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ARTICLE

Generation of DNA oligomers with similar chemical
kinetics via in-silico optimization
Michael Tobiason 1,2✉, Bernard Yurke 2,3 & William L. Hughes 4✉

Networks of interacting DNA oligomers are useful for applications such as biomarker

detection, targeted drug delivery, information storage, and photonic information processing.

However, differences in the chemical kinetics of hybridization reactions, referred to as kinetic

dispersion, can be problematic for some applications. Here, it is found that limiting unne-

cessary stretches of Watson-Crick base pairing, referred to as unnecessary duplexes, can

yield exceptionally low kinetic dispersions. Hybridization kinetics can be affected by unne-

cessary intra-oligomer duplexes containing only 2 base-pairs, and such duplexes explain up

to 94% of previously reported kinetic dispersion. As a general design rule, it is recommended

that unnecessary intra-oligomer duplexes larger than 2 base-pairs and unnecessary inter-

oligomer duplexes larger than 7 base-pairs be avoided. Unnecessary duplexes typically scale

exponentially with network size, and nearly all networks contain unnecessary duplexes

substantial enough to affect hybridization kinetics. A new method for generating networks

which utilizes in-silico optimization to mitigate unnecessary duplexes is proposed and

demonstrated to reduce in-vitro kinetic dispersions as much as 96%. The limitations of the

new design rule and generation method are evaluated in-silico by creating new oligomers for

several designs, including three previously programmed reactions and one previously engi-

neered structure.
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Molecules of single stranded deoxyribonucleic acid,
sometimes referred to as DNA oligomers, can form
duplexes where two complementary base-sequences are

held together by Watson-Crick base-pairing. Networks of DNA
oligomers interacting through intentional duplexes have been
used to fabricate structures1–7 and program chemical reactions8,9.
Demonstrated applications for such networks include biomarker
detection10,11, genomic sequencing12, targeted drug delivery13–15,
artificial gene regulation16,17, information storage18,19, and pho-
tonic information processing20,21. Hybridization reactions (i.e.,
reactions where DNA oligomers form new duplexes) are funda-
mental to these networks. However, DNA oligomers undergoing
hybridization reactions sometimes exhibit a large kinetic disper-
sion (i.e., a large difference in chemical kinetics)12,22,23. Large
kinetic dispersions may cause issues such as false negatives during
biomarker detection10,11, limited throughput of genomic
sequencing12, failure to release medication13–15, under-expression
of a regulated gene16,17, or loss of stored information18,19. Large
kinetic dispersions may also contribute to the inconsistent
structure formation3,24–26 and high development costs4,27–30

sometimes associated with networks of DNA oligomers.
A given network of DNA oligomers is often intended to form

specific duplexes which either implement a chemical reaction
network31,32 or create a spatial arrangement of matter (i.e., a two-
dimensional7,33,34 or three-dimensional35 shape). Such networks
may also form other duplexes, referred to here as unnecessary
duplexes. It has been previously established that unnecessary
duplexes can affect hybridization reactions9,23,36–40, making them
one potential contributor to kinetic dispersion. However, several
other factors known to affect hybridization reactions may also
contribute to kinetic dispersion. For separate aqueous solutions
which contain oligomers with the same base-sequences, initial state,
and final state, these known factors include temperature12,22,41–44,
ionic strength45,46, and viscosity45,47. For separate aqueous solu-
tions containing oligomers with different base-sequences but similar
initial and final states, these known factors additionally include
oligomer length42 and duplex stability12,22,48,49.

Here, the relationship between unnecessary duplexes and
kinetic dispersion is studied using a combination of in-silico and
in-vitro methods. First, by analyzing existing experimental data, it
is found that unnecessary intra-oligomer duplexes are a key
contributor to kinetic dispersion and that nearly all previously
reported kinetic dispersion can be explained by known causes. It is
recommended that when generating new networks all unnecessary
intra-oligomer duplexes larger than 2 base-pairs and all unne-
cessary inter-oligomer duplexes larger than 7 base-pairs be avoi-
ded if possible. Satisfying both of these conditions is referred to as
the “no 3’s and no 8’s” design rule. By randomly sampling net-
works in-silico, it is found that nearly all networks contain
unnecessary intra-oligomer duplexes substantial enough to cause
kinetic dispersion. A new network generation method which uti-
lizes in-silico optimization to mitigate unnecessary duplexes is
proposed and is demonstrated to successfully reduce in-vitro
kinetic dispersion by as much as 96%. Finally, the limitations of
both the “no 3’s and no 8’s” design rule and the generation
method are studied in-silico by generating new networks for
several designs. It is found that the new generation method sub-
stantially increases the designs for which a researcher can satisfy
the new design rule, presumably enabling reduced kinetic dis-
persions and more reliable performance for future applications.

Results
Analysis of kinetic dispersion in existing experimental data.
Numerous previous studies have characterized the chemical
kinetics of DNA oligomers undergoing a hybridization reaction,

and some of these studies characterized enough samples for a
meaningful re-analysis of the data12,22,23. Here, this existing
experimental data was used to ascertain how much kinetic dis-
persion can be explained by unnecessary duplexes and to better
understand the relationship between unnecessary duplexes and
kinetic dispersion.

Five datasets (i.e., sets of comparable rate-constant values) were
identified for analysis and are listed in Fig. 1a. The hybridization
reactions within these datasets range from a relatively simple
duplex-formation reaction to a relatively complicated multiple-
intermediate catalytic reaction. Other than unnecessary duplexes,
all known hybridization-reaction-affecting factors (including
temperature, ionic strength, viscosity, oligomer length, and
duplex-stability) were approximately constant within each
dataset. Each dataset was given a label abbreviating the first
author, temperature, and reaction type. For example, the values
measured by Zhang et al.12 at 37 °C for a duplex-formation
reaction were labeled Z37F.

Histograms of the rate-constant values in each dataset are
reported within Fig. 1a. Each rate-constant distribution is left
skewed with the mean less than the median and appears poorly
approximated by either a Gaussian distribution or a Galton
distribution. Each rate-constant distribution spans at least 3
orders of magnitude, verifying the presence of substantial kinetic
dispersion. The kinetic dispersion of each dataset was further
quantified using the Inter-Quartile Range of the Natural
Logarithm of the rate-constant values (denoted IQRNL and
detailed in the methods section). Supplementary note 1 reports
additional information from the analysis of these datasets, with
IQRNL values for each dataset reported in supplementary
table S1. The rate-constant values underlying each histogram
can be found in the ‘Supplementary Data 1’ file.

Sub-populations with the least substantial unnecessary intra-
oligomer duplexes were identified using the oligomer fitness score
above baseline (denoted ΔO and detailed in the methods section).
This fitness score penalizes a network with 10L fitness points for
each unnecessary intra-oligomer duplex of length L. A ΔO value
of 0 indicates no unnecessary intra-oligomer duplexes, and
increasing ΔO values indicate more substantial unnecessary
duplexes. Plots of rate-constant value as a function of ΔO are
reported in supplementary fig. S1. Detailed statistical analyses of
the most ΔO-fit sub-populations with number of samples (n)
equal to 2, 3, 4, 8 and 16 are reported in supplementary figs. S2 to
S6. The rate-constant values of the 3 most ΔO-fit samples are
highlighted in orange in Fig. 1a.

A different underlying rate-constant distribution was clearly
resolved for many of the ΔO-fit sub-populations (i.e., the sub-
populations with the least substantial unnecessary intra-oligomer
duplexes). The null hypothesis was established that a given sub-
population was drawn from the same underlying distribution as
the other samples in the dataset. When a Kolmogrov–Smirnov50

test with a threshold of p= 0.05 was used to test this null
hypothesis, it was successfully rejected for 21 of the 25 ΔO-fit
sub-populations. For the sub-populations containing the 3 most
ΔO-fit samples, this null hypothesis was successfully rejected for 4
of the 5 datasets. All of the ΔO-fit sub-populations which failed to
reject the null hypothesis were from the O25C dataset, which may
be explained by the proximity of the peaks of these rate-constant
distributions. When the null hypothesis was instead tested using a
Wilcoxon-signed-rank test51 or an Anderson-Darling test52

similar trends were observed, however the Wilcoxon-signed rank
test required larger sample sizes to achieve statistical significance.

Lower kinetic dispersions were clearly resolved for many of the
ΔO-fit sub-populations (i.e., the sub-populations with the least
substantial unnecessary intra-oligomer duplexes). For the 3 most
ΔO-fit samples, kinetic dispersions were reduced 84%, 92%, 86%,
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93%, and 94% relative to equally sized random sub-populations.
The value and bounds of these estimates are reported in
supplementary table S2 and Fig. 1b (orange bars). No overlap
existed between the bounds of these kinetic dispersion estimates
and those of randomly selected sub-populations.

The large kinetic dispersion reductions for ΔO-fit sub-
populations were interpreted as evidence that the kinetic
dispersion in each dataset can be largely explained by unnecessary
duplexes contributing to ΔO. Since any intra-oligomer duplex
logically implies the existence of two inter-oligomer duplexes, this
includes at least some inter-oligomer duplexes. These reductions
also verify that the experimental methods of the prior researchers
mitigated other causes of kinetic dispersion sufficiently that
unnecessary intra-oligomer duplexes explain most of the
remaining kinetic dispersion.

Sub-populations with the least substantial unnecessary inter-
oligomer duplexes were identified using the network fitness score
above baseline (denoted ΔN and detailed in the methods section).
This fitness score penalizes a network with 10L fitness points for
each unnecessary inter-oligomer duplex of length L. A ΔN value
of 0 indicates no unnecessary inter-oligomer duplexes, and
increasing ΔN values indicate more substantial unnecessary
duplexes. Plots of rate-constant value as a function of ΔN are

reported in supplementary fig. S7. Detailed statistical analyses of
the most ΔN-fit sub-populations with a number of samples equal
to 2, 3, 4, 8 and 16 are reported in supplementary figs. S8 to S12.

A different underlying rate-constant distribution was not
clearly resolved for most ΔN-fit sub-populations (i.e., the sub-
populations with the least substantial unnecessary inter-oligomer
duplexes). The null hypothesis was established that a given sub-
population was drawn from the same underlying distribution as
the other samples in the dataset. When a Kolmogorov–Smirnov
test50 with a threshold of p= 0.05 was used to test this null
hypothesis, it was successfully rejected for only 1 of the 25 ΔO-fit
sub-populations. For the sub-populations containing the 3 most
ΔN-fit samples, this null hypothesis was successfully rejected for 0
of the 5 datasets. When the null hypothesis was instead evaluated
using a Wilcoxon-signed-rank test51 or an Anderson–Darling
test52 similar trends were observed.

Only marginally reduced kinetic dispersions were observed for
the ΔN-fit sub-populations (i.e., the sub-populations with the
least substantial unnecessary inter-oligomer duplexes). For sub-
populations containing the three most ΔN-fit samples (n= 3,
Fig. 1b green bars), kinetic dispersions were reduced 37%, 51%,
23%, 39%, and 19% relative to equally sized random sub-
populations (Fig. 1b grey bars). The value and bounds of these

Fig. 1 Analysis of existing in-vitro rate-constants. a The five datasets identified for analysis. Histograms indicate the number of rate-constants in each
0.25 interval. Orange highlights the 3 most ΔO-fit samples. Box charts shown above each histogram indicate the mean (x within box), the 50th percentile
(line within box), 25th / 75th percentiles (left end and right end of box), and min/max values (brackets extending from box). Kinetic dispersion was
quantified using the interquartile range of the natural logarithm of rate-constants (IQRNL), which is visible as the distance between the left end and right
end of the box. b Relative kinetic dispersions estimated for select sub-populations from each dataset. The lower error bar, the column height, and the upper
error bar represent the 25th, 50th, and 75th percentiles of each estimate. cMedian relative kinetic dispersions for select fitness scores. The lower error bar,
the column height, and the upper error bar represent the 25th, 50th, and 75th percentiles.
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estimates are reported in supplementary table S2 and Fig. 1b
(green bars). For all 5 datasets, the bounds of these kinetic
dispersion estimates overlapped with those of randomly selected
sub-populations. The systematic decrease in kinetic dispersion
across all five datasets was interpreted as evidence that at least
some of the kinetic dispersion in these datasets may be explained
by unnecessary duplexes contributing to ΔN. This may be
explained by the fact that each intra-oligomer duplex logically
implies the existence of two inter-oligomer duplexes.

For both the ΔO-fit and the ΔN-fit sub-populations, smaller
sample sizes generally correlated with larger kinetic dispersion
reductions. This trend is consistent with attempting to select a
small number of fit samples from a larger population. Since the
kinetic dispersion reductions were calculated relative to equally
sized random sub-populations, it is unlikely that this trend is
caused by biased parameter estimation. While the minimum
number of samples necessary to estimate IQRNL is 2 (i.e., n= 2),
n= 3 often yielded lower kinetic dispersions. This may be
explained by the different definitions of median for even and odd
numbers of samples.

The unnecessary intra-oligomer duplexes present to explain the
observed kinetic dispersion indicate that relatively small intra-
oligomer duplexes are substantial enough to cause kinetic
dispersion. For all 5 datasets, unnecessary intra-oligomer
duplexes with 3 or more base-pairs exist to explain the increased
kinetic-dispersion of non ΔO-fit samples. However, the 16 most
ΔO-fit samples in the H22F dataset exhibited relatively large
kinetic dispersions, yet these samples contain no unnecessary
intra-oligomer duplex larger than 2 base-pairs. This was
interpreted as evidence that unnecessary 3-base-pair intra-
oligomer duplexes are substantial enough to affect hybridization
kinetics under typical experimental conditions, and that unne-
cessary 2-base-pair intra-oligomer duplexes may be substantial
enough to affect hybridization kinetics under certain experi-
mental conditions.

The ΔO difference associated with these kinetic dispersion
reductions indicates that relatively small ΔO values are necessary
to limit kinetic dispersion. For the 5 datasets, the ΔO of the three
most ΔO-fit samples differed from other samples by a median of
3.3 x 103, 7.0 x 103, 7.0 x 103, 1.0 x 105, and 1.1 x 105 fitness points.
The smallest of these differences (3.3 x 103) came from the H22F
dataset and was associated with an 84% reduction in kinetic
dispersion, suggesting that a ΔO difference of 3.3 x 103 is
sufficient to cause substantial kinetic dispersion. Since each
unnecessary 3-base-pair intra-oligomer duplex contributes 1 x 103

fitness points to ΔO, the value of 3.3 x 103 is equivalent to
approximately 3 unnecessary 3-base-pair duplexes.

Unnecessary intra-oligomer duplexes may also explain the
marginal kinetic dispersion reductions observed for the most ΔN-
fit sub-populations. The three most ΔN-fit samples in each
dataset exhibited kinetic dispersions marginally lower than
random samples, and the ΔO of these ΔN-fit samples differed
from other samples by a median of 2.4 x 103, 4 x 103, 4 x 103,
4 x 104, and 5 x 104 fitness points. These values are large enough
that the observed correlation between decreasing ΔN and
decreasing kinetic dispersion may be explained by reduced
unnecessary intra-oligomer duplexes. The decreased ΔO for ΔN-
fit samples can be explained by the fact that each intra-oligomer
duplex logically implies the existence of two inter-oligomer
duplexes.

Kinetic dispersions were also estimated for the most fit sub-
populations according to several versions of the weighted fitness
score above baseline (abbreviated ΔWx and detailed in the
methods section). These fitness scores are a weighted linear
combination of ΔN and ΔO governed by the weighting parameter
x and can be used to simultaneously quantify intra-oligomer and

inter-oligomer unnecessary duplexes. A ΔWx fitness score with a
specific x value is denoted by incorporating the x value into the
subscript (for example, ΔWx with x= 10,000 is denoted as
ΔW10,000). For all ΔWx, a value of 0 indicates no unnecessary
duplexes, and increasing values indicate more substantial
unnecessary duplexes. Kinetic dispersion estimates for the most
ΔWx-fit sub-populations for a sample-size of n= 3 are reported
in Fig. 1c. For x ≥ 104 the most ΔWx-fit sub-populations were
identical to the most ΔO-fit sub-populations, and the same large
kinetic dispersion reductions were observed. For x ≤ 102, the most
ΔWx-fit samples were similar or identical to the most ΔN-fit
samples, and similarly yielded only marginal kinetic dispersion
reductions. These results were expected based on the definition of
ΔWx and demonstrate how larger x values can be used to increase
the penalty for unnecessary intra-oligomer duplexes. Since ΔWx

with x ≥ 104 performed sufficiently for all five datasets, it was
inferred that this fitness score may be useful across a range of
experimental conditions and network designs.

Based on the analysis of these 5 datasets, the following “no 3’s
and no 8’s” design rule is proposed for mitigating kinetic
dispersion caused by unnecessary duplexes. This design rule has
two conditions: (1) the network should contain no unnecessary
intra-oligomer duplex composed of 3 or more contiguous base-
pairs, and (2) the network should contain no unnecessary inter-
oligomer duplex composed of 8 or more base-pairs.

The logic underlying the “no 3’s and no 8’s” design rule is as
follows. For intra-oligomer duplexes, evidence was observed that
some unnecessary 3-base-pair intra-oligomer duplexes are sub-
stantial enough to affect hybridization kinetics under typical
experimental conditions. Thus, it is recommended that all
unnecessary intra-oligomer duplexes of 3 or more base-pairs be
removed. For inter-oligomer duplexes, no clear evidence of
unnecessary inter-oligomer duplexes affecting hybridization
kinetics was observed, even though all 5 datasets contained such
duplexes 7 base-pairs or larger. Since it is well established that large
inter-oligomer duplexes can affect hybridization kinetics9,23,36–40,
it is conservatively recommended that unnecessary inter-oligomer
duplexes larger than 7 base-pairs be eliminated.

Scaling of unnecessary duplexes with network size. For net-
works of DNA oligomers, it is known that the largest unnecessary
duplex generally increases with both the number and length of
oligomers present38,53,54. Here, the scaling of unnecessary
duplexes with these factors was studied using in-silico random
sampling. Networks were randomly sampled for the model sys-
tem design shown in Fig. 2a, which contained: (1) i oligomers, (2)
j bases per oligomer, and (3) no intentional base-pairing. Since
each of these networks contain no intentional duplexes, ΔN=N
and ΔO=O for each network.

Values of ΔN and ΔO estimated for several i and j
combinations are shown in Fig. 2b,c. In these figures, only data
for select j values (i.e., 16, 64, 256, and 1024 bases) are shown.
Additional j values (i.e., 8, 32, 128, and 512 bases) were used for
fitting but are omitted to reduce clutter in the figure. Both ΔN
and ΔO appear to scale exponentially with both i and j. This was
modeled using the equations ΔN=a∙ib∙jc and ΔO=a∙ib∙jc. In these
equations, a, b, and c are real-valued constants. The units of
constant a are fitness points and constants b and c are both
unitless. ΔN values were well modeled by values of a= 0.389,
b= 3.19, and c= 3.68 (green lines in Fig. 2b) and ΔO values were
well modeled by values of a= 0.0526, b= 1.56, and c= 3.63
(orange lines in Fig. 2c). Both ΔN and ΔO values were observed
to systematically diverge from this model for small j values, which
can be explained by the upper limit oligomer length establishes
on unnecessary duplex length.
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It was inferred from this data that nearly all networks possess
unnecessary duplexes substantial enough to cause kinetic
dispersion. This is based on the following logic. First, during
the analysis of existing experimental data (Fig. 1), 3-base-pair
unnecessary intra-oligomer duplexes were observed to affect
hybridization kinetics under typical experimental conditions.
When the length of the largest intra-oligomer unnecessary duplex
is directly calculated for randomly sampled networks, 50% of
networks contain 3 base-pair intra-oligomer unnecessary
duplexes when: (1) the network contains any oligomer 16 bases
or larger, or (2) the network contains any 16 oligomers longer
than 8 base-pairs. Networks satisfying these conditions are a
small number of the countably infinite number of possible
networks, implying that nearly all networks possess unnecessary
duplexes substantial enough to affect hybridization kinetics.

This can also be inferred using the following logic. According
to the definition of ΔO, a single 3 base-pair unnecessary intra-
oligomer duplex contributes 103 fitness points to ΔO. Since ΔO
increases with both i and j, networks with ΔO ≤ 103 are only a
small fraction of the countably infinite number of possible
networks. Thus, nearly all networks possess unnecessary duplexes
substantial enough to affect hybridization kinetics. The model in

Fig. 2c implies that this is true for over 50% of networks when
(0.0526) ∙ i1.56 ∙ j3.63 ≥ 103. This condition is satisfied by networks
containing any of the following: (1) an oligomer 16 bases or
longer, (2) any 2 oligomers longer than 11 bases, or (3) any 4
oligomers longer than 8 bases. Based on this logic, the number of
8 base-pair oligomers that contain substantial unnecessary
duplexes is approximately ¼ that of the prior logic, which can
be explained by the fitness points accumulated from 2 base-pair
unnecessary intra-oligomer duplexes.

Generation of optimized networks using the SeqEvo and
DevPro software. Networks forming less substantial unnecessary
duplexes were generated using the following process which is
depicted graphically in Fig. 3a. At this level of abstraction, the
process begins with formalizing a design (i.e., the oligomers and
intentional duplexes) for the network. An initial implementation
of this design, referred to as the initial network, is created as a
starting point for optimization. A first round of optimization is
then performed using default parameters, yielding the first can-
didate network. This candidate network is evaluated in greater
detail and either accepted as final or rejected. If rejected, either

Fig. 2 In-silico characterization of typical unnecessary duplexes. a The model system used for this study. b, c Typical N (network fitness score) and
typical O (oligo fitness score) of randomly sampled networks for select combinations of i and j. Each lower error bar, data point, and upper error bar
represent the 25th, 50th, and 75th percentile of 10,000 oligomer-sets. Colored lines and inset equations represent the fits to the data.

Fig. 3 Method used to generate optimized networks. a Illustration of the method. b Key details pertaining to the SeqEvo optimization program. c Key
details pertaining to the DevPro analysis program.
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the optimization parameters or the network design are updated
and the optimization/validation cycle is repeated until a candidate
network successfully passes validation.

For the optimization step shown in Fig. 3a, the custom-written
Sequence Evolver (abbreviated SeqEvo) computer program was
created. This program, instructions for its use, and several usage
examples are freely available online55. SeqEvo is a command line
tool written in the java programming language. As input, the
program requires four files: (1) a parameters file, (2) a fixed-
domains file, (3) a variable-domains file, and (4) an oligomers file.
The parameters file specifies runtime parameters such as which
fitness score to optimize. The fixed-domains file specifies a list of
named base-sequences, referred to as fixed domains, which will
not be modified during optimization. The variable-domains file
specifies a list of named base-sequences, referred to as variable
domains, which will be modified during optimization. The
oligomers file specifies a list of named oligomers, with each
oligomer declared by listing one or more domains and/or domain
complements. The SeqEvo program compiles the initial network
from these files and proceeds with optimization. Optimization is
performed using a custom evolution-inspired heuristic algorithm
which rearranges the bases within variable domains to minimize a
given fitness score. There are 5 key parameters which control the
optimization algorithm (labeled CPL, GPC, NDPM, NL, and
NMPC) and default values for these parameters (CPL= 100000,
GPC= 1, NDPM= 1, NL= 8, and NMPC= 1) were determined
by maximizing algorithm efficiency for a model system. At the
end of the optimization process, SeqEvo outputs a report file
detailing the most-fit network encountered and the runtime
parameters used for optimization. Supplementary note 2 reports
additional details regarding the operation of SeqEvo. This
includes pseudocode explaining the optimization algorithm
(supplementary fig. S13) and details of the process used to
identify default parameter values (supplementary table S3 and
supplementary fig. S14).

For the validation step shown in Fig. 3a, the custom-written
Device Profiler (abbreviated DevPro) software was created. This
program, instructions for its use, and several usage examples are
freely available online55. Similar to SeqEvo, DevPro is a command
line tool written in the java programming language. The program
requires the same four input files (i.e., a parameters file, a fixed-
domains file, a variable-domains file, and an oligomers file).
DevPro compiles the network and uses an exhaustive linear
search to identify all necessary and unnecessary duplexes. The
program then outputs a report summarizing these duplexes. If
requested in the parameters file, the program can also output
values for select fitness scores and a list of the largest unnecessary
duplexes. Supplementary note 3 reports additional details
regarding the DevPro program. This includes pseudocode for
the algorithms used to identify duplexes (supplementary figs. S15
and S16). This also includes example score calculations
(supplementary figs. S17 and S18).

As of writing, SeqEvo and DevPro have the following
requirements: (1) Both programs require Java SE 8 or newer to
be installed and (2) both programs require that the network’s
design be described using binding domains. Correct function of
both programs has been verified on computers running
Windows, Linux, and MacOS operating systems. Both programs
require more time and memory for larger network designs,
however no absolute limits were encountered. The largest
network analyzed using the current version of the programs is
the “10 x 10 x 10 molecular canvas” reported by Ke et al.56, which
consists of 517 total oligomers containing up to 48 bases per
oligomer.

If default parameters fail to generate a network of sufficient
quality, it is recommended that future researchers tune the

following parameters. (1) The CPL parameter. The CPL
parameter controls the number of evolutionary cycles performed
during optimization. Increasing CPL increases the duration of the
heuristic algorithm, allowing more mutations to be considered
and more evolved networks to be generated. (2) The intraSLC and
interSLC parameters, which abbreviate the intra-oligomer scoring
length criterion and the inter-oligomer scoring length criterion,
respectively. Unnecessary duplexes less than intraSLC or interSLC
do not contribute points to fitness scores. Thus, increasing these
values allows the optimization algorithm greater freedom to
reduce larger duplexes by introducing unpenalized smaller
duplexes. (3) The maxAA, maxCC, maxGG, and maxTT
parameters. These parameters control the maximum number of
consecutive bases which are acceptable in generated networks.
The default limits of 6, 3, 3, and 6 were set based on the
observations of previous researchers31,57,58. However, these
values substantially limit the number of potential networks,
especially for larger network designs. Increasing these parameters
allows the optimization algorithm greater freedom to eliminate
unnecessary duplexes but may result in adverse experimental
outcomes. (4) The scoringWeightX parameter. The scoring-
WeightX parameter controls the value of x for the Wx fitness
score. Increasing the scoringWeightX parameter increases the
contribution of intra-oligomer duplexes to the Wx score, which
allows greater freedom to reduce intra-oligomer duplexes by
increasing inter-oligomer duplexes.

The following key observations regarding this generation
method were made. (1) This generation method treats unneces-
sary duplexes as fully independent and neglects any cooperation
between multiple duplexes. It is possible that the effects observed
here do not arise from a single unnecessary duplex, but instead
from the cooperative effects of multiple unnecessary duplexes. (2)
Both the “no 3’s and no 8’s” design rule and the fitness scores
used here quantify unnecessary duplexes based on their size (i.e.,
the number of base-pairs they contain). This is derived from the
idea that all duplexes of a given length are equally bad, which
becomes a poor assumption for duplexes containing approxi-
mately 4 or more base pairs since some 4 base-pair duplexes are
more thermodynamically stable than some 5 base-pair duplexes.
Consequently, when larger unnecessary duplexes are present,
these metrics may favor shorter duplexes which are actually more
problematic. However, applying some form of thermodynamic
criteria to distinguish between unnecessary duplexes appears
complicated by the fact that it has been specifically reported that
some thermodynamically unfavorable duplexes can affect hybri-
dization kinetics22. (3) The fitness scores used here are inefficient
in the sense that they penalize all inter-oligomer and all intra-
oligomer unnecessary duplexes equally, while not all unnecessary
duplexes appear to affect all hybridization reactions. Conse-
quently, these scores likely overlook many experimentally viable
networks where the unnecessary duplexes are either not stable
enough or located in locations which do not affect the intended
hybridization reaction. (4) There is an underlying logical link
between intra-oligomer duplexes and inter-oligomer duplexes
such that any intra-oligomer duplex implies the existence of two
equally sized inter-oligomer duplexes. It is possible that effects
attributed to unnecessary intra-oligomer duplexes can also be
explained by these inter-oligomer duplexes.

Kinetic dispersion of newly generated networks. To further
investigate the relationship between unnecessary duplexes and
kinetic dispersion, in-vitro kinetic dispersions were measured for
several newly generated networks. The model system for this
study is shown in Fig. 4a and consists of three oligomers (labeled
S1, S2, and S3) which are intended to undergo two separate
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hybridization reactions (labeled duplex-formation and strand
displacement).

New networks were generated using one of four network
generation methods: (1) random sequence assignment (the RND
group), optimization of the N fitness score (the N-fit group),
optimization of the O fitness score (the O-fit group), or
optimization of the W1 fitness score (W1-fit group). Three
networks were generated using each generation method. This
number of samples was chosen based on the magnitude of
previously observed kinetic dispersion reductions. For Wx

optimization, the value of x= 1 was chosen because it was the
smallest x value which satisfied the “no 3’s and no 8’s” design
rule. Supplementary note 4 reports additional details regarding
the generation and characterization of these networks. This
includes the base-sequence for each oligomer, which are reported
in supplementary table S4.

The unnecessary duplexes for each network were characterized
using the DevPro program. Values of ΔN and ΔO for each
network are shown in Fig. 4b. Histograms summarizing the
unnecessary duplexes for each network are shown in supplemen-
tary fig. S19. Networks in the RND group contain unnecessary
intra-oligomer duplexes as large as 5 base-pairs and unnecessary
inter-oligomer duplexes as large as 8 base-pairs. No N-fit, O-fit,

or W1-fit network contained unnecessary intra-oligomer duplexes
larger than 2 base-pairs and no N-fit or W1-fit network contained
unnecessary inter-oligomer duplexes larger than 4 base-pairs. The
ΔO > 10,000 exhibited by the N-fit, O-fit, and W1-fit networks
result from the existence of numerous small intra-oligomer
duplexes. For example, the N-fit-1 network’s ΔO value of 18,400
is the sum of points from 790 1-base-pair duplexes and 105 2-
base-pair duplexes. Relative to the other networks, O-fit networks
contained relatively large unnecessary inter-oligomer duplexes,
including inter-oligomer duplexes of up to 10 base-pairs. This
indicates a logical connection between inter-oligomer and intra-
oligomer duplexes such that networks with less substantial intra-
oligomer duplexes tend to possess more substantial inter-
oligomer duplexes.

The chemical kinetics of each network were characterized
using a fluorescence signal and modeled using second-order rate
equations. The duplex-formation reaction was modeled using the
following rate-equation governed by rate constant kf.

S1 þ S2 !
kf

D1
ð1Þ

Fig. 4 In-vitro characterization of newly generated oligomers. a The design of the model system for this study. DNA oligomers are represented by lines
with arrows indicating the 3’ end of the molecule. Shading indicates the two binding domains (α, β) and their complements (α*, β*). This design is intended
to undergo two hybridization reactions: formation (modeled using rate constant kf) and displacement (modeled using rate constant kd). b Fitness scores of
the twelve new networks generated for the model system. c Rate-constant values measured in-vitro for the twelve networks. Dashed lines are shown
connecting discrete data points. Error bars indicate the mean and standard deviation of triplicate measurements for select data points. These error bars are
emphasized in the two red regions expanded to the right. d Kinetic dispersions estimated for each network generation method. The lower error bar, the
column height, and the upper error bar represent the 25th, 50th, and 75th percentiles of IQRNL estimates.
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d D1

� �

dt
¼ kf S1

� �
S2
� � ð2Þ

The strand-displacement reaction was modeled using the
following rate-equation governed by rate-constant kd:

S1 þ D2 !
kd

D1 þ S3
ð3Þ

d D1

� �

dt
¼ kd S1

� �
D2

� � ð4Þ

Based on these equations, the rate-constants kf and kd both
have units of M-1s-1.

Rate-constants were characterized at several experimental
temperatures, and the measured rate-constant values are shown
in Fig. 4c. The largest rate-constant value observed was
5.9 x 107 M-1s-1 (kf, O-fit-1, 60 °C), and the smallest was
9.2 x 103 M-1s-1 (kf, RND-1, 10 °C). The range of these rate-
constant values is consistent with values reported elsewhere in the
literature12,22,23,43,47,59–63. The mean and standard deviation of
triplicate measurements for select data points are shown as error
bars on Fig. 4c. The maximum difference within these triplicate
measurements was 4% or less. Reports detailing the measured
rate-constant values and associated fluorescence data are indexed
in supplementary table S5 and shown in supplementary figs. S20
to S95.

Network generation via W1 optimization yielded the lowest
kinetic dispersions. Across the six experimental temperatures,
these kinetic dispersions were reduced by a median of 86%
(formation reaction) and 75% (displacement reaction) relative to
the randomly generated networks. These reductions are consis-
tent with those observed while analyzing existing experimental
data (Fig. 1). Three key pieces of information were inferred from
the low kinetic dispersions of the W1-fit networks: (1) Substantial
kinetic dispersion remained despite the factors held constant in
this study (e.g., temperature, viscosity, ionic strength, oligomer
length, duplex stability, and toehold sequence), (2) unnecessary
duplexes contributing to W1 explain most of this kinetic
dispersion, and (3) reducing unnecessary duplexes using in-
silico optimization of W1 substantially mitigated kinetic disper-
sion for this model system.

Optimizing N yielded networks with unnecessary duplexes
very similar to the W1-fit group. However, the kf for two of the N
optimized networks (N-Fit-2 and N-fit-3) differed substantially
from the W1-fit group. This effect was especially pronounced at
low temperatures, where rate-constants differed up to a factor of
7. This kinetic dispersion can be explained by unnecessary intra-
oligomer duplexes containing 2 base-pairs. This is consistent with
the prior evidence that 2-base-pair unnecessary intra-oligomer
duplexes are substantial enough to affect hybridization kinetics
under some conditions. It was inferred from this data that the
kinetic dispersion of 2-base-pair unnecessary intra-oligomer
duplexes were negligible above approximately 30 °C.

Optimizing O yielded two networks with kinetics similar to the
W1-fit group, and one network with a substantially faster duplex-
formation reaction. This accelerated reaction may be explained by
the numerous large unnecessary inter-oligomer duplexes intro-
duced during O optimization (i.e., duplexes as large as 8 base-
pairs). Notably, the two O-fit networks with kinetics similar to the
W1-fit group also contain large unnecessary inter-oligomer
duplexes (i.e., as large as 10 base-pairs) which indicates that not
all unnecessary inter-oligomer duplexes affect all hybridization
reactions.

For all optimized networks, kinetic dispersion decreased at
higher temperatures. This effect was especially pronounced for

the W1-fit oligomers undergoing the displacement reaction at
50 °C and 60 °C. At these temperatures, kinetic dispersions were
reduced by 94% and 96% relative to randomly generated
oligomers. The remaining kinetic dispersion for the W1-fit
oligomers at these temperatures appears to be beyond the
resolution of the current study, which was estimated at 4%. The
trend of decreasing kinetic dispersion with increasing tempera-
ture may be explained by the destabilization of smaller intra-
oligomer unnecessary duplexes. From this, it was inferred that
operating networks of DNA oligomers at relatively high
temperatures may help mitigate kinetic dispersion, especially for
networks containing relatively small unnecessary duplexes.

Temperature dependence of hybridization kinetics. Rate-
constants for the newly generated networks were measured at
temperatures of 10, 20, 30, 40, 50 and 60 °C. In this temperature
range, rate constants for the duplex-formation reaction were
observed to be strictly increasing, suggesting an Arrhenius tem-
perature dependence. Similar reactions where oligomers form a
single duplex have been characterized in previous studies and
both Arrhenius41,43,47,64 and non-Arrhenius22,47,65 temperature
dependences have been observed. Alternatively, rate constants for
the strand-displacement reaction typically exhibited a broad peak
with a maximum rate-constant between 20 and 40 °C. The
decreased strand-displacement rate-constants at higher tem-
peratures can be explained by a destabilizing intermediate, which
was presumed to be a three-oligomer complex prior to strand-
displacement.

The temperature dependence of duplex-formation rate-con-
stants were modeled using the following equation:

kf ¼ A � exp �Ea
kB T

� �
ð5Þ

Referred to as the Arrhenius equation, this equation includes
the following values: the pre-exponential factor (A), the activation
energy (Ea), the absolute temperature (T), and the Boltzmann
constant (kB). Based on Eq. 5, a plot of the natural logarithm of kf
as a function of inverse temperature is expected to be linear, and
such plots are shown in Fig. 5a. The activation energy and pre-
exponential factor extracted from these fits are shown in Fig. 5b.

The duplex-formation rate-constants of all twelve networks
were well described by the Arrhenius equation, which models the
rate-limiting step of a reaction as a constant energy barrier
overcome using thermal energy. Dispersion in the magnitude of
this barrier (i.e., the activation energy Ea) followed similar trends
to kinetic dispersion and was most uniform for the W1 optimized
networks. A plot of the natural logarithm of the pre-exponential
factor as a function of activation energy was observed to be highly
linear and is shown in Fig. 5c. This implies the following equation
relating these parameters:

ln Að Þ ¼ C1 þ C2Ea ð6Þ

where C1 and C2 are real valued constants. A linear fit to the data
in Fig. 5c is shown as a solid line. This fit yielded C1 and C2 values
of 19.1 logM-1s-1 and 20.6 x 1019 J-1 log M-1s-1, respectively.
Equation 6 was simplified by declaring the following constants:

C3 � exp C1

� � ð7Þ

Tc �
1

kBC2
ð8Þ
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which yielded the following empirical model for kf:

kf ¼ C3 � exp
Ea
kB

� 1
Tc

� 1
T

� �� �
ð9Þ

One feature of this equation is the theoretical critical
temperature (Tc) at which formation rates equal the maximum
rate (C3) regardless of the value of the activation energy (Ea). The
C1 and C2 values from the fit to Eq. 6 imply C3 and Tc values of
1.97 x 108 M-1s-1 and 352 K. These values are likely specific to the
duplex-formation reaction in Fig. 4a and factors such as viscosity,
ionic strength, oligomer length, and duplex stability.

Correlations such as Eq. 6 have been observed by previous
researchers and were interpreted as evidence of enthalpy/entropy
compensation in an underlying thermodynamic model66. How-
ever, this explanation is contradicted by evidence that duplex
formation reactions are a dynamic equilibrium governed by a
rate-limiting transition through an intermediate42,61,67,68. As
such, it was concluded that Eq. 9 arises from a similarity in the
rate-limiting reaction mechanism of the reactions.

These results suggest the following model of how unnecessary
duplexes affect hybridization reactions. Hybridization reactions
exhibit highly similar chemical kinetics manifesting as low kinetic
dispersions when all known factors, including unnecessary
duplexes, are sufficiently controlled. For hybridization reactions
where a single duplex is formed, these chemical kinetics exhibit
an Arrhenius temperature dependence. Relative to these chemical
kinetics, unnecessary duplexes can either accelerate or decelerate
a given hybridization reaction, which manifests as increased
kinetic dispersion. Different unnecessary duplexes affect the

reaction mechanism in different ways, leading to a divergence in
reaction mechanisms and many possible behaviors. This model
appears to adequately describe both relatively simple reactions
such as the duplex-formation reaction in Fig. 4a, and more
complicated reactions such as those from Fig. 1. For at least some
hybridization reactions, these divergent reaction mechanisms
continue to follow mathematical relationships such as Eq. 9,
regardless of the effects of unnecessary duplexes.

Generation of largest possible networks. Numerous methods for
generating DNA oligomers have been reported and there exist at
least fifteen computer programs specifically intended to generate
networks of interacting DNA oligomers7,38,53,54,57,69–78. The size
limitations of SeqEvo and several freely available programs were
assessed in-silico by generating the largest possible networks
obeying the “no 3 s and no 8 s” rule. New networks were gener-
ated for two separate model systems. The first model system
consisted of a single intentional duplex containing the maximum
possible number of base-pairs. The second model system con-
sisted of the maximum possible number of independent 8-base-
pair duplexes. The size of the largest networks generated for these
model systems is reported in Fig. 6.

The largest networks yielded by default parameters of the
SeqEvo program were a single 560-base-pair duplex and a
network of 464 8-base-pair duplexes. For comparison, assigning
bases randomly yielded only a 12-base-pair duplex and a network
of 4 8-base-pair duplexes, indicating a significant improvement in
network size. Relative to the other generation methods, the
default parameters of SeqEvo yielded both the second largest

Fig. 5 Arrhenius temperature dependence of kf. a Arrhenius plots of the same kf values reported in Fig. 4. Linear fits are shown as solid lines. Error bars
indicate the mean and standard deviation of the same triplicate measurements in Fig. 4. b The activation energy (Ea) and pre-exponential factor (A)
associated with the linear fits. c The correlation between activation energy and pre-exponential factor modeled using a linear fit (red line, inset equation).
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single duplex and the second largest network of 8-base-pair
duplexes.

The EGNAS program yielded both the largest single duplex
and the largest network of 8-base-pair duplexes. However, the
EGNAS program is not currently capable of generating oligomers
for other network designs. The large networks generated using
this program were attributed to three primary factors: (1) EGNAS
appears specifically optimized for this type of network design (i.e.,
networks with no intentional connections between duplexes), (2)
EGNAS quantifies unnecessary duplexes based on their length in
base-pairs, and (3) the authors of EGNAS included clearly labeled
parameters controlling the size of the largest intra-oligomer
unnecessary duplex and the size of the largest inter-oligomer
duplex. These factors collectively make EGNAS well suited for
generating networks of independent duplexes obeying the “no 3’s
and no 8’s” design rule.

The default parameters of the NUPACK software yielded no
networks satisfying the “no 3’s and no 8’s” design rule. This was
attributed to the following factors: (1) NUPACK differentiates
between networks using thermodynamic simulation and not
based on the number of base-pairs in unnecessary duplexes, and
(2) NUPACK optimizes for network thermodynamics, and
relatively small unnecessary intra-oligomer duplexes rarely
affect the thermodynamic stability of intentional duplexes. It
has been specifically reported that some thermodynamically
unfavorable duplexes can affect hybridization kinetics22.

However, it is possible that the unnecessary duplexes present
in NUPACK-generated networks have no impact on hybridiza-
tion kinetics. A future study directly comparing the kinetic
dispersion of networks generated using thermodynamic and
non-thermodynamic optimization criteria may provide valuable
insight into the relationship between unnecessary duplexes and
reaction kinetics.

Each generation method studied here has parameters which
can be changed by advanced users, and a sufficiently advanced
user could almost certainly tune these parameters to generate
larger networks satisfying the “no 3’s and no 8’s” design rule. For
example, a network of 1024 8-base-pair duplexes was generated
using the SeqEvo software by tuning the following parameters: (1)
CPL increased from 100,000 to 200,000. (2) interSLC increased
from 1 to 8. (3) intraSLC increased from 1 to 3. A single 1024
base-pair duplex satisfying the “no 3’s and no 8’s” design rule was
generated from the SeqEvo software by tuning the following
parameters: (1) CPL increased from 100,000 to 1,000,000. (2)
intraSLC increased from 1 to 3. (3) interSLC increased from 1 to
8. Developing optimal methods for mitigating kinetic dispersion
using SeqEvo or other programs is a promising opportunity for
future research and may substantially increase the size of
networks for which kinetic dispersion can be mitigated.

New oligomers for existing designs. A key advantage of SeqEvo
relative to other freely available design tools is this program’s

Fig. 6 In-silico evaluation of generation method limits. a Size of the largest single duplex generated obeying the “no 3’s and no 8’s” design rule. b Size of
the largest network of 8-base-pair duplexes generated obeying the “no 3’s and no 8’s” design rule.

Table 1 Summary of unnecessary duplex reductions for existing network designs.

Network ΔN ΔO Largest intra a Largest inter b

Autocatalytic Network (Zhang et al.59)
As published 1.32 × 106 7.50 × 104 4 4
W100 Optimized 4.10 × 105 1.51 × 104 2 3
Autocatalytic Network (Kotani et al.79)
As published 1.11 × 1045 6.35 × 105 5 45
W1,000,000 Optimized 3.97 × 107 9.78 × 104 2 6
Four-Input OR Network (Qian et al.58)
As published 2.71 × 1022 8.08 × 104 4 22
W10,000 Optimized 3.13 × 1010 5.18 × 104 2 9
10x10x10 Canvas (Ke et al.56)
As published 2.22 × 1025 2.15 × 108 8 25
W100,000,000 Optimized 1.96 × 1011 1.94 × 106 3 10

aThe largest-intra column reports the number of base-pairs in the largest unnecessary intra-oligomer duplex.
bThe largest-inter column reports the number of base-pairs in the largest unnecessary inter-oligomer duplex.
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ability to generate networks for a variety of different network
designs. However, larger and/or more complicated network
designs may introduce issues that limit the effectiveness of this
program. To better understand the variety of networks which can
be generated using SeqEvo, new networks were generated for
several existing network designs.

Attempts were made to generate networks satisfying the “no 3’s
and no 8’s” design rule for 4 existing network designs. These
designs included: (1) the “entropy driven autocatalytic network”
reported by Zhang et al.59, (2) the “autocatalytic four-arm
junction” reported by Kotani et al.79, (3) the “four-input OR
seesaw-gate network” reported by Qian et al.58, and (4) the
“10 x 10 x 10 molecular canvas” reported by Ke et al.56. The
DevPro software was used to characterize the unnecessary
duplexes for both published and newly generated networks.
These unnecessary duplexes are summarized in Table 1. Supple-
mentary note 5 reports additional information regarding these
networks. The base-sequence of the new networks and the
number of unnecessary duplexes of each length are detailed in
supplementary tables S6 to S13.

Unnecessary duplexes were successfully reduced for each of the
designs, however the “no 3’s and no 8’s” design rule could not be
satisfied for two of the four designs. The failure to generate a
satisfactory network for the “10 x 10 x 10 molecular canvas” was
attributed to the size of this design, which contained 517 total
oligomers and oligomers up to 48 bases in length.

The amount of computation required to generate the new
networks depended strongly on network design. The least amount
of computation was required by the “entropy-driven autocatalytic
network” design. The new network for this design was generated
after scoring 800,000 total networks in 2 min using a laptop
computer (Intel Xeon E3-1505M v5 processor). The most
computation was required for the “10 x 10 x 10 molecular canvas”
design. The new network for this design was generated after
scoring 40,000,000 networks using a single node of a computing
cluster for 28 h (dual intel Xeon E5-2680 v4 processors). The
following SeqEvo parameters were tuned to generate this new
network: (1) CPL increased from 100,000 to 1,000,000. (2)
intraSLC increased from 1 to 3. (3) interSLC increased from 1 to
5. (4) scoringWeightX increased from 10,000 to 100,000,000.

Discussion
For networks of interacting DNA oligomers, it is known that
stretches of Watson-Crick base-pairing which are not part of an
intended hybridization reaction, here referred to as unnecessary
duplexes, can affect the chemical kinetics of hybridization
reactions9,22,23,36–40. However, these chemical kinetics also
depend on other known factors such as temperature12,22,41–44,
ionic strength45,46, viscosity45,47, oligomer length42, and duplex
stability12,22,48,49. Here, a difference in chemical kinetics is
referred to as kinetic dispersion, and the relationship between
unnecessary duplexes and kinetic dispersion was studied.

Several key observations were made regarding unnecessary
duplexes and kinetic dispersion. For one, evidence was observed
that some unnecessary intra-oligomer duplexes containing as few as
2 base-pairs are substantial enough to cause kinetic dispersion
under certain conditions. Such evidence was observed both while
analyzing previously reported in-vitro kinetic dispersions (Fig. 1)
and while analyzing the in-vitro kinetic dispersions of newly gen-
erated networks (Fig. 4). Evidence was also observed that not all
unnecessary duplexes affect all hybridization reactions. For the
conditions studied here, the effects of 2-base-pair unnecessary intra-
oligomer duplexes appear mitigated at temperatures of 30 °C or
higher. However, some 3-base-pair unnecessary intra-oligomer
duplexes appear substantial enough to cause kinetic dispersion for a

larger range of experimental conditions. Finally, when networks
were randomly sampled in-silico, it was observed that unnecessary
duplexes typically scale exponentially with network size (Fig. 2) and
that that all but the smallest networks contain unnecessary duplexes
substantial enough to cause kinetic dispersion.

Results reported here demonstrate that sufficiently controlling
factors known to affect hybridization kinetics can greatly limit
kinetic dispersion, and that these reductions are sometimes sub-
stantial enough that little to no kinetic dispersion can be
observed. For example, networks generated using W1 optimiza-
tion (W1-Fit group, orange data in Fig. 4) exhibited exceptionally
low kinetic dispersions for the duplex-formation reaction at
50 °C. Based on the kinetic model and experimental conditions
used here, the fastest and slowest of these reactions should require
4.2 s and 5.6 s to reach half-completion, respectively. Supple-
mentary note 6 details the calculation of these half-completion
times and the calculated values are reported in supplementary
table S14. When this kinetic dispersion is projected upon an event
such as the release of medication from a nanoscale box14, these
4.2 and 5.6 s half-completion times imply that newly generated
boxes may require anywhere between 4.2 to 5.6 s to release one-
half of the medication.

Results reported here also indicate that failing to mitigate
unnecessary duplexes can lead to substantial kinetic dispersion.
For example, new networks generated without in-silico optimi-
zation (RND group, grey data in Fig. 4) exhibited notably high
kinetic dispersions for the duplex-formation reaction at 10 °C.
Based on the kinetic model and experimental conditions used
here, the fastest and slowest of these reactions should require 160
and 11,000 s to reach half-completion, respectively. By the same
logic above, this implies newly generated boxes may require
anywhere between 160 to 11,000 s to release one-half of the
medication. While either, or neither, of these time scales may be
favorable depending on specifics of the application, not knowing
if a newly generated box will release medication in 160 or 11,000 s
is almost certainly unfavorable. Such large differences in perfor-
mance may contribute to problems such as increased develop-
ment costs or unreliable treatment outcomes. If the narrow range
of performances expected for in-silico optimized networks could
be replicated in practice, this may reduce the costs associated with
treatment development or improve the reliability of treatment
outcomes. Other applications for networks of DNA oligomers
may also be sensitive to the magnitude of kinetic dispersion
observed here10–13,15–21, and it is plausible that these other
applications could similarly benefit from the kinetic dispersion
reductions observed here.

The new network generation method reported here utilizes in-
silico optimization to mitigate kinetic dispersion caused by
unnecessary duplexes. Exceptionally low kinetic dispersions were
demonstrated using this method. This included the 3 W1-fit
networks (blue in Fig. 4) whose rate-constants at 50 °C differ by
no more than a factor of 1.33. Numerous other methods for
generating networks of DNA oligomers have been
reported7,38,53,54,57,69–78. However, to the knowledge of the
authors, this is the lowest such kinetic dispersion reported in the
literature. Using other reported methods, the lowest kinetic dis-
persion one could likely achieve would be by generating new
networks using a modified version of the rate-constant predicting
six-feature weighted neighbor voting algorithm of Zhang et al.12.
This algorithm was demonstrated to accurately predict most rate-
constants within a factor of 2, and it is possible similar kinetic
dispersions could be achieved for network generation.

The “no 3’s and no 8’s” rule is proposed here as a general
guideline for researchers looking to mitigate unnecessary
duplexes. The following key observations were made regarding
this design rule. (1) It is more difficult to satisfy this design rule
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for larger networks. While a formal limit for network size was not
observed, the largest networks reported here which satisfy this
design rule include both a single duplex containing 1664 base-
pairs and a network of 1927 8-base-pair duplexes. (2) Networks
which satisfy this design rule exhibit reduced kinetic dispersions
under a range of typical experimental conditions. However,
kinetic dispersions are lowest at experimental temperatures of
30 °C or higher.

To help future researchers mitigate unnecessary duplexes, the
SeqEvo and DevPro programs underpinning this network genera-
tion method have been made freely available. The following key
observations were made regarding these programs. (1) The pro-
grams can generate and/or analyze many different network designs.
This was specifically demonstrated by generating new oligomers for
previously reported network designs (Table 1), for which SeqEvo
was able to successfully eliminate 3-base-pair unnecessary intra-
oligomer duplexes in 3 of 4 network designs. It was speculated that
SeqEvo failed to generate a suitable network for one of these net-
works due to the size of the design, which contained 517 oligomers
and up to 48 bases per oligomer. (2) When the largest possible
networks satisfying the “no 3’s and no 8’s design” were generated
using SeqEvo, the program yielded both a single duplex containing
1024 base-pairs and a network of 1024 8-base-pair duplexes. These
network sizes were larger than several other freely available design
tools and were substantially improved by tuning SeqEvo para-
meters. The only software which successfully generated networks
larger than SeqEvo is not currently capable of generating networks
for more complicated designs.

Results here indicate the following promising opportunities for
future research. (1) There are likely existing applications for
which the “no 3’s and no 8’s” design rule mitigates kinetic dis-
persion sufficiently to improve performance and/or reliability.
Characterizing the effects of the “no 3’s and no 8’s” design rule on
such applications may both improve the outcomes of these
applications and help develop future design rules. (2) There
appear to be some designs for which networks satisfying the “no
3’s and no 8’s” design rule exists but cannot be generated using
current software. Improved network generation software may
increase the designs for which the “no 3’s and no 8’s” design rule
can be satisfied, which may help expand the applications for
which kinetic dispersion can be mitigated. (3) While the “no 3’s
and no 8’s” design rule and the fitness scores utilized here appear
highly effective, they were observed to be limited by the
assumption that unnecessary duplexes of a given length are
equally bad. Development of new fitness scores, design rules and
network generation methods could greatly increase the applica-
tions for which kinetic dispersion can be mitigated.

Methods
IQRNL. Kinetic dispersion was quantified as the inter-quartile
range of the natural logarithm of rate-constant values (abbre-
viated IQRNL). The following observations regarding this metric
were made. Small IQRNL values correspond with smaller, and
more favorable, kinetic dispersion. IQRNL values can only be
meaningfully compared if they are derived from the same rate-
equations and represent the same rate-constant of these equa-
tions. IQRNL values are expected to be robust to both occasional
outliers and the several orders of magnitude expected for these
rate constants. IQRNL values are typically insensitive to the outer
50% of data, making them a conservative metric for quantifying
kinetic dispersion. The IQRNL of a sample is expected to sys-
tematically underestimate the value of a population, marking it as
a biased estimator and making the most meaningful comparisons
of IQRNL values those calculated from the same number of
samples.

Datasets. Datasets which reported 30 or more measurements of a
specific rate-constant under consistent experimental conditions
were identified for analysis. The five datasets identified include:
(1) 47 measurements by Hata et al.22 of a duplex-formation
reaction at room temperature (approximated as 22 °C), (2) 51
measurements by Olson et al.23 of a catalytic reaction at 25 °C, (3)
51 measurements by Olson et al.23 of a leak reaction at 25 °C, (4)
98 measurements by Zhang et al.12 of a duplex-formation reac-
tion at 37 °C, and (5) 95 measurements by Zhang et al.12 of a
duplex-formation reaction at 55°C. The samples within each
dataset are expected to have approximately constant temperature,
ionic strength, viscosity, oligomer length, and duplex-stability.
Either no other oligomers, or only poly-T oligomers were con-
sistently present in each dataset. It is expected that unnecessary
duplexes are the only known cause of kinetic dispersion not
controlled within each dataset. The oligomers which yielded this
data were neither randomly generated nor rationally designed.
However, they were approximated as independent and identically
distributed80,81 for the statistical analysis.

N, O, and Wx. Inter-oligomer duplexes were summarized using
the network fitness score (abbreviated N). N was calculated by
accumulating 10L fitness points for each duplex connecting two
oligomers:

N � ∑
i

inter�oligo
10Li ð10Þ

where L is the number of base-pairs in the duplex. Calculation of
N included fitness points for both duplexes which are part of
larger duplexes and for each oligomer interacting with an iden-
tical oligomer. The value of N is zero when the oligomers can
form no inter-oligomer duplexes, and larger values of N indicate
more substantial (i.e., larger or more numerous) inter-oligomer
duplexes. Unnecessary inter-oligomer duplexes were quantified
using the network fitness score above baseline (abbreviated ΔN),
which was calculated as network fitness score minus the network
fitness score of all necessary duplexes.

Intra-oligomer duplexes were summarized using the oligomer
fitness score (abbreviated O). O was calculated by accumulating
10 L fitness points for each duplex connecting an oligomer with
itself:

O � ∑
i

intra�oligo
10Li ð11Þ

where L is the number of base-pairs in the duplex. Calculation of
O included fitness points for duplexes which are part of larger
duplexes. The value of O is zero when the oligomers can form no
intra-oligomer duplexes, and larger values of O indicate more
substantial intra-oligomer duplexes. Unnecessary intra-oligomer
duplexes were quantified using the oligomer fitness score above
baseline (abbreviated ΔO), which was calculated as oligomer
fitness score minus the oligomer fitness score of all necessary
duplexes.

Inter-oligomer and intra-oligomer duplexes were collectively
summarized using a class of weighted fitness scores (generally
abbreviated Wx). These fitness scores were calculated as weighted
linear combinations of N and O:

Wx � Nþ x � O ð12Þ
where x is a positive real number determining the relative
contribution of O. Specific Wx are denoted with the value of x in
the subscript (e.g., W1 denotes Wx with x= 1). The use of larger x
values allows one to place an increasing emphasis on intra-
oligomer duplexes. The value of all Wx are zero when no duplexes
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are present, and larger values indicate more substantial duplexes.
Unnecessary duplexes were quantified using the weighted fitness
scores above baseline (abbreviated ΔWx), which were calculated
as the weighted fitness score minus the weighted fitness score of
any necessary duplexes.

The following three observations were made regarding these
fitness scores. First, N and O are not orthogonal since any intra-
oligomer duplex physically implies the existence of two inter-
oligomer duplexes. Alternatively stated, if an oligomer can form
base-pairs with itself, it can also form these base-pairs with an
identical oligomer. Consequently, any structure which contributes
to O also contributes to N, and N is always greater than or equal
to 2 ∙O. Second, while oligomers with ΔN and ΔO values
approaching zero converge to the design, oligomers with larger
values may diverge from the design by a variety of mechanisms
resulting in a variety of behaviors. This makes ΔN and ΔO
appropriate for quantifying unnecessary duplexes, but less
appropriate for predicting the behavior of oligomers. Third,
DNA oligomers are known to participate in other interactions not
captured by N and O, so some oligomers with abnormal behavior
may be expected. Such other interactions include non-canonical
base-pairing, triplexes, quadruplexes, the binding of oligomers to
container walls, or aptamer-like binding to other targets82,83.

Estimating kinetic dispersion in existing experimental data.
Fitness score values for each sample were calculated using the
custom-written Device Profiler (abbreviated DevPro) computer
program. This program utilizes an exhaustive linear search to
identify both necessary and unnecessary duplexes. The source
code of the DevPro computer program has been made freely
available online55. Supplementary note 3 provides more infor-
mation regarding the DevPro program.

The kinetic dispersions of randomly selected samples were
estimated using the following process. First, the number of
samples to analyze, n, was chosen. The rate-constants of n
samples were selected randomly. These rate constants were
resampled with replacement 1000 times and IQRNL was
calculated for each of the resamplings. The 25th, 50th, and 75th
percentiles of these IQRNL values were recorded. This process
was repeated 1,000 times, and the median of the 25th, 50th, and
75th percentiles are reported in Fig. 1 as the kinetic dispersion
estimates.

The kinetic dispersions of the most-fit samples were estimated
using the following process. First, the number of samples to
analyze, n, was chosen. The rate-constants of the n most-fit
samples were selected. These rate constants were resampled with
replacement 1000 times and IQRNL was calculated for each of
these resamplings. The 25th, 50th, and 75th percentiles of these
IQRNL values were recorded. Normalized percentiles were
calculated by dividing these values by the 50th percentile of the
randomly selected samples and are reported in Fig. 1 as the
kinetic dispersion estimates.

For both N-fit and O-fit samples, similar trends were observed
when a greater number of samples were selected. However,
kinetic dispersion reduction was most pronounced for small
sample sizes. This can be explained by the decrease in sample
fitness when increasing the number of samples. Since IQRNL
values were all calculated using the same number of samples, the
increasing kinetic dispersion reduction with decreasing number
of samples is not expected to be an artifact of biased parameter
estimation.

Scaling of unnecessary duplexes. The typical unnecessary inter-
oligomer duplexes for a given combination of i and j was estimated
using the following process. First, 10,000 networks with random

base-sequence were generated. N was calculated individually for
each network. Since these networks contain no intentional duplexes,
all duplexes are unnecessary duplexes and N=ΔN. The 50th per-
centile of these N values was taken to be an estimate of the typical
unnecessary inter-oligomer duplexes. The 25th and 75th percentile
of the N values were taken as lower and upper bounds for this
estimate. The unnecessary intra-oligomer duplexes were estimated
similarly, except using the O fitness score.

Generation of new networks. New networks of oligomers
forming less substantial unnecessary duplexes were generated by
using in-silico optimization of ΔN, ΔO, or ΔWx. In terms of the
design paradigms established by Dirks et al.84, this generation
method contains a network design acting as a positive design
component and base-sequence optimization acting as a negative
design component.

New networks were generated using the following process
described visually in Fig. 3a. First, the intentional duplexes for the
network were formalized as a domain-based design57. This
involved describing each oligomer as a sequence of binding
domains and binding domain complements. Binding domains
were declared as either fixed (i.e., not to be mutated) or variable
(i.e., free to be mutated). Next, initial base-sequences for each
domain were specified. The domain-based design and initial
domain sequences were used as input for the custom-written
Sequence Evolver (abbreviated SeqEvo) computer program,
which optimized ΔN, ΔO, or ΔWx via a custom evolution-
inspired algorithm. Supplementary note 2 details operation of
SeqEvo. Supplementary note 3 details fitness score calculation. All
mutations performed by SeqEvo rearrange bases within a variable
domain. Thus, all oligomers generated by SeqEvo have domains
with the same length and base-composition as the initial base-
sequences. For the first optimization, default SeqEvo parameters
were used. The network resulting from SeqEvo optimization,
referred to as a candidate network, was then analyzed by a human
looking for obvious flaws. For this purpose, the custom-written
Device Profiler (abbreviated DevPro) computer program was
used to identify and profile unnecessary duplexes. It is possible to
incorporate other software such as the nucleic acid analysis
package (NUPACK)75 thermodynamic simulator at this step if
necessary. Based on the human analysis, the candidate network
was either accepted as final or the SeqEvo parameters were
updated and optimization repeated. The source code of both the
SeqEvo and DevPro programs have been made freely available
online55.

Measurement of in-vitro rate-constants for new networks. The
network design for this model system (Fig. 4a) included three
DNA oligomers (labeled S1, S2, and S3) composed of two binding
domains (α and β). From their 5’ ends: oligomer S1 contains
domains α then β, S2 contains the binding complement of β then
the binding complement of α, and S3 contains only domain α.
These three oligomers form two intentional duplexes: D1 (which
forms between S1 and S2) and D2 (which forms between S3 and
S2). Domain α is a variable sequence of 10 C’s, 10 G’s, 10 A’s, and
11 T’s. Domain β is the fixed sequence TCTCCATG, which was
adopted from a previous study in order to mitigate the known
effects of toehold stability on hybridization kinetics85.

Hybridization reactions were characterized using the following
procedure. Oligomers were purchased HPLC purified from
Integrated DNA Technologies with Cy3 and “Black Hole Quencher
1” modifications, respectively. Oligomer concentrations were
calculated using the absorbance coefficients reported by Integrated
DNA Technologies and absorption measurements at 260 nm
(Thermo Nanodrop One spectrophotometer). Reactants were
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prepared in 1x TE buffer (supplemented with 1M NaCl) at 1 μM
concentration. Reactants were combined at an initial concentration
of 10 nM in 1x TE (supplemented with 1M NaCl) inside of one of
two Cary Eclipse spectrophotometers. The concentration of
unquenched Cy3 dye, which was proportional to the concentration
of unreacted S1, was monitored using excitation and emission
wavelengths of 548 nanometers and 574 nanometers.

Under these conditions, a plot of inverse-reactant-
concentration as a function of time is expected to be linear with
slope equal to the reaction rate22,37,44. Linear fits were applied to
the first 5, 10, 20, 50, 100, 200, and 500 s of data and the fit with
the largest coefficient of determination (R2) was taken to be the
best rate-constant measurement. This method yielded median R2

values of 0.9968 and 0.9951 for the duplex-formation and oligo-
displacement reactions. Supplementary note 4 includes the
fluorescence traces, concentration plots, and rate-constant values
for each measurement.

The precision of the rate-constant measurements was sampled
using triplicate measurements of the “W1-fit-3” oligomer set. This
included three measurements each for the formation and
displacement reactions at 20 °C and 40 °C. In total, this yielded
twelve rate-constant values organized into four groups of three.
Within these groups of three, the largest deviation from a group
average was 4% and the median deviation was 2%. Errors in
commercial oligonucleotide synthesis have been observed to
induce up to a factor of two difference in rate-constant values12

and each group of three rate-constant values were based on a
single synthesis. This suggests that, despite the relatively high
precision of the experimental method, all measurements for any
given oligomer-set may be systematically offset by up to a factor
of two due to synthesis errors. Since the observed rate-constant
values span four orders of magnitude, it is reasonable to expect
the majority of observed rate variation to arise from factors other
than synthesis errors. This assumption is further supported by the
high reproducibility of certain design groups, such as the W1-fit
oligomers at high experimental temperatures.

For Fig. 4d, kinetic dispersion was estimated using the
following process. First, the three networks were resampled with
replacement 5000 times. For each resampling, the IQRNL was
calculated at each of the six temperatures. For each resampling,
the median IQRNL of the six temperatures was calculated. The
50th percentile of the median IQRNL across the 6 temperatures
was interpreted as the estimated kinetic dispersion. The 25th and
75th percentiles were used as upper and lower bounds for this
estimate. Normalized kinetic dispersions were calculated relative
to the 50th percentile of the RND group.

Generation of largest possible networks. New networks were
generated using the following freely available design tools: (1) The
SeqEvo computer program, (2) the Domain Design (DD)
program57, (3) the DNASequenceGenerator (DSG) program54,
(4) the Exhaustive Generation of Nucleic Acid Sequence
(EGNAS) program53, (5) the Nucleic Acid Package (NUPACK)
software75, and (6) the Uniquimer3D program74. Networks were
generated using default program parameters, with as minimal
adjustments as possible made to program settings. For reference,
networks were also generated by randomly assigning base-
sequences. Networks were first generated for a network forming a
single 8 base-pair duplex. Either the number of duplexes or the
number of base-pairs were repeatedly doubled until 3 runs of the
generation program could no longer yield a network satisfying
the”no 3’s and no 8’s” design rule. At this point, the previous
network size was revisited. Either the number of duplexes or the
number of base-pairs were then increased in 10% increments

until 3 runs of the generation program could no longer yield a
network satisfying the “no 3’s and no 8’s” design rule.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
Numerical data underlying graphs and charts is provided in the ‘Supplementary Data 1’
file.

Code availability
The results reported in this manuscript were either created or duplicated using version
2.0 of the SeqEvo and DevPro programs. The source code of these programs is available
on GitHub55. The 2.0 versions of these programs have been archived86 and are also
provided in the ‘Supplementary Software 1’ file.
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