This subset of   and     is standardized within the entire MODIS. Elevation 
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at each 30 m pixel is normalized to the extreme values observed in a given 500 m 

MODIS pixel in a reverse fashion such that the highest pixels within each MODIS pixel 

have the lowest normalized elevation, 

       
        

          
                                              (5) 

where       is the variable name assigned to the normalized elevation grid, 

     represents the maximum elevation, and      represents the minimum. By 

definition, values of      within each MODIS pixel will vary on the interval [0,1]. 

A normalized      is also computed within each MODIS pixel. Rather than 

normalizing to the extreme values within each MODIS pixel, we normalize to the 

maximum and minimum calculated slope factors across the domain for the entire season,  

       
   

   
       

                                                     (6) 

where    
   

 is the maximum slope factor for the whole season, and    
   

is the 

respective minimum. Since there exists a 30 m pixel in every domain that is sufficiently 

steep and North-facing to yield zero potential direct irradiance on at least one day of the 

year, the minimum observed slope factor,    
   

, for each domain is zero. Thus, Eqn. 6 

reduces to 

       
   

   
   .                                                      (7) 

Since slope factor is normalized to domain-wide seasonal maximum, the values of       

will vary by Julian day. This serves to capture the intra-seasonal variations in solar 

declination and, therefore, in insolation as a driver of ablation. The distribution of slope 

factor tends to become more narrow throughout the spring season as the sun transitions to 
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a higher position in the sky. The range of values of       within each MODIS pixel will 

thus be narrower than [0,1] on any given date except for the time and location(s) 

containing the maximum seasonal slope factor,    
   

. 

We achieve a standardized grid at each MODIS pixel by combining the 

normalized insolation and elevation. If we treat the grid of       and       values within 

each MODIS pixel as matrices X1 and X2, respectively, we can construct a convex 

combination matrix Ts of the form: 

∑      
 
                                                             (8) 

where   is a positive integer (equal to 2 in the case of this model),    are the normalized 

matrices of insolation and elevation (as above) belonging to Ts, and     are non-negative 

scalars, which sum to one (Bertsekas et al., 2003). In the presented case of two 

explanatory physiographic variables, Eqn. 8 becomes: 

Ts =      (   )                                                  (9) 

where the matrix Ts  represents a standardized grid representing a ‘terrain score’ for 

which the scalar weights   and     represent the respective contributions from 

insolation and elevation to the snow cover distribution. Within each MODIS pixel, the 

empirical cumulative distribution function (CDF) of the terrain score can be constructed. 

We then use the retrieved MODIS fSCA value, which varies from zero to one, to invert the 

empirical CDF of Ts to determine a critical value in Ts that we take as the threshold for 

the occurrence of snow cover within the MODIS pixel. This critical value is designated 

as variable   . Specifically, snow cover is assigned to pixels with values of Ts below   . 

The remaining pixels, representing a fraction        within each MODIS pixel, are 
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assumed to be snow-free. This approach preserves the original snow fraction observed by 

the individual MODIS pixel and thus preserves SCA at the basin-scale. The snow-

mapping model is of the form: 

   {
                          ∫  (  )

  
 

                        ∫  (  )
  

  

                                          (10) 

where    is the classified state of the modeled pixel and    is the maximum value 

occurring in Ts. Numerically, this algorithm is straightforward and computationally 

inexpensive since the only variable requiring solution is  . This approach reflects our 

assumptions about the drivers of ablation in a couple of important ways. First, by 

normalizing the elevation pixels in reverse order, we assign greater values to pixels of 

lower elevation. Within each MODIS pixel boundary, the pixels with the lowest 

elevations will tend to be associated with higher values of Ts, and will therefore tend to 

be assigned a snow-free status before those pixels with higher elevations. In contrast to 

the reverse-normalizing process used with elevation, slope factors are normalized such 

that those pixels with the highest values of    within a MODIS pixel also have the highest 

values of      . Thus, those pixels with the highest values of     (prone to relatively 

more solar radiation) will correspondingly have higher values of      , which will tend 

to increase Ts. All else being equal, these pixels will tend to be classified as snow-free 

more frequently. Finally, by combining       and       in an efficient, linear 

combination model, the approach requires only one parameter ( ) to fit. This parameter 

is informed by Landsat data and represents the relative contributions of potential solar 

radiation and elevation within each MODIS pixel to the persistence of snow cover. The 

iterative calibration and validation methods are outlined in the next section. 
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2.3.5 Parameter Calibration 

As described, the downscaling model requires only an input value for the scalar 

weight   in Eqn. 9 in addition to the       and       maps. We use an iterative 

approach to calibrate this parameter that optimizes the downscaled binary snow cover 

maps relative to the Landsat binary snow cover predictions. To test the transferability of 

parameters, we use only region a in Figure 1 to calibrate w. 

During the calibration phase, the 500 m resolution fSCA is computed directly from 

Landsat binary snow cover maps using an iterative, moving-window approach. This 

eliminates the impact of potential errors in the MODIS retrieval of fSCA from influencing 

the calibration of the algorithm. The calibration approach iteratively moves a 500 m 

square window over three different co-registered 30 m resolution grids for region a: (1) 

Landsat binary snow cover, (2) elevation, and (3) potential insolation. For robustness, we 

move the window across every possible 500 m window over the subset domain, rather 

than just those windows falling on the MODIS grid footprint. Within each window, the 

fractional snow cover is derived as the simple fraction of snow-covered pixels predicted 

with the critical NDSI threshold,  

    
         

  

 
                                                     (11) 

where     
        is the fractional snow cover inferred from the Landsat scene within the 

500 m window,    represents the number of pixels where snow cover is observed, and   

represents the total number of pixels in the window. By default, the downscaling model 

performs perfectly when fSCA equals zero or one, regardless of the value of  . Therefore, 
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we only analyze those windows with fractional snow cover within the range     

    
           . This prevents misleading statistical analysis of the model results.  

For windows satisfying the given range, we iterate through candidate values,  , 

on [0,1] in increments of 0.01. This leads to 101 potential 30 m resolution binary snow 

cover maps per 500 m window, each with a fixed value of fSCA and associated with a 

unique value of  . For each iteration, binary classification performance metrics are used 

to construct a confusion matrix. True positive (TP), false positive (FP), true negative 

(TN), and false negative (FN) occurrences are obtained by comparing the Landsat 

derived 30 m binary snow cover map to each of the 101 realizations on a pixel-by-pixel 

basis. Where the model predicts snow when Landsat NDSI suggests no snow, a false 

positive (i.e., type I error) occurs. Conversely, false negatives (type II errors) occur where 

Landsat NDSI suggests snow cover but where the model predicts snow-free conditions. 

The occurrence of these four possible outcomes allows us to calculate precision (p) and 

recall (r). Precision equals the proportion of modeled snow-covered pixels that are 

correctly identified as snow, 

   
  

     
 .                                                         (12) 

Recall equals the proportion of observed snow-covered pixels that are correctly modeled 

(Powers, 2011), 

   
  

     
 .                                                         (13) 

This analysis closely follows the approach of Rittger et al. (2012) in which the accuracy 

of MODIS products is evaluated. Accordingly, the harmonic mean of p and r is the so-

called F-measure, 



28 

 

 

2
8
 

    
     

   
                                                          (14) 

which provides a robust statistical balance for such a binary test. We store the F-measure 

for each candidate   for every analyzed window. Taking the mean of all windows for 

each value of   produces a vector of F-measure as a function of  , from which the 

maximum F-measure and associated   can be retrieved. We are thus calibrating the value 

of   to maximize the spatially averaged F-measure. This analysis is repeated for all 

available Landsat scenes used in calibration . 

2.3.6 Evaluation of Statistical Analysis 

Since we are driving the downscaling routine with fSCA information, the outcome 

of the performance metrics are subject to particular constraints. For instance, when fSCA 

input to the downscaling model is constrained to the value of fSCA inferred from Landsat, 

    
       , the confusion matrix between observation and model is symmetric, meaning 

the number of false positives and false negatives are equal. This occurs because every 

time a false positive arises, we miss an opportunity to correctly classify a snow-covered 

pixel, thus generating a false negative elsewhere in the grid. This leads to equality in 

precision and recall and it can be demonstrated that the F-measure simplifies to p or r 

when the fSCA value input to the model and the fSCA value to which the model is being 

calibrated are identical. Thus, the y-axis in Figure 9 could also be labeled as precision or 

recall since, during calibration, our model always receives as input the value of     
       . 

Calibration could, therefore, be simplified by simply maximizing precision. However, 

during validation, the map of fSCA values input to the downscaling model comes from the 

MOD10A1 product and is not necessarily equal to the map of fSCA that would have been 
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derived from Landsat at the same spatial scale. In validation, therefore, it is necessary to 

perform assessment via the F-measure since   and   will often not be equal. 

It is also important to determine a minimum acceptable value of the F-measure 

that indicates the model is outperforming a random assignment of binary snow cover for 

a given MOD10A1 fSCA. For any given Landsat-derived binary snow cover map, a 

corresponding map of randomly assigned snow cover with identical fSCA will produce an 

F-measure that is on the order of the fSCA value. Therefore, for a given fSCA value, an F-

measure for the downscaling model that is outside the range of variability of the 

corresponding F-measures of an ensemble of randomly produced binary snow cover 

maps would indicate that the model is moving snow toward the correct locations. We 

estimate the range of variability through a Monte Carlo simulation for a range of fSCA 

possibilities from 0.1 to 0.9. For each possible fSCA, we randomly produce a synthetic true 

binary snow cover map. For each synthetic true map, we generate an ensemble of 10,000 

random binary snow cover maps having an fSCA value that is within a fixed percentage,  , 

of the snow cover fraction of the synthetic truth. This approach allows for discrepancies 

between the retrieved fSCA (i.e., that which would be input to the downscaling model) and 

the true binary snow cover (i.e., that which would be inferred from Landsat). We 

calculate the F-measure for all random snow cover maps and every fSCA value. For a 

given fSCA, we compute the expected value of F and its variance, denoted          and 

        , respectively. Figure 8 shows the relationship between F-measure and fSCA and 

illustrates the variability in F due to randomness for      . The variability in F-

measure tends to decrease as fSCA approaches 0.9 because pixels randomly assigned as 
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snow cover are more likely to be correct than at lower values of fSCA. F-measure 

ensembles tend to be distributed normally across each value of fSCA. 

Figure 8. F-measures for randomly applied snow cover models plotted with 

changes in observed snow cover fraction. Random model snow cover fractions are 

constrained to within  =10% of the observation grid in this simulation. 

 

2.4 Results 

In this section, we present the results of downscaling model analysis. Presented 

first are the weight parameter calibration results, which provide a single constant to input 

to the model during a validation study. The results from this validation are given next. 

We downscale MOD10A1 fractional snow cover data to the resolution of the SRTM 

DEM and insolation grid. The results are conveyed as a function of differing snow 

fraction throughout the domains. Finally, a downscaling analysis is performed using a 
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synthetic “ideal” observation of fSCA, which is simply a 500 m aggregate of the Landsat 

validation snow cover observation allowing us to fix the snow fraction to the observation, 

giving the model maximum opportunity to perform without any discrepancy between 

MODIS and Landsat. 

2.4.1 Calibration Results 

To obtain a calibrated parameter value,  , used in the downscaling model, we 

examine the performance of the F-measure across snow cover grids for 13 Landsat 

scenes in the manner described above. A vector of F-measure statistics is generated for 

each candidate   and 500 m window. The mean F-measure across all 500 m windows 

and for each candidate   is computed as depicted in Figure 9.  

Figure 9. Mean F-measure by parameter w for subset a for 13 temporally 

separated Landsat scenes. For each date, a calibration optimum is chosen which 

corresponds to the maximum value taken on by F. 
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Note that, as described in Section 3.6, the F-measure is identical to precision and 

recall in this characteristic case. The   value that maximizes the magnitude of F (  or  ) 

is chosen as the optimum weight parameter for each Landsat scene (Figure 10). 

Figure 10. Mean F-measure by weight parameter w for 13 Landsat acquisition 

dates. For each date, the optimum value of w is plotted as a black triangle. 

 

 

For 13 different dates of Landsat acquisition, the calibrated parameter   varies 

within a relatively narrow range from 0.83 to 0.94. The distribution of optimal   values 

has a mean,   , of 0.9069 and standard deviation,   , of 0.0364. The maximum, domain-

averaged F-measure for all calibrated Landsat scenes ranges from 0.5403 on 15 May 

2008 to 0.8163 on 16 February 2002. The fSCA across the whole calibration domain within 
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the calibration scenes ranges from less than 1% on 27 April 2007 to approximately 77% 

on 16 February 2002. Figure 11 depicts these resulting parameter optima by date, along 

with their corresponding values of F and domain-wide fSCA values. Note that the F-

measure maxima tend to be highest when domain snow cover fraction is also relatively 

high. Also note that the date with the highest F-measure in calibration (16 February 

2002) is also the date with highest snow cover fraction for the whole domain (Figure 12). 

 

Figure 11. Results from calibration phase. Parameter optima (yellow squares) 

are chosen as the corresponding weight which maximizes the average F-measure for 

each date. The F maxima are shown as blue triangles. Snow cover fractions for the 

whole domain are plotted as red circles. Note that the x-axis dates are relative, 

meaning they are not all from the same snow season. Also note that the y-axis is 

intentionally un-labeled as all three plotted datasets are unitless and fall on the same 

interval [0,1]. 

 

 

Parameter   represents the weight assigned to the normalized slope factor       

while its complement, (1- ), is that assigned to normalized elevation      . Thus, the 

calibration seems to suggest that spatial variability in insolation is the dominant of the 

predictor variables used because the weights appear to be relatively consistent over time 

(Figure 12). It should be reiterated, however, that values for       vary with Julian date 

and are normalized to seasonal maxima whereas      values are static and normalized to 
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each grid window. As a result, insolation (as captured by      ) exhibits a larger 

dynamic range in the winter and early spring, and dominates where snow-covered pixels 

are assigned in the downscaling routine. However, as the season progresses, elevation (as 

captured by      ) becomes increasingly important in predicting snow cover. 

2.4.2 Validation Results 

Preliminary validation is performed using data from the MOD10A1 Version 005 

fSCA product (Hall et al., 2006) as input to the downscaling model and Landsat binary 

snow cover to facilitate statistical analyses. We perform validation over regions b and c 

in the same Landsat scene (path/row 41/30) used for calibration (Figure 1). The 

MOD10A1 and Landsat observations are acquired for 18 March 2010, a date not used in 

model calibration. This date is selected because both Landsat and Terra satellites passed 

over the region coincidentally during this date, obtaining a clear view of the domain. We 

operate the validation in similar fashion to the calibration procedures. Every MODIS 

pixel is downscaled to 30 m spacing, following the methods described in Section 2.3.4. 

We use the mean of calibration   values,   , to generate downscaled estimates. For all 

MODIS pixels, we select for validation only those which satisfy (        
           ) 

and (        
         ). These criteria are used for two reasons: 

1) By default, the model performs quite well when fSCA is near zero or one, so we 

choose to disregard the performance at these ranges. 

2) We are interested in examining the results when MOD10A1 and Landsat are in 

relative agreement since we are not evaluating the performance of MOD10A1, but 
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rather that of the performance of the downscaling model when both products 

suggest the evidence of snow cover. 

At windows compliant with the above criteria, the difference in fSCA between the 

two products,      , is computed, 

          
            

     .                                          (15) 

Figure 12 illustrates the histogram of fSCA disparity between MODIS and Landsat across 

each validation subset. 

Figure 12. Relative density histograms displaying the differences in snow cover 

fraction between Landsat and MODIS over the two validation subsets on 18 March 

2010. Subsets b and c are shown at left and right, respectively. Note that these 

differences do not include occurrences where both satellites observe 0% or 100% 

snow cover. 

 

We further restrict validation to those MODIS pixels satisfying (           ) to 

examine those observations where MODIS agrees with the observed Landsat snow 

fraction to within 10%. We choose this tolerance value to coincide with the choice of   in 

Section 3.6. In subset regions b and c, 34.98% and 36.71% of windows fall, respectively, 
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within this tolerance. Note that these percentages exclude occurrences where MODIS and 

Landsat observed completely snow-free or snow-covered conditions. We then compare 

the F-measures calculated between downscaled MODIS and observed Landsat binary 

snow cover with the scores computed via random model generation from Section 3.6. If, 

for a given fSCA, the corresponding F-measure within that MODIS pixel exceeds 

        , we suggest that the model is performing agreeably relative to a random 

assignment of snow-covered locations. Figure 13 depicts the results of validation, 

displaying downscaling model F-measure for given values of fSCA. Since we set 

constraints on       to be within 10%, we plot the measures against the snow fractions 

for both the downscaled MOD10A1 fSCA and Landsat fSCA computed over the MOD10A1 

footprint. 

 

Figure 13. Modeled F-measure as a function of fSCA (MODIS and Landsat) for 

windows where MODIS and Landsat fSCA agree to within 10% (         0.1). 

Mean F-measure from random model ensembles ( =0.1) is also plotted against fSCA  

with errorbars of    
 . Validation subset b and c are shown at left and right, 

respectively. 
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For a point plotting above                  , we are approximately 68% 

confident that the model is performing better than a random one. Similarly, for points 

plotting above                    , we are 95% confident the model is 

outperforming a random one. Table 2 summarizes the fraction of downscaled scenes that 

satisfy these criteria. Provided in Figure 14 is an integrative schematic diagram for the 

overall downscaling routine, from pre-processing to validation. 

Figure 14. Flow chart schematic outlining the fractional snow cover downscaling 

routine. 

 

Overall, the model more accurately downscales in subset validation region b. 

However, it is possible that this is a result of less agreement between Landsat and 

MODIS over region c (disregarding instances of 100% fSCA) as is depicted by the sheer 
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fewer number of points in this region. Many occurrences of fSCA between 0.8 and 0.9 are 

observed in both subset regions and, on the whole, most downscaling model F-measures  

 

Table 2. Fraction of downscaled windows (         0.1) in each subset region 

with F-measures exceeding the normal range of variability in those of random 

model ensembles ( =0.1). Exceedance is shown for Landsat and MODIS. 

fSCA Variability     Exceedance Fraction 

Platform Range Subset b Subset c 

Landsat 
                  0.8122 0.8058 

                    0.7017 0.6325 

MODIS 
                  0.7776 0.8320 

                    0.6823 0.6719 

 

plot above the          lines in Figure 13, indicating that the model is, at the very least, 

moving snow-covered pixels in the correct direction. However, there are points, 

especially at lower snow cover fractions, where the model performance exceeds 

randomness, yet still suffers a qualitatively low F-measure, meaning there are many type 

I and/or type II errors still occurring, albeit less than if the model were not tuned to 

terrain indices. Overall, the mean F-measure is higher over region c than for region b. 

However, in region c fSCA varies mostly between 0.65 and 0.90, where F-measures must 

be correspondingly high to outperform a random assignment of snow cover. 

2.4.3 Ideal Simulation Results 

We also execute a validation simulation under circumstances of “ideal” fractional snow 

cover observations. That is, MODIS observations of fSCA are substituted for the 

corresponding fSCA values derived from Landsat over the MODIS footprint. In this 

fashion, the model is given maximum opportunity to downscale fSCA windows containing 
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the observed “true” amount of snow-covered area since         everywhere in the 

domain. We examine the results of the downscaling model using the same methods 

outlined in Section 2.4.2. An updated ensemble of random models is generated with 

    to represent perfect snow cover observations. From this, we produce a new 

distribution of F-measures that is narrower than one resulting from a non-zero choice for 

 . Figure 15 shows the F-measure as a function of fSCA and Table 3 provides the 

fraction of windows satisfying the criteria for outperforming random binary assignment 

outlined in the previous section. In these ideal circumstances, the downscaling model 

appears to perform better over subset region c than b.  

Figure 15. Modeled F-measure as a function of “ideal” fSCA for synthetic 

windows where MODIS is adjusted to equal Landsat. Mean F-measure from 

random model ensembles ( =0.0) is also plotted against fSCA  with errorbars of    
 . 

Validation subset b and c are shown at left and right, respectively. 
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It should be noted that region c contains many windows with Landsat-observed 

fSCA between 0.9 and 1.0 (n = 10,115) in comparison to region b (n = 5,111). Thus, these 

would be excluded from the evaluation leading to less windows for validation in region c 

 

 (n = 2,992) than in region b (n = 3,333). Of the windows in the evaluation range, region 

c has a higher mean F-measure across its domain than b. The mean F values for MODIS 

and ideal (Landsat) snow cover fraction evaluation are given in Table 4.  

An additional simulation is performed across subset a for the purpose of 

visualization. Figure 16 demonstrates the downscaling process from both Landsat and 

MODIS-derived fSCA, along with the Landsat observation grid and an absolute difference 

grid to illustrate the disparity in snow cover fraction between the two platforms. 

 

Table 3. Fraction of downscaled windows with ideal snow fraction (       0) 

in each subset region with F-measures exceeding the normal range of variability in 

those of random model ensembles ( =0.0).  

Standard     Exceedance Fraction 

Deviations Subset b Subset c 

1   0.8491 0.9011 

2   0.8101 0.8723 

 

 

Table 4. Mean F-measures across regions b and c when downscaling MODIS 

and ideal (Landsat aggregate) fSCA grids. 

fSCA Mean F-measure (  ) 

Platform Subset b Subset c 

MODIS 0.7313 0.8372 

Ideal 0.7232 0.8182 
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Figure 16. Downscaling visualization over region a displaying (a) Landsat observed binary snow cover, (b) “ideal” fSCA as 500 

m aggregate from landsat, (c) downscaled fSCA from previous, (d) MOD10A1 500 m fSCA, (e) downscaled fSCA from previous, 

and (f) absolute difference grid between Landsat and MODIS, normalized to unity. 
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Figure 17. Hillslope-scale downscaling visualization for two arbitrary subsets 

within region a. Each subset represents a 1500 m window (9 MODIS cells) and 

shows Landsat-derived observed snow cover, downscaled (DS) Landsat aggregate 

fSCA, downscaled MODIS fSCA and performance metrics for the 1500 m window.  
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2.5 Discussion 

The developed downscaling model performs with a certain level of skill for all 

subsets, requiring calibration of only one empirical parameter. However, locations exist 

where F-measure plots within, or below, a range of F-measures that can be achieved 

through purely random assignment of snow-covered locations. Even those downscaled 

500 m pixels that exceed                     do not always reveal a dramatic 

improvement from random. The fraction of pixels with F-measures exceeding this range 

is, however, promising, especially across subset region c. This region also exhibited the 

highest mean F-measure, performing even better with input MOD10A1 fSCA than with the 

ideal snow fraction. This is likely attributable to a general over-prediction of snow cover 

by MODIS in comparison to Landsat during the validation date and a distribution of fSCA 

skewed toward higher values, which, by default, results in higher values of F-measure.  

Ancillary information we are not currently including in the downscaling model 

may provide a source of improvement to the downscaling approach. Further analysis is 

necessary in order to gain insight into physiographic characteristics of terrain within 

MODIS windows where the model is failing (or succeeding) consistently. For instance, 

since we do not account for a forest canopy, we may be assigning snow-free states to 

areas where a forest canopy impedes a great deal of insolation and obscures existing 

snow cover. Forest canopy is also a potential reason for the fSCA offset between MODIS 

and Landsat. For example, Raleigh et al. (2013) found that fSCA derived from the 

MODSCAG model consistently under-predicted the observed snow fraction (quantified 

via temperature sensor networks) in a study plot with high canopy fraction (i.e., 79%), 

even when the remotely-sensed fSCA value was statically corrected for the canopy cover. 
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Another parameter worthy of consideration is wind redistribution. In some 

regions, differential ablation patterns are affected directly by redistribution from wind 

during initial accumulation rather than by spatially varying energy inputs (Anderton et 

al., 2004). With knowledge of time-series wind vectors or seasonal tendencies, terrain-

based indices can be generated in order to predict areas prone to drifting and general 

redistribution during the accumulation and settling of snow fall. Winstral et al. (2002) 

showed that a snow depth regression tree model based on elevation, solar radiation, and 

slope was substantially improved by the addition of a computationally-efficient wind 

redistribution predictor variable. Using this parameter with a physically-based, 

distributed snow model, improvements were made to the simulated distribution of snow 

cover, snow drifts, and melt within RCEW (Winstral and Marks, 2002). RCEW is located 

within validation subset region b, which will facilitate future efforts to include such 

information into the downscaling model. 

Given the above considerations, it is important to stress the applicability of the 

algorithm in the region across which it is calibrated. The model will likely not perform as 

well in regions where variables other than insolation and elevation are known to 

dominate snow cover distribution. Furthermore, the algorithm as implemented requires a 

degree of balance between forces that act to drive and resist SCA spatial distribution 

throughout the season. Thus, it is important to note that employment of this model, or a 

similar one, in areas outside the given study region will require, at the very least, unique 

calibration to the chosen indices and potentially increased model complexity. 

Future work may also employ spectral mixture analysis snow cover products 

(Rosenthal and Dozier, 1996; Painter et al., 2009) in order to perform similar experiments 
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using products that have been suggested to have a higher accuracy (particularly during 

the ablation phase with which we are most concerned) in reproducing the snow cover 

distribution. In applying the model developed here to satellite retrievals using spectral 

mixing models, care must be taken to ensure that the 30 m resolution binary snow cover 

map is produced using techniques similar to those used to estimate the 500 m resolution 

fSCA (i.e., Painter et al., 2003). 

The linear method used here to combine the physiographic index variables 

(insolation and elevation) is relatively straightforward. The method makes a speculative 

assumption that the variables’ relative contributions to snow cover are dependent on a 

single-parameter, linear equation model. It is worth noting that more complex approaches 

exist for multivariate data characterization. A method to be explored in future work is the 

use of copulas for blending multiple variable indices. Copulas are efficient probabilistic 

tools used to describe the dependence structure of joint multivariate random variable 

distributions through examination of the underlying univariate marginal distributions 

(Schwarzlander, 2011). This method is frequently applied in financial risk analysis and 

has been used increasingly in the field of hydrology in the past several years (Schölzel 

and Friederichs, 2008). Such an approach may offer additional insight into the 

relationship between physiographic parameters and snow cover. 

Another point of discussion is that of the disparity in fSCA between Landsat and 

MODIS. Although the difference histograms in Figure 12 are approximately normally 

distributed, the tails of the distributions retain many cases of disagreement between the 

two snow cover remote sensing platforms. Some of these disparities may be, in part, due 

to physiographic differences between the study area and the regions in which the 
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MOD10A1 product was calibrated (i.e., Alaska, Siberia and Canada; Salomonson and 

Appel, 2004). A future approach might be wise to consider using raw 500 m MODIS 

reflectance data (MOD09GA) to compute NDSI and calibrate this signal to the Landsat 

observations for the area of interest. This would produce the presumed result of narrower 

difference histograms between the platforms, thus improving validation results and 

overall reliability of the model. 

The described downscaling routine could potentially be used in conjunction with 

current snow water equivalent reconstruction techniques that account for full energy 

balance (e.g., Cline et al., 1998; Durand et al., 2008; Molotch, 2009). To date, these 

models typically simulate energy fluxes and basin physiography at the scale of the remote 

sensing observation. Under this framework, given proper computational resources, full 

energy balance could be computed at the scale of a DEM. Then, with a MODIS fractional 

snow cover observation, these fluxes could be normalized and snow could be assigned to 

those pixels receiving the least flux on daily or cumulative scales. It is also hypothesized 

that snow cover could be estimated as a fraction within each high-resolution DEM pixel 

by assigning a probability distribution across a MODIS pixel rather than explicit sub-grid 

binary states that sum to an observed fSCA value. SWE reconstruction at this scale might 

provide more insight into the true distribution of this hydrologic state as it varies across 

topographically complex terrain under a retrospective framework subject to intensive 

validation. This information could prove useful as a way forward in predicting real-time 

and forecasted runoff response and water availability. 
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2.6 Conclusion 

We describe here a computationally efficient model to downscale fractional snow-

covered area (fSCA) data from MODIS to a higher-resolution, spatially explicit binary grid 

based on physiographic indices. Parameterizations for elevation and insolation are 

combined to yield a terrain score that is used to assign binary snow cover on a 30 m grid 

with information about fractional snow cover on a 500 m grid. Using Landsat binary 

snow cover maps derived using an NDSI threshold, the model is calibrated to 13 Landsat 

binary snow cover scenes for one domain subset and validated against a Landsat scene 

and in two domain subsets not used in calibration. Calibration results depict a general 

stability in weight parameters over varying times of the snow season and degrees of snow 

cover. Results from validation show that model performance, as assessed via the F-

measure, tends to outperform ensembles of randomly generated snow cover maps over a 

relatively large range of fSCA. The developed model could assist hydrologic modeling in 

restricted areas by providing daily, high resolution, if imperfect, constraints on the 

distribution of snow in mountainous areas. 
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CHAPTER THREE: TOWARDS DOWNSCALING COARSELY-MODELED 

SNOWMELT IN COMPLEX TERRAIN 

3.1 Introduction 

Snow and ice constitute substantial components of the world’s hydrologic cycle. 

Melt from glaciers and seasonally snow-covered regions is of critical importance, 

delivering water to more than one-sixth of the world’s population (Barnett et al., 2005). 

In the western United States, melt water from mountain snowpack delivers an estimated 

75% of annual runoff to major streams and rivers in the region (Palmer, 1988), yielding 

hydrologic implications in matters ranging from hydroelectric power to municipal water 

supply systems. Melting snow is also intrinsically linked to soil moisture, the knowledge 

of which is vital to the prediction of catchment response and coupling of the land-

atmosphere system (Chen et al., 2001; Bales et al., 2011). Furthermore, the forest 

ecosystem carbon cycle demonstrates dependence on snow distribution throughout the 

mountain environment, due to both water availability and the effect of snow depth on soil 

temperature (Schimel et al., 2002).  

Shifts in the Earth’s climate due to anthropogenic forcing have prompted many 

hydrologic impacts assessment studies. A warming trend throughout the western United 

States has resulted in an earlier average onset of snowmelt and stream runoff (Gleick, 

1987; Aguado et al., 1992; Cayan et al., 2001). This observed trend presents major 

challenges to water managers and montane ecosystems (Stewart et al., 2004). As a result 
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of these emerging trends, hydrologic forecasting skill (e.g., streamflow) is likely to 

deteriorate as historical empirical relationships become decreasingly representative of 

present conditions in a warming climate (Milly et al., 2008; Dozier, 2011). These factors 

have prompted increased interest in understanding the processes of snow accumulation 

and melt. For accurate prediction of hydrologic variables like snow water equivalent 

(SWE), snowmelt, and stream runoff under current or future conditions, further research 

is necessary to improve the ability to realize this objective. 

Snow process are known to occur variably over small scales, the significance of 

which is acutely appreciated by snow hydrologists (e.g., Kirnbauer and Blӧschl, 1994; 

Luce et al., 1998; Blӧschl, 1999). While in situ point measurements of snow depth and 

SWE can provide essential information about snowpack hydrology, these estimates do 

not necessarily characterize the overall spatial mean conditions (Molotch and Bales, 

2005; Li et al., 2012). Simulation models are employed as a way to estimate snow 

processes, often used in conjunction with observational data. Some studies have made use 

of regression tree models to produce gridded estimates of SWE from field survey data 

and predictor variables like wind, elevation, and solar radiation (Elder et al., 1998; 

Winstral et al., 2002). Others have used temperature-index models to predict SWE and 

melt, assuming empirical “degree-day” relationships between maximum daily air 

temperatures and the rates of snowmelt (Hock, 2003; references therein). Others have 

used models based completely on physical parameters and processes, computing energy 

balance equations and estimating snowmelt as a residual term (e.g., Tarboton and Luce, 

1996; Marks et al., 1999; Lehning et al., 2006). Some studies have made use of models in 

conjunction with satellite remote sensing snow-covered area (SCA) data in order to back-
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calculate SWE at the basin scale, offering robust estimates of the amount of water stored 

as a snow around the time of maximum accumulation. Martinec and Rango (1981) first 

demonstrated this technique using the temperature-index, degree-day approach to 

reconstruct SWE in the Dinwoody Basin of Wyoming. Others have applied the 

reconstruction technique using physically-based, energy balance models, demonstrating 

favorable results in comparison with intensive field campaigns (Cline et al., 1998; 

Durand et al., 2008; Molotch, 2009). Such analyses can provide great information about 

the distribution of snow, but work remains in learning to aptly employ this knowledge in 

real-time or forward modeling.  

This chapter describes a study that uses snowmelt output from an existing, 

relatively coarse-scale mass and energy balance snow model that operates at near real-

time. The goal in this work lies in estimating the spatiotemporal variability within this 

model’s grid cells. This variability is estimated through a semi-empirical approach, 

utilizing satellite remote sensing fractional snow-covered area (fSCA) data, solar radiation 

indices, vegetation canopy attenuation adjustments, and snow surface albedo parameters. 

By downscaling the modeled melt to a higher resolution, it is proposed that other basin 

states and fluxes (e.g., soil moisture and streamflow) could be estimated with increased 

predictive skill.  

The method is employed across a modeling domain containing an experimental 

catchment, described in Section 2. The datasets employed are introduced in Section 3 

along with a brief discussion of relevant theory and pre-processing procedures. Then, an 

outline of the overall downscaling routine is presented in Section 4. Results of 
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downscaling are compared with available field data in Section 5 and a discussion and 

way forward are presented in Section 6. 

3.2 Study Area 

This study takes place over Dry Creek Experimental Watershed (DCEW), a 27 

km
2 

catchment in the semi-arid foothills of the Boise Front in southwestern Idaho 

(Stieglitz et al., 2003; McNamara et al., 2005; Tyler et al., 2008; Kelleners et al., 2010; 

Smith et al., 2011). The terrain is moderately complex, characterized by multiple ridges 

and hillslopes draining ephemeral tributary streams into Dry Creek. Another major 

stream, Shingle Creek, drains the southeastern portion of DCEW and makes confluence 

with the main stem of Dry Creek in the southwestern quadrant of the watershed. 

Elevations in the watershed range from approximately 900 to 2100 m above sea level 

(Figure 18). Vegetation ranges from sage brush on the lower slopes to chaparral, spruce, 

fir, and pine in the upper reaches (McNamara et al., 2005). The watershed exhibits 

pronounced orographic effects on temperature and precipitation with the local climate 

characterized by hot, dry summers and cold, wet winters (Smith et al., 2011). DCEW is 

instrumented with seven stream gauging stations and five meteorological stations. The 

latter stations serve to capture the variability of hydrologic properties across spatial, 

landscape, and elevation gradients throughout in the watershed. A National Resources 

Conservation Service Snowpack Telemetry (SNOTEL) site is also located just north of 

the watershed boundary near Bogus Basin. Information about these stations is contained 

in Table 5. Soils are typically less than 2 m thick and composed of gravelly loams and 

sands, with bedrock of late Cretaceous granodiorite of the Idaho Batholith Atlanta Lobe 

(McNamara et al., 2005; Gribb et al., 2009; Smith et al., 2011).  
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Figure 18. Digital elevation model for Dry Creek Experimental Watershed with 

southwestern Idaho location inset. This 10 m product was resampled from a 1 m 

LiDAR terrain model. The grid serves as the modeling domain and higher-

resolution mesh onto which snowmelt is downscaled. 
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Table 5. DCEW meteorological station information. 

Site Name Abbreviation Data Begin Date Elevation (m) 

Lower Weather LW 1999 1151 

Treeline Weather TLW 1999 1610 

Shingle Creek Ridge SCR 2010 1720 

Lower Deer Point LDP 2007 1850 

Bogus SNOTEL BS 1999 1932 

Bogus Ridge BRW 2011 2114 

 

3.3 Datasets 

The goal in this study is to approximate the spatiotemporal variability within 

coarse-resolution modeled snowmelt grid cells. This variability is estimated through a 

semi-empirical approach utilizing solar radiation indices, vegetation canopy attenuation 

adjustments, snow surface albedo parameters, and satellite remote sensing fractional 

snow-covered area (fSCA) data. This section provides brief descriptions of the existing 

modeled snowmelt product and the ancillary datasets and relevant background theory 

used to predict the downscaling parameters. 

3.3.1 SNOw Data Assimilation System 

The SNOw Data Assimilation System (SNODAS) is a snow simulation modeling 

and data assimilation framework developed by the NOAA National Weather Service’s 

(NWS) National Operational Hydrologic Remote Sensing Center (NOHRSC) to provide 

optimal estimates of widespread snow cover and other variables to aid in hydrologic 

modeling (Barrett, 2003). Integrated daily data output from this product is archived by 

the National Snow and Ice Data Center (NSIDC) at the University of Colorado, Boulder. 

These data include SWE, snow depth, basal snowmelt runoff, sublimation from the 
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snowpack and from blowing snow, snow density, solid precipitation, and liquid 

precipitation. SNODAS covers the conterminous United Sates, providing estimates of 

snow process variables at 30 arc-second resolution. Numerical weather prediction (NWP) 

model output is downscaled and used as input to a physically-based, mass and energy 

balance snow model, dubbed the NOHRSC Snow Model (NSM). From its inception, 

SNODAS was forced with Rapid Update Cycle (RUC) 2 NWP output. This model was 

replaced by the Rapid Refresh (RAP) NWP beginning in May of 2012. This new NWP 

model, based on the Weather Research and Forecasting model (Michalakes et al., 1998), 

applies its own assimilation routines before downscaled output is produced for SNODAS 

ingestion (NOHRSC, 2012). 

SNODAS builds upon the concept that available observational ground-based 

snow data are not dense enough to produce runoff forecasts in (near) real-time, nor is a 

stand-alone model always accurate at this spatial extent and resolution. Hence, SNODAS 

incorporates all available data, utilizing assimilation procedures to integrate ground and 

airborne observations into the framework (Carroll et al., 2001). Observed data include 

Snowpack Telemetry (SNOTEL) network stations maintained by the National Resources 

Conservation Service (NRCS) of the US Department of Agriculture. Every day, analysts 

at NOHRSC decide whether or not it is necessary and useful to assimilate observations 

into the model. Snow water is often removed from or added to the snowpack in certain 

regions in order to nudge the modeled states toward observed SWE (Barrett, 2003). An 

overview of current assimilation updates are often presented at the NOHRSC website 

(NOHRSC, 2012). 
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For this study, we obtain daily SNODAS snowmelt runoff (Figure 19) and SWE 

(Figure 20) data for the study area for the time period from 1 January 2010 to 30 June 

2010. Data are obtained in Network Common Data Form (NetCDF), a self-describing, 

machine-independent data creation, access, and sharing format that stores scientific 

datasets in array form (Rew et al., 2011). 

 

Figure 19. Snowmelt estimated by SNODAS on 18 March 2010. DCEW 

delineation boundary shown in white. 
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Figure 20. Snow water equivalent estimated by SNODAS on 9 February 2010. 

DCEW delineation boundary shown in white. 

 

3.3.2 Remotely Sensed Snow Cover Data 

Remotely sensed fSCA data are obtained from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) instrument. We use MOD10A1 Level 3 Version 5 data (Hall 

et al., 2006), obtained in hierarchical data format (HDF) as described in Chapter 2 of this 

document. Further details on this product’s formulation are described in Section 2.2.1. 
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MODIS fSCA images are obtained daily over a region slightly larger than our study 

domain such that they can be cropped accordingly. Though the product has daily 

retrieval, some of the images are obscured by clouds or poor viewing geometry. Thus, we 

employ a temporal interpolation scheme by which we estimate snow cover during the 

times when MODIS did not detect a quality image. The details of this temporal 

smoothing are outlined in the methods section of this chapter. It should be noted that the 

MOD10A1 fractional snow cover product has recently been shown to under-perform in 

some regions, especially during the melting season (Rittger et al., 2012). A more recent 

fSCA product, the MODIS Snow-Covered Area and Grain size (MODSCAG) model, 

utilizes robust spectral mixture analysis with MODIS reflectance data to estimate snow 

cover fraction and has demonstrated promising results in validation (Painter et al., 2009; 

Rittger et al., 2012). Future work might explore the utility of other snow remote sensing 

products in conjunction with the downscaling routine. 

3.3.3 Digital Elevation Data 

This study employs a LiDAR digital elevation model (DEM) over the study area 

(referenced in Section 3.2, Figure 18) with a native resolution of 1 m, aggregated to 10 m. 

The data were acquired over DCEW during a 2009 overflight, obtaining a mean relative 

accuracy of 0.069 m with a standard deviation of 0.075 m per flight line (Watershed 

Sciences, 2009). Processed data can be accessed at: 

http://cloud.insideidaho.org/ArcGIS/rest/services/elevation/2007_dryCreekWatershed/MapServer  

including features such as roughness, slope, aspect, hillshades, et cetera. Slope and aspect 

data from this source are also used in this particular study in order to provide independent 

variable information to a solar radiation algorithm. 

http://cloud.insideidaho.org/ArcGIS/rest/services/elevation/2007_dryCreekWatershed/MapServer
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The 1 m bare earth DEM product is coarsened to 10 m to aid in parsimony during 

the downscaling and solar radiation calculations. The aggregate product is formed 

through resampling, moving a 10 m window across the entire 1 m grid and assigning each 

coarse pixel the mean of the high-resolution pixels contained therein. Slope and aspect 

grids are coarsened to 10 m resolution in the same fashion.  

3.3.4 Solar Radiation Data 

Short-wave (solar) radiation, or insolation, is a very important part of the energy 

fluxes acting on a melting snowpack. This radiation generally falls in a band of the 

electromagnetic spectrum from 0.2 to 2.2 µm with a maximum intensity at 0.47 µm 

(Gray and Male, 1981). Direct short-wave energy input to the earth’s surface is highly 

variable in space, especially in the complex terrain of mountainous areas where slopes, 

aspects, and elevations exhibit substantial variability. Cloud cover and vegetation also 

provide controls over short-wave radiation. This study makes adjustments to the 

incoming solar radiation due to forest canopy. However, no corrections are assumed for 

cloud cover. Since the SNODAS modeled melt has already been computed as the result 

of energy balance calculations, only the relative variation in direct insolation (due to 

hillslopes and forest canopy) need be computed. This postulation requires the assumption 

that cloud cover is homogenous across each SNODAS grid pixel.  

Solar radiation data are computed using the algorithm presented by Swift (1976) 

with minor modifications. As noted above, the actual magnitude of solar radiation need 

not be computed in the downscaling routine. Rather, a ratio is computed of potential 

insolation on a sloping pixel surface to that of a horizontal one. That is 
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                                                         (1) 

where        and        are pixel-scale potential insolation on the local slope and 

horizontal plane, respectively, and     is the normalized term referred to as the slope 

factor. The slope factor is calculated at every pixel in the digital elevation model used as 

the downscaling mesh. A 10 m slope factor grid is produced for every day of the year. 

Figure 21 illustrates the slope factor across DCEW for 18 March. Slope factor pixels with 

higher (lower) values produce higher (lower) snowmelt estimates after the downscaling 

routine is implemented. For more details of the solar radiation slope factor calculations 

for potential insolation, refer to Appendix A.1. 

3.3.5 Vegetation Land Cover Data 

The presence of a forest canopy above a snowpack introduces significant 

complications in model estimation of snow processes beneath this medium (Ellis and 

Pomeroy, 2007; Storck et al., 2002). In this study, forest canopy density information is 

used to attenuate incoming solar radiation and, thus, the resulting snowmelt downscaled 

estimate. There is no correction assumed for canopy interception or long-wave radiation 

emission. An attenuation model can be approximated by decreasing transmitted radiation 

exponentially with increasing forest canopy density. This approach uses an equation 

similar to Beer’s Law to model the effect of an overlying canopy (Mahat and Tarboton, 

2012). The transmittance through forest canopy is modeled as  

      ( 
 

     
     )                                              (2) 
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Figure 21. Daily potential insolation slope factor (fsl) computed across DCEW for 

18 March. 

 

where   is leaf orientation factor,    is solar zenith angle,   is leaf area index (LAI),    

is the forest canopy fraction [0,1], and   is the resultant canopy transmittance. We assume 

      for isotropic leaf (needle) orientation and fix LAI at 6.0, a value suggested for 

coniferous forest cover (Dingman, 2002). Forest canopy fraction data are obtained from 

the Multi-Resolution Land Characteristics Consortium (MRLC) National Land Cover 
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Database (NLCD). This data is available for the conterminous United States at 30 m 

spatial resolution, including the tree canopy percentage product. These canopy fraction 

data were generated via regression trees based on 1 m training data (Homer et al., 2007). 

A grid covering the DCEW (Figure 22) extent is acquired and resampled to 10 m 

resolution via nearest-neighbor interpolation, essentially creating identical 3-by-3 10 m 

cells within each 30 m window. This grid is then cropped to the extent of the DEM 

Figure 22. NLCD forest canopy fraction over DCEW. 
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 previously described. For high canopy density areas in the downscaling domain, solar 

radiation transmittance is attenuated, decreasing the adjusted melt estimate. At a given 

point in the grid, the attenuation decreases as the season progresses and the sun moves 

more directly overhead (i.e., smaller solar zenith angle). This transmittance is illustrated 

by Figure 23.  

Figure 23. Direct-beam solar radiation transmittance as a function of forest 

canopy fraction and solar zenith angle. 
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3.3.6 Snow Surface Albedo 

The albedo of the snow surface is a critical component in the overall energy 

balance, exerting control on the rate of melt due to the reflective effect on incoming 

radiation (Wiscombe and Warren, 1981). Surface albedo is calculated as the ratio of 

outgoing to incoming irradiance. It terms of short-wave energy, it has the form 

    
  

  
                                                             (3) 

where    and    are incoming and outgoing short-wave radiation, respectively, and    is 

the snow surface albedo term. We compute the net short-wave energy input as the sum 

         .                                                        (4) 

Rearranging Eqn. 3 to          , we can re-write Eqn. 4 as a function that does not 

require an outgoing short-wave radiation estimate: 

                                                                 (5) 

which rearranges to the simpler form 

   (    )                                                        (6) 

where    is the net short-wave term.  

Snow albedo can be estimated as a function of several variables, including snow 

grain size, solar zenith angle, snow depth, dust radiative forcing, and snow age. Debele et 

al. (2009) approximated albedo by a simple snow age decay function: 

        (    
     )                                             (7) 

where    is a decay parameter set to approximately 0.2 day
-1

 and   is days since new 

snow accumulation. In this study, we use SWE information from SNODAS to 
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approximate   to estimate the snow albedo. However, this only provides albedo values at 

the spatial resolution of SNODAS. From a downscaling perspective, it is beneficial to 

have albedo information at a higher resolution than the product we are attempting to 

disaggregate. Therefore, remotely sensed snow albedo is also ingested into the model. 

Similar to the areal snow cover data, we implement snow albedo observations from the 

MODIS MOD10A1 albedo product. MOD10A1 snow surface albedo is available daily at 

500 m spatial resolution. This product was validated over the Greenland Ice Sheet against 

in situ ground-based observations and found to have an RMS error of 0.067 (Stroeve et 

al., 2006). We merge the observed snow surface albedo from MODIS with the decay 

estimates through a standard assimilation approach. More details of this assimilation can 

be found in the methods section of this chapter. 

3.3.7 Field Lysimeter Snowmelt Data 

2010 field data from four lysimeters collecting snowmelt are used in this study for 

comparison with downscaled model results. These lysimeters are installed at two 

different meteorological station sites in DCEW, Treeline (TL) and Lower Deer Point 

(LDP). At each of the two sites, two lysimeters are installed on opposing hillslopes facing 

roughly north or south and denoted accordingly N or S. These instruments are part of a 

larger study to improve understanding of lateral water flow through a snowpack. More 

information on that phenomenon and details of the lysimeter construction are outlined in 

Eiriksson (2012) and Eiriksson et al. (2013). General location data for the lysimeters is 

presented in Table 6. It should be noted that the lysimeters at TL lie within one SNODAS 

grid cell. The same is true for the LDP lysimeters. The information from these 

instruments provides first-order confirmation data for the snowmelt downscaling routine. 
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Table 6. Snowmelt lysimeter location information. 

Lysimeter Site Easting Northing Elevation (m) 

TL South 569271 

 

4842311 1608 

TL North 569267 4842284 1611 

LDP South 570663 4842968 1832 

LDP North 570932 4843430 1830 

 

3.4 Methods 

The downscaling methodology presented in this chapter relies on the 

aforementioned datasets. A point-by-point operation is performed at each pixel in the 

modeling domain. This section describes the overall downscaling routine, with separate 

treatment of the spatial and temporal facets. To begin, the pre-processing steps of snow 

cover interpolation and surface albedo assimilation are described in detail. 

3.4.1 MODIS Snow Cover Pre-Processing and Time-Interpolation 

MOD10A1 fSCA (and albedo) data are acquired over the study region and 

reprojected from the native Sinusoidal grid into a UTM coordinate system using the 

MODIS Reprojection Tool (MRT) from the NASA Land Processes Distributed Active 

Archive Center (LP-DAAC).  This tool can be downloaded from: 

https://lpdaac.usgs.gov/tools/modis_reprojection_tool 

The MRT is invoked via a series of system calls from a looping MATLAB script acting 

to reproject (UTM 11N WGS-84) and crop all of the MODIS files over the date range of 

interest. Appendix A.2 provides this script and the MRT parameter file used to specify 

the settings for this process. 

https://lpdaac.usgs.gov/tools/modis_reprojection_tool
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As described previously, many of the MODIS images are corrupted by cloud 

cover and thus do not offer reliable information about the snow cover fraction. During the 

time period of interest (1 January 2010 to 30 June 2010), an average of 69.22% of the 

pixels in the study domain were obscured by cloud cover. It is thus necessary to 

interpolate between the reliable observations to estimate the snow cover during the times 

when observations are not available. The process used here closely follows that of Dozier 

and Frew (2009) with some simplifications. Images are first filtered, assigning not-a-

number (NaN) values to those pixels with values falling outside the reasonable range of 

fSCA percentage values from 0 to 100%. Next, a smoothing spline is employed to 

approximate the fSCA values over erroneous data points in the temporal dimension. The 

smoothing spline utilized is the MATLAB csaps function. This function minimizes the 

following equation (de Boor, 2007):  

 ∑   [ ̂(  )   (  )]
 
 (   ) ∫  ( )

    

    

 
   (

   

   
)
 

                      (8) 

where  ̂( ) and  ( ) represent the estimated and true fractional snow-cover values, 

respectively. Values      and      are last and first dates of interest, respectively, and   

is a smoothing parameter.  ( ) is a piecewise constant weight function over   and    are 

scalar weights dictating the degree of penalty for modeled estimates’ disagreement with 

observation. In this case, the smoothing parameter   is set to a constant of 0.6 and 

weights are set to 1. A more complex treatment is to vary   based on times between 

observations. Also, weights can be allowed to vary based on the satellite sensor viewing 

angle, assigning more confidence to those observations with lowest sensor zenith angles 

(Dozier and Frew, 2009). However, MOD10A1 data do not include viewing geometry 
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data and thus these considerations are ignored in this study. Figure 24 depicts the raw and 

smoothed data for six locations in the MODIS grid extent. 

Once the snow cover data are smoothed in the temporal dimension, a conservative 

two-dimensional Gaussian low-pass filter is applied to each image in the data cube using 

the MATLAB fspecial function. The filter used is square (3-by-3), and rotationally  

 

Figure 24. Observed fractional snow cover (red circles) and splines interpolation 

(black lines) for MOD10A1 pixels encompassing the meteorological stations in or 

near DCEW from 1 January 2010 to 30 June 2010. 
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symmetric. A standard deviation of 0.5 is used. This step serves to slightly sharpen the 

image, causing less contrast between pixel edges such that an increase or decrease in fSCA 

occurs more gradually in space.  

The smoothed data cube is then interpolated to a higher resolution using a nearest-

neighbor approach identical to that described in Section 3.3.5. Cells are interpolated to 

the 10 m resolution of the DEM grid used as the overall downscaling mesh. After 

interpolation, the cube is cropped to the extent of the DEM. During the downscaling 

routine, the fSCA data are subject to the algorithm described in Chapter 2.  

3.4.2 Snow Albedo Assimilation 

Data assimilation is the combination of complementary information from models 

and measurements into an optimized approximation to the true value of interest. Here, 

snow surface albedo is estimated through a simple assimilation approach, following the 

principles outlined by Reichle (2008). The decay parameter    from Eqn. 7 is varied 

within a range of values to produce random ensembles of possible albedo values at any 

time-step. After a new snowfall event, the range of these ensembles narrows. Conversely, 

after several days of no snow increase, the range increases, representing a growing 

uncertainty in the modeled albedo estimate. Since SNODAS only archives daily depth 

and SWE data, it is somewhat uncertain when a new snow event begins during a given 

24-hour period. Thus, a small amount of random noise is added to the time-since-snow 

parameter   from Eqn. 7 to account for this uncertainty. The overall mean albedo model 

value is denoted   with uncertainty   
 . MOD10A1 snow albedo estimates are treated as 

the observation to which the model is constrained and are denoted   with uncertainty   
 . 
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A least-squares approximation between the model and observation is sought by way of an 

objective function  :  

   
(   ) 

  
  

(   ) 

  
                                                    (9) 

where   is the true state. We minimize the derivative of   with respect to  , yielding 

 ̂  
    

      
 

  
    

                                                        (10) 

where  ̂ is the analysis estimate (Reichle, 2008). In this case, the analysis is an estimate 

of snow surface albedo at each time-step. 

 Difficulty exists in assigning an uncertainty to the MODIS albedo observations. 

Stroeve et al. (2006) found an overall RMSE for the Terra MOD10A1 product of 0.067. 

For simplicity, this study rounds this value up to 0.07 and assigns it to   
 . The 

uncertainty range in the ensemble of albedo models is normalized such that its maximum 

value is equal to that of the MODIS observation (  
 ), allocating more trust in the model 

nearer to snowfall events and vice versa.  

 For each high-resolution downscaling pixel falling in a MODIS grid window, the 

analysis albedo estimate vector is assigned based on the time-series of MODIS 

observations and the decay function albedo derived from the overlapping SNODAS SWE 

pixel. As for snow-covered area observations, albedo estimates are similarly sporadic due 

to cloud-cover obstruction. Linear interpolation is executed between available 

observations, with uncertainties assigned to interpolants with magnitudes dependent upon 

their distance from the center of mass of the model ensemble range. The analysis will 

thus draw near to the observations and its interpolants, though less directly when the 
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observation-ensemble distance increases. Figure 25 illustrates this process for a singular 

point in the grid. 

 

 

Figure 25. Snow albedo time-series at an arbitrary point in the modeling domain. 

Decay models (red lines) are generated with SNODAS SWE information and a 

randomly-varying decay parameter. These are constrained to MOD10A1 albedo 

observations (green squares), generating analysis estimates (blue, dashed line) at 

each time-step. 

 

3.4.3 Spatial Downscaling Methodology 

Spatial downscaling is executed on a pixel-by-pixel basis using the previously 

described indices for solar radiation, vegetation, and snow surface albedo to disaggregate 

the SNODAS predicted melt values to higher resolution. Without having to estimate 



71 

 

 

7
1
 

energy balances at the resolution of the downscaling grid, a melt factor coefficient can be 

approximated. This factor, which typically relates daily snowmelt to positive temperature 

(Celsius) values in a temperature-index approach, varies with physiographic and land 

cover properties (Anderson, 1973; Dingman, 2002). Without site-specific temperature 

observations, the melt factor, denoted    can be approximated by a unifying equation of 

the form (Eggleston et al., 1971): 

     (    )                                                     (11) 

in which    is a proportionality constant,    is snow surface albedo (Section 3.3.6),    is 

a vegetation transmission coefficient, and     is insolation slope factor (Section 3.3.4). In 

this study, we substitute   from Eqn. 2 (Section 3.3.5) for    to produce a temporally-

varying degree of solar attenuation. The vegetation equation described by Eggleston et al. 

(1971) does not include the effect of solar zenith angle.  

The constant    essentially becomes a tuning parameter, though Dingman (2002) 

published a value of 4.0. Adding ambiguity, other studies cite    equal to approximately 

0.4 (Eggleston et al., 1971; Gray and Male, 1981). For the downscaling run performed in 

this study, a value of 4.0 is applied for   . However, this value can be adjusted after the 

downscaling run since, as a constant, it can be isolated from the general downscaling 

model equation (Eqn. 11). As such, within the window of each SNODAS melt estimate, 

coefficients        are computed at the 10 m resolution of the DEM. These coefficients 

are computed via Eqn. 11 and multiplied by their nearest-neighbor, 30 arc-second 

SNODAS estimate to produce a downscaled estimate of snowmelt.  
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Fractional snow cover data are also used to update the downscaling process. The 

time-interpolated cube described in Section 3.4.1 is loaded during the routine and this 

product itself is downscaled before being applied. The MODIS fSCA data are downscaled 

to binary estimates of snow cover at the 10 m mesh resolution. The process used here is 

identical to that described in Chapter 2. The binary snow cover information is used as a 

mask to effectively switch melt ‘on’ or ‘off’ based on the fractional observation and the 

expectation of the explicit locations of the binary snow-covered pixel occurrences. Care 

is taken to adjust the melt water quantity from SNODAS due to the restrictions imposed 

by snow cover updating. For instance, if the SNODAS-estimated melt within a 500 m 

MODIS grid window is   and the fSCA value is  , then the resulting melt within that 

window,  , must be set to   
 

 
 to conserve the mass in the original SNODAS estimate. 

This is because we are only assigning snow cover, and thus snowmelt, to fSCA% of the 

pixels within each MODIS window.  

3.4.4 Temporal Downscaling Methodology 

In an effort to produce a temporally downscaled snowmelt estimate (i.e., from 

days to hours), a sinusoidal model for radiation is assumed. The solar radiation algorithm 

utilized (Swift, 1976) includes modifications (Ryan, 1977) to calculate times of sunrise 

(   ) and sunset (   ), in hour angles, for pixel surface based on local slope, aspect, 

latitude, and the solar declination angle (see Appendix A.1). From these, we assume a 

sinusoidal model to approximate hourly radiation given a daily integrated value. We 

assign a period component to a sine function in which 

   
   

       
                                                          (12) 
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where   is the half-period of the function, generating positive values during the hour 

angles from sunrise to sunset. Additionally, a phase shift is included as 

                                                                 (13) 

where   represents the shift in the sine function, forcing it to begin increasing at the 

sunrise hour angle. We can then formulate a general model to obtain radiation as 

      ∫    (     )  
  

  
                                           (14) 

where    and    represent endpoints of an arbitrary time interval,    is the amplitude of 

the function, and   is daily integrated solar radiation. Since the value of   is known prior 

to the model formulation, we can normalize    to produce the proper sum of integration 

for the entire daylight period. Substituting sunrise and sunset times as integration limits, 

we arrive at 

    
 

∫    (     )  
   
   

                                                   (15) 

by which we find the amplitude that drives the modeled sum to equal the daily integrated 

radiation value predicted by the solar algorithm.  

The same approach is used in temporal melt downscaling. Since the downscaling 

model predicts a daily melt depth and the insolation algorithm computes sunrise hour 

angle and sunset hour angle for every pixel, we can formulate a model for hourly-

resolution snowmelt estimates: 

      ∫    (     )  
  

  
                                        (16) 
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in which    represents the melt during the time between integration limits and    is 

normalized in the same fashion as described for Eqn. 15. This function assumes that 

maximum melt rate coincides with maximum insolation. Although there is likely a lag 

time associated, this study neglects this issue for simplicity. 

3.5 Results 

As described, the downscaling model is employed with 2010 daily snowmelt 

runoff data from SNODAS. Applying Eqns. 11 and 16 with a value of 4.0 for   , the 

model produces 10 m output with a 24-hour, sinusoidally-varying estimate at each pixel 

for each day. Results from the model are selected at the four specific pixel locations 

containing the field lysimeter sites (Table 6). To reiterate a point from Section 3.3.7, the 

lysimeters from TL lie within a single SNODAS pixel, as do the lysimeters at LDP. This 

fact has the benefit of displaying the spatial disaggregation of a single melt estimate 

(SNODAS) into distinct, sub-grid approximations (downscaling model). For example, 

without downscaling, both of the model pixels containing the TL S and TL N lysimeters 

locations would receive the same SNODAS melt value. The same is true for the LDP 

locations. This allows for simple comparison between the downscaled and observed data 

and does not complicate the parameterization of the constant   .  

As depicted by Figure 26, the TL S lysimeter began to observe marked snowmelt 

on 3 February 2010. Conflictingly, the model (SNODAS and thus downscaled) does not 

begin to melt snow until 22 February 2010. It is confirmed that this temporal 

inconsistency is not due to any artifact of the downscaling algorithm. The snow albedo 

estimates are within a reasonable range of values, generally between 0.50 and 0.75, forest 

canopy is zero (no attenuation) and the snow cover remains relatively high (fSCA > 0.75) 



75 

 

 

7
5
 

throughout this time period. Rather, the disagreement is due to the SNODAS model 

estimate itself. LDP observations and downscaling model estimates display similar 

discrepancies, though not as extreme. The downscaling model, as is, does not provide a 

means for allocating melt outside of the 24-hour period during which SNODAS limits it. 

That is, the downscaling estimates are temporally at the mercy of the SNODAS 

estimates. 

Figure 26. Cumulative snowmelt measured at field lysimeters (top) and 

estimated by downscaling SNODAS melt (bottom) for 4 locations in DCEW. 
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While temporal divergences exist, seasonal cumulative values display a more 

agreeable pattern. Not only does the downscaling model disaggregate the SNODAS melt 

estimates in the same direction as the observations, but the relative differences between 

the lysimeter pair locations are of similar magnitudes. Table 7 shows a consistent under-

prediction of melt, the magnitude of under-prediction is relatively stable across the sites. 

This suggests that these data may allow for calibration of the downscaling parameter   . 

The bar graphs in Figure 27 depict moderate agreement between the model and 

observations when    is adjusted to a value of 6.49. This value is computed simply as 

the product of the initial    value (0.4) and the mean of the relative under-prediction 

values for the 4 lysimeter sites (row 3 in Table 7).  

Figure 27. 2010 total observed snowmelt (red bars) compared to total melt 

predicted by the SNODAS downscaling model with parameter    equal to the 

standard 4.0 (blue bars) and the ‘calibrated’ 6.4921 (green bars).  
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Table 7. Total snowmelt (mm) measured at four field lysimeter locations with 

downscaled (D/S) model results. Obs/Mod fraction depict the overall magnitude 

offsets. Treeline (TL S & TL N) and Lower Deer Point (LDP S & LDP N) locations 

each fall within the boundary of a single, respective SNODAS grid cell. 

Total Melt (mm) TL S TL N LDP S LDP N 

Observed 327.29 386.41 718.58 242.58 

Model (D/S) 229.91 253.87 555.07 107.72 

Obs / Mod 1.42 1.52 1.29 2.25 

 

3.6 Discussion and Conclusion 

Described above is a study using SNODAS snowmelt output and attempting to 

estimate the spatiotemporal variability within the model’s grid cells. This variability is 

estimated through a semi-empirical approach, utilizing satellite remote sensing fractional 

snow-covered area (fSCA) data, solar radiation indices, vegetation canopy attenuation 

adjustments, and snow surface albedo parameters.  

The described method is applied to the DCEW domain, allowing for direct 

comparison with existing field lysimeter stations. Results depict temporal discrepancies 

and an under-prediction of total melt water output in comparison with observed data. The 

latter result is consistent with studies finding that SNODAS tends to underestimate SWE. 

For instance, this outcome was found in DCEW (Anderson, 2011) when SWE was 

compared to field snow-course data. Similarly, in the Sierra Nevada, SNODAS 

underestimated SWE when compared to a presumably more accurate energy balance 

reconstruction model (Dozier, 2011). Moreover, the downscaling routine is not capable of 

resolving temporal disaggregation outside of the described constraints, limiting the use of 

such a tool with a coarse-scale snowmelt model. As such, SNODAS may not be 

appropriate for estimating snowmelt at the resolution sought in this study. However, since 
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SNODAS data in this study are from 2010, they are downscaled from the RUC 2 NWP 

model. Given that SNODAS is now using RAP NWP model predictions, future 

comparisons between SNODAS estimates (raw or downscaled) and field observations 

may provide, at the least, some insight into the effect of this recent change to the model 

structure. 
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CHAPTER FOUR: PROJECT CONCLUSIONS 

Described in this work are downscaling algorithms used to predict spatial 

variability within existing snow data systems. Downscaled data containing information 

about this variability may prove useful in hydrologic modeling applications. For instance, 

streamflow timing can be greatly affected by spatially heterogeneous distributions of 

snow (Lundquist and Dettinger, 2005). Furthermore, accounting for sub-grid 

physiographic variables (e.g., insolation as in this study) may have vast implications for 

modeling under the effects of climate change on snowmelt and subsequent runoff 

(Lundquist and Flint, 2006). These algorithms are designed to operate with high 

computational efficiency and require little parameterization. The datasets used are 

readily-available, operational ones available to all users, with the implication that similar 

work could be repeated following the details of this document.  

In Chapter 2, a method is outlined for downscaling 500 m fractional SCA from 

MODIS. An algorithm is used by which the MODIS snow fraction informs a 

computationally efficient linear model to generate binary snow cover estimates of 

increased spatial resolution. The model is calibrated to 30 m Landsat observations for a 

semi-arid, mid-latitude region in southwestern Idaho using indices that are presumed to 

strongly influence the spatial distribution of snow cover. The model is tested against data 

not used in calibration and shown to perform favorably in some areas while failing in 

others. Difficulties exist in identifying specific reasons for failure, though it is suspected 
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that, in many areas, wind re-distribution and forest canopy play a crucial role in snow 

cover. Since they are not included, it is suggested that the addition of canopy and wind 

parameters would possibly be a way forward. 

In Chapter 3, variability within SNODAS melt pixels is estimated through a semi-

empirical approach, utilizing satellite remote sensing fractional snow-covered area (fSCA) 

data with the algorithm from Chapter 2, solar radiation indices, vegetation canopy 

attenuation adjustments, and snow surface albedo parameters. By downscaling the 

modeled melt to a higher resolution, other basin states and fluxes could potentially be 

estimated with increased predictive skill. Here SNODAS is observed to differ widely in 

its timing in comparison with observation. This study suggests that a more complex 

downscaling routine would be required to accurately model snowmelt processes at the 

hillslope scale. Understanding the response of a catchment to spatially variable snowmelt 

is an important concept.  
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APPENDICES 

A.1 Solar Radiation Computations 

In calculating insolation at the pixel scale, it is first necessary to solve for the 

independent variables in Eqn. 1 of this section. Some of these variables are calculated 

using empirical parameterizations while others are based on trigonometric identities. A 

sloping (or horizontal) pixel’s insolation,         is computed as an adjustment to the 

solar constant: 

          {
   (  )     (  )  

       

  
    (  )  

   (  )  [   (      )      (      )  
  

 
]
}                    (1)                                                 

where the independent variables are as follows:    is the extraterrestrial solar constant 

aggregated over the course of an hour and adjusted for  , the eccentricity of the Earth-

Sun radius vector (Eqn. 3),    is solar declination angle,    is latitude of equivalent slope 

(Lee, 1962),     and     are hour angle of sunset and sunrise on the local slope, 

respectively, and    is the hour angle time offset between the local slope and   .  

The solar constant, denoted  , is approximately between 1.95 and 2.0 

cal/cm
2
/min (Langley/min) and its one-hour aggregate value,   , is found as 

   
  

  
                                                            (2) 

where   is the earth-sun radius vector in astronomical units, calculated as a function of 

Julian date: 
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                [(   )        ]                               (3) 

where the Julian expression     corresponds to January 1
st
 of a given year. The 

Langley (cal/cm
2
) is easily converted to a more typical flux unit (W/m

2
) by multiplying 

by 11.622, leaving a time unit (hours) in the numerator. Since the given solar constant is 

multiplied by 60 minutes, the hour term cancels, leaving W/m
2
 as the energy flux term. 

This conversion is not actually made in the solar algorithm since the desired slope factor 

ratio output is unitless, rendering the insolation units superfluous. 

The latitude of equivalent slope theory (Lee, 1962) stems from the concept that 

every sloping plane on a sphere is parallel to some horizontal surface elsewhere on the 

body. It is computed as: 

       
  (   ( )     ( )      ( )      ( )      ( ))                    (4) 

where   is aspect,   is slope inclination and   is latitude. All variables are respective to 

the pixel in question and the units are in degrees. The time offset between actual and 

equivalent slopes is calculated as: 

        (
    ( )     ( )

   ( )    ( )     ( )     ( )     ( )
)                                (5) 

where variables and units are as described for Eqn. 4 and the offset is measured as a 

degree hour angle. Sunrise (sunset) hour angles are computed according to: 

        [     ( )      (  )].                                          (6) 

Solar declination angle    is found via a simple empirical function of Julian day: 

    
   

 
     {           [

                         

    (                 )
]}.            (7)     
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Finally,        is computed per Eqn. 2 substituting   = 0° to find insolation at a 

horizontal plane. The slope factor is then computed as the ratio of potential insolation on 

a sloping pixel surface to that of a horizontal one. That is 

     
      

      
.                                                           (8) 
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A.2 MODIS Reprojection Script 

In order to reproject a sinusoidal MOD10A1 file into a user-friendly projection, 

the MODIS Reprojection Tool (MRT) is useful. The MRT is a freely available tool from 

the LP-DAAC. In this case, it is invoked from the system command line using the call to 

the function ‘resample’ and an ancillary call to a parameter file that controls the output 

projection coordinate system any spectral or spatial subsetting. Here, MATLAB’s 

command line makes iterative calls to the MRT, outputting new, reprojected and cropped 

files. The input files are arranged and named with the format ‘JX.hdf’ where ‘X’ 

represents the day of year. The batch-processed output files are re-named ‘JX_R.hdf’ to 

identify unique, reprojected MOD10A1 HDF files. Shown below is the MATLAB script 

used along with the parameter file containing the subsetting and output projection 

information. Flags are used in the resample function to alter the input and output file 

names that are called. These flags appear intuitively as -i and -o in the script. 

 

MATLAB Batch Reprojection Script 

 
num_files = 181;            % number of files in the directory 
for i = 1:num_files 

system_str = ['resample -p 10a1.prm –i...    

H:\MODIS\10a1\J',int2str(i),'.hdf –o... 

H:\MODIS\10a1\reproj\J',int2str(i),'_R.hdf']; 
    system(system_str); 
end 
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MRT Parameter File (10a1.prm) 

INPUT_FILENAME = H:\MODIS\10a1\J1.hdf 

  
SPECTRAL_SUBSET = ( 1 1 1 ) 

  
SPATIAL_SUBSET_TYPE = OUTPUT_PROJ_COORDS 

  
SPATIAL_SUBSET_UL_CORNER = ( 564000.0 4848000.0 ) 
SPATIAL_SUBSET_LR_CORNER = ( 580000.0 4830000.0 ) 

  
OUTPUT_FILENAME = H:\MODIS\10a1\reproj\J1r.hdf 

  
RESAMPLING_TYPE = NEAREST_NEIGHBOR 

  
OUTPUT_PROJECTION_TYPE = UTM 

  
OUTPUT_PROJECTION_PARAMETERS = (  
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 
 0.0 0.0 0.0 ) 

  
DATUM = WGS84 

  
UTM_ZONE = 11 

  
OUTPUT_PIXEL_SIZE = 500 


