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Abstract: Vacuum transistors (VTs) are promising candidates in electronics due to their fast response
and ability to function in harsh environments. In this study, several oscillator and logic gate cir-
cuit simulations using VTs are demonstrated. Silicon-gated field emitter arrays (Si-GFEAs) with
1000 × 1000 arrays were used experimentally to create a VT model. First, transfer and output charac-
teristics sweeps were measured, and based on those data, an LTspice vacuum transistor (VT) model
was developed. Then, the model was used to develop Wein and Ring oscillator circuits. The circuits
were analytically simulated using LTspice, where the collector bias voltage was 200 V DC, and the
gate bias voltage was 30–40 V DC. The Wein oscillator circuit produced a frequency of 102 kHz with
a magnitude of 26 Vpp. The Ring oscillator produced a frequency of 1.14 MHz with a magnitude
of 4 Vpp. Furthermore, two logic circuits, NOR and NAND gates, were also demonstrated using
LTspice modeling. These simulation results illustrate the feasibility of integrating VTs into functional
integrated circuits and provide a design approach for future on-chip vacuum transistors applied in
logic or radio-frequency (RF) devices.

Keywords: field emitter arrays; vacuum transistors; oscillator circuits; logic circuits

1. Introduction

As one of the primary vital elements in electronics, vacuum electron devices have a
crucial history in several areas of applications, such as communications, radars, medical,
aerospace, and electronic warfare [1–4]. However, with the development of modern-day
electronics, there is a requirement for a new generation of micro- and nanoscale vacuum
electron device development, which can be easily integrated, has good reliability, and
has substantial efficiency [5]. Currently, nano- and microscale vacuum channel devices
are being fabricated to realize new generations of vacuum transistors (VT) with high-
frequency response [6]. VT devices have proven to be insusceptible to high temperatures
(400 ◦C) [7] and ionizing radiation (1 krad proton and 100 krad g radiation) [8,9]. A planar
nanoscale vacuum channel transistor (NVCT) with a dimension that can be compared with
a modern-day field effect transistor was demonstrated recently [10]. In these structures,
electron transport takes place using quantum tunneling [11], where drift-diffusion is the
primary mode of electron transportation in traditional semiconductors [12]. Recent work
also suggested that these devices can be operated at a voltage as low as 15 V [13]. Also,
scattering or collision loss is negligible thanks to the short vacuum channel length, which
is a few hundred nm [12]. These virtues make these VTs a perfect candidate for harsh
environment electronics [9]. Additionally, in the optimization of materials for electrodes
such as metal and/or graphene or other low-dimensional materials, VTs are an important
candidate for on-chip vacuum electron devices that can be easily integrated into circuits [14].
The reported work [3,15] shows the research interests for VTs [16].
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To realize functional circuits, it is required to develop a simulation model to inspect
VTs in terms of functional circuits such as oscillators [17] and high-speed logic gates [18].
In this study, the circuit modeling software LTspice XVII v17.0 was used to create an elec-
tronic model of VTs [9,18]. We also explore the possibilities of executing active circuits like
oscillators and logic circuits such as NOR and NAND gates using multiple VTs. We directly
employ the device characteristics from the experimental data to the device simulation mod-
ule. The results presented in this work incorporate simulation models with an emphasis
on functional circuit development, thus providing a crucial foundation for the subsequent
development of on-chip nano- or microscale vacuum electron devices.

2. I-V Characterization Experiment

To establish a simulation model, I-V characterization experiments were carried out
using a 1000 × 1000 silicon-gated field emitter array (Si-GFEAs) [14]. The gap between
each tip is 1 µm, and the total number of tips are 1 million. These GFEAs include self-
aligned polysilicon gates (gate aperture ≈ 300 nm), and each tip is supported by silicon
nanowires at the bottom, which have a diameter of 150 nm and a height of 10 µm. These
nanowires act as ballast resistors. Detailed fabrication methods and device descriptions
can be found elsewhere [6]. The 1000 × 1000 arrays were able to produce a current density
greater than 100 A/cm2 [14], which made these a clear choice for the experiments. I–V
characterization experiments were executed in a high vacuum environment created in a
stainless-steel test chamber. The high vacuum chamber is fitted with electrical feedthroughs
and a three-axis manipulator probe arm, which was used to connect to the gate pads of
the GFEAs. A Keysight B2902A source measurement unit was used to carry out the
experiments. Elaborated test chamber setup and experimental details can be found in our
previous works [7,19].

Figure 1 shows the experimental schematic structure. For the output characteristics,
the VC was swept from 0 to 200 V, and for the transfer characteristics, the VG was swept
from 0 to 40 V. For all the tests, VE was kept at the ground. The results were used to develop
an appropriate VT model, and the details can be found in our previous work [17], where
we developed, simulated, and experimentally validated a 152 kHz Colpitts oscillator. This
validation provides confidence in our circuit design.
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Figure 2a shows the transfer characteristics comparison data of experiment and model
for a collector voltage of 200 V, and Figure 2b shows the output characteristics of experiment
and LTspice model for a fixed gate voltage of 30 V. From Figure 2a, it can be observed that
the device turns on at a gate voltage of approximately VG, ON = 24 V and reaches > 0.225 mA
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of current at VG = 30 V. From Figure 2a, it can be observed that experiment and model
agree well. Figure 2a (inset) shows the Fowler–Nordheim (F–N) [11] plot for the gate sweep
of 0 to 30 V. From Figure 2b, it can clearly be observed that the data of the experiment and
model results match well. Please note that, for the model development, a gate voltage of
40 V was used, and the details can be found in our previous work [17].
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3. Simulation Model

The Fowler–Nordheim (F–N) model was used to establish the VT model [11,20–22].
The F–N equation is given as

I = aFNVG
2exp

(
−bFN

VG

)
(1)

Here, VG is applied gate potential in V, aFN and bFN are F-N coefficients and are
defined as follows:

ln
(

I
VG

2

)
= ln(aFN)−

bFN

VG
(2)

bFN =
0.95·6.83×107·ϕ 3

2

β
(3)

where ϕ is the emitter work function (eV), and β is the field enhancement factor. Here, the
work function is assumed to be 4.05 eV for Si. Further, to predict the model accurately, a
hyperbolic tangent or tanh function was incorporated [17].
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The model provides [17]

IC,Model = IE,Model·0.5·
(

1 + tan h
(
(VC − d)

e

))
(4)

where the parameters d and e (two sets of coefficients for tanh) are dependent on VG. IC
is = collector current (A), and IE is = emitter current (A). A detailed model development
method can be found in our previous work [17].

Figure 3 shows the circuit diagram and the temporal response characteristics of a VT-
based Wien oscillator circuit. The Wien oscillator [23,24] is based on a frequency-selective
form of the Wheatstone bridge circuit [25]. The Wien Bridge Oscillator is a two-stage
RC coupled amplifier circuit that has good stability at its resonant frequency and low
distortion. The Wien Bridge Oscillator uses a feedback circuit consisting of a series RC
circuit connected with a parallel RC of the same component values, producing a phase
delay or phase advance circuit depending upon the frequency. Figure 3a shows the Wien
oscillator circuit along with the values of the passive components, where V1 = 250 V and
VBIAS = 37 V. Figure 3b shows the temporal response of the Wein oscillator simulation circuit.
The observed oscillation frequency is ≈102 kHz with a VPP of ≈26 V. The circuit includes
four VTs. Among the four VTs, the rightmost one is used as a load for the simulation.
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and (b) output waveform.

Figure 4 shows the schematic and temporal response characteristics of the VT-based
Ring oscillator circuit. The Ring oscillator [26] is a combination of inverters connected in
series with a feedback connection. The output of the final stage is again connected to the
initial stage of the oscillator. The values for the passive components that can be seen in
Figure 4a,b show the temporal response of the Ring oscillator simulation circuit. The circuit
is comprised of three VTs and passive components (resistors and capacitors). The applied
V1 = 350 V and VBIAS = 38 V. Observed oscillation frequency is ≈ 1.12 MHz with a VPP of
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≈ 4.5 V. The VPP of this Ring oscillator circuit could be limited by the RC delay caused by
the device capacitance [17] and biasing resistors.
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Figure 4. (a) LTspice model of a three VT device Ring oscillator simulation circuit and (b) the
simulated output waveform.

A simple NOR gate [27] can be constructed using resistor–transistor logic (RTL)
switches connected together with the inputs connected directly to the transistor gates.
The logic NOR gate’s output becomes “HIGH” only when both of its inputs are at “LOW”
states, and for the rest of the states, the output will be in the “LOW” level state. A simple
2-input NOR gate was designed and simulated in LTspice using the VT model. Figure 5a
shows the circuit where the inputs are connected directly to the transistor gates.

Both transistors must be cut off (“OFF”) for an output. Figure 5b shows the output
waveform. The circuit is comprised of three VTs and passive components (resistors). From
the output, it can clearly be seen that when both the inputs are low or “false”, the output is
high or “true” and the output is low or “false” for all other cases, which clearly denotes
the NOR operation. Here, the low-state voltage does not go to “0”. However, we can still
achieve the NOR operation using the high or low output.

A simple NAND gate [27,28] can be constructed using resistor–transistor logic (RTL)
switches connected together with the inputs connected directly to the transistor gates. The
core logic is a NOR gate formed by U1 and U2 and converted to a NAND gate through
DeMorgan’s Theorem [29], with the input inverters formed by U3 and U4 and an output
inverter formed by U5. Figure 6a shows the circuit diagram, and Figure 6b shows the
output waveform. The device is comprised of six VTs and passive components (resistors).
From the output waveform, it can clearly be seen that the output is low only when both
inputs are high. Otherwise, the output is always high, which clearly denotes a NAND gate
operation. However, similar to the NOR gate, the “low” state does not go to “0” V. The
NAND operation can still be achieved by setting the “low” and “high” threshold limits.
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Appl. Sci. 2023, 13, 12807 7 of 8

4. Conclusions

In summary, this study explores the modeling of a variety of VT-based circuits. In ad-
dition, and more importantly, we successfully simulated several oscillator and logic circuit
designs based on an optimal VT. To the best of our knowledge, it is the first demonstration
of a vacuum-state oscillator in the circuit simulation module in which the VT functions
as a conventional triode or field-effect transistor (FET). Several circuits, a Wein oscillator,
a Ring oscillator, a NOR gate, and a NAND circuit, were designed and demonstrated using
LTspice simulations. The low-frequency Wein oscillator circuit has an oscillation frequency
of 102 kHz with an amplitude of 26 Vpp. The Ring oscillator model showed a comparatively
higher oscillation frequency of 1.14 MHz with a magnitude of 4 Vpp. These oscillators and
logic circuits could be used as low-frequency harsh environment temperature, pressure,
and vibration sensors in nuclear reactors, satellites, and spacecraft. Future work includes
the experimental validation of these circuits.
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