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Patagonian Aridification at the Onset of the Mid‐Miocene
Climatic Optimum
Robin B. Trayler1,2 , Matthew J. Kohn2 , M. Susana Bargo3 , José I. Cuitiño4 ,
Richard F. Kay5, Caroline A. E. Strömberg6 , and Sergio F. Vizcaíno3

1Department of Life and Environmental Sciences, University of California Merced, Merced, CA, USA, 2Department of
Geosciences, Boise State University, Boise, ID, USA, 3División Paleontología de Vertebrados, Museo de La Plata, Unidades
de Investigación, (CIC and CONICET), La Plata, Argentina, 4Instituto Patagónico de Geología y Paleontología, CENPAT‐
CONICET, Puerto Madryn, Argentina, 5Department of Evolutionary Anthropology, Trinity College and Division of Earth
and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC, USA, 6Department of Biology
and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA

Abstract Fossil‐rich sediments of the Santa Cruz Formation, Patagonia, Argentina, span the initiation of
the Miocene Climatic Optimum (MCO), the most recent period of warm and wet conditions in the
Cenozoic. These conditions drove the expansion of tropical and subtropical ecosystems to much higher
latitudes, with the fossiliferous Santa Cruz Formation recording one of the southernmost examples. We
collected new carbon and oxygen isotope compositions of herbivore tooth enamel from fossils ~17.4 to
16.4 Ma in age to investigate ecological and climatic changes across the initiation of the MCO. Enamel δ13C
values are consistent with a C3‐dominated ecosystem with moderate precipitation and a mix of wooded
and more open areas. Serially sampled teeth reveal little zoning in δ13C and δ18O values, suggesting little
seasonal variation in water and plant isotope compositions or seasonal changes in diet. Carbon
isotope‐based estimates of mean annual precipitation (MAP) are consistent with aridification, with MAP
decreasing from ~1,000 ± 235 mm/yr at 17.4 Ma to ~525 ± 105 mm/yr at the start of the climatic optimum
(~16.9 Ma). This decrease corresponds to increasing global temperatures, as indicated by marine proxy
records, and was followed by a rebound to ~840 ± 270 mm/yr by ~16.4 Ma. In comparison to a modern mean
annual temperature (MAT) in the region of ~8°C, oxygen isotopes indicate high MAT (at least 20°C) at
the onset of the MCO at 16.9 Ma and a significant increase in MAT to ~25°C by 16.4 Ma.

1. Introduction

The Miocene Climatic Optimum (MCO; between approximately 17 and 14 Ma) was the warmest period of
the Neogene and one of the warmest of the Cenozoic, temporarily reversing a long‐term global cooling trend
that began in the early Eocene (Zachos et al., 2001). Terrestrial estimates of atmospheric CO2 concentrations
are generally high (Beerling & Royer, 2011): Paleosols and stomatal density imply values of 400–800 ppm
(Kürschner et al., 2008; Retallack, 2009). While some marine carbon isotope records originally suggested
somewhat lower concentrations of 200–300 ppm (Pagani et al., 1999, 2005), more recent high‐resolution
boron isotope records from foraminifera indicate that low (~200 ppm) CO2 concentrations at the onset of
the MCO (~17 Ma) were succeeded by 100 ka oscillations between 300 and 600 ppm until 15.5 Ma
(Greenop et al., 2014). General circulation models require high CO2 concentrations of at least 300–
600 ppm to accurately reproduce MCO temperature and precipitation conditions suggested by other proxy
records (Henrot et al., 2010; Tong et al., 2009; You et al., 2009). Importantly, most estimated MCO CO2 con-
centrations are similar to those projected over the coming century (IPCC, 2014), making the MCO an impor-
tant analog for future climates.

These inferred, high atmospheric CO2 concentrations during theMCO are thought to have driven important
ecological and climatic changes. High‐resolution δ18O records from benthic foraminifera in the equatorial
Pacific suggest abrupt global warming at the onset of the MCO (~17 Ma; Holbourn et al., 2015). Facies
analysis of the AND‐2A drill core suggests the East Antarctic Ice Sheet was retreating inland by ~17.1 Ma
(Hauptvogel & Passchier, 2012) and reached a minimum extent during the MCO at 16.5–16.3 Ma
(Passchier et al., 2011). Marine δ18O records and climate modeling further suggest the East Antarctic Ice
Sheet decreased to a size similar to today's as sea surface temperatures increased (Cramer et al., 2011;
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Flower & Kennett, 1993, 1994; Gasson et al., 2016; Pekar & Christie‐Blick, 2008; Pekar & DeConto, 2006;
Sangiorgi et al., 2018; Shevenell et al., 2004). A long‐term increase in marine δ13C values beginning at
~16.9 Ma may reflect increased burial of organic carbon, likely tied to enhanced marine and terrestrial pri-
mary productivity (Föllmi et al., 2005). Decreasing ice volume and increasing sea surface temperatures
inferred from general circulation models and marine records are interpreted to have reduced the meridional
temperature gradient (Herold et al., 2010; Sangiorgi et al., 2018).

Terrestrial records provide further insights into mid‐Miocene temperatures and precipitation. Floras and
faunas dependent on warm, wet conditions expanded to higher latitudes in North America, South
America, and Europe, reflecting coupled increases in temperature and precipitation (Böhme, 2003;
Hinojosa & Villagrán, 2005; Wolfe, 1985, 1994). For example, a rise in terrestrial pollen and freshwater
algae abundances in the AND‐2A sediment core suggests that Miocene Antarctica warmed during the
MCO, with summer temperatures of ~10°C (Warny et al., 2009). Likewise, leaf wax hydrogen isotope
compositions (δD) indicate that Antarctic summer temperatures were at least 11°C warmer than today
(Feakins et al., 2012). Ecometric and taxonomic analyses of palaeofloras point to the expansion of
diverse forest vegetation at middle to high latitudes in North and South America (Barreda &
Palazzesi, 2007; Dunn et al., 2015; Palazzesi & Barreda, 2012; Palazzesi et al., 2014; Wolfe, 1994).
Similarly, leaf physiognomy and floral compositions from New Zealand suggest subtropical conditions
during the MCO (MAT ¼ 16.5–20°C; MAP ¼ 1,500–2,500 mm/yr), capable of sustaining dense forests
(Reichgelt et al., 2015).

Over the past ~130 years, the late‐Early toMiddleMiocene Santa Cruz Formation of Argentina (47–52°S lati-
tude; Figure 1) has produced a wealth of terrestrial vertebrate fossils (see reviews of Vizcaíno et al., 2010,
2012a). The fauna is remarkable for both its diversity and preservation. Articulated skeletons are common,
species richness is similar to modern lowland tropical forests, and marsupials, rodents, xenarthrans, pri-
mates, and a variety of ungulates are well represented (Croft, 2013; Vizcaíno et al., 2012a). The fauna and
associated flora include several taxa inferred to be adapted to warm humid conditions (Brea et al., 2012;
Fernicola & Albino, 2012; Kay, Perry, et al., 2012; Kay, Vizcaino, et al., 2012) and are thought to reflect
MCO‐driven expansions of low‐latitude to midlatitude ecosystems to high latitudes (Catena & Croft, 2020;
Kay, Vizcaino, et al., 2012; Spradley et al., 2019; Vizcaíno et al., 2010, 2012b). Many Santa Cruz Formation
localities have been precisely dated to between 16 and 18 Ma (Fleagle et al., 1995, 2012; Perkins et al., 2012;
Trayler et al., 2020), making the fauna ideal for investigating changes to Patagonian physical climate condi-
tions (precipitation and temperature) at the onset of the MCO.

While previous examinations of Santa Cruz Formation ecology and climate have integrated several lines of
floral, faunal, and sedimentological evidence (Croft, 2001; Kay, Vizcaino, et al., 2012; Raigemborn
et al., 2015, 2018; Vizcaíno et al., 2010), these estimates either lump observations over the entire formation
or focus on a narrow stratigraphic, and therefore temporal, range. In this study, we present new stable car-
bon (δ13C) and oxygen (δ18O) isotope compositions from fossil bone and tooth enamel recovered from Santa
Cruz Formation strata spanning about 1 million years at the initiation of theMCO (ca. 17.4–16.5 Ma; Trayler
et al., 2020). We use these data to address three questions:

1. How did high atmospheric CO2 concentrations at the onset of the MCO affect the physical climate con-
ditions of the Santa Cruz Formation?We use our stable isotope data coupled with existing geochronology
to create a model of mean annual precipitation (MAP) and mean annual temperature (MAT) from ca.
17.4 to 16.5 Ma. We also use intratooth isotopic zoning to investigate whether and howmuch seasonality
changed through this interval.

2. Did changing physical conditions affect the ecology of large‐bodied Santa Cruz Formation ungulates?
This might be expected if changes in precipitation and temperature were sufficient to alter habitat type
(e.g., more or less forested conditions).

3. How well do existing general circulation models predict physical conditions for Early Miocene
Patagonia? Models of MCO conditions predict a high MAP (>1,000 mm/yr) and a low MAT (5–10°C)
(Henrot et al., 2010; Herold et al., 2010, 2011; Tong et al., 2009). These models rely on proxy records to
both informmodel construction and validate model results. Until recently, the majority of suitable terres-
trial MCO proxy sites were in the Northern Hemisphere (Herold et al., 2011). Our data add to a growing
body of work on Southern Hemisphere paleoclimate (e.g., Butzin et al., 2011; Feakins et al., 2012; Gasson
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et al., 2016; Hauptvogel & Passchier, 2012; Reichgelt et al., 2015; Sangiorgi et al., 2018; Warny et al., 2009)
and add new controls on Patagonian climate during the MCO.

2. Background
2.1. Miocene Climate of Patagonia

Previously published data indicate that the Miocene climate of Patagonia was characterized by warm and
moist conditions. Tropical mammals diversified and expanded south during the Early Miocene (Pascual &
Ortiz Jaureguizar, 1990). Patagonia, which had been dominated by a mixture of drier lowlands interspersed
with forested riparian areas, saw a southward expansion of megathermal forests reliant on high tempera-
tures (MAT > 24°C; Barreda & Palazzesi, 2007; Dunn et al., 2015; Strömberg et al., 2013). This more closed
vegetation continued to dominate the region through at least the Middle Miocene followed by cooling and
aridification in the Late Miocene (Barreda & Palazzesi, 2007).

2.2. Santa Cruz Formation Paleoclimate and Paleoecology

Santa Cruz Formation exposures are extensive in southern Patagonia from the Andean foothills to the
Atlantic coast (Blisniuk et al., 2005; Cuitiño & Scasso, 2010; Cuitiño et al., 2015, 2016; Fernicola et al., 2019;
Marshall, 1976; Tauber, 1994, 1997a; Vizcaíno et al., 2012b). Coastal outcrops are composed primarily of

Figure 1. Map showing regional geography and Santa Cruz Formation fossil localities (modified from Vizcaíno
et al., 2012a). Bold localities are included in this study.
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mudstones, fine‐ and medium‐grained volcaniclastic sandstones, and numerous tuffs (Bown &
Fleagle, 1993; Matheos & Raigemborn, 2012; Raigemborn et al., 2018; Tauber, 1997a). The lowest coastal
exposures are consistent with a transitional continental‐marine environment. The formation coarsens
upward with silty sandstones and weakly‐formed paleosols becoming more common, suggesting a combina-
tion of a low‐energy fluvial system and floodplain deposits. The upper Santa Cruz Formation is coarser, indi-
cating a more energetic fluvial system (Matheos & Raigemborn, 2012).

Modern conditions in our study area (Figure 1) are cool (MAT ~8°C) and semiarid (MAP ~250 mm/yr;
Vizcaíno et al., 2012a), in contrast to warmer and wetter conditions for late Early Miocene that others have
inferred for Patagonia and that we discuss next. Previous work on floras from the lower Santa Cruz
Formation indicates amixture of semiarid temperate forests and humid dense forests (Brea et al., 2012, 2017).
Fossil wood physiognomy suggests a MAT of either 9.3 ± 1.7°C or 19.3 ± 1.7°C (Brea et al., 2012), an impre-
cise MAP estimate (869 ± 940 mm/yr), and a long (~7 months) dry season (Brea et al., 2012). Clay mineral-
ogy, paleosol type, and plant macrofossils in the lower part of our section have been interpreted to indicate a
warm, subhumid environment with marked seasonality (Matheos & Raigemborn, 2012; Raigemborn
et al., 2018). Coarse sandstones and conglomerates are very rare, and nearly all strata point to low‐flow river
systems (Matheos & Raigemborn, 2012).

Mammalian faunas from the Santa Cruz Formation also suggest a complex mosaic of coexisting habitat
types. Several species of arid‐adapted armadillos are common (Vizcaíno et al., 2006), while glyptodonts,
arboreal and terrestrial sloths, and anteaters indicate woodland and forested environments (Bargo
et al., 2012). Large ungulates are also commonly recovered. The hypsodont notoungulates (Nesodon and
Adinotherium) have typically been reconstructed as mixed browser‐grazers or grazers, although more recent
morphological (Cassini, 2013; Cassini & Vizcaíno, 2012; Cassini et al., 2012) and microwear (Townsend &
Croft, 2008) analysis points to a browsing diet, consistent with the presence of some woody vegetation.
Croft (2001) used cenogram analysis (ranked plots of mammalian body mass) to compare the Santa Cruz
Formation to 16 modern South American faunas and concluded the fauna was characteristic of a heavily
forested, wet environment (but see a critique of cenogram analyses by Kay, Vizcaino, et al., 2012).
Alternatively, based on inferences of terrestrial productivity reconstructed from calculations of population
densities and herbivore on‐crop biomass, Vizcaíno et al. (2010) interpreted the paleoenvironment as a
temperate forest and bushland, with MAP < 1,000 mm/yr. In contrast, Kay, Vizcaino, et al. (2012) reviewed
existing floral and faunal constraints and using mammalian niche metrics inferred mixed forest‐grasslands
withMAP> 1,000mm/yr andMAT> 14°C. Spradley et al. (2019) applied a variety of machine learning tech-
niques to data for a variety of niche metrics (similar to those reported in Kay, Vizcaino, et al., 2012). As
calibrated with modern South America, they inferred a MAP of between 850 and 1,350 mm/yr and MAT
of 15–23°C for the lower Santa Cruz Formation. Recent ecological diversity analyses of the Santa Cruz fauna
produced somewhat contradictory interpretations, linking the Santa Cruz fauna to Palearctic, Neoptropical,
and Indo‐Malayan faunas, but overall pointed to a “subtropical, mixed forest environment” (Catena &
Croft, 2020) with a MAP of 1,210 to 1,286 mm/yr at the upper end of estimates (Kay, Vizcaino, et al., 2012;
Spradley et al., 2019).

2.3. Stable Isotopes in Enamel and Bone

Chemically, bone and tooth enamel are composed of hydroxylapatite [Ca5(PO4)3OH], with carbonate (CO3)
substitution in the PO4 and OH sites (Elliott, 2002). While bone carbonate is easily altered diagenetically at
ambient temperatures (Kohn & Law, 2006), enamel is resistant to alteration, retaining its primary isotope
composition (Kohn & Cerling, 2002).

Tooth enamel mineralizes progressively from the occlusal (wear) surface toward the root and is not remo-
deled after formation. Mineralization occurs as a two‐stage process—apposition and maturation
(Robinson et al., 1978, 1979; Suga, 1982)—although only second stage maturation controls isotope composi-
tions (Trayler & Kohn, 2017). Mineralization rates for ungulates vary but are commonly on the order of 40–
60 mm/yr (Fricke et al., 1998; Kohn, 2004). An animal's δ18O value tracks variations in the composition of
meteoric water throughout the year, typically with lower values in winter and higher values in summer.
Similarly, an animal's δ13C value tracks variations in diet.
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Changes in an animal's δ18O and δ13C values correlate with changes in its environment and diet and are
archived in tooth enamel; however, a damping effect related to the rate of mineralization and the carbon
and oxygen turnover rates in the animal reduces the overall variability of enamel isotope compositions rela-
tive to environmental variability (Kohn, 1996; Kohn et al., 1996, 1998; Passey & Cerling, 2002; Podlesak
et al., 2008). That is, the total range of δ18O and δ13C values within a single tooth will be lower than the sea-
sonal range of local water δ18O values and plant δ13C values. A variety of models have been proposed to cal-
culate themagnitude of this damping (Green et al., 2018; Passey & Cerling, 2002; Passey, Cerling, et al., 2005;
Zazzo, Lécuyer, Sheppard, et al., 2004), but in the context of improved understanding of isotopic systematics
during tooth enamel mineralization (Trayler & Kohn, 2017), damping should be no more than ~50% of the
total seasonal range (Kohn, 2004). Indeed, many mammalian teeth preserve isotopic seasonality in their
enamel (e.g., Balasse, 2003; Balasse et al., 2012; Fricke & O'Neil, 1996; Fricke et al., 1998; Green et al., 2018;
Kohn et al., 1998; Zazzo et al., 2005). Therefore, while teeth do not record the full environmental range of
isotope compositions over a period of tooth growth, isotopic zoning within enamel does reflect changes in
seasonality and diet. As a corollary, high versus low amplitude zoning reflects high versus low isotopic var-
iation in the sources of oxygen and carbon that an animal ingests.

The oxygen isotope composition of tooth enamel is controlled by the composition of ingested water
(Kohn, 1996; Kohn et al., 1996; Luz & Kolodny, 1985). Many large herbivores ingest much of their water
via drinking, and enamel δ18O values from most modern mammals strongly correlate with local water
δ18O values, represented by either local streams and small water bodies or amount weighted precipitation
(Hoppe, 2006; Kohn, 1996; Kohn & Dettman, 2007; Kohn et al., 1996, 1998). Some drought‐tolerant taxa
exhibit important isotopic shifts related to aridity (Ayliffe & Chivas, 1990; Levin et al., 2006; Luz et al., 1990).

The carbon isotope composition of enamel is controlled by diet. In herbivores, enamel δ13C values reflect the
plants they eat plus an enrichment factor. Studies of wild and captive herbivores suggest enrichments of +
13.3–14.6‰ (Passey, Robinson, et al., 2005). Protein‐based phylogenetic analyses place many South
American ungulates in a monophyletic clade with nonruminant perissodactyls (Buckley, 2015; Welker
et al., 2015). Likewise, morphological similarities between perissodactyls and notoungulates suggest a com-
mon hindgut fermentation strategy (Cassini et al., 2012). Harris et al. (2020) compiled data from the litera-
ture for equids and recommend a weighted average enrichment factor (ε) of 14.5‰, which we use for all
enamel‐diet corrections.

All plants use one of three photosynthetic pathways (C3, C4, or CAM) to fix atmospheric CO2, each resulting
in characteristic carbon isotope compositions. C4 plants (modern δ13C¼ −12.1 ± 1.1‰) are primarily warm
growing season grasses, sedges, and several lineages of dicots (Sage et al., 2011). C4 plants became a signifi-
cant portion of global vegetation biomass only in the Late Miocene and Early Pliocene (Cerling et al., 1997;
Edwards et al., 2010) and are therefore unlikely to have contributed significantly to the diet of Santa Cruz
Formation herbivores. Likewise, CAM plants, which rarely make up a significant portion of large herbivore
diets today, appear to have been neither diverse nor abundant in ecosystems prior to the Late Miocene
(Edwards & Ogburn, 2012).

C3 plants (trees, shrubs, herbs, and cool‐season grasses) therefore make up the majority of both modern and
late‐Early Middle Miocene vegetation biomass (Cerling et al., 1997; Still et al., 2003). Modern C3 δ

13C values
have a mean of −28.5‰ and range from −23 to −32‰, although values more positive than −24‰ are rare
(Kohn, 2010). Asmid‐Miocene atmospheric CO2 δ

13C values were ~2.5‰ higher thanmodern values (Tipple
et al., 2010), tooth enamel δ13C values lower than ~ −7‰ (as an approximation, ~ −24‰ + 14.5‰ + 2.5‰)
should reflect a diet of pure C3 plants. δ13C values in closed canopy forests are extremely low (less than
~ −31‰) due to recycling of low δ13C CO2 and low light levels in the understory (van der Merwe &
Medina, 1991). Consequently, δ13C values in mid‐Miocene tooth enamel lower than ~−14‰
(~ −31‰ + 14.5‰ + 2.5‰) would indicate closed‐canopy forests.

3. Materials and Methods
3.1. Fossil Collection and Sampling

Fossil teeth and bone fragments from large mammals were collected in situ from two Santa Cruz Formation
localities, Cañadón de las Vacas and Rincón del Buque (Figure 1). The stratigraphic position of each
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specimenwasmeasured using a Jacob's staff relative to one of several mar-
ker tuffs of known position and age (Figure 2, supporting information).
Fossil teeth are accessioned in the Museo Regional Provincial P.M.J.
Molina (MPM‐PV) of Río Gallegos, Santa Cruz Province, Argentina.
Bone fragments were destroyed during analysis and were not accessioned.
In most cases, teeth were identified to the genus level. We selected bone
fragments based on their potential for isotopic analysis and made no
attempt to identify them. When collecting fossil teeth, we primarily tar-
geted large ungulates for two reasons. First, these animals are abundant
throughout the section, making it possible to track the same genera
through time. Assuming animals did not change the types of plants they
consumed appreciably through time, changes in plant isotopic values (as
opposed to differences in diet) can be assessed throughout the section.
Second, large herbivores consume large amounts of plant biomass and
are often less selective in their feeding than smaller animals, effectively
integrating plant compositions across a large landscape into single enamel
samples (Kohn, 2016).

The average sedimentation rate through our section was roughly
150 m/Ma, or 6–7 ka per meter. Thus, two laterally separated fossils col-
lected from a typical meter‐thick horizon cannot be correlated more pre-
cisely in time to better than a few thousand years. With the exception of
some particularly fossiliferous levels near the base of our section
(~84.5 m above sea level), we did not find fossil teeth of all taxa of interest
in most stratigraphic horizons (Figure 2). However, there are no systema-
tic increases or decreases in the abundance of one taxon relative to others
through the section, such that taxonomic changes throughout the section
should not drive isotopic shifts.

We sampled teeth from three orders, Notoungulata, Astrapotheria, and
Litopterna. Notoungulata is represented in our sample by two families,
Toxodontidae (genera: Nesodon and Adinotherium) and
Homalodotheriidae (genus: Homalodotherium). Order Astrapotheria is
represented by one family (Astrapotheriidae) and one genus
(Astrapotherium). At least five genera within order Litopterna have been
described from the Santa Cruz Formation (Cassini et al., 2012).

However, our litoptern teeth were usually fragmented and were identifiable only to order Litopterna. We
separately compared Δ13C and δ18O values (Equation 2) among taxonomic groups using analysis of variance
(ANOVA) and post hoc pairwise t tests (with Bonferroni correction) to assess dietary similarities among taxa
(Table 2). Several fragmentary teeth were identified only as “Toxodontidae indet.” These samples were
excluded from statistical tests, as they represent an unknown mixture of several groups, but were included
in later temperature and precipitation modeling.

All teeth were lightly abraded with a carbide burr to remove surficial material before sampling. About 10 mg
of enamel powder was collected from each tooth using a 0.5 mm inverted cone carbide dental drill bit and a
Dremel® rotary tool. To characterize broad isotopic trends, we collected bulk enamel samples by drilling a

Figure 2. Age‐depth model for a composite section of the Cañadón de las
Vacas and Rincón del Buque localities. Colored areas with tails are the
probability distribution functions for each marker tuff (modified from
Trayler et al., 2020). Colored dots and error bars indicate the median age
and uncertainty expressed as 95% credible intervals (CI) of fossil bone and
enamel samples. See supporting information for precise stratigraphic
positions for all fossil samples.

Table 2
Statistical Comparisons of δ18O Values for Santa Cruz Formation Herbivores

Taxa Astrapotherium Homalodotherium Litopterna Nesodon

Adinotherium S NS S NS
Astrapotherium — S S S
Homalodotherium — — NS NS
Litopterna — — — S

Note. NS, no significant difference (p > 0.05); S, significant differences (p < 0.05).
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single continuous groove parallel to the growth axis for the entire length of the available enamel. In most
cases, this process averaged several cm of enamel into a single sample, effectively integrating a large portion
of (possible) isotopic seasonality. To characterize seasonality, we also collected serial samples from a subset
of teeth to examine intratooth isotopic zoning. Five molars were subsampled in detail along the tooth and
perpendicular to the growth axis—one Astrapotherium, one Homalodotherium, and three Nesodon.

Each bone analysis represents a composite of several (n > 5) laterally separated bone fragments from the
same horizon. These fragments were sonicated in deionized water to remove surficial material and ground
independently in a mortar. Equal volumes of each resulting powder were mixed.

After sampling, we pretreated all enamel and bone powders following the procedures of Koch et al. (1997) to
remove organic contaminants and labile carbonates. The isotope composition of the carbonate component of
each sample was measured by phosphoric acid digestion at 70°C using a 2010 ThermoFisher GasBench II
coupled with a Delta V+ continuous flow isotope ratio mass spectrometer located in the Stable Isotope
Laboratory, Department of Geosciences, Boise State University. All stable isotope analyses in this study
are from the carbonate component and are reported in the standard delta notation relative to VPDB and
VSMOW for δ13C and δ18O, respectively. All analyses were standardized to VPDB (δ13C) and VSMOW
(δ18O) using the NBS‐18 and NBS‐19 calcite standard reference materials. Analytical reproducibility for both
standards was ±0.1–0.2 (n¼ 46; 2σ) for both δ13C and δ18O.We also analyzed several replicates of NIST 120c,
a phosphorite with chemistry similar to enamel and bone, as a preparation standard. Average compositions
for NIST120c were −6.52 ± 0.14‰ (n ¼ 20; 2σ) and 28.89 ± 0.65‰ (n ¼ 20; 2σ) for δ13C and δ18O,
respectively.

3.2. Precipitation Estimations

C3 plant δ
13C values are sensitive to aridity, with δ13C values decreasing with increased water availability

(Diefendorf et al., 2010; Ehleringer, 1989; Ehleringer & Cooper, 1988; Farquhar et al., 1989; Kohn, 2010).
This relationship allows very broad inference of habitat type, with higher δ13C values associated with open
habitats (savanna and scrublands) and lower values associated with closed habitats (forests). The depen-
dency of the carbon isotope compositions of C3 plants on water availability also allows MAP to be calculated
from enamel δ13C values:

MAP ¼ 10
Δ13C − 2:01 þ 0:000198 × elevation − 0:0129 × abs latitudeð Þ

5:88

� �
− 300 (1)

where elevation and latitude are in meters and degrees (Kohn, 2010). Δ13C is given by

Δ13C ¼ δ13Catm − δ13Cleaf
� �

1þ δ13Cleaf
� �

=1; 000
(2)

which corrects δ13Cleaf values for changes to atmospheric CO2 δ
13C values. δ13Cleaf is calculated using our

measured herbivore enamel carbon isotope compositions and a nonruminant specific enrichment factor:

δ13Cleaf ¼ δ13Cenamel − 14:5

1þ 14:5
1; 000

(3)

Whereas South America has moved westward since the Miocene (Hartnady & Le Roex, 1985), there have
been changes of less than 5° in latitude and negligible changes in elevation in the study area; we therefore
use a modern elevation of ~20 m and latitude of −50.5° for all specimens. Even so, regression coefficients
in Equation 1 show that these two parameters have little overall effect on MAP calculations.

We used the approach of Tipple et al. (2010) to calculate δ13Catm from the high‐resolution benthic
foraminifera records of Holbourn et al. (2015). We made no corrections to our data for changes in atmo-
spheric CO2 concentrations. While weeks‐ to months‐long controlled experiments imply a dependency
between C3 plant δ13C values and atmospheric CO2 concentrations (Schubert & Jahren, 2012), modern
and fossil tooth enamel proxy records do not resolve a dependence of plant δ13C values on atmospheric
CO2 concentrations (Kohn, 2016).
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3.3. Temperature Estimations

Bone is mineralogically similar to enamel but has a proportionally higher carbonate content in the apatite
structure (Driessens & Verbeeck, 1990) and is more finely crystalline, increasing its susceptibility to chemi-
cal alteration and recrystallization during fossilization (Ayliffe et al., 1994; Trueman & Tuross, 2002).
Isotopic resetting of the carbonate component of bone apatite is thought to occur during fossilization at
ambient soil temperatures in equilibrium with soil water oxygen isotope compositions (Kohn &
Law, 2006). Because fossilization and recrystallization occur over a few tens of thousands of years (Kohn
& Law, 2006) and accumulation rates for the localities studied here were ~0.15 m/ka (Perkins et al., 2012;
Trayler et al., 2020), most fossilization and isotopic resetting likely occurred at a depth of ≥1 m below the
surface, limiting evaporative enrichment of soil water. Consequently, we assume that soil water composi-
tions mirror local water compositions, although the two sources are not necessarily the same physical water.
We also assume that soil temperatures reflect MAT. Soil temperatures correlate well with air temperatures at
a depth of a few centimeters to a fewmeters. At shallow depths (<1m), soil temperatures may be higher than
air temperatures, while at greater depths, soil temperatures do not appear to differ significantly from MAT
(Paul et al., 2004; West, 1952; Zheng et al., 1993).

Given an independent record of local water δ18O values (enamel) and the temperature dependence of
CaCO3‐water oxygen isotope fractionation (Kim & O'Neil, 1997), bone and enamel oxygen isotope composi-
tions can be related to temperature (Zanazzi et al., 2007):

MAT °Cð Þ ¼ 18; 030

1000ln
1þ δ18Obone − 2:2 ± 0:6

� �
1; 000

1þ 1:15 ± 0:08 × δ18Oenamel − 36:3 ± 1:6
� �

1; 000

0
BBB@

1
CCCAþ 32:42

− 273:15 (4)

where δ18Obone and δ18Oenamel are expressed in VSMOW.

We propagated model errors and uncertainties in δ18Obone and δ18Oenamel using a Monte Carlo approach.
These calculations account for temporal uncertainties and compositional scatter in the data, uncertainties
in the global correlation of tooth enamel isotope composition and local water composition (denominator
of the ln term, Equation 4), and the calibration uncertainty that links bone and calcite δ18O (numerator of
the ln term, Equation 4). Physiology can impact mammal isotope composition (Kohn, 1996), especially an
animal's water dependence, and potentially bias MAT calculations. While the exact physiology of an extinct
organism can never be known, notoungulates likely shared the same plesiomorphic digestive physiology
(hindgut fermentation) as modern perissodactyls, as indicated from craniodental and molecular phyloge-
netic analysis (Buckley, 2015; Cassini et al., 2012; Fletcher et al., 2010; Kohn et al., 2015; Welker et al., 2015).
Hindgut fermenters have high daily water requirements, and their δ18O values group with other large
water‐dependent herbivores along a strong global correlation between animal δ18O and local water δ18O.
Thus, the δ18O values of the large notoungulates that we analyzed should logically correlate with local water
compositions in the same way that is observed today for perissodactyls and other large water‐dependent ani-
mals. While we cannot quantify the uncertainty in this assumption, it seems likely to be much smaller than
the scatter in modern data that is accounted for already in our error estimates.

We also cannot directly quantify errors in our assumption that soil water composition and temperature at
the site of bone fossilization reflect local water composition and local MAT. However, in principle, alterna-
tive assumptions should induce systematic offsets in temperature calculations rather than changing absolute
errors. For example, if soil temperatures were 2°C higher than surface air temperatures, then our MAT esti-
mates would be 2°C too high. Taken together, our estimates of temperature uncertainty must be minima, but
changes to MAT are likely to be resolved more accurately than absolute temperatures.

3.4. Age‐Depth Modeling and Isotope Compositions

Based on U‐Pb and 40Ar/39Ar ages of multiple dated tuffs, the age of the Cañadón de las Vacas and Rincón
del Buque localities (Figure 2) is between ~17.4 and ~16.5 Ma (Perkins et al., 2012; Trayler et al., 2020).
Trayler et al. (2020) also used a modified version of the Bayesian age‐depth model Bchron (Haslett &
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Parnell, 2008) to construct a continuousmodel of age and uncertainty esti-
mates for a composite of these two localities (Figure 2). We use this model
and stratigraphic correlations between Cañadón de las Vacas and Rincón
del Buque to calculate age and uncertainty for each enamel and bone sam-
ple based on its stratigraphic position relative to one or more dated tuffs.
Age‐depth models provide an age estimate for each stratigraphic position,
with uncertainties that vary with stratigraphic distance from the dated
tuffs.

Trayler et al. (2020) offer a Monte Carlo method to propagate age‐depth
model uncertainties onto paleoclimate proxy records while respecting
the stratigraphic superposition relationships among the samples. This
method involves four basic steps: (1) Use age‐depth model results to esti-
mate a set of ages for each bone and enamel sample. (2) Apply a smooth-

ing function to the proxy data (stable isotope records) to attenuate high‐frequency noise. In this case, we use
a moving average, which weights all data points using a Gaussian kernel and a smoothing window size of
0.05 Ma. (3) Repeat Steps 1 and 2 many times (>10,000) and store the results. (4) Calculate summary statis-
tics (median, 95% CI) over all smoothed isotope compositions.

We smoothed bulk enamel δ13C, bulk enamel δ18O, and bone δ18O values using the Monte Carlo method
outlined above (Trayler et al., 2020). We allowed the isotope composition of each sample to vary by
±1.6‰ for oxygen and ±0.6‰ for carbon to reflect intratooth variations in isotope composition (discussed
below). All fossil‐age predictions, statistical analysis, and data smoothing were performed using R v. 3.3.3
(R Core Team, 2019).

4. Results
4.1. Bulk Isotope Compositions

Enamel δ13C values have a mean value of−11.4 ± 2.3‰ (2σ; Table 1 and Figure 3), with amaximum value of
−8.8‰, consistent with a diet of purely C3 plants. Enamel δ18O values have a mean value of 23.1 ± 3.4‰.

Bone δ13C and δ18O values are similar to those of enamel with means of
−10.6 ± 3.8‰ and 21.8 ± 1.8‰, respectively. Stable isotope compositions
and stratigraphic positions for all samples may be found in the supporting
information (Tables S1 and S2).

Although we include undifferentiated notoungulate data in later tempera-
ture and precipitation modeling calculations, we excluded these data from
statistical tests as they represent a combination ofAdinotherium,Nesodon,
and Homalodotherium. Because fossil ages span ~1 Ma (discussed below),
we tested the equivalence of means among taxa using Δ13C values
(Equation 2), which corrects for changes to the δ13C of the atmosphere.
Nesodon, Adinotherium, Astrapotherium, Homalodotherium, and litop-
terns show no significant differences in Δ13C values (ANOVA; p > 0.05).
δ18O values among taxa show statistically significant differences
(ANOVA; p < 0.05). Post hoc pairwise t tests (with Bonferroni correction;
Table 2) reveal that Astrapotherium δ18O values are significantly lower
than all other taxa and that litoptern δ18O values are significantly higher
than all groups except Homalodotherium.

4.2. Intratooth Isotope Zoning

Zoning profiles along the five molars that we analyzed reveal low to mod-
erate variation in carbon and oxygen isotope compositions over the length
of each tooth (Figure 4 and Table S2). Although enamel mineralization
rates for notoungulates and astrapotheres are unknown, rates for horses
and bovids vary between 40 and 60 mm/yr (Kohn, 2004; Trayler &
Kohn, 2017), suggesting that our zoning profiles should represent about

Table 1
Summary Statistics for All Taxonomic Groups

Taxa

δ13C δ18O

nMean 2σ Mean 2σ

Nesodon −11.36 1.74 22.94 2.53 32
Adinotherium −12.23 2.43 23.30 2.83 18
Litopterna −11.18 2.46 24.82 4.01 11
Astrapotherium −10.88 2.03 20.84 1.51 11
Homalodotherium −10.62 2.37 24.44 1.80 5
Toxodontidae indet. −11.62 2.13 23.54 2.37 8

Note. The Toxodontidae indet. group likely represents a combination of
Nesodon, Adinotherium, and Homalodotherium.

Figure 3. δ13C versus δ18O values for Santa Cruz Formation herbivores.
Large symbols with error bars are the mean ± 2σ for each taxonomic
group. Shaded areas at −15‰ and −7.5‰ indicate the transitions for
closed‐canopy forests (C3) and mixed C3‐C4 environments (see section 2.2
for details).
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~0.5 to 1.5 years of enamel growth. Overall, δ13C values within a single tooth show low variance, with an
average intratooth variation of ±0.6‰ (2σ). Carbon isotope compositions from one individual (CV‐RT‐15‐
016) displays an ~2‰ change in δ13C values over ~20 mm, which is the maximum observed variability.
δ18O values show somewhat more variation, with an average intratooth variability of ±1.6‰ (2σ). Oxygen
isotope zoning profiles do not reveal a clear structure; that is, there is no quasi‐sinusoidal variation in
δ18O values that usually results from strong seasonal variations in meteoric water isotope compositions.
Instead, three teeth show several millimeters of unchanged isotope compositions followed by sharp
excursions toward low δ18O values.

4.3. Fossil Age‐Depth Modeling and Smoothing

Model ages for enamel and bone samples range from ~17.4 to ~16.4 Ma (Figure 2). Samples located near
dated tuffs are best constrained temporally and have uncertainties similar to the tuffs themselves (typically
±0.03 Ma), while samples that are stratigraphically farthest from dated tuffs have the highest age uncertain-
ties (up to ±0.28 Ma). Although sampling of individual taxa was not identical either stratigraphically
(Figure 2) or temporally (Figures 5a and 5b), pairwise Kolmogorov‐Smirnov tests reveal no significant differ-
ences (p > 0.05) in the stratigraphic distribution of taxonomic groups. That is, each taxonomic group can be
thought of as a sample from the same underlying distribution of fossils. However, the sampling density of
each group does vary throughout the section. Nesodon and Adinotherium are the most common and are well
represented throughout. Litopterns and Astrapotherium are less common but are still represented over most
of the section. Homalodotherium is the least abundant taxon, represented by only five individuals. Sampling
heterogeneities are partially mitigated by two factors. First, because large herbivores consume large amounts
of plant matter, they act as effective integrators of plant isotope compositions. Second, because our smooth-
ing model allows the age of each individual data point to vary probabilistically, heterogeneities in taxa dis-
tributions are also smoothed. Last, we do not detect any significant differences in δ13C values among the four
taxa, so sampling of one taxon for carbon isotope compositions is plausibly indistinguishable from sampling
another. Nonetheless, we also report smoothed isotope profiles for only Toxodontidae (Nesodon and
Adinotherium; Figures 5 and 6), because this group makes up a majority (~60%) of our samples.

Smoothed enamel δ13C values increased from−12‰ to ~−10.5‰ between 17.4 and ~16.9 Ma, followed by a
slight decrease of ~0.4‰ before remaining unchanged until the end of the record (Figure 5a). Smoothed
enamel δ18O values followed a similar trajectory (Figure 5b), with an increase from 23‰ to 24‰ between
~17.4 to ~16.9 Ma followed by a gradual increase of ~0.6‰ until the end of the record.

Figure 4. Carbon (squares) and oxygen (circles) isotope zoning profiles from Santa Cruz Formation ungulate tooth
enamel, arranged according to stratigraphic level (top to bottom). Error bars indicate 2σ analytical reproducibility for
replicates of the NIST120c reference material. Error bars for δ13C values are smaller than the symbols. (a) Nesodon, (b)
Homalodotherium, (c) Nesodon, (d) Astrapotherium, and (e) Nesodon.
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5. Discussion
5.1. Diagenetic Alteration

The flat, nonsinusoidal composition profiles might be viewed as a possible
indicator of diagenetic alteration. However, modern ungulate teeth from
Bolivia show similarly flat profiles (Bershaw et al., 2010), so flat profiles
do occur in unaltered tooth enamel. Other observations are consistent
with preservation of original biogenic compositions. For example, δ13C
values fall within ranges of a pure C3 diet, and (as discussed in
section 5.2) δ18O values Astrapotherium are lower than for other taxa, as
expected for (hypothesized) semiaquaticmammals (Clementz et al., 2008).
Lastly, microbially mediated dissolution‐reprecipitation of enamel apatite
is viewed as the dominant driver of isotopic alteration in tooth enamel
(Zazzo, Lécuyer, & Mariotti, 2004). However, the fossil teeth that we ana-
lyzed preserve exquisite biogenic textures, including decussate fibers of
apatite, Hunter‐Schreger bands, incremental lines, and surface polish.
Microbial processes would likely eradicate these textures.

5.2. Ecology of Large‐Bodied Santa Cruz Formation Ungulates

Only one enamel δ13C values fall within the expected range for
closed‐canopy forests (−14‰), while none fall within the range of mixed
C3‐C4 environments. The lack of significant differences among herbivore
δ13C values suggests dietary homogeneity or resource partitioning in ways
not readily distinguished using carbon isotopes (e.g., feeding at different
times, feeding on different parts of a plant, and feeding on different plants
with similar δ13C values). Intermediate δ13C values (−7 to −14‰) are
usually interpreted as open woodlands or mixed woodland‐scrubland
environments (Feranec & MacFadden, 2006; Kohn et al., 2005; Trayler
et al., 2015). Given the range of observed δ13C values, all sampled herbi-
vores were likely mixed feeders or browsers, moving between wooded
and open areas but not occupying closed‐canopy systems.

Homalodotherium limb morphology indicates the ability to adopt a bipe-
dal posture, freeing the forelimbs and enabling browsing in the lower
canopy (Cassini et al., 2012; Elissamburu, 2010). Morphofunctional and
morphometric analysis of skulls has variously proposed a grazing or
mixed feeding niche for the notoungulates Nesodon and Adinotherium
(Cassini, 2013; Cassini & Vizcaíno, 2012; Cassini et al., 2012), while
enamel microwear suggests a primarily browsing diet for both taxa
(Townsend & Croft, 2008). Adinotherium has the lowest observed δ13C
values, but mean Nesodon δ13C values are only slightly higher than for
Adinotherium. Given the similarity among δ13C values of
Homalodotherium, Nesodon, and Adinotherium, our isotopic data are

compatible with a browsing diet for all these taxa. Similarly, our data support the interpretation of brachy-
dont litopterns as browsers (Cassini, 2013; Cassini & Vizcaíno, 2012; Cassini et al., 2012). However, since the
carbon isotope composition for C3 grasses (−26.7 ± 2.3‰; Cerling et al., 1997) falls in the middle of the over-
all range in C3 plants (δ

13C ~ −23 to −32‰), we cannot exclude the possibility of C3 grazing.

While Astrapotherium δ13C values do not differ significantly from other taxa, its mean δ18O value is ~2.5‰
lower than the mean for all other taxa. Analysis of limb morphology led Avilla and Vizcaíno (2005) to con-
clude that Astrapotherium was semiaquatic, while Cassini et al. (2012) proposed that its limbs resembled
those of the Indian Rhinoceros (Rhinoceros unicornis), which commonly wallows and browses in lakes
and rivers (Laurie et al., 1983). Increased water availability can allow rapid turnover of body water, which
drives δ18O values (lower) toward local water δ18O (Clementz et al., 2008; Kohn, 1996; MacFadden, 1998).

Figure 5. Plots of δ13C and δ18O values versus age. Solid black lines and
shaded gray area are the median and 95% CI of smoothed isotope
composition for all enamel data. Dashed black lines are the median and
95% CI of data from family Toxodontidae only. Small purple dots on both
plots are benthic foraminifera data from Holbourn et al. (2015) for
comparison. Shaded gray rectangle corresponds to rapid warming at the
onset of the MCO (Holbourn et al., 2015). (a) Plot of enamel δ13C values
versus age. Dashed purple line is the δ13C of atmospheric CO2 (+6‰ for
ease of comparison) calculated as described in section 3.2. Smooth curves
for all data and for Toxodontidae‐only show an increase or ~1‰ by 16.9 Ma,
followed by stasis to the end of the record. (b) Plot of enamel and bone δ18O
values versus age. Dark gray shaded area and solid black line are the
median and 95% CI of smoothed isotope composition for all bone data.
Bone and enamel compositions diverge starting about 17.1 Ma and then
converge by 16.8 Ma.
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We interpret low δ18O values for Astrapotherium as supporting other lines
of evidence for a semiaquatic lifestyle.

5.3. Carbon Isotopes and Climate

Two factors complicate our ability to link changes in tooth enamel iso-
topes to changes in global climate. First, marine proxy records for this
time period (Holbourn et al., 2015) have a much higher temporal resolu-
tion than our data, and second, our data have considerably higher var-
iance than marine records. We therefore focus on comparisons between
marine records and our smoothed and interpolated isotope compositions,
rather than raw enamel and bone data. Note that changes in atmospheric
CO2 δ

13C values are reflected as changes to plant carbon isotope composi-
tions in a 1:1 relationship. That is, at constant MAP, an increase in atmo-
spheric CO2 δ13C causes an equivalent increase in tooth enamel δ13C.
Consequently, it is more important to focus on changes in Δ13C, which
reflect MAP, than any specific shift in δ13C.

Overall, our calculations show a trend of decreasing MAP between ~17.4
and ~16.9 Ma (Figure 6), a MAP minimum corresponding to the onset of
the MCO at ~16.9 Ma, followed by a rebound to higher MAP by 16.5 Ma.
For the 17.4 to 16.9 Ma interval, enamel δ13C values increased by ~1‰
beginning at ~17.4 Ma to reach a maximum at ~16.9 Ma.
Simultaneously, atmospheric CO2 δ13C increased only slightly by
+0.2‰. In combination, Δ13C decreased by 0.8‰, indicating a decrease
in MAP, specifically from 1,000 ± 235 mm/yr at ~17.4 Ma to
525 ± 105 mm/yr (mean ± 2σ) at ~16.9 Ma (Figure 6).

The onset of the MCO at ~16.9 Ma aligns approximately with the begin-
ning of the “Monterey” carbon isotope excursion toward higher δ13C
values in marine sediments and (inferred) atmospheric CO2 (Vincent &
Berger, 1985). The excursion is thought to have been driven by increased
marine and terrestrial productivity and carbon sequestration (Föllmi
et al., 2005; Vincent & Berger, 1985), modulated by a series of 400 ka oscil-
lations, which correspond to long period eccentricity (Holbourn
et al., 2007; Ma et al., 2011). As interpreted from marine data, the first of
these oscillations corresponds to an abrupt warming period between
16.9 and 16.7 Ma, possibly driven by enhanced insolation during high
eccentricity (Holbourn et al., 2015). This warming period corresponds to
a δ13C maximum in our smoothed data.

Between 16.9 and 16.7 Ma, atmospheric CO2 δ
13C values increased by 0.1

to 0.2‰, while median δ13C values of tooth enamel remained static or
decreased slightly (~0.1‰). These trends combine to form an increase in
Δ13C between plants and atmospheric CO2 and, consequently, an increase
in MAP to 685 ± 170 mm/yr.

Between 16.7 and 16.4 Ma, atmospheric CO2 δ13C increased by ~0.3‰,
while δ13C of tooth enamel remained approximately constant. The
increase in median Δ13C implies an increase in MAP to
835 ± 270 mm/yr at the end of the record. Within 2σ uncertainty, this esti-
mate overlaps the MAP estimate at ~17.4 Ma (1,000 ± 235 mm/yr) but not
the MAP estimate at ~16.9 Ma (525 ± 105 mm/yr).

5.4. Oxygen Isotopes and Climate

Mean enamel and bone δ18O values varied only slightly from 17.4 to 17.1 Ma. Modeled MAT values during
this period are warm (20 ± 4°C; Figure 6), with the exception of a negative excursion at 17.3 Ma. Benthic
foraminifera δ18O values were also stable during this period (17.1–17.4 Ma), pointing to little change to

Figure 6. Estimates of mean annual precipitation (blue) and mean annual
temperature (pink) from tooth enamel and bone stable isotope
compositions. Shaded areas and colored lines represent the 95% CI of the
entire data set. Solid and dashed black lines are the median and 95% CI
using data from family Toxodontidae. Green line and shaded area are boron
isotope‐based atmospheric CO2 concentrations (Greenop et al., 2014).
Shaded gray region corresponds to rapid warming at the onset of the MCO
as in Figure 5. (a) MAP calculated using data from all taxa and from only
family Toxidontidae shows a decrease from ca. 1,000 mm/yr at the
beginning of our record to a minimum of ~500 mm/yr at ~16.9 Ma and a
rebound to 800 mm/yr by 16.6 Ma. Toxodontidae data also suggest a
high‐MAP pulse at 17.0 Ma. Calculated MAP at the beginning of the record
is consistent with previous MAP estimates using niche metrics and
cenograms (dashed line, MAP > 1,000 mm/yr; Kay, Vizcaino, et al., 2012),
fauna and sedimentological evidence (dashed line, MAP < 1,000 mm/yr;
Vizcaíno et al., 2010), and tegu lizard fossils (dashed line, MAP > 200 mm/
yr; Fernicola & Albino, 2012) are also shown. (b) MAT calculated using all
taxa and from only family Toxodontidae shows decreasing MAT to a
minimum at ~17.1 Ma (~17°C), a rebound 20–23°C at ~17.0, and an
increase to a maximum at the end of the record (26°C). Based on all data, a
MAT oscillation occurred at ~16.8 Ma. Calculated MAT at the beginning of
the record is consistent with independent constraints based on fossil wood
physiognomy (vertical bars; Brea et al., 2012), and tegu lizard fossils (MAP
> 14°C; Fernicola & Albino, 2012) are also shown.
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temperature and/or ice volume (Holbourn et al., 2015). Increasing enamel δ18O values by ~1‰ and a corre-
sponding decrease in bone δ18O values at ~17.0 Ma suggest a brief MAT excursion up to 25 ± 7°C at the onset
of the MCO. Global warming beginning at about ~16.9 Ma (Holbourn et al., 2015), drove a reduction and
reconfiguration of the East Antarctic ice sheet, resulting in an ~0.5‰ decrease inmarine δ18O values as melt-
ing ice added 18O depleted water to the oceans (Pekar & Christie‐Blick, 2008; Pekar & DeConto, 2006). The
retreat of the East Antarctic Ice Sheet inland (Hauptvogel & Passchier, 2012; Passchier et al., 2011; Sangiorgi
et al., 2018), coupled with an influx of fresh meltwater into the southern Atlantic, reduced the production of
Antarctic bottom water (Pekar & DeConto, 2006). Reduced bottom water production, in turn, weakened
thermohaline circulation, inhibiting the transport of warm equatorial waters south during this period
(Pekar & DeConto, 2006; Schmitz, 1995). Despite a global temperature increase, the calculated MAT in
our section decreased slightly between 17 and 16.7 Ma, with a minimum estimate of 19 ± 4°C, at
~16.85 Ma. This temperature decrease suggests regional cooling, perhaps the result of reduced equatorial
heat transport or influx of cold Antarctic water or both. Low observed MAP during this period also suggests
that weakened circulation led to lower evaporation and, likely, evapotranspiration.

After ~16.7 Ma, enamel δ18O values increased slightly, while bone δ18O values remain constant. Calculated
MAT rebounded to high values until the end of the recordwith amaximummodeled temperature of 25 ± 8°C
at 16.5 Ma. This rebound could reflect a temporary stabilization of the reduced Antarctic ice sheet, perhaps
permitting warmer low latitude waters to influence Patagonian climate more strongly. Thus, despite an
initial excursion toward lower temperatures and precipitation, southern Patagonia ultimately followed glo-
bal trends in increased temperature and precipitation observed in Northern and Southern Hemispheres
records (Böhme, 2003; Böhme et al., 2011; Feakins et al., 2012; Hinojosa & Villagrán, 2005; Reichgelt
et al., 2015; Warny et al., 2009; Wolfe, 1985, 1994).

Uplift of the Andes during the Miocene enhanced orographic rain shadow for much of Patagonia, driving a
long‐term aridification of the area (Blisniuk et al., 2005; Palazzesi et al., 2014). While the magnitude of uplift
between 17.4 and 16.5 Ma is unclear, oxygen isotope lapse rates for the southern Andes predict a −0.3‰/
0.1 km decrease in δ18O values with increasing elevation (Blisniuk & Stern, 2005; Poage &
Chamberlain, 2001). Given that enamel and bone δ18O values show a gradual increase, we assume that
Andean uplift did not significantly influence meteoric water isotope compositions during this period and
that observed changes are a result of larger‐scale climatic forcing.

5.5. Isotopic Zoning and Seasonality

Overall, carbon and oxygen isotope zoning within individual teeth is less than 2‰, suggesting small to mod-
erate seasonal change in precipitation and vegetation compositions. Modern precipitation and lake water
δ18O values for the study area each vary by nearly 20‰ (Mayr et al., 2007). Assuming that typical enamel
mineralization rates and body water residence times would attenuate the tooth enamel isotopic record of
meteoric water variations by ~50% (Kohn, 2004; Passey & Cerling, 2002; Podlesak et al., 2008), modern teeth
from the area would be expected to preserve δ18O variations of ~10‰, much higher than the observed var-
iation in fossil teeth. There must therefore have been little seasonality to precipitation δ18O, likely pointing
to less seasonal variation in temperature, congruent with interpretations of climate proxies based on mam-
malian functional morphology (Kay, Vizcaino, et al., 2012).

5.6. Comparisons to Other Proxies

Most previous MAP and MAT estimates for the Santa Cruz Formation have focused on floras and faunas
from several productive faunal levels (Kay, Vizcaino, et al., 2012; Tauber, 1997b) of similar age (~17.4 to
~17.5 Ma; Perkins et al., 2012). Consequently, these estimates represent a short period of time that best cor-
responds to our oldest strata.

Wood physiognomy‐based estimates of MAT (19.3 ± 1.7°C; Brea et al., 2012; Wiemann et al., 1999) from the
lower Santa Cruz Formation fall entirely within the uncertainty of our MAT calculations for older fossils
(20 ± 4 > 17.2 Ma). An alternative MAT estimate from the same source of 9.4 ± 1.7°C (Brea et al., 2012;
Poole et al., 2005) does not overlap our data and is also inconsistent with faunal data suggesting
MAT > 14°C (Fernicola & Albino, 2012; Kay, Vizcaino, et al., 2012). As noted by Brea et al. (2012), the lower
MAT estimates were based on less than 10 different types of wood, while 20–25 samples are recommended
(Wiemann et al., 1999); thus, the temperature discrepancy may reflect sampling bias.
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Previously reported estimates of MAP for the Santa Cruz Formation vary significantly, with some estimates
mutually exclusive. Published values include <1,000mm/yr (Vizcaíno et al., 2010), 1,000–1,500mm/yr (Kay,
Vizcaino, et al., 2012), and 850–1,350 mm/yr (Spradley et al., 2019). Wood physiognomy‐based MAP calcu-
lations are imprecise (870 ± 940 mm/yr; Brea et al., 2012).

Our MAP estimate at ~17.4 Ma (~1,000 ± 235 mm/yr) broadly agrees with these prior estimates.

5.7. Comparisons to General Circulation Models

Most general circulation models of the MCO do not model temporal changes to precipitation and tempera-
ture conditions and often focus on broad time slices that may or may not overlap a chronostratigraphic sec-
tion of interest. In particular, suitable mid‐Miocene proxy sites are heterogeneously distributed in both space
and time, which requires models to be compared to records that are not necessarily coeval. Recent records
from Antarctica (Feakins et al., 2012; Hauptvogel & Passchier, 2012; Passchier et al., 2011; Sangiorgi
et al., 2018; Warny et al., 2009) and New Zealand (Reichgelt et al., 2015) improve the number of Southern
Hemisphere proxy records, but most terrestrial proxy records still come from Europe and North America
(Goldner et al., 2014; Herold et al., 2010). Given these limitations, how accurately do existing models of
the MCO predict the physical conditions of the Santa Cruz Formation? For these comparisons, we focus
on our youngest results (post 16.6 Ma), that is, after the onset of the MCO.

Our results indicate slightly lower MAP (835 ± 260 mm/yr) than most general circulation models. Herold
et al. (2011) and Tong et al. (2009) predict MAP of 1,000–1,200 mm/yr, whereas Henrot et al. (2010) predict
MAP lower than our median results (~500 mm/yr). The model of Henrot et al. (2010) also predicts strongly
seasonal precipitation, with ~75% occurring in the Southern Hemisphere summer (December‐January‐
February). Conversely, seasonality estimates based on plant macrofossils (Brea et al., 2012) suggest long
(7‐month) dry summers. Both of these estimates are inconsistent with our enamel zoning profiles, which
suggest little seasonal variability.

Our analyses also indicate a significant increase in MAT relative to today (11 ± 4 to 17 ± 7°C), which over-
laps estimated increases in summertime temperatures in coastal Antarctica (11 ± 3°C, Feakins et al., 2012).
Because the time periods for these two data sets are so different (20–15.5 Ma for Antarctic data; 17.4 to 16.4
for our data), we are reluctant to interpret potential changes in meridional temperature gradients.
Model‐derived MAT estimates for our study area are consistently too low, when compared to our MAP esti-
mates for post 16.6 Ma, with all models predicting temperatures of ~10°C to 15°C for the study area (Henrot
et al., 2010; Herold et al., 2011; Tong et al., 2009). Henrot et al. (2010) and Goldner et al. (2014) noted that
their models underestimated MCO warming for high latitudes, primarily by overestimating the meridional
temperature gradient, and concluded that more proxy records are needed at these latitudes to constrain phy-
sical conditions in these areas. Overall, general circulation models provide accurate estimates of climate
parameters at low and middle latitudes but deviate from inferred conditions at high latitudes. Our data pro-
vide an additional high latitude record, but more records are likely required for accurate modeling.

6. Conclusions

Our study of carbon and oxygen isotopes from herbivore tooth enamel reveals that global warming at the
onset of the MCO (Holbourn et al., 2015) had significant impacts on the climate of Patagonia. MAP initially
decreased significantly between 17.4 and 16.9 Ma before stabilizing during the MCO. Regional MAT and
MAP reductions at the onset of the MCO suggest that increasing global temperatures and reduced
Antarctic ice volume temporarily lowered MAP and MAT in Patagonia. This transitional period in
Patagonia was followed by a rebound by ~16.4 Ma to higher MAP and MAT as regional climates began to
parallel global increases in temperature and precipitation during the MCO.

Carbon isotope‐based MAP and MAT calculations are consistent with most previous floral and faunal esti-
mates, although our ~1 myr record reveals significant fluctuations in both MAP and MAT through time.
MAT calculations based on enamel and bone oxygen isotopes also agree with floral and faunal data, reveal-
ing temperatures significantly warmer (MAT ¼ 20–25°C) than modern conditions (MAT ~8°C).

Finally, general circulation models consistently underestimate MAT for Miocene Patagonia, perhaps in part
because until recently, most MCO proxy records for validation were restricted to the Northern Hemisphere.
Our new temperature and precipitation proxy record from the southernmost terrestrial mid‐Miocene site in
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extreme southern South Americamay help improve the accuracy of mid‐Miocenemodels. Asmost models of
future atmospheric CO2 concentrations are similar to or exceed estimates for the MCO (IPCC, 2014), under-
standing physical conditions and ecology during this time may help provide insight into future climate sce-
narios for southern South America.

Data Availability Statement

All stable isotope data are available in the supporting information and are hosted in the OSFHome reposi-
tory at www.osf.io/f28az/.
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