Patagonian Aridification at the Onset of the Mid-Miocene Climatic Optimum

Robin B. Trayler
Boise State University

Matthew J. Kohn
Boise State University

M. Susana Bargo
Museo de La Plata

José I. Cuitiño
CENPAT-CONICET

Richard F. Kay
Duke University

See next page for additional authors
Paleoceanography and Paleoclimatology

RESEARCH ARTICLE
10.1029/2020PA003956

Special Section:
The Miocene: The Future of the Past

Key Points:
• The Miocene Climatic Optimum interrupted a trend toward arid conditions in Patagonia
• Stable isotope-based estimates of precipitation and temperature significantly changed at the onset of the MCO
• General circulation models underestimate temperature for Miocene Patagonia

Supporting Information:
• Supporting Information S1

Correspondence to:
R. B. Trayler, rtrayler@ucmerced.edu

Citation:

Abstract
Fossil-rich sediments of the Santa Cruz Formation, Patagonia, Argentina, span the initiation of the Miocene Climatic Optimum (MCO), the most recent period of warm and wet conditions in the Cenozoic. These conditions drove the expansion of tropical and subtropical ecosystems to much higher latitudes, with the fossiliferous Santa Cruz Formation recording one of the southernmost examples. We collected new carbon and oxygen isotope compositions of herbivore tooth enamel from fossils ~17.4 to 16.4 Ma in age to investigate ecological and climatic changes across the initiation of the MCO. Enamel δ13C values are consistent with a C3-dominated ecosystem with moderate precipitation and a mix of wooded and more open areas. Serially sampled teeth reveal little zoning in δ13C and δ18O values, suggesting little seasonal variation in water and plant isotope compositions or seasonal changes in diet. Carbon isotope-based estimates of mean annual precipitation (MAP) are consistent with aridification, with MAP decreasing from ~1,000 ± 235 mm/yr at 17.4 Ma to ~525 ± 105 mm/yr at the start of the climatic optimum (~16.9 Ma). This decrease corresponds to increasing global temperatures, as indicated by marine proxy records, and was followed by a rebound to ~840 ± 270 mm/yr by ~16.4 Ma. In comparison to a modern mean annual temperature (MAT) in the region of ~8°C, oxygen isotopes indicate high MAT (at least 20°C) at the onset of the MCO at 16.9 Ma and a significant increase in MAT to ~25°C by 16.4 Ma.

1. Introduction
The Miocene Climatic Optimum (MCO; between approximately 17 and 14 Ma) was the warmest period of the Neogene and one of the warmest of the Cenozoic, temporarily reversing a long-term global cooling trend that began in the early Eocene (Zachos et al., 2001). Terrestrial estimates of atmospheric CO2 concentrations are generally high (Beerling & Royer, 2011): Paleosols and stomatal density imply values of 400–800 ppm (Kürschner et al., 2008; Retallack, 2009). While some marine carbon isotope records originally suggested somewhat lower concentrations of 200–300 ppm (Pagani et al., 1999, 2005), more recent high-resolution boron isotope records from foraminifera indicate that low (~200 ppm) CO2 concentrations at the onset of the MCO (~17 Ma) were succeeded by 100 ka oscillations between 300 and 600 ppm until 15.5 Ma (Greenop et al., 2014). General circulation models require high CO2 concentrations of at least 300–600 ppm to accurately reproduce MCO temperature and precipitation conditions suggested by other proxy records (Henrot et al., 2010; Tong et al., 2009; You et al., 2009). Importantly, most estimated MCO CO2 concentrations are similar to those projected over the coming century (IPCC, 2014), making the MCO an important analog for future climates.

These inferred, high atmospheric CO2 concentrations during the MCO are thought to have driven important ecological and climatic changes. High-resolution δ18O records from benthic foraminifera in the equatorial Pacific suggest abrupt global warming at the onset of the MCO (~17 Ma; Holbourn et al., 2015). Facies analysis of the AND-2A drill core suggests the East Antarctic Ice Sheet was retreating inland by ~17.1 Ma (Hauptvogel & Passchier, 2012) and reached a minimum extent during the MCO at 16.5–16.3 Ma (Passchier et al., 2011). Marine δ18O records and climate modeling further suggest the East Antarctic Ice Sheet decreased to a size similar to today’s as sea surface temperatures increased (Cramer et al., 2011;
Flower & Kennett, 1993, 1994; Gasson et al., 2016; Pekar & Christie-Blick, 2008; Pekar & DeConto, 2006; Sangiorgi et al., 2018; Shevenell et al., 2004). A long-term increase in marine $\delta^{13}C$ values beginning at ~16.9 Ma may reflect increased burial of organic carbon, likely tied to enhanced marine and terrestrial primary productivity (Föllmi et al., 2005). Decreasing ice volume and increasing sea surface temperatures inferred from general circulation models and marine records are interpreted to have reduced the meridional temperature gradient (Herold et al., 2010; Sangiorgi et al., 2018).

Terrestrial records provide further insights into mid-Miocene temperatures and precipitation. Floras and faunas dependent on warm, wet conditions expanded to higher latitudes in North America, South America, and Europe, reflecting coupled increases in temperature and precipitation (Böhme, 2003; Hinojosa & Villagrán, 2005; Wolfe, 1985, 1994). For example, a rise in terrestrial pollen and freshwater algae abundances in the AND-2A sediment core suggests that Miocene Antarctica warmed during the MCO, with summer temperatures of ~10°C (Warny et al., 2009). Likewise, leaf wax hydrogen isotope compositions (δD) indicate that Antarctic summer temperatures were at least 11°C warmer than today (Feakins et al., 2012). Ecometric and taxonomic analyses of palaeofloras point to the expansion of diverse forest vegetation at middle to high latitudes in North and South America (Barreda & Palazzi, 2007; Dunn et al., 2015; Palazzi & Barreda, 2012; Palazzi et al., 2014; Wolfe, 1994). Similarly, leaf physiognomy and floral compositions from New Zealand suggest subtropical conditions during the MCO (MAT = 16.5–20°C; MAP = 1,500–2,500 mm/yr), capable of sustaining dense forests (Reichgelt et al., 2015).

Over the past ~130 years, the late-Early to Middle Miocene Santa Cruz Formation of Argentina (47–52°S latitude; Figure 1) has produced a wealth of terrestrial vertebrate fossils (see reviews of Vizcaíno et al., 2010, 2012a). The fauna is remarkable for both its diversity and preservation. Articulated skeletons are common, species richness is similar to modern lowland tropical forests, and marsupials, rodents, xenarthrans, primates, and a variety of ungulates are well represented (Croft, 2013; Vizcaíno et al., 2012a). The fauna and associated flora include several taxa inferred to be adapted to warm humid conditions (Brea et al., 2012; Fernicola & Albino, 2012; Kay, Perry, et al., 2012; Kay, Vizcaíno, et al., 2012) and are thought to reflect MCO-driven expansions of low-latitude to midlatitude ecosystems to high latitudes (Catena & Croft, 2020; Kay, Vizcaíno, et al., 2012; Spradley et al., 2019; Vizcaíno et al., 2010, 2012b). Many Santa Cruz Formation localities have been precisely dated to between 16 and 18 Ma (Fleagle et al., 1995, 2012; Perkins et al., 2012; Trayler et al., 2020), making the fauna ideal for investigating changes to Patagonian physical climate conditions (precipitation and temperature) at the onset of the MCO.

While previous examinations of Santa Cruz Formation ecology and climate have integrated several lines of floral, faunal, and sedimentological evidence (Croft, 2001; Kay, Vizcaíno, et al., 2012; Raigemborn et al., 2015, 2018; Vizcaíno et al., 2010), these estimates either lump observations over the entire formation or focus on a narrow stratigraphic, and therefore temporal, range. In this study, we present new stable carbon ($\delta^{13}C$) and oxygen ($\delta^{18}O$) isotope compositions from fossil bone and tooth enamel recovered from Santa Cruz Formation strata spanning about 1 million years at the initiation of the MCO (ca. 17.4–16.5 Ma; Trayler et al., 2020). We use these data to address three questions:

1. How did high atmospheric CO$_2$ concentrations at the onset of the MCO affect the physical climate conditions of the Santa Cruz Formation? We use our stable isotope data coupled with existing geochronology to create a model of mean annual precipitation (MAP) and mean annual temperature (MAT) from ca. 17.4 to 16.5 Ma. We also use intratooth isotopic zoning to investigate whether and how much seasonality changed through this interval.

2. Did changing physical conditions affect the ecology of large-bodied Santa Cruz Formation ungulates? This might be expected if changes in precipitation and temperature were sufficient to alter habitat type (e.g., more or less forested conditions).

3. How well do existing general circulation models predict physical conditions for Early Miocene Patagonia? Models of MCO conditions predict a high MAP (>1,000 mm/yr) and a low MAT (5–10°C) (Henrot et al., 2010; Herold et al., 2010, 2011; Tong et al., 2009). These models rely on proxy records to both inform model construction and validate model results. Until recently, the majority of suitable terrestrial MCO proxy sites were in the Northern Hemisphere (Herold et al., 2011). Our data add to a growing body of work on Southern Hemisphere paleoclimate (e.g., Butzin et al., 2011; Feakins et al., 2012; Gasson...
et al., 2016; Hauptvogel & Passchier, 2012; Reichgelt et al., 2015; Sangiorgi et al., 2018; Warny et al., 2009) and add new controls on Patagonian climate during the MCO.

2. Background

2.1. Miocene Climate of Patagonia

Previously published data indicate that the Miocene climate of Patagonia was characterized by warm and moist conditions. Tropical mammals diversified and expanded south during the Early Miocene (Pascual & Ortiz Jaureguizar, 1990). Patagonia, which had been dominated by a mixture of drier lowlands interspersed with forested riparian areas, saw a southward expansion of megathermal forests reliant on high temperatures (MAT > 24°C; Barreda & Palazzesi, 2007; Dunn et al., 2015; Strömberg et al., 2013). This more closed vegetation continued to dominate the region through at least the Middle Miocene followed by cooling and aridification in the Late Miocene (Barreda & Palazzesi, 2007).

2.2. Santa Cruz Formation Paleoclimate and Paleoecology

Santa Cruz Formation exposures are extensive in southern Patagonia from the Andean foothills to the Atlantic coast (Blisniuk et al., 2005; Cuitiño & Scasso, 2010; Cuitiño et al., 2015, 2016; Fernicola et al., 2019; Marshall, 1976; Tauber, 1994, 1997a; Vizcaíno et al., 2012b). Coastal outcrops are composed primarily of...

Figure 1. Map showing regional geography and Santa Cruz Formation fossil localities (modified from Vizcaíno et al., 2012a). Bold localities are included in this study.
mudstones, fine- and medium-grained volcaniclastic sandstones, and numerous tuffs (Bown & Fleagle, 1993; Matheos & Raigemborn, 2012; Raigemborn et al., 2018; Tauber, 1997a). The lowest coastal exposures are consistent with a transitional continental-marine environment. The formation coarsens upward with silty sandstones and weakly-formed paleosols becoming more common, suggesting a combination of a low-energy fluvial system and floodplain deposits. The upper Santa Cruz Formation is coarser, indicating a more energetic fluvial system (Matheos & Raigemborn, 2012).

Modern conditions in our study area (Figure 1) are cool (MAT ~8°C) and semiarid (MAP ~250 mm/yr; Vizcaíno et al., 2012a), in contrast to warmer and wetter conditions for late Early Miocene that others have inferred for Patagonia and that we discuss next. Previous work on florals from the lower Santa Cruz Formation indicates a mixture of semiarid temperate forests and humid dense forests (Brea et al., 2012, 2017). Fossil wood physiognomy suggests a MAT of either 9.3 ± 1.7°C or 19.3 ± 1.7°C (Brea et al., 2012), an imprecise MAP estimate (869 ± 940 mm/yr), and a long (~7 months) dry season (Brea et al., 2012). Clay mineralogy, paleosol type, and plant macrofossils in the lower part of our section have been interpreted to indicate a warm, subhumid environment with marked seasonality (Matheos & Raigemborn, 2012; Raigemborn et al., 2018). Coarse sandstones and conglomerates are very rare, and nearly all strata point to low-flow river systems (Matheos & Raigemborn, 2012).

Mammalian faunas from the Santa Cruz Formation also suggest a complex mosaic of coexisting habitat types. Several species of arid-adapted armadillos are common (Vizcaíno et al., 2006), while glyptodonts, arboreal and terrestrial sloths, and anteaters indicate woodland and forested environments (Bargo et al., 2012). Large ungulates are also commonly recovered. The hypsodont notoungulates (Nesodon and Adinotherium) have typically been reconstructed as mixed browser-grazers or grazers, although more recent morphological (Cassini, 2013; Cassini & Vizcaíno, 2012; Cassini et al., 2012) and microwear (Townsend & Croft, 2008) analysis points to a browsing diet, consistent with the presence of some woody vegetation. Croft (2001) used cenogram analysis (ranked plots of mammalian body mass) to compare the Santa Cruz Formation to 16 modern South American faunas and concluded the fauna was characteristic of a heavily forested, wet environment (but see a critique of cenogram analyses by Kay, Vizcaino, et al., 2012). Alternatively, based on inferences of terrestrial productivity reconstructed from calculations of population densities and herbivore on-crop biomass, Vizcaino et al. (2010) interpreted the paleoenvironment as a temperate forest and bushland, with MAP < 1,000 mm/yr. In contrast, Kay, Vizcaino, et al. (2012) reviewed existing floral and faunal constraints and using mammalian niche metrics inferred mixed forest-grasslands with MAP > 1,000 mm/yr and MAT > 14°C. Spradley et al. (2019) applied a variety of machine learning techniques to data for a variety of niche metrics (similar to those reported in Kay, Vizcaino, et al., 2012). As calibrated with modern South America, they inferred a MAP of between 830 and 1,350 mm/yr and MAT of 15–23°C for the lower Santa Cruz Formation. Recent ecological diversity analyses of the Santa Cruz fauna produced somewhat contradictory interpretations, linking the Santa Cruz fauna to Palearctic, Neotropical, and Indo-Malayan faunas, but overall pointed to a “subtropical, mixed forest environment” (Catena & Croft, 2020) with a MAP of 1,210 to 1,286 mm/yr at the upper end of estimates (Kay, Vizcaino, et al., 2012; Spradley et al., 2019).

2.3. Stable Isotopes in Enamel and Bone

Chemically, bone and tooth enamel are composed of hydroxylapatite [Ca$_5$(PO$_4$)$_3$OH], with carbonate (CO$_3$) substitution in the PO$_4$ and OH sites (Elliott, 2002). While bone carbonate is easily altered diagenetically at ambient temperatures (Kohn & Law, 2006), enamel is resistant to alteration, retaining its primary isotope composition (Kohn & Cerling, 2002).

Tooth enamel mineralizes progressively from the occlusal (wear) surface toward the root and is not remodeled after formation. Mineralization occurs as a two-stage process—apposition and maturation (Robinson et al., 1978, 1979; Suga, 1982)—although only second stage maturation controls isotope compositions (Trayler & Kohn, 2017). Mineralization rates for ungulates vary but are commonly on the order of 40–60 mm/yr (Fricke et al., 1998; Kohn, 2004). An animal’s δ^{18}O value tracks variations in the composition of meteoric water throughout the year, typically with lower values in winter and higher values in summer. Similarly, an animal’s δ^{13}C value tracks variations in diet.
Changes in an animal’s $\delta^{18}O$ and $\delta^{13}C$ values correlate with changes in its environment and diet and are archived in tooth enamel; however, a damping effect related to the rate of mineralization and the carbon and oxygen turnover rates in the animal reduces the overall variability of enamel isotope compositions relative to environmental variability (Kohn, 1996; Kohn et al., 1996, 1998; Passey & Cerling, 2002; Podlesak et al., 2008). That is, the total range of $\delta^{18}O$ and $\delta^{13}C$ values within a single tooth will be lower than the seasonal range of local water $\delta^{18}O$ values and plant $\delta^{13}C$ values. A variety of models have been proposed to calculate the magnitude of this damping (Green et al., 2018; Passey & Cerling, 2002; Passey, Cerling, et al., 2005; Zazzo, Lécuyer, Sheppard, et al., 2004), but in the context of improved understanding of isotopic systematics during tooth enamel mineralization (Trayler & Kohn, 2017), damping should be no more than \sim50% of the total seasonal range (Kohn, 2004). Indeed, many mammalian teeth preserve isotopic seasonality in their enamel (e.g., Balasse, 2003; Balasse et al., 2012; Fricke & O’Neil, 1996; Fricke et al., 1998; Green et al., 2018; Kohn et al., 1998; Zazzo, et al., 2005). Therefore, while teeth do not record the full environmental range of isotope compositions over a period of tooth growth, isotopic zoning within enamel does reflect changes in seasonality and diet. As a corollary, high versus low amplitude zoning reflects high versus low isotopic variation in the sources of oxygen and carbon that an animal ingests.

The oxygen isotope composition of tooth enamel is controlled by the composition of ingested water (Kohn, 1996; Kohn et al., 1996; Luz & Kolodny, 1985). Many large herbivores ingest much of their water via drinking, and enamel $\delta^{18}O$ values from most modern mammals strongly correlate with local water $\delta^{18}O$ values, represented by either local streams and small water bodies or amount weighted precipitation (Hoppe, 2006; Kohn, 1996; Kohn & Dettman, 2007; Kohn et al., 1996, 1998). Some drought-tolerant taxa exhibit important isotopic shifts related to aridity (Ayliffe & Chivas, 1990; Levin et al., 2006; Luz et al., 1990). Some drought-tolerant taxa exhibit important isotopic shifts related to aridity (Ayliffe & Chivas, 1990; Levin et al., 2006; Luz et al., 1990). The carbon isotope composition of enamel is controlled by diet. In herbivores, enamel $\delta^{13}C$ values reflect the plants they eat plus an enrichment factor. Studies of wild and captive herbivores suggest enrichments of $+13.3−14.6\%$. (Passey, Robinson, et al., 2005). Protein-based phylogenetic analyses place many South American ungulates in a monophyletic clade with nonruminant perissodactyls (Buckley, 2015; Welker et al., 2015). Likewise, morphological similarities between perissodactyls and notoungulates suggest a common hindgut fermentation strategy (Cassini et al., 2012). Harris et al. (2020) compiled data from the literature for equids and recommend a weighted average enrichment factor (ε) of 14.5‰, which we use for all enamel-diet corrections.

All plants use one of three photosynthetic pathways (C_3, C_4, or CAM) to fix atmospheric CO$_2$, each resulting in characteristic carbon isotope compositions. C_4 plants (modern $\delta^{13}C = −12.1 \pm 1.1\%$) are primarily warm growing season grasses, sedges, and several lineages of dicots (Sage et al., 2011). C_4 plants became a significant portion of global vegetation biomass only in the Late Miocene and Early Pliocene (Cerling et al., 1997; Edwards et al., 2010) and are therefore unlikely to have contributed significantly to the diet of Santa Cruz Formation herbivores. Likewise, CAM plants, which rarely make up a significant portion of large herbivore diets today, appear to have been neither diverse nor abundant in ecosystems prior to the Late Miocene (Edwards & Ogburn, 2012).

C_3 plants (trees, shrubs, herbs, and cool-season grasses) therefore make up the majority of both modern and late-Early Middle Miocene vegetation biomass (Cerling et al., 1997; Still et al., 2003). Modern C_3 $\delta^{13}C$ values have a mean of $−28.5\%$ and range from $−23$ to $−32\%$, although values more positive than $−24\%$ are rare (Kohn, 2010). As mid-Miocene atmospheric CO$_2$ $\delta^{13}C$ values were 2.5% higher than modern values (Tipple et al., 2010), tooth enamel $\delta^{13}C$ values lower than $−7\%$ (as an approximation, $−24.0 + 4.5\% + 2.5\%$) should reflect a diet of pure C_3 plants. $\delta^{13}C$ values in closed canopy forests are extremely low (less than $−31\%$) due to recycling of low $\delta^{13}C$ CO$_2$ and low light levels in the understory (van der Merve & Medina, 1991). Consequently, $\delta^{13}C$ values in mid-Miocene tooth enamel lower than $−14\%$ ($−31\% + 4.5\% + 2.5\%$) would indicate closed-canopy forests.

3. Materials and Methods

3.1. Fossil Collection and Sampling

Fossil teeth and bone fragments from large mammals were collected in situ from two Santa Cruz Formation localities, Cañadón de las Vacas and Rincón del Buque (Figure 1). The stratigraphic position of each
specimen was measured using a Jacob’s staff relative to one of several marker tuffs of known position and age (Figure 2, supporting information). Fossil teeth are accessioned in the Museo Regional Provincial P.M.J. Molina (MPM-PV) of Rio Gallegos, Santa Cruz Province, Argentina. Bone fragments were destroyed during analysis and were not accessioned. In most cases, teeth were identified to the genus level. We selected bone fragments based on their potential for isotopic analysis and made no attempt to identify them. When collecting fossil teeth, we primarily targeted large ungulates for two reasons. First, these animals are abundant throughout the section, making it possible to track the same genera through time. Assuming animals did not change the types of plants they consumed appreciably through time, changes in plant isotopic values (as opposed to differences in diet) can be assessed throughout the section. Second, large herbivores consume large amounts of plant biomass and are often less selective in their feeding than smaller animals, effectively integrating plant compositions across a large landscape into single enamel samples (Kohn, 2016).

The average sedimentation rate through our section was roughly 150 m/Ma, or 6–7 ka per meter. Thus, two laterally separated fossils collected from a typical meter-thick horizon cannot be correlated more precisely in time to better than a few thousand years. With the exception of some particularly fossiliferous levels near the base of our section (~84.5 m above sea level), we did not find fossil teeth of all taxa of interest in most stratigraphic horizons (Figure 2). However, there are no systematic increases or decreases in the abundance of one taxon relative to others through the section, such that taxonomic changes throughout the section should not drive isotopic shifts.

We sampled teeth from three orders, Notoungulata, Astrapotheria, and Litopterna. Notoungulata is represented in our sample by two families, Toxodontidae (genera: Nesodon and Adinotherium) and Homalodotheriidae (genus: Homalodotherium). Order Astrapotheria is represented by one family (Astrapotheriidae) and one genus (Astrapotherium). At least five genera within order Litopterna have been described from the Santa Cruz Formation (Cassini et al., 2012). However, our litoptern teeth were usually fragmented and were identifiable only to order Litopterna. We separately compared Δ^{13}C and δ^{18}O values (Equation 2) among taxonomic groups using analysis of variance (ANOVA) and post hoc pairwise t tests (with Bonferroni correction) to assess dietary similarities among taxa (Table 2). Several fragmentary teeth were identified only as “Toxodontidae indet.” These samples were excluded from statistical tests, as they represent an unknown mixture of several groups, but were included in later temperature and precipitation modeling.

All teeth were lightly abraded with a carbide burr to remove surficial material before sampling. About 10 mg of enamel powder was collected from each tooth using a 0.5 mm inverted cone carbide dental drill bit and a Dremel® rotary tool. To characterize broad isotopic trends, we collected bulk enamel samples by drilling a

Figure 2
Age-depth model for a composite section of the Cañadón de las Vacas and Rincón del Buque localities. Colored areas with tails are the probability distribution functions for each marker tuff (modified from Trayler et al., 2020). Colored dots and error bars indicate the median age and uncertainty expressed as 95% credible intervals (CI) of fossil bone and enamel samples. See supporting information for precise stratigraphic positions for all fossil samples.

Table 2
Statistical Comparisons of δ^{18}O Values for Santa Cruz Formation Herbivores

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Astrapotherium</th>
<th>Homalodotherium</th>
<th>Litopterna</th>
<th>Nesodon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adinotherium</td>
<td>S</td>
<td>NS</td>
<td>S</td>
<td>NS</td>
</tr>
<tr>
<td>Astrapotherium</td>
<td>—</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Homalodotherium</td>
<td>—</td>
<td>—</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Litopterna</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>S</td>
</tr>
</tbody>
</table>

Note. NS, no significant difference ($p > 0.05$); S, significant differences ($p < 0.05$).
single continuous groove parallel to the growth axis for the entire length of the available enamel. In most cases, this process averaged several cm of enamel into a single sample, effectively integrating a large portion of (possible) isotopic seasonality. To characterize seasonality, we also collected serial samples from a subset of teeth to examine intratooth isotopic zoning. Five molars were subsampled in detail along the tooth and perpendicular to the growth axis—one Astrapotherium, one Homalodotherium, and three Nesodon.

Each bone analysis represents a composite of several \((n > 5)\) laterally separated bone fragments from the same horizon. These fragments were sonicated in deionized water to remove surfi
cial material and ground independently in a mortar. Equal volumes of each resulting powder were mixed.

After sampling, we pretreated all enamel and bone powders following the procedures of Koch et al. (1997) to remove organic contaminants and labile carbonates. The isotope composition of the carbonate component of each sample was measured by phosphoric acid digestion at 70°C using a 2010 ThermoFisher GasBench II coupled with a Delta V+ continuous flow isotope ratio mass spectrometer located in the Stable Isotope Laboratory, Department of Geosciences, Boise State University. All stable isotope analyses in this study are from the carbonate component and are reported in the standard delta notation relative to VPDB and VSMOW for \(\delta^{13}C\) and \(\delta^{18}O\), respectively. All analyses were standardized to VPDB \(\delta^{13}C\) and VSMOW \(\delta^{18}O\) using the NBS-18 and NBS-19 calcite standard reference materials. Analytical reproducibility for both standards was \(\pm 0.1–0.2\) \((n = 46; 2\sigma)\) for both \(\delta^{13}C\) and \(\delta^{18}O\). We also analyzed several replicates of NIST 120c, a phosphorite with chemistry similar to enamel and bone, as a preparation standard. Average compositions for NIST120c were \(-6.52 \pm 0.14\%\) \((n = 20; 2\sigma)\) and \(28.89 \pm 0.65\%\) \((n = 20; 2\sigma)\) for \(\delta^{13}C\) and \(\delta^{18}O\), respectively.

3.2. Precipitation Estimations

\(C_3\) plant \(\delta^{13}C\) values are sensitive to aridity, with \(\delta^{13}C\) values decreasing with increased water availability (Diefendorf et al., 2010; Ehleringer, 1989; Ehleringer & Cooper, 1988; Farquhar et al., 1989; Kohn, 2010). This relationship allows very broad inference of habitat type, with higher \(\delta^{13}C\) values associated with open habitats (savanna and scrublands) and lower values associated with closed habitats (forests). The dependency of the carbon isotope compositions of \(C_3\) plants on water availability also allows \(\text{MAP}\) to be calculated from enamel \(\delta^{13}C\) values:

\[
\text{MAP} = 10\left(\frac{\Delta^{13}C - 2.41 \times 0.0019 \times \text{elevation} - 0.0218 \times \text{abs} \text{latitude}}{5.88} \right) - 300
\]

where elevation and latitude are in meters and degrees (Kohn, 2010). \(\Delta^{13}C\) is given by

\[
\Delta^{13}C = \frac{\delta^{13}C_{\text{atm}} - (\delta^{13}C_{\text{leaf}})}{1 + (\delta^{13}C_{\text{leaf}})/1,000}
\]

which corrects \(\delta^{13}C_{\text{leaf}}\) values for changes to atmospheric CO2 \(\delta^{13}C\) values. \(\delta^{13}C_{\text{leaf}}\) is calculated using our measured herbivore enamel carbon isotope compositions and a nonruminant specific enrichment factor:

\[
\delta^{13}C_{\text{leaf}} = \frac{\delta^{13}C_{\text{enamel}} - 14.5}{1 + \frac{14.5}{1,000}}
\]

Whereas South America has moved westward since the Miocene (Hartnady & Le Roex, 1985), there have been changes of less than 5° in latitude and negligible changes in elevation in the study area; we therefore use a modern elevation of ~20 m and latitude of ~50.5° for all specimens. Even so, regression coefficients in Equation 1 show that these two parameters have little overall effect on MAP calculations.

We used the approach of Tipple et al. (2010) to calculate \(\delta^{13}C_{\text{atm}}\) from the high-resolution benthic foraminifera records of Holbourn et al. (2015). We made no corrections to our data for changes in atmospheric CO2 concentrations. While weeks- to months-long controlled experiments imply a dependency between \(C_3\) plant \(\delta^{13}C\) values and atmospheric CO2 concentrations (Schubert & Jahren, 2012), modern and fossil tooth enamel proxy records do not resolve a dependence of plant \(\delta^{13}C\) values on atmospheric CO2 concentrations (Kohn, 2016).
3.3. Temperature Estimations

Bone is mineralogically similar to enamel but has a proportionally higher carbonate content in the apatite structure (Driessens & Verbeeck, 1990) and is more finely crystalline, increasing its susceptibility to chemical alteration and recrystallization during fossilization (Ayliffe et al., 1994; Trueman & Tuross, 2002). Isotopic resetting of the carbonate component of bone apatite is thought to occur during fossilization at ambient soil temperatures in equilibrium with soil water oxygen isotope compositions (Kohn & Law, 2006). Because fossilization and recrystallization occur over a few tens of thousands of years (Kohn & Law, 2006) and accumulation rates for the localities studied here were ~0.15 m/ka (Perkins et al., 2012; Trayler et al., 2020), most fossilization and isotopic resetting likely occurred at a depth of ≥1 m below the surface, limiting evaporative enrichment of soil water. Consequently, we assume that soil water compositions mirror local water compositions, although the two sources are not necessarily the same physical water. We also assume that soil temperatures reflect MAT. Soil temperatures correlate well with air temperatures at a depth of a few centimeters to a few meters. At shallow depths (<1 m), soil temperatures may be higher than air temperatures, while at greater depths, soil temperatures do not appear to differ significantly from MAT (Paul et al., 2004; West, 1952; Zheng et al., 1993).

Given an independent record of local water δ¹⁸O values (enamel) and the temperature dependence of CaCO₃-water oxygen isotope fractionation (Kim & O'Neil, 1997), bone and enamel oxygen isotope compositions can be related to temperature (Zanazzi et al., 2007):

\[
\text{MAT} \, (^\circ C) = \frac{18.030}{1000 \ln \left(\frac{1 + \left(\frac{\delta^{18}O_{\text{bone}} - 2.2 \pm 0.6}{1.000} \right)}{1 + \left(\frac{1.15 \pm 0.08 \times \delta^{18}O_{\text{enamel}} - 36.3 \pm 1.6}{1.000} \right)} \right)} + 273.15 \tag{4}
\]

where δ¹⁸Obone and δ¹⁸Oenamel are expressed in VSMOW.

We propagated model errors and uncertainties in δ¹⁸Obone and δ¹⁸Oenamel using a Monte Carlo approach. These calculations account for temporal uncertainties and compositional scatter in the data, uncertainties in the global correlation of tooth enamel isotope composition and local water composition (denominator of the ln term, Equation 4), and the calibration uncertainty that links bone and calcite δ¹⁸O (numerator of the ln term, Equation 4). Physiology can impact mammal isotope composition (Kohn, 1996), especially an animal’s water dependence, and potentially bias MAT calculations. While the exact physiology of an extinct organism can never be known, notoungulates likely shared the same plesiomorphic digestive physiology (hindgut fermentation) as modern perissodactyls, as indicated from craniodental and molecular phylogenetic analysis (Buckley, 2015; Cassini et al., 2012; Fletcher et al., 2010; Kohn et al., 2015; Welker et al., 2015). Hindgut fermenters have high daily water requirements, and their δ¹⁸O values group with other large water-dependent herbivores along a strong global correlation between animal δ¹⁸O and local water δ¹⁸O. Thus, the δ¹⁸O values of the large notoungulates that we analyzed should logically correlate with local water compositions in the same way that is observed today for perissodactyls and other large water-dependent animals. While we cannot quantify the uncertainty in this assumption, it seems likely to be much smaller than the scatter in modern data that is accounted for already in our error estimates.

We also cannot directly quantify errors in our assumption that soil water composition and temperature at the site of bone fossilization reflect local water composition and local MAT. However, in principle, alternative assumptions should induce systematic offsets in temperature calculations rather than changing absolute errors. For example, if soil temperatures were 2°C higher than surface air temperatures, then our MAT estimates would be 2°C too high. Taken together, our estimates of temperature uncertainty must be minima, but changes to MAT are likely to be resolved more accurately than absolute temperatures.

3.4. Age-Depth Modeling and Isotope Compositions

Based on U-Pb and ⁴⁰Ar/³⁹Ar ages of multiple dated tuffs, the age of the Cañadón de las Vacas and Rincón del Buque localities (Figure 2) is between ~17.4 and ~16.5 Ma (Perkins et al., 2012; Trayler et al., 2020). Trayler et al. (2020) also used a modified version of the Bayesian age-depth model Bchron (Haslett &
Table 1

Summary Statistics for All Taxonomic Groups

<table>
<thead>
<tr>
<th>Taxa</th>
<th>$\delta^{13}C$</th>
<th>$\delta^{18}O$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2σ</td>
<td>Mean</td>
</tr>
<tr>
<td>Nesodon</td>
<td>-11.36</td>
<td>2.53</td>
</tr>
<tr>
<td>Adinotherium</td>
<td>-12.23</td>
<td>2.83</td>
</tr>
<tr>
<td>Litopterna</td>
<td>-11.18</td>
<td>4.01</td>
</tr>
<tr>
<td>Astrapotherium</td>
<td>-10.88</td>
<td>1.51</td>
</tr>
<tr>
<td>Homalodotherium</td>
<td>-10.62</td>
<td>1.80</td>
</tr>
<tr>
<td>Toxodontidae indet.</td>
<td>-11.62</td>
<td>2.37</td>
</tr>
</tbody>
</table>

Note. The Toxodontidae indet. group likely represents a combination of Nesodon, Adinotherium, and Homalodotherium.

We smoothed bulk enamel $\delta^{13}C$, bulk enamel $\delta^{18}O$, and bone $\delta^{18}O$ values using the Monte Carlo method outlined above (Trayler et al., 2020). We allowed the isotope composition of each sample to vary by ±1.6‰ for oxygen and ±0.6‰ for carbon to reflect intratooth variations in isotope composition (discussed below). All fossil-age predictions, statistical analysis, and data smoothing were performed using R v. 3.3.3 (R Core Team, 2019).

4. Results

4.1. Bulk Isotope Compositions

Enamel $\delta^{13}C$ values have a mean value of $-11.4 ± 2.3$‰ (2σ; Table 1 and Figure 3), with a maximum value of -8.8‰, consistent with a diet of purely C3 plants. Enamel $\delta^{18}O$ values have a mean value of 23.1 ± 3.4‰.

Bone $\delta^{13}C$ and $\delta^{18}O$ values are similar to those of enamel with means of $-10.6 ± 3.8$‰ and 21.8 ± 1.8‰, respectively. Stable isotope compositions and stratigraphic positions for all samples may be found in the supporting information (Tables S1 and S2).

Although we include undifferentiated notoungulate data in later temperature and precipitation modeling calculations, we excluded these data from statistical tests as they represent a combination of Adinotherium, Nesodon, and Homalodotherium. Because fossil ages span ~1 Ma (discussed below), we tested the equivalence of means among taxa using $\Delta^{13}C$ values (Equation 2), which corrects for changes to the $\delta^{13}C$ of the atmosphere. Nesodon, Adinotherium, Astrapotherium, Homalodotherium, and litopterns show no significant differences in $\Delta^{13}C$ values (ANOVA; $p > 0.05$). $\delta^{18}O$ values among taxa show statistically significant differences (ANOVA; $p < 0.05$). Post hoc pairwise t-tests (with Bonferroni correction; Table 2) reveal that Astrapotherium $\delta^{18}O$ values are significantly lower than all other taxa and that litoptern $\delta^{18}O$ values are significantly higher than all groups except Homalodotherium.

4.2. Intratooth Isotope Zoning

Zoning profiles along the five molars that we analyzed reveal low to moderate variation in carbon and oxygen isotope compositions over the length of each tooth (Figure 4 and Table S2). Although enamel mineralization rates for notoungulates and astrapotheres are unknown, rates for horses and bovids vary between 40 and 60 mm/yr (Kohn, 2004; Trayler & Kohn, 2017), suggesting that our zoning profiles should represent about...
~0.5 to 1.5 years of enamel growth. Overall, $\delta^{13}C$ values within a single tooth show low variance, with an average intratooth variation of ±0.6‰ (2σ). Carbon isotope compositions from one individual (CV-RT-15-016) display an ~2‰ change in $\delta^{13}C$ values over ~20 mm, which is the maximum observed variability. $\delta^{18}O$ values show somewhat more variation, with an average intratooth variability of ±1.6‰ (2σ). Oxygen isotope zoning profiles do not reveal a clear structure; that is, there is no quasi-sinusoidal variation in $\delta^{18}O$ values that usually results from strong seasonal variations in meteoric water isotope compositions. Instead, three teeth show several millimeters of unchanged isotope compositions followed by sharp excursions toward low $\delta^{18}O$ values.

4.3. Fossil Age-Depth Modeling and Smoothing

Model ages for enamel and bone samples range from ~17.4 to ~16.4 Ma (Figure 2). Samples located near dated tuffs are best constrained temporally and have uncertainties similar to the tuffs themselves (typically ±0.03 Ma), while samples that are stratigraphically farthest from dated tuffs have the highest age uncertainties (up to ±0.28 Ma). Although sampling of individual taxa was not identical either stratigraphically (Figure 2) or temporally (Figures 5a and 5b), pairwise Kolmogorov-Smirnov tests reveal no significant differences ($p > 0.05$) in the stratigraphic distribution of taxonomic groups. That is, each taxonomic group can be thought of as a sample from the same underlying distribution of fossils. However, the sampling density of each group does vary throughout the section. Nesodon and Adinotherium are the most common and are well represented throughout. Litopterns and Astrapotherium are less common but are still represented over most of the section. Homalodotherium is the least abundant taxon, represented by only five individuals. Sampling heterogeneities are partially mitigated by two factors. First, because large herbivores consume large amounts of plant matter, they act as effective integrators of plant isotope compositions. Second, because our smoothing model allows the age of each individual data point to vary probabilistically, heterogeneities in taxa distributions are also smoothed. Last, we do not detect any significant differences in $\delta^{13}C$ values among the four taxa, so sampling of one taxon for carbon isotope compositions is plausibly indistinguishable from sampling another. Nonetheless, we also report smoothed isotope profiles for only Toxodontidae (Nesodon and Adinotherium; Figures 5 and 6), because this group makes up a majority (~60%) of our samples.

Smoothed enamel $\delta^{13}C$ values increased from ~12‰ to ~10.5‰ between 17.4 and ~16.9 Ma, followed by a slight decrease of ~0.4‰ before remaining unchanged until the end of the record (Figure 5a). Smoothed enamel $\delta^{18}O$ values followed a similar trajectory (Figure 5b), with an increase from 23‰ to 24‰ between ~17.4 and ~16.9 Ma followed by a gradual increase of ~0.6‰ until the end of the record.
5. Discussion

5.1. Diagenetic Alteration

The flat, nonsinusoidal composition profiles might be viewed as a possible indicator of diagenetic alteration. However, modern ungulate teeth from Bolivia show similarly flat profiles (Bershaw et al., 2010), so flat profiles do occur in unaltered tooth enamel. Other observations are consistent with preservation of original biogenic compositions. For example, δ¹³C values fall within ranges of a pure C₃ diet, and (as discussed in section 5.2) δ¹⁸O values.Astrapotherium are lower than for other taxa, as expected for (hypothesized) semiaquatic mammals (Clementz et al., 2008). Lastly, microbially mediated dissolution-reprecipitation of enamel apatite is viewed as the dominant driver of isotopic alteration in tooth enamel (Zazzo, Lécuyer, & Mariotti, 2004). However, the fossil teeth that we analyzed preserve exquisite biogenic textures, including decussate fibers of apatite, Hunter-Schreger bands, incremental lines, and surface polish. Microbial processes would likely eradicate these textures.

5.2. Ecology of Large-Bodied Santa Cruz Formation Ungulates

Only one enamel δ¹³C values fall within the expected range for closed-canopy forests (−14‰), while none fall within the range of mixed C₃-C₄ environments. The lack of significant differences among herbivore δ¹³C values suggests dietary homogeneity or resource partitioning in ways not readily distinguished using carbon isotopes (e.g., feeding at different times, feeding on different parts of a plant, and feeding on different plants with similar δ¹³C values). Intermediate δ¹³C values (−7 to −14‰) are usually interpreted as open woodlands or mixed woodland–scrubland environments (Feranec & MacFadden, 2006; Kohn et al., 2005; Trayler et al., 2015). Given the range of observed δ¹³C values, all sampled herbivores were likely mixed feeders or browsers, moving between wooded and open areas but not occupying closed-canopy systems.

Homalodotherium limb morphology indicates the ability to adopt a bipedal posture, freeing the forelimbs and enabling browsing in the lower canopy (Cassini et al., 2012; Elissamburu, 2010). Morphomorphometric and morphometric analysis of skulls has variously proposed a grazing or mixed feeding niche for the notoungulates Nesodon and Adinotherium (Cassini, 2013; Cassini & Vizcaíno, 2012; Cassini et al., 2012), while enamel microwear suggests a primarily browsing diet for both taxa (Townsend & Croft, 2008). Adinotherium has the lowest observed δ¹³C values, but mean Nesodon δ¹³C values are only slightly higher than for Adinotherium. Given the similarity among δ¹³C values of Homalodotherium, Nesodon, and Adinotherium, our isotopic data are compatible with a browsing diet for all these taxa. Similarly, our data support the interpretation of brachydont litopterns as browsers (Cassini, 2013; Cassini & Vizcaíno, 2012; Cassini et al., 2012). However, since the carbon isotope composition for C₃ grasses (−26.7 ± 2.3‰; Cerling et al., 1997) falls in the middle of the overall range in C₃ plants (δ¹³C ~ −23 to −32‰), we cannot exclude the possibility of C₃ grazing. While Astrapotherium δ¹³C values do not differ significantly from other taxa, its mean δ¹⁸O value is −2.5‰ lower than the mean for all other taxa. Analysis of limb morphology led Avilla and Vizcaíno (2005) to conclude that Astrapotherium was semiaquatic, while Cassini et al. (2012) proposed that its limbs resembled those of the Indian Rhinoceros (Rhinoceros unicornis), which commonly wallows and browses in lakes and rivers (Laurie et al., 1983). Increased water availability can allow rapid turnover of body water, which drives δ¹⁸O values (lower) toward local water δ¹⁸O (Clementz et al., 2008; Kohn, 1996; MacFadden, 1998).
We interpret low δ18O values for *Astrapotherium* as supporting other lines of evidence for a semiaquatic lifestyle.

5.3. Carbon Isotopes and Climate

Two factors complicate our ability to link changes in tooth enamel isotopes to changes in global climate. First, marine proxy records for this time period (Holbourn et al., 2015) have a much higher temporal resolution than our data, and second, our data have considerably higher variance than marine records. We therefore focus on comparisons between marine records and our smoothed and interpolated isotope compositions, rather than raw enamel and bone data. Note that changes in atmospheric CO2 δ13C values are reflected as changes to plant carbon isotope compositions in a 1:1 relationship. That is, at constant MAP, an increase in atmospheric CO2 δ13C causes an equivalent increase in tooth enamel δ13C. Consequently, it is more important to focus on changes in Δ13C, which reflect MAP, than any specific shift in δ13C.

Overall, our calculations show a trend of decreasing MAP between ~17.4 and ~16.9 Ma (Figure 6), a MAP minimum corresponding to the onset of the MCO at ~16.9 Ma, followed by a rebound to higher MAP by 16.5 Ma. For the 17.4 to 16.9 Ma interval, enamel δ13C values increased by ~1%, beginning at ~17.4 Ma to reach a maximum at ~16.9 Ma. Simultaneously, atmospheric CO2 δ13C increased only slightly by +0.2‰. In combination, Δ13C decreased by 0.8‰, indicating a decrease in MAP, specifically from 1,000 ± 235 mm/yr at ~17.4 Ma to 525 ± 105 mm/yr (mean ± 2σ) at ~16.9 Ma (Figure 6).

The onset of the MCO at ~16.9 Ma aligns approximately with the beginning of the “Monterey” carbon isotope excursion toward higher δ13C values in marine sediments and (inferred) atmospheric CO2 (Vincent & Berger, 1985). The excursion is thought to have been driven by increased marine and terrestrial productivity and carbon sequestration (Follmi et al., 2005; Vincent & Berger, 1985), modulated by a series of 400 ka oscillations, which correspond to long period eccentricity (Holbourn et al., 2007; Ma et al., 2011). As interpreted from marine data, the first of these oscillations corresponds to an abrupt warming period between 16.9 and 16.7 Ma, possibly driven by enhanced insolation during high eccentricity (Holbourn et al., 2015). This warming period corresponds to a Δ13C maximum in our smoothed data.

Between 16.9 and 16.7 Ma, atmospheric CO2 δ13C values increased by 0.1 to 0.2‰, while median δ13C values of tooth enamel remained static or decreased slightly (~0.1‰). These trends combine to form an increase in Δ13C between plants and atmospheric CO2 and, consequently, an increase in MAP to 685 ± 170 mm/yr.

Between 16.7 and 16.4 Ma, atmospheric CO2 δ13C increased by ~0.3‰, while δ13C of tooth enamel remained approximately constant. The increase in median Δ13C implies an increase in MAP to 835 ± 270 mm/yr at the end of the record. Within 2σ uncertainty, this estimate overlaps the MAP estimate at ~17.4 Ma (1,000 ± 235 mm/yr) but not the MAP estimate at ~16.9 Ma (525 ± 105 mm/yr).

5.4. Oxygen Isotopes and Climate

Mean enamel and bone δ18O values varied only slightly from 17.4 to 17.1 Ma. Modeled MAT values during this period are warm (20 ± 4°C; Figure 6), with the exception of a negative excursion at 17.3 Ma. Benthic foraminifera δ18O values were also stable during this period (17.1–17.4 Ma), pointing to little change to
temperature and/or ice volume (Holbourn et al., 2015). Increasing enamel $\delta^{18}O$ values by \sim1‰ and a corresponding decrease in bone $\delta^{18}O$ values at \sim17.0 Ma suggest a brief MAT excursion up to 25 ± 7°C at the onset of the MCO. Global warming beginning at about \sim16.9 Ma (Holbourn et al., 2015), drove a reduction and reconfiguration of the East Antarctic ice sheet, resulting in an \sim0.5‰ decrease in marine $\delta^{18}O$ values as melting ice added ^{18}O depleted water to the oceans (Pekar & Christie-Blick, 2008; Pekar & DeConto, 2006). The retreat of the East Antarctic Ice Sheet inland (Hauptvogel & Passchier, 2012; Passchier et al., 2011; Sangiorgi et al., 2018), coupled with an influx of fresh meltwater into the southern Atlantic, reduced the production of Antarctic bottom water (Pekar & DeConto, 2006). Reduced bottom water production, in turn, weakened thermohaline circulation, inhibiting the transport of warm equatorial waters south during this period (Pekar & DeConto, 2006; Schmitz, 1995). Despite a global temperature increase, the calculated MAT in our section decreased slightly between 17 and 16.7 Ma, with a minimum estimate of 19 ± 4°C, at \sim16.85 Ma. This temperature decrease suggests regional cooling, perhaps the result of reduced equatorial heat transport or influx of cold Antarctic water or both. Low observed MAP during this period also suggests that weakened circulation led to lower evaporation and, likely, evapotranspiration.

After \sim16.7 Ma, enamel $\delta^{18}O$ values increased slightly, while bone $\delta^{18}O$ values remain constant. Calculated MAT rebounded to high values until the end of the record with a maximum modeled temperature of 25 ± 8°C at 16.5 Ma. This rebound could reflect a temporary stabilization of the reduced Antarctic ice sheet, perhaps permitting warmer low latitude waters to influence Patagonian climate more strongly. Thus, despite an initial excursion toward lower temperatures and precipitation, southern Patagonia ultimately followed global trends in increased temperature and precipitation observed in Northern and Southern Hemispheres records (Böhme, 2003; Böhme et al., 2011; Feakins et al., 2012; Hinojosa & Villagrán, 2005; Reichgelt et al., 2015; Warny et al., 2009; Wolfe, 1985, 1994).

Uplift of the Andes during the Miocene enhanced orographic rain shadow for much of Patagonia, driving a long-term aridification of the area (Blisniuk et al., 2005; Palazzesi et al., 2014). While the magnitude of uplift between 17.4 and 16.5 Ma is unclear, oxygen isotope lapse rates for the southern Andes predict a \sim0.3‰/0.1 km decrease in $\delta^{18}O$ values with increasing elevation (Blisniuk & Stern, 2005; Poage & Chamberlain, 2001). Given that enamel and bone $\delta^{18}O$ values show a gradual increase, we assume that Andean uplift did not significantly influence meteoric water isotope compositions during this period and that observed changes are a result of larger-scale climatic forcing.

5.5. Isotopic Zoning and Seasonality

Overall, carbon and oxygen isotope zoning within individual teeth is less than 2‰, suggesting small to moderate seasonal change in precipitation and vegetation compositions. Modern precipitation and lake water $\delta^{18}O$ values for the study area each vary by nearly 20‰ (Mayr et al., 2007). Assuming that typical enamel mineralization rates and body water residence times would attenuate the tooth enamel isotopic record of meteoric water variations by \sim50% (Kohn, 2004; Passey & Cerling, 2002; Podlesak et al., 2008), modern teeth from the area would be expected to preserve $\delta^{18}O$ variations of \sim10‰, much higher than the observed variation in fossil teeth. There must therefore have been little seasonality to precipitation $\delta^{18}O$, likely pointing to less seasonal variation in temperature, congruent with interpretations of climate proxies based on mammalian functional morphology (Kay, Vizcaino, et al., 2012).

5.6. Comparisons to Other Proxies

Most previous MAP and MAT estimates for the Santa Cruz Formation have focused on florals and faunas from several productive faunal levels (Kay, Vizcaino, et al., 2012; Tauber, 1997b) of similar age (\sim17.4 to \sim17.5 Ma; Perkins et al., 2012). Consequently, these estimates represent a short period of time that best corresponds to our oldest strata.

Wood physiognomy-based estimates of MAT (19.3 ± 1.7°C; Brea et al., 2012; Wiemann et al., 1999) from the lower Santa Cruz Formation fall entirely within the uncertainty of our MAT calculations for older fossils (20 ± 4 > \sim17.2 Ma). An alternative MAT estimate from the same source of 9.4 ± 1.7°C (Brea et al., 2012; Poole et al., 2005) does not overlap our data and is also inconsistent with faunal data suggesting MAT > 14°C (Fernicola & Albino, 2012; Kay, Vizcaino, et al., 2012). As noted by Brea et al. (2012), the lower MAT estimates were based on less than 10 different types of wood, while 20–25 samples are recommended (Wiemann et al., 1999); thus, the temperature discrepancy may reflect sampling bias.
Previously reported estimates of MAP for the Santa Cruz Formation vary significantly, with some estimates mutually exclusive. Published values include <1,000 mm/yr (Vizcaíno et al., 2010), 1,000–1,500 mm/yr (Kay, Vizcaíno, et al., 2012), and 850–1,350 mm/yr (Spradley et al., 2019). Wood physiognomy-based MAP calculations are imprecise (870 ± 940 mm/yr; Brea et al., 2012).

Our MAP estimate at ~17.4 Ma (~1,000 ± 235 mm/yr) broadly agrees with these prior estimates.

5.7. Comparisons to General Circulation Models

Most general circulation models of the MCO do not model temporal changes to precipitation and temperature conditions and often focus on broad time slices that may or may not overlap a chronostratigraphic section of interest. In particular, suitable mid-Miocene proxy sites are heterogeneously distributed in both space and time, which requires models to be compared to records that are not necessarily coeval. Recent records from Antarctica (Feakins et al., 2012; Hauptvogel & Passchier, 2012; Passchier et al., 2011; Sangiorgi et al., 2018; Warny et al., 2009) and New Zealand (Reichgelt et al., 2015) improve the number of Southern Hemisphere proxy records, but most terrestrial proxy records still come from Europe and North America (Goldner et al., 2014; Herold et al., 2010). Given these limitations, how accurately do existing models of the MCO predict the physical conditions of the Santa Cruz Formation? For these comparisons, we focus on our youngest results (post 16.6 Ma), that is, after the onset of the MCO.

Our results indicate slightly lower MAP (835 ± 260 mm/yr) than most general circulation models. Herold et al. (2011) and Tong et al. (2009) predict MAP of 1,000–1,200 mm/yr, whereas Henrot et al. (2010) predict MAP lower than our median results (~500 mm/yr). The model of Henrot et al. (2010) also predicts strongly seasonal precipitation, with ~75% occurring in the Southern Hemisphere summer (December-January-February). Conversely, seasonality estimates based on plant macrofossils (Brea et al., 2012) suggest long (7-month) dry summers. Both of these estimates are inconsistent with our enamel zoning profiles, which suggest little seasonal variability.

Our analyses also indicate a significant increase in MAT relative to today (11 ± 4 to 17 ± 7°C), which overlaps estimated increases in summertime temperatures in coastal Antarctica (11 ± 3°C, Feakins et al., 2012). Because the time periods for these two data sets are so different (20–15.5 Ma for Antarctic data; 17.4 to 16.4 for our data), we are reluctant to interpret potential changes in meridional temperature gradients. Model-derived MAT estimates for our study area are consistently too low, when compared to our MAP estimates for post 16.6 Ma, with all models predicting temperatures of ~10°C to 15°C for the study area (Henrot et al., 2010; Herold et al., 2011; Tong et al., 2009). Henrot et al. (2010) and Goldner et al. (2014) noted that their models underestimated MCO warming for high latitudes, primarily by overestimating the meridional temperature gradient, and concluded that more proxy records are needed at these latitudes to constrain physical conditions in these areas. Overall, general circulation models provide accurate estimates of climate parameters at low and middle latitudes but deviate from inferred conditions at high latitudes. Our data provide an additional high latitude record, but more records are likely required for accurate modeling.

6. Conclusions

Our study of carbon and oxygen isotopes from herbivore tooth enamel reveals that global warming at the onset of the MCO (Holbourn et al., 2015) had significant impacts on the climate of Patagonia. MAP initially decreased significantly between 17.4 and 16.9 Ma before stabilizing during the MCO. Regional MAT and MAP reductions at the onset of the MCO suggest that increasing global temperatures and reduced Antarctic ice volume temporarily lowered MAP and MAT in Patagonia. This transitional period in Patagonia was followed by a rebound by ~16.4 Ma to higher MAP and MAT as regional climates began to parallel global increases in temperature and precipitation during the MCO.

Carbon isotope-based MAP and MAT calculations are consistent with most previous floral and faunal estimates, although our ~1 myr record reveals significant fluctuations in both MAP and MAT through time. MAT calculations based on enamel and bone oxygen isotopes also agree with floral and faunal data, revealing temperatures significantly warmer (MAT = 20–25°C) than modern conditions (MAT ~8°C).

Finally, general circulation models consistently underestimate MAT for Miocene Patagonia, perhaps in part because until recently, most MCO proxy records for validation were restricted to the Northern Hemisphere. Our new temperature and precipitation proxy record from the southernmost terrestrial mid-Miocene site in...
Acknowledgments

We thank Dr. Samantha Evans for her assistance with stable isotope analyses and three anonymous reviewers for their incisive and comprehensive comments that significantly improved this manuscript. We also thank Dr. Christopher Hill and Dr. Mark Schmitz for their insightful comments on earlier versions of this manuscript. This work was funded by National Science Foundation Grants EAR-1349749 (M. J. K.), EAR-1349741 (R. F. K.), and EAR-1349530 (C. A. E. S.) and also grants UNLP N867, PICT 2013-0389 (S. F. V.) and PICT 2017-1081 (M. S. B.).

extreme southern South America may help improve the accuracy of mid-Miocene models. As most models of future atmospheric CO2 concentrations are similar to or exceed estimates for the MCO (IPCC, 2014), understanding physical conditions and ecology during this time may help provide insight into future climate scenarios for southern South America.

Data Availability Statement

All stable isotope data are available in the supporting information and are hosted in the OSF repository at www.osf.io/f28az/.

References

Holbourn, A., Kuhnt, W., Schulz, M., Flores, J. (2015). Global perturbation of the carbon cycle at the onset of the

