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Abstract Geoelectrical methods are broadly used in earth sciences for various purposes. To correctly
interpret field geoelectrical data, it is essential to have a mechanistic understanding of the effective
electrical conductivity and permittivity of geological materials over a broad frequency range. Recently, the
pore‐scale numerical simulation, which utilizes the digital microstructural images of the material, has
become a powerful tool in studying the effective electrical properties of geological media. However, it is still
difficult to incorporate surface‐related electrochemical processes in a pore‐scale simulation. In this study,
we develop a general framework to consider these electrochemical processes in pore‐scale simulations,
which enable the calculation of broadband effective electrical conductivity and permittivity of porous
geological media. A Berea sandstone sample is utilized to demonstrate the use of the proposed framework.
Laboratory experiments of the effective electrical conductivity and permittivity of the sample in the
frequency range from 10−3 to 109 Hz provided valuable measurement data for validating the simulation. The
good agreement between our simulated spectra and the experimental data provides validation for the
numerical simulation to reproduce the variations in the effective electrical conductivity and permittivity of
porous geological materials induced by both the electrochemical polarizations and the interfacial
polarization. This work thus provides a useful tool for studying the effective electrical properties of porous
geological materials featuring complex microstructures.

1. Introduction
Geoelectrical methods are frequently used in earth sciences to study the physical properties and processes of
the solid earth (e.g., Kneisel et al., 2008; Knight, 2001; Revil, Karaoulis, et al., 2012; Streich, 2016; Unsworth
et al., 2004). Relevant techniques include the electrical resistivity method (Loke et al., 2013), electromagnetic
method (Constable, 2010), induced polarization (Kemna et al., 2012), capacitive resistivity method
(Kuras et al., 2006), and ground‐penetrating radar (Annan, 2005). Such geoelectrical tests provide spatial
and/or temporal distribution of the electrical conductivity and/or permittivity of the subsurface. To correctly
interpret the geoelectrical measurements, one needs to have a mechanistic understanding of the electrical
conduction and polarization in geological materials and their controlling factors such as material micro-
structure and environmental conditions (e.g., Santamarina et al., 2001).

The electrical conductivity quantifies a material's ability to conduct electric current. For nonmetallic miner-
als (e.g., quartz), the conductivity is in the order of 10−10 S m−1 (e.g., Telford et al., 1990), and thus, the solid
phase of geological materials is usually considered nonconductive. Pore water in geological materials is con-
ductive due to the electromigration of dissolved ions, and it constitutes the major pathway for the electrical
conduction in geological materials. In addition to pore water, the electrical double layer (EDL) forming at
the mineral‐water interface also conducts electric current (Revil & Glover, 1998), especially in clayey soils
and rocks.

The electrical permittivity is associatedwith amaterial's ability to store energy (i.e., polarization). The permit-
tivity of water and nonmetallic minerals is usually constant at frequencies lower than ~GHz. The effective
permittivity of water‐saturated geological materials, however, is frequency dependent and may deviate
significantly from the volume‐averaged permittivity of its individual phases. As the frequency decreases,
the effective permittivity of a geological material generally increases due to the contribution of some pore
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or subpore‐scale polarizations (e.g., Santamarina et al., 2001). For porous media, several polarization
mechanisms have been proposed to explain the frequency‐dependent effective electrical permittivity, includ-
ing the interfacial polarization (Hanai, 1960) and some electrochemical polarizations (see Chelidze &
Gueguen, 1999), both of which will be reviewed in section 2.

In principle, the frequency variations in electrical conductivity and permittivity of a material are linked to
each other by the principles of causality. Consider a material featuring a spectrum of relaxation times
(i.e., characteristic time of polarizations). As the frequency of external electric field decreases, the polariza-
tion with larger relaxation times will occur and also contribute to energy storage in the material. This means
more energy will be stored from the external field at a lower frequency (i.e., permittivity increases as the fre-
quency decreases). Since the induced electric field in the material during the polarization has a direction
opposite to the external electric field, it becomes more difficult for the electric current passing through the
material (i.e., the electrical conductivity decreases) if compared to a higher frequency. The causality between
both properties means when the electrical permittivity spectrum of a material is known, the electrical con-
ductivity spectrum can be determined accordingly and vice versa. Mathematically, the frequency‐dependent
conductivity and permittivity can be linked to each other through the Kramers‐Kronig relations (e.g., Milton
et al., 1997; Volkmann & Klitzsch, 2015).

To study the effective electrical properties of geological materials, the most commonly used approaches are
laboratory experiment and theoretical modeling. In the past several decades, these two approaches have been
extensively used to develop robust models that can translate measured effective electrical conductivity and
permittivity to other physical properties of interest such as porosity and water content (e.g., Lesmes &
Friedman, 2005). Themost popular model is probably Archie's law (Archie, 1942), which relates the effective
electrical conductivity of a porous medium to the pore water conductivity through a power function of the
porosity (saturated condition) or volumetric water content (unsaturated condition). Other examples include
the differential effective medium theory‐based conductivity models (e.g., Sheng, 1990; Sheng & Callegari,
1984) and the empirical Topp's equation (Topp et al., 1980) for high‐frequency permittivity (or dielectric per-
mittivity). Recently, significant progress has been made to model the influence of EDL on electrical conduc-
tion and polarization in porous media (e.g., see Bairlein et al., 2016; Revil, 2012, 2013; Weller & Slater, 2012).

The effective electrical conductivity and permittivity of geological media are influenced by the material's
microstructure (i.e., texture and fabric). While the effect of material texture (e.g., particle/pore size and dis-
tribution) has been extensively studied (e.g., Jones & Friedman, 2000), the influence of material fabric (e.g.,
particle/pore arrangement and orientation) is less explored due to the difficulty of determining
microstructural parameters of geological materials. Recently, the pore‐scale numerical simulation has
emerged as a powerful tool in studying effective properties of soils and rocks (Andrä et al., 2013a, 2013b).
In a pore‐scale simulation, both microscopic and macroscopic (i.e., effective) properties of the material
can be calculated based on the digital microstructural images. Such pore‐scale simulations allow us to
explore potential relationships between microstructure and effective properties of the material. In addition
to pore‐scale imaging techniques (e.g., μCT scan or scanning electron microscope; Blunt et al., 2013),
numerical experiments such as the discrete element method (Cundall & Strack, 1979) can also be used to
generate the digital microstructural images (e.g., Niu et al., 2017; Niu & Zhang, 2018a), opening another
way to study microstructural effect on effective electrical properties of geological materials.

Although the pore‐scale simulation has been used to study the effective dc conductivity (e.g., Zhan
et al., 2010) or high‐frequency permittivity (dielectric permittivity) (e.g., Han & Yang, 2018) of porous geolo-
gical materials, it is still challenging to apply it to studying the electrochemical polarization‐induced conduc-
tivity/permittivity variations. This is because electrochemical polarizations in porous media are associated
with the ion migration and diffusion occurring in a very thin layer (typically from several to tens of nan-
ometers) near the mineral‐water interface. A direct simulation of these processes (e.g., Bücker et al., 2019)
requires a fine discretization of the sample domain near the mineral‐water interface. Considering that the
sample volume in a pore‐scale simulation is relatively large, ~mm3, the computational cost of a direct simu-
lation is extremely high. It is therefore desirable to develop newmethods that can effectively include electro-
chemical polarizations in pore‐scale simulations.

The objective of this study is to develop such a framework for pore‐scale simulations of the broadband effec-
tive electrical properties of porous media. For simplicity, in this study, we only consider water‐saturated
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porous geological media made of nonmetallic minerals. In the following, we first review the theoretical
background of electrical conduction and polarization in water‐saturated porous media. We then develop
the framework for incorporating various electrical polarizations in the pore‐scale simulation, including
interfacial polarization, membrane polarization, and grain/pore polarization. Finally, we demonstrate the
use of our proposed framework by applying it to a Berea sandstone sample.

2. Theoretical Background
2.1. General Definition and Terminology

In this paper, we use the electrical conductivity and electrical permittivity to describe the electrical properties
of a material at a given frequency. Note that the material here can be either a single‐phase material
(e.g., water) or a composite. Other parameters (such as dc conductivity, dielectric permittivity, complex con-
ductivity, and complex permittivity) have also been seen in geoscience literatures. To avoid confusion, in the
following, we define the electric conductivity and electrical permittivity through the constitutive equations in
electromagnetic theory. For composites such as a geological material, the measured electrical properties are
essentially average properties of its individual phases (e.g., Torquato, 2013). To distinguish the average
properties from the property of individual phases, in this paper, we use the effective electrical conductivity
and effective electrical permittivity to indicate the average (or measured) properties of geological materials.

Assume that a time‐varying electric field E is applied to a material. The induced total current density in the
material Jt is then the sum of the conduction current density Jc and the displacement current density Jd,
expressed as

Jt ¼ Jc þ Jd: (1)

The conduction current density Jc is related to the applied electric field E and the dc electrical conductivity
σdc by Ohm's law,

Jc ¼ σdcE: (2)

The displacement current density Jd is defined as the derivative of the electric displacement field D respec-
tive to time t,

Jd ¼ ∂D=∂t: (3)

Note that the electrical displacement field D is related to the electric field E by

D ¼ ε∗dE; (4)

where ε∗d ¼ ε′d − iε′′d (i being the imaginary number) is the complex permittivity of the material excluding
ohmic losses. Inserting Equation 4 into Equation 3 and considering the sinusoidal electric field
E = E0exp(iωt) yield

Jd ¼ iωε∗dE; (5)

where the angular frequency ω is equal to 2πf (f being the frequency of the external electric field E).
Combining Equations 1, 2, and 5 results in

Jt ¼ σdc þ iωε∗d
� �

E: (6)

If we define the complex conductivity σ∗ with the equation Jt = σ∗E, we then have

σ∗ ¼ σ′ þ iσ′′ ¼ σdc þ ωε′′dð Þ þ iωε′d; (7)

where σ′ ¼ σdc þ ε′′d is the real conductivity and σ′′ ¼ ωε′d is the imaginary conductivity of the material.
Similarly, if we define complex permittivity with the equation Jt = iωε∗E, we will have
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ε∗ ¼ ε′ − iε′′ ¼ ε′d − i ε′′d þ σdc=ωð Þ; (8)

where ε′ and ε″ are the real and imaginary permittivity of the material, respectively. In this study, electrical
conductivity refers to the real conductivity σ′ in Equation 7, and electrical permittivity represents the real
permittivity ε′ in Equation 8. For geological materials, the effective electrical conductivity and permittivity
are indicated by σ′eff and ε′eff, respectively.

2.2. Interfacial Polarization in Heterogeneous Material

In heterogeneousmaterials, the interfacial polarization (orMaxwell‐Wagner polarization, e.g., Olhoeft, 1985)
occurs where discontinuity (i.e., interface) separates two phases with different electrical properties. Under an
external electric field, the induced electric field normal to the interface in the two phases must be equal.
Because of the mismatch of electrical properties, the current density in the two phases at the interface is dif-
ferent, resulting in accumulations of charges at the interface. The induced dipole moment, that is, the inter-
facial polarization, gives rise to an enhancement of the bulk permittivity of the material if compared to the
volume‐averaged permittivity of individual phases (e.g., Chen & Or, 2006). In saturated porous media, the
relaxation frequency and effective permittivity increment of the interfacial polarization are mainly influ-
enced by the material microstructure and electrical properties of the fluid phase (Bussian, 1983; Samet
et al., 2015). There has been a number of theoretical models developed to account for the effect of interfacial
polarization on a material's effective electrical properties, including the pioneering work of Maxwell and
Wagner (e.g., see Kremer & Schönhals, 2002) and the differential effective medium theory (e.g., Cosenza
et al., 2008; Mendelson & Cohen, 1982; Sen et al., 1981). In a pore‐scale numerical simulation, however, the
electrical discontinuity is naturally considered because of the use of real microstructures (e.g., Toumelin &
Torres‐Verdín, 2007). Thus, no interfacial polarization models are required in this study.

2.3. Electrochemical Polarizations in Geological Materials

The surface of many geological minerals is negatively charged due to isomorphous substitutions
(McBride, 1989) or the presence of hydroxyl group (Zhuravlev, 2000). If immersed in an electrolyte, some
ions in the solution will accumulate at the solid‐liquid interface to balance the negatively charged mineral
surface, forming an ionic cloud, that is, the EDL. The standard EDLmodel (Hartkamp et al., 2018) describes
the structure of the ionic cloud as two distinct layers. In the inner layer (Stern layer), the cations are adsorbed
onto the mineral surface due to electrostatic force, and they are immobile in relative to the mineral surface.
In the outer diffusive layer, ions are considered as point charges, and the Poisson‐Boltzmann equation can be
used to describe the distribution of the counterions and electrical potential.

The presence of EDL at the solid‐liquid interface can affect both the dc conduction and electrical polariza-
tion in porous media. First, because the ion concentration in the EDL is considerably higher than that in
the bulk solution, the dc conductivity of the material is enhanced. The conductivity increment, known as
the surface conductivity, has been observed in many geological materials, including clays (Revil &
Glover, 1998; Rhoades et al., 1976) and even silica sand (Revil et al., 2014). Second, when an external electric
field is applied, the EDL can influence the local ion fluxes in the pore space, resulting in an imbalance of
cation and anion concentrations at the pore scale. The induced ionic concentration gradient will form an
electric dipole moment, and thus, the material is polarized. This polarization is related to electrochemical
processes occurring near the solid‐liquid interface and thus is termed as electrochemical polarizations in this
paper. Many models have been developed for electrochemical polarizations in porous media (e.g., Bücker &
Hördt, 2013a; Leroy et al., 2008). Based on their microstructural assumptions (see supporting information
Text S1), these polarization models can be classified into three groups as shown in Figure 1: grain polariza-
tion, pore polarization, and membrane polarization.
2.3.1. Grain Polarization
The grain polarization model assumes that the solid phase of the material is made of grains with regular
shapes (e.g., Figure S1b) and that the polarization occurs around these grains (Figure 1a). At the equilibrium
state, the ionic concentration in the EDL around the grain reaches a steady state where the electrostatic force
is balanced by the thermal diffusion. After applying an external electric field, the ions in and near the EDL
will redistribute, and anions (cations) will accumulate on one side and deplete on the other side of the grain.
The induced gradient of the ionic concentration imposes an electric dipole moment across the grain, and
thus, the electrochemical polarization occurs.
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Using this concept, many theoretical models have been developed. Assuming that the ions in the EDL can
only move tangentially and do not exchange with the bulk solution, Schwarz (1962) developed a Debye type
equation to describe the polarization of a spherical grain immersed in electrolyte (Figure 1a). Gains with
other shapes were also considered in some studies (e.g., see Dukhin & Shilov, 1980). Note that this type of
model is only valid for large grains with a ≫ λ, where λ is the Debye length. A general model is available
for grains with arbitrary sizes (e.g., see Chelidze & Gueguen, 1999). In addition to tangential movement,
the exchange of ions between the thin EDL and bulk solution (i.e., normal movement) has also been treated,
for example, in Fixman (1980).

It is worth addressing that abovementioned models did not distinguish the Stern and diffuse layers. In prac-
tice, however, polarization models only considering the tangential ion movement (e.g., Schwarz, 1962) are
usually termed Stern‐layer polarization models (e.g., Jougnot et al., 2010; Revil, 2012). This is because the
ions in the EDL of the model do not have normal movement, which is similar to the ions in the Stern layer
in a standard EDL model. Similarly, models considering both tangential and normal ion movements are
usually termed diffuse‐layer polarization models (e.g., Lesmes & Morgan, 2001) since the ions in the model
are mobile, similar to that in the diffuse layer in the standard EDL model. Recently, many works have
been done to combine these two types of models into a generalized EDL polarization model (e.g., Bücker
et al., 2019; de Lima & Sharma, 1992; Lesmes & Morgan, 2001; Lyklema et al., 1983; Shilov et al., 2001).

Figure 1. Schematics demonstrating the electrochemical polarizations in water‐saturated porous geological media due to the presence of electrical double layer
(EDL): (a) grain polarization, (b) pore polarization, and (c) membrane polarization. In the figures, the dark area represents the solid phase, and the gray area
represents the EDL. The remaining area is the bulk solution.
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2.3.2. Pore Polarization
The pore polarization model (Figure 1b), which is associated with the pore microstructural model
(Figure S1c), assumes that the electrochemical polarization occurs in the pores. For porous rocks, it seems
more natural to utilize the pore polarization model rather than the grain model. This is because experimen-
tal studies have indicated that the relaxation time of geological materials is controlled by the pore (or pore
throat) size rather than the grain size (Revil, Koch, & Holliger, 2012; Scott & Barker, 2003). Few theoretical
works have been done tomodel the polarization occurring in a single pore (Niu & Zhang, 2018b). Theoretical
equations developed for grains have been used to model the pore polarization by replacing the grain radius
with the pore radius (e.g., see Revil et al., 2015), but no physical justification is provided for such
applications.
2.3.3. Membrane Polarization
Consider a sequence of capillary tubes as shown in Figure 1c, in which the wide tubes represent large pore
node in porous media while the small tube models a narrow pore throat. Based on this microstructure
model, the concept of membrane polarization (Marshall & Madden, 1959) can be adopted, and indeed, it
was the earliest conceptual model for induced polarization of porous rocks. The narrow pore throat is treated
as a cation‐selective zone where the electrical current is mainly carried by cations (i.e., cations have a higher
transference number than anions). Under an external electric field, cations will accumulate at one end of the
narrow pore throat and deficit at the other side, resulting in an electrically neural concentration gradient
(Figure 1c). This concentration gradient imposes an electric dipole moment across the pore throat, and thus,
the material is polarized.

Regarding the origin of the cation selectivity of the narrow pore throat in geological media, Bücker and
Hördt (2013a) attribute it to the EDL formed at the solid‐liquid interface. For pore throats with small sizes
(e.g., <0.1 μm), the EDL (usually ~nm in thickness) could occupy a significant volume in the pore throat.
Thus, there will be more cations than anions in the pore throat due to the presence of the EDL. After apply-
ing an external electric field, the cations will carry more electrical current than anions (e.g., Butt et al., 2013),
and thus, the pore throat becomes a cation‐selective zone. Analytical equations fully considering the pore
geometry and EDL properties have been developed for the polarization of the capillary sequence model
(Bücker & Hördt, 2013a). There are also some simplified models by imposing special conditions (e.g.,
Bücker & Hördt, 2013b).

The abovementioned polarization models (sections 2.3.1 to 2.3.3) have been used to explain the
low‐frequency permittivity of many materials. For colloidal suspensions in electrolyte solutions (e.g.,
Arroyo et al., 1999), it is intuitive to apply the grain polarization model (Figure 1a) because the suspended
particles can be regarded as discrete grains as shown in Figure S1b. For granular materials such as sands
(e.g., Vaudelet et al., 2011) and glass beads packing (e.g., Leroy et al., 2008), it seems still reasonable to apply
the grain polarization model (Figure 1a), although the contacting particles in the granular materials are
incorrectly treated as isolated grains (Figure S1b). For porous rocks, it is however questionable to model
the continuous solid phase with isolated grains and to apply the grain polarization concept. Instead, the con-
cepts of pore polarization and membrane polarization seem more appealing because both of them can be
applied to a complex network model (e.g., Figure S1e), which is more realistic for representing the micro-
structure of porous geological media than the grain model. In addition, recently, the pore polarization con-
cept has gained much attention in estimating the effective pore size of porous rocks with induced
polarization measurements (e.g., Revil et al., 2015; Weller et al., 2016).

3. A General Framework for Pore‐Scale Modeling

In this section, we propose a general framework for pore‐scale numerical modeling of the effective electrical
conductivity and permittivity of porous geological materials (Figure 2). In particular, both electrochemical
polarizations and interfacial polarization are considered in the framework. To reduce the computational
burden, electrochemical polarizations are not modeled from first principle simulations. Instead, the induced
complex conductance is calculated at the pore scale using the pore polarization (e.g., Figure 1b) and mem-
brane polarization (e.g., Figure 1c) models with the microstructure of the material simplified as a network of
capillary tubes connecting at spherical pore nodes (e.g., Figure S1e). The electrochemical polarizations‐
induced conductance is then upscaled to the water phase, and the governing equation for the electrical
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conduction is solved in a representative elementary volume (REV) of thematerial. The REV contains the real
microstructure of the material so that the interfacial polarization can be reliably accounted for in the
simulation. The proposed framework is outlined in Figure 2, and the details are discussed as follows.

3.1. Determine Relevant Geometric Properties

The first step in the framework is to determine relevant geometric properties of the materials by analyzing
the binary microstructural images. The properties of interest include porosity, surface area, pore (node) size
distribution, and pore throat size and/or length distribution. One of the purposes of this step is to validate the
image processing methods (e.g., noise reduction, smoothing, and segmentation; Andrä et al., 2013a) by com-
paring the calculated and experimental geometric properties. In addition, some geometric properties such as
pore size and pore throat length are critical in modeling the electrochemical polarizations in porous media,
and thus, these properties have to be determined for subsequent calculations.

While the bulk properties (e.g., porosity and surface area) are relatively easy to calculate (Zhan et al., 2010),
the determination of statistical properties such as pore/grain size distribution and pore throat size (or length)
distribution are not straightforward. In this study, we use the pore network extraction algorithms (e.g., Dong
& Blunt, 2009; Lindquist et al., 1996; Yi et al., 2017) to determine these properties. Experimental data such as
mercury injection porosimetry or gas adsorption data can also be used to estimate these statistical properties,
but additional assumptions may be involved, which may not be valid for materials with complex microstruc-
tures (e.g., Wardlaw & McKellar, 1981).

3.2. Calculate Electrochemical Polarization‐Induced Complex Conductance

The output of most electrochemical polarization models is a complex conductance C∗ = C′ − iC″ (in S; e.g.,
Schwarz, 1962), and it is only a perturbation caused by the polarization. If no polarization occurs, both the
real part C′ and imaginary part C″ of the complex conductance are zero. The imaginary part C″measures the
polarizability of the material. The real part C′ is related to the displacement current resulting from the

Figure 2. The framework for pore‐scale numerical simulation of the broadband effective electrical conductivity and
permittivity of porous rocks used in this study.
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polarization and vanishes if the frequency approaches to zero (i.e., dc condition). Thus, C′ should not be con-
fused with the surface conduction, which is induced by migration of excess ions in the EDL of the material
even at dc conditions.

As discussed, the pore space of the material is assumed as a network of capillary tubes (narrow pore throat)
connecting at some pore nodes (large pores). The elementary pore polarization model (Figure 1b) can be
applied to determine the polarization‐induced complex conductance C∗

P (r) of individual pores (r being
the pore size). The individual contributions C∗

P (r) can then be convolved with the pore size distribution
f(r) to calculate the overall response C∗

P, expressed as (e.g., see Leroy et al., 2008; Lesmes & Morgan, 2001)

C∗
P ¼ f rð Þ⨂C∗

p rð Þ; (9)

where ⨂ is the convolution product. Similarly, the elementary membrane polarization model (Figure 1c)
can be applied to determine the polarization‐induced complex conductance C∗

m (L) of individual pore
throats (L being a characteristic length of the pore throat). The individual contributions C∗

m (L) can then
be convolved with the distribution of the length, that is, f(L), to determine the overall response C∗

M, that is,

C∗
M ¼ f Lð Þ⨂C∗

m Lð Þ: (10)

The superposition of these two contributions gives a dispersed complex conductance C∗ for the electroche-
mical polarizations of the porous medium,

C∗ ¼ C∗
P þ C∗

M : (11)

3.3. Upscale Electrochemical Polarizations

In the models of pore and membrane polarizations, the induced dipole moments are within a pore node or
across a pore throat (Figures 1b and 1c). To include them in a pore‐scale simulation, we suggest to upscale
the electrochemical polarizations by converting the associated complex conductance, C∗ (in S), to a complex
conductivity Δσ∗

w (in S m−1), which will be added on the water phase. That is, the water phase will gain an
extra complex conductivity in addition to its intrinsic values. The conversion is expressed as (Niu &
Zhang, 2017)

Δσ∗w ¼ 2C∗

Λ
; (12)

where Λ is the dynamic pore size proposed in Johnson et al. (1986). For pore space with some simple geo-
metries, the dynamic pore size Λ can be analytically determined. For example, if all the pores in the mate-
rials are spherical and identical, Λ is then equal to the radius of the pores. For complex microstructures,
however, Λ needs to be numerically determined based on the definition (Johnson et al., 1986),

2
Λ
¼ ∫ E xð Þj j2dV

∫ E xð Þj j2dS
; (13)

where E(x) is the local electric field at location x, dV denotes the integration that is over the pore space,
and dS indicates the integration that is over the solid‐liquid interface. To calculate Λ, the local electric
field E(x) needs to be determined by solving the Laplace equation.

Inmodeling the effective electrical properties of colloidal suspension and geological materials, it is very com-
mon to convert the surface electrochemical processes‐induced conductance (in S) to a volumetric conductiv-
ity (in S m−1). In general, there are two ways to upscale the surface conductance: particle upscaling and pore
upscaling (Niu & Zhang, 2017). The particle upscaling has been long used in modeling the low‐frequency
electrical properties of colloidal suspension (e.g., O'Konski, 1960; Schwarz, 1962), for which the grain polar-
ization can be safely applied because the induced dipole moment is across the particles. However, for porous
geological materials, the dipole moment induced by electrochemical polarizations is within pore nodes or
across pore throats, and hence, it is logical to use the pore upscaling, that is, Equation 12.
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3.4. Pore‐Scale Numerical Simulation of the Effective Properties

Nonmetallic minerals are usually nonconductive, and thus, the complex
conductivity of the solid phase only has an imaginary component, that
is, iωεs, where εs is the high‐frequency permittivity (or dielectric permittiv-
ity) of the solid phase. The complex conductivity of the water has both real
and imaginary components. While the real component is water conductiv-
ity σw, the imaginary component is iωεw, where εw is the high‐frequency
permittivity (or dielectric permittivity) of water. After upscaling the elec-
trochemical polarizations, the water phase now has an apparent complex
conductivity σ∗w,

σ∗w ¼ σw þ iωεw þ Δσ∗w: (14)

The pore‐scale numerical simulation of the effective complex conductivity
can be conducted by solving the Laplace equation in a REV of the sample,

∇ · Jt ¼ −∇ · σ∗x∇u
� � ¼ 0; (15)

where σ∗
x is the complex conductivity at the spatial location x within the

material and u is the electrical potential at x. If x is located within the solid
phase, σ∗

x ¼ iωεs ; otherwise, σ∗x ¼ σ∗w . In the simulation, an electrical
potential gradient is applied across the REV, and the spatial distributions
of u and Jt are determined numerically. The associated local electric field
E can also be determined accordingly. Then, the effective complex conduc-
tivity of the sample σ∗e f f can be determined as (Torquato, 2013)

σ∗eff ¼
< Jt >
< E >

; (16)

where <E> and <Jt> are the volume‐averaged electric field and current density of thematerial, respectively.

4. Application to Berea Sandstone

In this study, we select a Berea sandstone sample to demonstrate the use of the proposed framework.
Experiments were also conducted to measure the effective electrical conductivity and permittivity of the
sample in the frequency range between 10−3 and 109 Hz. The details of the experiment and simulation
are introduced in this section.

4.1. Sample and Experiment

The porosity ϕ of the Berea sandstone sample is 20.2%, and the specific surface area Sm is 0.5 m2 g−1 as deter-
mined by nitrogen adsorption. Previous studies showed that the Berea sandstone is mainly made of quartz
with a minor amount, less than 4% of clay minerals (e.g., Knight & Nur, 1987). The microstructure of the
sample is shown in Figure 3 with a resolution of 2.8 μm, which are resampled from the μCT scan images
of the sample after segmentation. The intrinsic formation factor F of the sample is 16.3 as determined by
multisalinity electrical measurements (Revil et al., 2016).

To determine the statistical properties of the microstructure, the pore space of the Berea sample is assumed
as a lattice of pores connected by throats. Here, we use the algorithm developed by Dong and Blunt (2009) to
extract the geometric characteristics from the binary images. The results include the pore size distribution
(Figure 4a) and pore throat length distribution (Figure 4b). These statistical properties will be used later
to calculate the complex conductance induced by electrochemical polarizations.

The electrical properties of the sample, which was saturated by NaCl solution with σw = 0.043 S m−1, were
measured with two different instruments. For frequencies lower than 10 kHz, the complex conductivity was
measured by an impedance meter (PSIP, Ontash & Ermac, Inc., USA) with the four‐terminal method and
Ag‐AgCl nonpolarizable electrodes. For the frequency ranging between 1 MHz and 1 GHz, the complex

Figure 3. A binary image of the Berea sandstone sample (3503 voxels)
obtained from μCT scan images after segmentation. The size of each
voxel is 2.8 × 2.8 × 2.8 μm.
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permittivity was measured with a coaxial probe (N1501A‐101, Keysight, Inc., USA) and a network analyzer
(E5071C, Keysight, Inc., USA). The experimental results are shown in Figure 5.

4.2. Pore‐Scale Numerical Simulation

The effective complex conductivity of the sample was also calculated by solving Equations 15 and 16. In the
calculation, the binary microstructural images in Figure 3 were used, and the considered frequency range is
between 10−3 and 109 Hz. The electrical conductivity and dielectric permittivity of the pore water is
0.043 S m−1 and 80ε0 (ε0 being the vacuum permittivity 8.85 × 10−12 F m−1), respectively; the solid phase
is nonconductive, and the dielectric permittivity is 7ε0. Both the pore polarization and membrane polariza-
tion are considered in the calculation. For the pore polarization, Schwarz's (1962) model is used to calculate
the polarization‐induced complex electrical conductance C∗

P, expressed as

C∗
p ¼

iωτp
1þ iωτp

ΣS; (17)

where ΣS (in S) is the surface conductance related to the EDL, and the relaxation time constant τp is
expressed as

τp ¼ r2

2D
; (18)

where D (in m2 s−1) is the diffusion coefficient of the counterions in the EDL and r is the pore radius. Note
that Equations 17 and 18 are modified from Schwarz (1962) by replacing the particle size a with the pore
size r. In our simulation, ΣS is 1.3 × 10−9 S, which corresponds to a typical surface charge density of silica
(0.025 C m−2) with Na+ mobility of 5.19 × 10−8 m2 V−1 s−1. The pore size distribution in Figure 4a is used
to account for the contributions from all the pores (Equation 9).

For membrane polarization, we use Titov's narrow pore throat model (Titov et al., 2002) to calculate the
polarization‐induced complex conductance. The output of Titov's membrane polarization model is the com-
plex resistance Z∗

m of the pore throat, expressed as (e.g., Bücker & Hördt, 2013b)

Z∗
m ¼ Zdc 1 − η0 1 −

1 − exp −2
ffiffiffiffiffiffiffiffiffiffi
iωτm

p� �
2

ffiffiffiffiffiffiffiffiffiffi
iωτm

p
� �	 


; (19)

where Zdc is the dc resistance of the pore throat, η0 is the polarizability of the material, and the relaxation
time constant τm is related to the pore throat length L by

Figure 4. The geometric properties of the Berea sandstone sample: (a) pore node size distribution and (b) pore throat length distribution.
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τm ¼ L2

4D
: (20)

For 1‐D system (e.g., Marshall &Madden, 1959), the unit ofZ∗
m isΩm2; for 3‐D system shown in Figure 1c, the

unit of Z∗
m is Ω (Bücker & Hördt, 2013b). Note that the complex conductance of the pore throat (i.e., 1/Zm

∗)
also contains the dc component of the conductance of the pore throat 1/Zdc, which is not influenced by the
membrane polarization. To determine the membrane polarization‐induced complex conductance perturba-
tion C∗

m, this dc component needs to be subtracted, and thus, we have

C∗
m ¼ 1=Z∗

m − 1=Zdc: (21)

Figure 5. Measured electrical properties of the Berea sandstone sample: (a) complex effective conductivity measured by
an impedance meter with four‐terminal method and Ag‐AgCl electrodes and (b) effective complex permittivity εd

*

measured with the coaxial probe and a network analyzer (ε0 being the vacuum permittivity).
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In our calculation, Zdc of the pore throat is calculated by considering the
pore throat geometry (size and length) and the pore water conductivity.
The polarizability η0 used in the calculation is 1%, which is close to the
value (~0.6%) reported in Lesmes and Frye (2001). For each pore throat,
the relaxation time τm is calculated with Equation 21. Similarly, the con-
tributions of all pore throats are determined using Equation 10 by consid-
ering the pore throat length distribution in Figure 4b. In the calculation,
the diffusion coefficient of the counterion D was 1.3 × 10−9 m2 s−1, which
is consistent with the Na+ mobility 5.19 × 10−8 m2 V−1 s−1 if consider the
Nernst‐Einstein equation.

The calculated complex conductance of pore and membrane polarizations
is superpositioned to form the electrochemical polarizations‐induced con-
ductance C∗ (Equation 11). Then, the conductance C∗ is converted to a
volumetric electrical conductivity for the water phase, that is,
Equation 12. The dynamic pore size of the sample is 2.7 μm as determined
from Equation 13. In this study, an industrial standard code (AC3D.F)
developed at National Institute of Standards and Technology was modi-
fied to conduct the simulation. The code uses the finite‐difference method

to solve the governing equation (Equation 15), and a total of 3503 voxels with the same size was used to
approximate the REV in Figure 3. Table 1 summarizes the basic properties of the rock sample and para-
meters used in the numerical simulation. We emphasize that the electrochemical polarization models used
in the calculation are only for demonstration purpose. Other polarization models may also be used.

5. Comparison of Experimental and Numerical Results
5.1. Effective Electrical Conductivity

The simulated andmeasured effective conductivity spectra of the sample are shown in Figure 6. For frequen-
cies lower than 105 Hz, the measured effective conductivity is directly from the four‐terminal method
(Figure 5a). In the frequency range between 1MHz and 1 GHz, the effective conductivity measurements pre-
sented in Figure 6 are calculated from the measured effective imaginary permittivity ε′′d in Figure 5b. In

Table 1
Summary of Petrophysical Properties of the Berea Sandstone Sample and
Parameters Used in the Pore‐Scale Numerical Simulation

Petrophysical properties
Porosity (ϕ) 20.2%
Specific surface area (Sm) 0.5 m2 g−1

Formation factor (F) 16.3a

Mean pore size (rm) 35 μm
Parameters used in the simulation
Surface conductance contributing to the pore
polarization (ΣS)

1.3 × 10−9 S

Water conductivity (σw) 0.043 S m−1

Diffusion coefficient of Na+ in EDL (D) 1.3 × 10−9 m2 s−1

Dynamic pore size (Λ) 2.7 μm
Polarizability in modeling the membrane
polarization (η0)

1%

Intrinsic permittivity of the solid phase (εs) 7ε0
Intrinsic permittivity of water (εw) 80ε0

Note. The electrical permittivity of vacuum ε0 is 8.85 × 10−12 F m−1.
aFrom Revil et al. (2016).

Figure 6. The simulated and measured effective conductivity σ′eff of the Berea sandstone sample in the frequency range
between 10−3 and 109 Hz.
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addition, because ε′′d only accounts for the relaxation losses, a dc conductivity σdc is also added, and thus, the
effective conductivity σ′eff is equal to σdc þ ωε′′d (see Equation 7 and Topp et al., 1988). In this study, σdc is
equal to 0.0278 S m−1 as determined as the lowest measured effective real conductivity (Figure 5a).

A comparison of numerical and experimental results shows that the simulation captures the general trend of
the effective conductivity variations, especially for frequencies lower than 1MHz. When the frequency is lar-
ger than 1MHz, both simulated and measured values increase due to the interfacial polarization (will be dis-
cussed in section 5.3). However, the magnitude of the increase in the simulation is only ~0.001 S m−1, which
is much smaller than that in the experiment (~0.02 S m−1). This discrepancy might be due to fact that the
resolution of the digital microstructural μCT images (e.g., Figure 3) did not capture the nanometer‐scale het-
erogeneities at the solid‐liquid interface. Since the interfacial polarization is associated with electrical dis-
continuities, ignoring these nanometer‐scale discontinuities in the simulation underestimates the
relaxation losses and thus the effective electrical conductivity as shown in Figure 6.

5.2. Effective Electrical Permittivity

The simulated and measured effective electrical permittivity ε′eff of the sample is shown in Figure 7a. It is
observed that the effective permittivity varies over several orders as the frequency changes. At frequencies
between 108 and 109 Hz, the effective relative permittivity (i.e., ε′eff normalized by ε0) is nearly constant,
~18 for the experiment and ~12 for the simulation. These effective permittivity values are very close to the
volume‐averaged permittivity of the individual phases, implying that no polarizations occur in this fre-
quency range. When the frequency is decreased to ~106 Hz, the experimental spectrum shows a clear
increase in effective permittivity (ε′eff/ε0 increased to ~45) due to the interfacial polarization (will be dis-
cussed in section 5.3). However, the increase in effective permittivity was not observed in numerical results.
As the frequency is further decreased (<105 Hz), the simulated and measured spectra agree well, and both of
them increase sharply due to the electrochemical polarizations (will be discussed in section 5.3). When the
frequency is lower than 0.1 Hz, large discrepancies are observed between experimental data and numerical
results.

The corresponding effective imaginary conductivity spectra are also plotted in Figure 7b. Note that the effec-
tive real permittivity ε′eff and effective imaginary conductivity σ″eff are related to each other by σ″eff = ωε′eff.
In a σ″eff − f log‐log plot, a constant permittivity is shown as a straight line with a slope of ω; an increase in
the permittivity is exhibited as a shift of the straight line toward the low‐frequency side. Our discussions on
the effective permittivity in Figure 7a also hold for the effective imaginary conductivity in Figure 7b.

5.3. Individual Contributions

To identify the relative contribution of individual polarizations, we also conducted simulations that only
consider one polarization at a time. In simulating the interfacial polarization, only the high‐frequency per-
mittivity (or dielectric permittivity) and dc conductivity are assigned to the solid and water phases. In simu-
lating the pore or membrane polarization, the complex conductivity of the water phase isσw þ Δσ∗w, in which
Δσ∗

w is converted from eitherC∗
P (pore polarization) orC

∗
M (membrane polarization); the complex conductiv-

ity of the solid phase is set as zero. Other parameters used in the simulations are identical to that in Table 1.
The calculated relative contributions of individual polarizations to the effective permittivity of the sample
are also shown in Figure 7.

The simulated effective permittivity due to the interfacial polarization (blue line in Figure 7a) is similar to
the experiment results, and both curves exhibit a high permittivity plateau (ε′eff/ε0 = ~40) at low frequencies
(<105 Hz) and a low effective permittivity (ε′eff/ε0 = ~20) at high frequencies (>108 Hz). The characteristic
frequency where the effective permittivity experiences a sharp change is, however, different, ~5 × 105 Hz
for the simulation and ~107 Hz for the experiment. One possible explanation of this discrepancy is that
the binary images used in the simulation have smoother solid‐liquid interfaces than the real sample, and
thus, interfacial polarizations associated with fine‐scale heterogeneity could be overlooked in the simula-
tion. Thus, the characteristic frequency of the simulated spectrum shifts to the low‐frequency side as shown
in Figure 7.

The membrane polarization (red line in Figure 7) seems to affect the effective permittivity in a broad fre-
quency range, dominating around 103 Hz. If the membrane polarization is not accounted for, the
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superposition of pore and interfacial polarization will significantly underestimate the effective permittivity
at intermediate frequencies (e.g., from ~10 to ~104 Hz). The underestimation has been demonstrated in
some previous studies that did not consider the membrane polarization (e.g., Lesmes & Morgan, 2001). In
Figure 7, the simulated effective permittivity considering all polarizations agrees well at the intermediate
frequencies with the experimental curve. This implies that the membrane polarization could be a
significant contributor to the effective permittivity of porous geological materials (e.g., Bücker &
Hördt, 2013b).

At low frequencies (<102 Hz), it appears that the pore polarization (green line in Figure 7) dominates over
other polarizations, and the effective permittivity increase is significant. Comparing to experimental data,
the frequency range affected by the pore polarization is much narrower in the simulation. For frequencies
lower than 0.1 Hz, the simulated effective permittivity is considerably low. This could be because the

Figure 7. The simulated and measured (a) effective real permittivity and (b) effective imaginary conductivity of the Berea
sandstone sample in the frequency range between 10−3 and 109 Hz.
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binary images used in the simulation only cover a small fraction of the sample (~1 mm3), and polarizations
occurring in larger pores may not be accounted for in the simulation.

5.4. Potential Applications

The proposed framework can be used to improve our understanding and modeling of the broadband effec-
tive electrical conductivity and permittivity of porous geological materials, which are essential in interpret-
ing field geoelectrical measurements. In particular, the proposed framework is well suited for studying the
variation in effective electrical properties induced by various electrochemical processes occurring at the pore
or subpore scale. Also, because different models of electrochemical polarizations can be easily incorporated
in the simulation, it can be used to evaluate the effectiveness of existing models. One example is to compare
the individual contributions of the Stern‐layer polarization and diffuse‐layer polarization (e.g., Bücker et
al., 2019) in samples with realistic microstructures.

Another application of the proposed framework is to study the role of material microstructure in controlling
the effective electrical properties of geological materials. Recently, it becomes possible for pore‐scale numer-
ical simulations to include various geological processes, for example, compaction (Niu & Zhang, 2018a) and
mineral precipitation and dissolution (e.g., Miller et al., 2017; Niu & Zhang, 2019). Thus, realistic microstruc-
ture resulted from these geological processes can be effectively generated from numerical experiments.
Coupled with the proposed framework, the geoelectrical signatures of these geological processes can be
quantified and linked to the microstructural changes. In this regard, our work becomes an attractive way
to develop geological process‐based electrical models for porous media.

6. Conclusions

In this study, we developed a general framework for pore‐scale numerical simulations of the effective elec-
trical conductivity and permittivity of porous media in a broad frequency range. Both electrochemical polar-
izations and interfacial polarization are considered in our framework. To account for electrochemical
polarizations, the pore space of geological materials is assumed as a lattice of pore nodes connected by pore
throats. Then, the concepts of pore polarization and membrane polarization are respectively applied to the
pore nodes and pore throats so that the effects of electrochemical processes in the entire pore space can be
quantified. The electrochemical polarization‐induced complex conductance is then upscaled to the water
phase, which gains an extra volumetric complex conductivity in addition to its intrinsic value. The
pore‐scale numerical simulation can then be conducted on the digital microstructure of the material using
the apparent material properties. By doing so, both interfacial polarization (resulted from electrical discon-
tinuities) and electrochemical polarizations (due to the presence of the EDL) can be considered in a
pore‐scale simulation.

A Berea sandstone sample is utilized to demonstrate the use of the framework. A comparison of numerical
and experimental results shows that effective electrical conductivity and permittivity spectra in general agree
very well in the frequency between 10−3 and 109 Hz. At high frequencies (>105 Hz) where the interfacial
polarization dominates, both simulation and experiment show a clear increase in the effective permittivity
as the frequency decreases. However, the characteristic frequency, at which the effective permittivity experi-
ences a significant change, is much lower in the simulation than that in the experiment. This discrepancy
can be explained by the fact that the microstructural images used in the simulation have smoother
solid‐liquid interfaces than the real sample. Thus, interfacial polarizations associated with fine‐scale hetero-
geneity could be overlooked in the simulation.

At intermediate frequencies (e.g., from 102 to 105 Hz), the membrane polarization has a significant contribu-
tion to the effective permittivity of the material. If overlooked, the simulated effective permittivity will be
much smaller than themeasured values. For frequencies lower than 100 Hz, the pore polarization dominates
over other polarizations. It seems that the frequency range affected by the pore polarization in the simulation
is much narrower than that in the experiment. In particular, the simulated low‐frequency effective permit-
tivity (<0.1 Hz) is systemically low. This may be due to the use of a small sample volume (~1 mm3) in the
simulation that cannot consider the polarizations occurring in larger pores.
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Data Availability Statement

The data presented in this study can be downloaded online (http://doi.org/10.5281/zenodo.3908737).
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