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Abstract—Discovered recently, tensile-strained quantum dots
are optically active, defect-free nanostructures. Large tensile
strains allow us to tailor band structures for applications from
tunable infrared emitters to entangled photon sources. I will
discuss the history, current state-of-the-art, and future directions
of this rapidly expanding research field.

Index Terms—tensile-strain, quantum dots, self-assembly,
(111), infrared, optoelectronics, entanglement, quantum optics

I. INTRODUCTION

Since their discovery in the early 1990s [1], III-V semicon-
ductor quantum dots (QDs) have been used as the basis for a
wide range of optoelectronic devices, from lasers [2], to single-
photon detectors [3]. QDs self-assemble in numerous III-V
materials systems [4], [5]; what they all have in common is
that the QDs form on (001)-oriented substrates, and the self-
assembly process is driven by compressive strain. Attempts
to relax either of these constraints and grow QDs on non-
(001) surfaces or under tensile strain, typically resulted in
highly defective material due to the efficient relief of strain
by dislocation nucleation and glide [6], [7].

However, over the last ten years, we have begun to see
these restrictions on QD self-assembly relax. Researchers have
shown that tensile strain can in fact be used to drive QD self-
assembly, as long as growth takes place on either a (110)- or a
(111)-oriented substrate [7]. In other words, when both of the
above constraints are lifted simultaneously, the spontaneous
formation of dislocation-free QDs can take place. This new
ability to achieve QD self-assembly under tensile strain, and on
(110) and (111) surfaces, creates an opportunity to synthesize
QDs with unique characteristics [8]–[11].

To give some specific examples, we will consider in turn
how 1) tensile strain, and 2) the (111) surface orientation, give
rise to QD properties particularly well suited to infrared (IR)
optoelectronics, and entangled photon emission for quantum
communication applications.

This material is based upon work supported by the National Science
Foundation under NSF CAREER Grant No. 1555270, and by the Air Force
Office of Scientific Research under award number FA9550-16-1-0278.

II. TENSILE-STRAINED QDS AS INFRARED EMITTERS

In traditional QDs, the compressive strain increases the
semiconductor band gap energy, Eg [12]. In addition, quantum
confinement within a QD pushes the electron (hole) ground
states above (below) the bulk band edge, increasing their
energy separation. Since strain and confinement both act the
same direction, the net result is a large overall increase in
the QD ground state transition energy. A good example is
InAs/GaAs(001) QDs, which typically emit at photon energies
> 1 eV, a huge increase from bulk InAs where Eg = 0.35 eV.

In contrast, tensile strain reduces Eg , and so we now have a
tool for red-shifting QD emission relative to the bulk material
(Fig. 1(a)) [12]. In addition, because confinement still acts to
separate the electron and hole ground states and blue-shift the
emission, the resulting “push-pull” mechanism enables precise
control of the QD emission energy. The result is that tensile-
strained QDs (and quantum dashes) are highly tunable emitters
(Fig. 1(a)) [8]–[10], [18], [19]. Strain outweighs confinement
in terms of overall impact on the ground state transition energy
(Fig. 1(b)), and so we see emission at photon energies below
the bulk band gap. Fig. 1(a) shows photoluminescence (PL)
from GaAs/In0.52Al0.48As(111)A QDs grown with different

Fig. 1. (a) Room temperature PL from GaAs/In0.52Al0.48As(111)A QDs
grown with different deposition amounts from 0 ML (i.e., control with no
QDs) to 5 ML. (b) Band diagram for GaAs(111)A QDs under 3.8 % biaxial
tension. Calculated ground state emission for a 4 ML GaAs QD is in red. All
values are in eV. Reprinted from [9], with the permission of AIP Publishing.
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deposition amounts in monolayers (ML). More deposition
means larger QDs, and so the emission red-shifts due to
quantum size effects. Nevertheless, even the smallest QDs in
Fig. 1(a), (i.e., with the largest confinement-related blue-shift),
emit at photon energies < 1.3 eV, significantly lower than bulk
GaAs (Eg = 1.42 eV) revealing tensile strain’s impact [9].

Next steps are to adapt this approach for IR optoelectronics
by creating tensile-strained QDs from narrower band gap
semiconductors. Putting quantum confinement effects to one
side, our calculations show that tensile strains of ∼ 4% can
lower Eg for most III-V semiconductors by ∼ 0.5 eV [8].
These strain-induced changes would push narrow band gap
semiconductors (e.g., Eg < 0.8 eV) such as AlGaSb or
InGaAs down into the mid-IR range (0.1−0.6 eV). Even when
one reintroduces the blue-shift from quantum confinement,
we still expect to observe emission from these narrow Eg

tensile-strained QDs in energy ranges that are technologically
relevant to various IR applications [13]. Certainly, growing
laser structures based on arrays of self-assembled QDs would
be a great deal quicker and cheaper than growing equivalent
quantum cascade structures.

III. (111) QDS AS ENTANGLED PHOTON EMITTERS

To grow tensile-strained QDs we are required to change
substrate orientation from (001) to either (110) or (111).
We should therefore also consider the beneficial properties
of QDs grown on these relatively unexplored surfaces. For
example, (111)-oriented QDs have long been desirable for
quantum optics applications. Compared with (001), the higher
symmetry of the (111) surface results in QDs for which the
fine-structure splitting (FSS) between the exciton bright states
is vanishingly small [15]. FSS ≈ 0 permits the robust quantum
entanglement of photon pairs via the biexciton-exciton decay
cascade [14], [15]. Entangled photon qubits are central to
proposed quantum communication protocols.

Prior to tensile-strained self-assembly the only way to
synthesize QDs on (111) surfaces was via droplet epitaxy [16],
or growth on pre-patterned substrates [17]. However, this one-
step self-assembly process provides a simple way to produce
QDs with low FSS. Measurements carried out on individual
GaAs(111)A QDs show that > 50 % have FSS ≤ 10 µeV
(Fig. 2), suggesting that these QDs represent a scalable route
to future entangled photon sources [9].

Fig. 2. Peak position of PL emission from an individual GaAs/InAlAs(111)A
QD as a function of polarization. A sinusoidal fit reveals an FSS value of
7.3± 1.2 µeV. Reprinted from [9], with the permission of AIP Publishing.

IV. CONCLUSIONS

Tensile-strained self-assembly enables the controllable syn-
thesis of QDs with narrow band gaps and vanishingly small
FSS for IR optoelectronics and quantum optics applications.
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