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Abstract Soil organic matter (SOM) is a critical ecosystem variable regulated by interacting physical,
chemical, and biological processes. Collaborative efforts to integrate perspectives, data, and models from
interdisciplinary research and observation networks can significantly advance predictive understanding of
SOM. We outline how integrating three networks—the Long‐Term Ecological Research with a focus on
ecological dynamics, the Critical Zone Observatories with strengths in landscape/geologic context, and the
National Ecological Observatory Network with standardized multiscale measurements—can advance SOM
knowledge. This integration requires improved data dissemination and sharing, coordinated data collection
activities, and enhanced collaboration between empiricists and modelers within and across networks.

1. Introduction

Understanding and predicting soil organic matter (SOM) dynamics is an inherently complex, interdisciplin-
ary challenge with broad societal relevance (Campbell & Paustian, 2015; Davidson & Janssens, 2006; Harden
et al., 2018; Jackson et al., 2017). SOM contains the largest actively cycling terrestrial carbon (C) pool and
plays a key role in global‐to‐local biogeochemical and water cycling by influencing soil fertility, nutrient
availability, water holding capacity, and infiltration rates (Lal, 2016). These ecosystem services are essential
in managed systems, for the production of food, fiber, and fuel and in natural systems for providing habitat
and mediating ecosystem productivity and resiliency (Adhikari & Hartemink, 2016). The formation and
decomposition of SOM are driven by a number of interacting physical, chemical, and biological mechanisms
occurring across a range of spatiotemporal scales (Lehmann & Kleber, 2015; O'Rourke et al., 2015; Schmidt
et al., 2011). Despite recent conceptual advances, significant uncertainties remain regarding the magnitude
and spatial distribution of SOM stocks, their inherent stability, and the cascading effects on ecosystem and
critical zone processes. Thus, our fundamental understanding of the ecological and physicochemical con-
trols on the capacity of Earth's soils to store organic C, now and in the future, remains incomplete.

An improved grasp on SOM dynamics and their response to natural and anthropogenic perturbations inher-
ently depends on synthesis of perspectives and models from distinct yet overlapping research communities
and disciplines. Recently, Harden et al. (2018) articulated a vision to advance SOM science by identifying key
data sets needed to advance understanding of soil C (de)stabilization mechanisms, disseminating and shar-
ing those datasets across disciplines and communities, and developing modeling platforms to link data and
models across scales. Further, Hinckley et al. (2016) and Baatz et al. (2018) argued that synthesis of data and
models from complimentary, long‐term environmental research and observation networks (hereafter, “net-
works”) can greatly enhance conceptual and numerical modeling of Earth system dynamics. Building on
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these efforts, we assert that networks can play a unique and important role in catalyzing breakthroughs in
understanding and predicting SOM and its response to environmental change. No single network can
provide the diversity of disciplinary perspectives and gradients, nor the necessary data in adequate
spatiotemporal detail, required to calibrate mechanistically accurate soil biogeochemical models, assess
their output, and develop improved process representations. However, when viewed as a consortium of
complementary networks, the U.S.‐based Long‐Term Ecological Research (LTER) network, the Critical
Zone Observatory (CZO) network, and the National Ecological Observatory Network (NEON) provide a
suite of powerful and synergistic observational platforms that can contribute substantially to SOM science.

A compelling aspect of these networks that underscores their collective potential is that each emerged in
response to community needs in a set of complementary intellectual heritages. LTER grew out of the ecosys-
tem ecology tradition and the need for long‐term studies across a diverse range of Earth's biomes. The CZO
network arose from a community of geologists, geomorphologists, soil scientists, and hydrologists who
sought to advance mechanistic understanding of how the Critical Zone evolves and functions in response
to forcings from above (e.g., vegetation and climate) and below (e.g., tectonics). Meanwhile, NEON grew
out of the desire for a standardized suite of ecological observations that could support continental‐scale eco-
logical forecasting. From these vantage points, SOM represents an emergent Earth system property that
links these networks together, intersecting core cross‐network interests, data, and activities (Figure 1). As
soils sit at the interface of the biosphere and lithosphere, reciprocal network strengths in biological and
geoscience disciplines (Richter et al., 2018), combined with data collection across scales and wide gradients
in controlling factors, can produce transformative insights into SOM dynamics—if network data are shared,
synthesized, and integrated. Here we seek to (1) highlight network strengths that provide complementary,
novel insights into SOM dynamics and (2) articulate opportunities to maximize network contributions to
advance understanding and prediction of SOM stocks and fluxes.

2. SOM Insights From Research and Observation Networks

Coordinated data collection and modeling are needed to accurately understand and project SOM trajectories
in response to environmental change (Knapp et al., 2012; Y. Luo et al., 2016; Vereecken et al., 2016). Despite
the outsized significance of SOM in understanding global carbon budgets, this coordination is often lacking.

Figure 1. Conceptual model of network foci and their overlapping interests in soil organic matter (SOM), with multiscale
controls on SOM dynamics on top and cross‐scale impacts of advances in SOM understanding and prediction beneath.
LTER is the Long‐Term Ecological Research network, CZO is the Critical Zone Observatory network (CZ is the critical
zone), and NEON is the National Ecological Observatory Network.
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The problem is exacerbated by the heterogeneity of different mechanisms responsible for SOM persistence at
different scales (Figure 1; Hinckley et al., 2014; O'Rourke et al., 2015). For example, at the pore scale, SOM
dynamics are controlled by physicochemical processes such as mineral sorption, aggregation, and redox con-
ditions (Chen et al., 2014; Keiluweit et al., 2017; Six et al., 2002; Von Lützow et al., 2008; Yan et al., 2016), as
well as biotic processes such as microbial substrate use efficiency (Manzoni et al., 2012) and root activity
(Keiluweit et al., 2015). At broader scales, other factors regulate SOM, including parent material and land
use at pedon scales (Catoni et al., 2016; Guo & Gifford, 2002; Post & Kwon, 2000; Wagai et al., 2008), vegeta-
tion, topography and erosion at landscape scales (Ritchie et al., 2007; X. Wang et al., 2014), and primary pro-
duction and climate at continental to global scales (Koven et al., 2017; Figure 1). SOM conceptual and
numerical frameworks thus require expert knowledge and data from across the biogeosciences, as well as
synthesis of observations and insights from particles to biomes. Numerical models are beginning to include
more realistic representations of physical, chemical, and biotic processes across scales (e.g., soil physical pro-
tection and microbe‐SOM interactions; sensu Abramoff et al., 2018; Sulman et al., 2014; Tang & Riley, 2015;
G. Wang et al., 2015; Wieder, Grandy, et al., 2015), yet challenges remain. Diverse multicompartment data
sets spanning spatiotemporal scales are thus needed to help develop, calibrate, and validate mechanistically
accurate, cross‐scale models (Y. Luo et al., 2016; Sulman et al., 2018; Wieder, Allison, et al., 2015). Here the
networks can make a substantial contribution.

A key role of the LTER network is to provide an ecological context for SOM dynamics. Results from this net-
work demonstrate how biotic properties (biodiversity, productivity, and succession) interact with physical
conditions and disturbances to influence soil C and nutrient cycling over time (Hinckley et al., 2016;
Richter et al., 2018). For instance, research at LTER sites has demonstrated the importance of forest age
(Fahey et al., 2005), forest type (Crow et al., 2009), and biotic interactions (Crowther et al., 2015) in driving
storage capacity and forms of SOM. While they excel in providing long‐term observations in a diversity of
ecosystems (28 locations covering most major biomes), many LTER sites concurrently maintain long‐
running manipulative experiments. These provide critical insights into how changes in biodiversity
(Fornara & Tilman, 2008), nutrient enrichment (Frey et al., 2014; Riggs et al., 2015), agricultural manage-
ment (Grandy & Robertson, 2007), and climate change (Melillo et al., 2017) alter SOM pools and fluxes.
Such experiments provide much‐needed opportunity to investigate possible unexpected, dramatic SOM
responses in particular ecosystems and improve our ability to model them, given that, even when soil models
match observations at steady‐state or in the past, they often diverge under future conditions (Z. Luo et al.,
2015; Sulman et al., 2018). Synthesizing results from perturbation experiments and integrating them into
the formation and testing of SOM models are thus key needs (Knapp et al., 2012; Luo et al., 2016), and
LTER data can play a central role.

The CZO program is ideally suited to elucidate geologic and landscape controls on SOM as well as the role of
soil hydrologic and geochemical traits. For example, clay content has been used as a proxy for SOM stabili-
zation in models for years, yet recent work led by CZO investigators underscores the limits of this approach
and the need to better understand and represent integrated soil geochemical controls (Rasmussen et al.,
2018). CZO researchers are poised to lead in this area (Heckman et al., 2013; Olshansky et al., 2018), and
novel data sets from advanced near‐surface geophysical methods and new analytical techniques, combined
with unifying conceptual frameworks surrounding hydrologic effects on soil C retention and loss, represent
potentially transformative avenues of inquiry. At the landscape scale, SOM process understanding remains
limited (O'Rourke et al., 2015). This is an area where CZO data have contributed new insights into SOM ero-
sion and deposition (Dialynas et al., 2016; Stacy et al., 2015) and land‐water connectivity (Andrews et al.,
2011). CZO research integrates across wide temporal scales, from hydrologic responses in seconds to years
versus soil weathering and landscape evolution over millennia (Heidari et al., 2017; McIntosh et al., 2017;
Riebe et al., 2017). Improved characterization of weathering and erosion rates and associated soil and water
residence times can be used to help benchmark rates of change observed in SOMmodels. Because the critical
zone, by definition, extends to the bedrock, CZO sites have and will continue to contribute to SOM insights
at depth (Mobley et al., 2015). This is critical given tremendous C pools stored in the subsurface and increas-
ing recognition of the need for vertical resolution in soil C models (Koven et al., 2013).

NEON will enable robust detection of ecosystem change across edaphic and climatic gradients using stan-
dardized observations, sensor measurements, and remote sensing. NEON sites monitor SOM along with
continuous soil moisture, temperature, and CO2 fluxes, offering the ability to link soil physical conditions
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with C dynamics and test assumed linkages applied in many soil modeling approaches (e.g., pedotransfer
functions; Van Looy et al., 2017). NEON offers a unique airborne platform that will facilitate scaling of eco-
logical and critical zone processes from the pedon to the landscape scale across different eco‐climatic
domains. For example, high‐resolution Light Detection and Ranging (LiDAR) and hyperspectral data can
be leveraged to develop new methods for indirect remote sensing of SOM via related ecosystem parameters
(Dutta et al., 2015; Mondal et al., 2017). At the other end of the spectrum, NEON is contributing a suite of
detailed soil microbial data, including biomass, marker genes, and metagenomic analyses. While the utility
of “‐omics” data for SOM models is a topic of active debate (Bailey et al., 2017), microbial community traits
and life history strategies (rather than community composition per se) are likely to play an instrumental role
in fate and stabilization of SOM (Allison, 2012; Fierer et al., 2007; Schimel & Schaeffer, 2012). Innovative
approaches for distilling aggregated community traits using metagenomics (sensu Fierer et al., 2014; Leff
et al., 2015) may help provide proxies for physiological traits being incorporated into SOM models, such
as microbial growth rate, dormancy, and stress tolerance (Georgiou et al., 2017; William R. Wieder,
Grandy, et al., 2015). Microbial data from NEON have strong potential to aid in this front.

Taken together, the networks' observational breadth crossing spatiotemporal scales as well as biotic, chemi-
cal, and physical gradients can yield novel insights into SOM processes, with implications that span basic
research to management and policy making (Figure 1). Moreover, because all of these networks include a
long‐term monitoring component, they have the potential to shed light on changing SOM dynamics over
time with variations in climate, disturbance, and other ecosystem changes (Melillo et al., 2017). This remains
a key uncertainty in biogeochemical model projections (Sulman et al., 2018; Tian et al., 2015; Todd‐Brown
et al., 2014; Wieder et al., 2018). The networks can also facilitate an improved understanding and predictive
capacity of SOM heterogeneity within sites or watersheds, where broad‐scale state factor variation intersects
with local‐scale variation in soil, organisms, and land surface properties (Bradford et al., 2017). Watershed‐
scale hydrochemical models have included SOM processes, which will assist such understanding (Bao et al.,
2017; Li et al., 2017). However, the complementary synergies will only emerge with a concerted effort to pre-
serve, share, and leverage network data.

3. Opportunities for Maximizing Network Contributions

While there are many possible benefits to leveraging network data to advance SOM conceptual and numer-
ical models, several important challenges remain. Operationally, the lack of standardized terminology, data
collection protocols, and data management strategies makes it difficult to synthesize across networks and
integrate cross‐disciplinary data sets and findings. Intellectually, it is challenging to unify across scales
and ecosystem compartments when applying findings to models (Davidson et al., 2014; Hinckley et al.,
2014; O'Rourke et al., 2015). The potential for cross‐network collaboration may be hindered when research-
ers view the same processes through different disciplinary lenses (Richter et al., 2018). Even so, these chal-
lenges are surmountable, and we recommend several concrete strategies to catalyze transformative SOM
insights from research and observatory network efforts.

First, the networks should mandate and support data dissemination and sharing to facilitate more rapid
hypothesis generation, testing, and refinement. SOM data sets should be provisioned in reusable and trace-
able formats with sufficient metadata to allow others to address questions spanning temporal, spatial, cli-
mate, land use, and other gradients. NEON has an advantage here because it was designed as a network
of sites with a suite of common measurements, compared to the other investigator‐driven networks. LTER
has been requiring data sharing for some years and has made significant progress on metadata and data
quality. CZO is much younger, and metadata standards have been proposed but not yet universally adopted.
Support is needed so that data managers from the networks can create efficient pathways to coordinate data
management and dissemination activities, and investigators should consult with them during the data dis-
semination phase to ensure pathways are working. Adherence to the Findable, Accessible, Interoperable,
Reusable (FAIR) data principles would further enhance data discoverability, especially by automated
mechanisms (Wilkinson et al., 2016), as would publication in easily accessible repositories such as those that
are member nodes of DataONE. Publicly available, cross‐network data sets can then be used to help bench-
mark specific models or processes at specific sites (e.g., Collier et al., 2018; Vereecken et al., 2016). For
instance, where available, radiocarbon data can be used to constrain the age of pools and fluxes of SOM
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(He et al., 2016), while isotope tracers can shed light on the partitioning of new C inputs into free versus pro-
tected fractions (Cotrufo et al., 2015). Such data sets would be very useful in evaluating structural uncer-
tainty among different SOM models (Sierra et al., 2018; Sulman et al., 2018; Wieder et al., 2018). As such,
network SOM data must be discoverable in order to maximize utility beyond the initial data collection effort.
Enhanced data dissemination has been shown to benefit both scientific discovery and the researchers who
share data in the eddy covariance flux community (Dai et al., 2018). The same will apply for SOM.

Second, the networks should agree to a minimum set of baseline SOM measurements that will allow inter-
comparison of data and results. This should start with measurement of total organic carbon and nitrogen
and bulk density (including coarse fragment) across site‐specific gradients and with time. Then, networks
could add other measurements based on their disciplinary interests (fractions, aggregates, roots, metals,
pH, microbial community composition, etc.). Insights from the CZO network could help other networks
design protocols for sampling deeper soil depths and considering lateral movement, while the LTER net-
work can provide guidance on protocols and manipulative experiments aimed at capturing effects of biotic
interactions, land use history, and disturbance.

Third, the networks should go beyond data sharing to promote active collaborations between empiricists and
SOMmodelers (Knapp et al., 2012), such that monitoring and experiments are explicitly designed to evaluate
model assumptions and models are used to help rule out or confirm mechanisms. Several notable efforts to
link data collection, data harmonization, andmodeling are ongoing, including the International Soil Carbon
Network, the International Soil Modeling Consortium, the Community Surface Dynamics Modeling System,
and International Soil Radiocarbon Database. These (and others) can provide defined pathways for data col-
lection to advance theoretical understanding and numerical modeling. Collaborative codesign of campaigns
to collect empirical data and to develop and test models can serve to bridge these communities but requires
investment in new and innovative ways of training students and postdocs to be successful. A movement of
funding agencies toward “convergent science”may provide opportunities and infrastructure to bring mode-
lers and empiricists together.

Lastly, the networks should be test beds for developing new tools, data collection techniques, and models
that are particularly promising for improved understanding of SOM dynamics. Examples include the
increasing popularity of multiscale geophysical techniques for investigating the shallow subsurface in the
CZO network (Parsekian et al., 2015) and the broad application of airborne LiDAR and hyperspectral remote
sensing techniques at NEON (Weinstein et al., 2019). Moreover, there are likely to be data‐rich nodes within
the networks that provide opportunities to prototype cross‐disciplinary syntheses. The Reynolds Creek
Experimental Watershed and CZO site, for example, has data sets that include airborne waveform LiDAR,
hyperspectral and geophysical data (Ilangakoon et al., 2018; Mitchell et al., 2015), eddy flux measurements
(Fellows et al., 2018), long‐term and high‐resolution surface climate data (Kormos et al., 2018), landscape‐
scale SOM and soil inorganic carbon surveys (Stanbery et al., 2017; Will et al., 2017), and detrital input
and removal experiments (Lajtha et al., 2018). These data provide unprecedented opportunities to constrain
existing models and develop new ones surrounding multiscale controls on SOM. Within‐site synthesis at
data‐rich nodes can also allow for evaluation of the relative importance of different parameters, potentially
informing cross‐network data collection activities, modeling experiments, and/or coordinated
field campaigns.

Although we focus here primarily on U.S.‐based ecosystem and CZO networks, we acknowledge that similar
networks exist around the globe, and those networks should also be encouraged to collaborate on SOM
research and modeling. The International LTER network includes 44 active member networks representing
700 sites across the globe (Mirtl et al., 2018), with variation ranging from highly intensive NEON‐like cen-
tralizedmonitoring efforts such as TERENO in Germany (Bogena, 2016) to much less intensive and informal
groups of sites. Likewise, international networks of CZOs provide immense opportunities to evaluate SOM
dynamics along global‐scale gradients of environmental change (Banwart et al., 2013).

4. Conclusions

SOM is a key ecosystem property and serves as a point of intersection among data‐rich environmental
research and observation networks. We can fully leverage network data to improve SOM process under-
standing and predictions by making it discoverable, comparable, and more tightly coordinated with
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modeling efforts. One limitation of relying on the networks is that a natural gradients approach will not
always allow us to attribute variation to particular mechanisms. Nevertheless, the networks can accelerate
advances in SOM understanding across scales and ecosystems by maintaining open and accessible data sets,
taking note of opportunities for targeted experiments and campaigns, promoting close linkages between data
collection and modeling efforts (Baatz et al., 2018), and developing mechanisms to facilitate collaboration
and inclusivity among researchers.
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