
Boise State University Boise State University

ScholarWorks ScholarWorks

Electrical and Computer Engineering Faculty
Publications and Presentations

Department of Electrical and Computer
Engineering

12-2022

Character Spotting and Autonomous Tagging: Offline Handwriting Character Spotting and Autonomous Tagging: Offline Handwriting

Recognition for Bangla, Korean and Other Alphabetic Scripts Recognition for Bangla, Korean and Other Alphabetic Scripts

Nishatul Majid
Fort Lewis College

Elisa H. Barney Smith
Boise State University

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance
improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/
s10032-022-00410-x

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/electrical_facpubs
https://scholarworks.boisestate.edu/electrical_facpubs
https://scholarworks.boisestate.edu/electrical
https://scholarworks.boisestate.edu/electrical
https://doi.org/10.1007/s10032-022-00410-x
https://doi.org/10.1007/s10032-022-00410-x

Character Spo�ng and Autonomous Tagging: Offline Handwri�ng
Recogni�on for Bangla, Korean and other Alphabe�c Scripts

Nishatul Majid
Department of Physics and Engineering,
Fort Lewis College, Durango, Colorado, USA
E-mail: nmajid@fortlewis.edu

Elisa H. Barney Smith
Department of Electrical and Computer Engineering,
Boise State University, Boise, Idaho, USA
E-mail: ebarneysmith@boisestate.edu

Abstract: This paper demonstrates a framework for offline handwri�ng recogni�on using character
spo�ng and autonomous tagging which works for any alphabe�c script. Character spo�ng builds on
the idea of object detec�on to find character elements in unsegmented word images. An
autonomous tagging approach is introduced which automates the produc�on of a character image
training set by es�ma�ng character loca�ons in a word based on typical character size. Although
scripts can vary vividly from each other, our proposed approach provides a simple and powerful
workflow for unconstrained offline recogni�on that should work for any alphabe�c script with few
adjustments. Here we demonstrate this approach with handwriten Bangla, obtaining a Character
Recogni�on Accuracy (CRA) of 94.8% and 91.12% with precision and autonomous tagging
respec�vely. Furthermore, we explained how character spo�ng and autonomous tagging can be
implemented for other alphabe�c scripts. We demonstrated that with handwriten Hangul/Korean
obtaining a Jamo Recogni�on Accuracy (JRA) of 93.16% using a �ny frac�on of the PE92 training set.
The combina�on of character spo�ng and autonomous tagging takes away one of the biggest
frustra�ons - data annota�on by hand; and thus we believe this has the poten�al to revolu�onize the
growth of offline recogni�on development.

Keywords: Offline Handwri�ng recogni�on, Bangla Handwri�ng Recogni�on, Korean Handwri�ng
Recogni�on, Character Spo�ng, Autonomous Tagging

1 Introduc�on
This paper presents a segmenta�on free unconstrained offline handwri�ng recogni�on framework.
This is based on an object detec�on approach, we call character spo�ng, that we ini�ally presented
in [1] for recognizing Bangla script. In [1] we developed an offline Bangla unconstrained handwri�ng
recogni�on scheme using sequen�al detec�on of characters and diacri�cs. This paper expands on our
original idea to make this framework versa�le (i.e. works for most scripts with minor to no
modifica�on), easy to achieve (regardless of the nature of the script) and high performing (fast and
accurate). The largest botleneck of our ini�al approach was the need for character level loca�on data
for the neural training. Tagging character loca�ons in handwriten document images is extremely
�me consuming, and is also an error prone process. Even if the character spo�ng algorithm works
perfectly for a script, this character tagging process makes it very difficult to develop a system. Here

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

we introduce a process we call “Autonomous Tagging”, which removes this step and makes the overall
offline recogni�on development process very approachable for any alphabe�c script. Autonomous
tagging is a process of loosely es�ma�ng a character’s loca�on in a word image based on its
transcrip�on. We demonstrate the whole development process thoroughly from data acquisi�on to
post processing for the Bangla script. Bangla is a connected script with complexi�es including vowel
diacri�cs and fused consonants. This is the most versa�le and best performing unconstrained offline
Bangla recognizer reported to date. We trained our network from the extended Boise State Bangla
Handwri�ng dataset [2], that was carefully cra�ed so it covers more than 99% of the Bangla script,
including all the characters, diacri�cs and most of the conjuncts. We tested the robustness of our
system by tes�ng with three different Bangla datasets. To show the versa�lity of this approach, we
also demonstrate the system on a completely different kind of wri�ng system, the Korean/Hangul
script. Hangul is a two-dimensional script, where leters can appear on top of each other as well as
along sides. For Hangul recogni�on, we trained using a frac�on of the handwriten Hangul PE92
dataset, and aim primarily to show the robustness of the method to a wide variety of scripts and
process of transforming our framework to new scripts.

1.1 Offline Recogni�on
Handwri�ng recogni�on is the ability of a computer to interpret handwriten text from sources such
as paper documents, photographs, touch-screens and other devices. In offline recogni�on, text is
recognized solely from digitally stored image data, usually from a scanner or a camera. Offline
Handwri�ng Recogni�on (OHR) also contributes to task automa�on, such as postal address
verifica�on, bank check processing, document transla�on, digi�za�on and manuscript archiving.
Several industries are adop�ng this technology to batch process forms and applica�ons. This also
helps us preserve historical documents and disseminate the wisdom and saga of our ancients. Many
machine printed historical documents are digi�zed and then treated with handwri�ng recogni�on
techniques to make them more accessible. Overall this is a vividly promising technology, par�cularly
in the fields of knowledge, educa�on and research.

1.2 Bangla Wri�ng System
Although the methodology of offline character spo�ng we propose is applicable to almost any script,
the fundamental technique and tools were developed ini�ally to work with the Bangla script, a
connected script with diacri�cs and conjuncts. Therefore, here we present an overview about this
wri�ng system. Bangla, also called Bengali, is one of the most used languages in the world. With over
272 million people, it is the 7th most spoken language in the world [3]. The Bangla script, used also
for the Assamese language, is the fi�h most widely adopted wri�ng system in the world [4]. It is the
na�onal and official language of the People’s Republic of Bangladesh, and official language of several
states in India such as West Bengal, Tripura, Assam and Andaman. Bangla belongs to the Abugida
class of wri�ng systems. It is writen from le� to right. The script is an alphabe�c script that has 11
vowels, 10 vowel diacri�cs, 39 consonants, several hundred consonant conjuncts, more than 10
consonant diacri�cs, 10 numeric digits and several punctua�on marks. There is no upper or lower
case dis�nc�on of characters in the Bangla script.

Fig 1 shows the 11 vowels, 39 consonants and 10 numeric digits of the Bangla script. As an Abugida
script the vowel graphemes are not used as independent leters as shown in Fig 1 (a), rather as
diacri�cs modifying the vowel inherent in the base consonant leters they are atached to. Fig 2
shows an example of how this compares with the La�n script and how the consonant ‘ ’ (Ma) appears
with all possible vowel diacri�cs respec�vely. When two or more consonants are adjacent without
any vowel between them, they form a compound consonant or consonant conjunct and usually the
form of the character is modified. Fig 3 (a) shows an example of how Bangla conjuncts work

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

compared with La�n. When two or more consonants are adjacent without any vowel between them,
they form a compound consonant or consonant conjunct and usually the form of the character is
modified as shown in Fig 3 (b). There are a few consonants which have their own diacri�cs while
forming a conjunct like the vowels. Some of them have even more than one form of ligature. The
punctua�on and other symbols are mostly similar to those used in the La�n script except the ‘Period’
symbol looks like ‘|’.

Fig. 1 Handwriten (a) 11 vowels, (b) 39 consonants and (c) 10 numeral digits in the Bangla script.

Fig. 2 (a) Bangla diacri�c use compared with the La�n script. (b) Diacri�cal forms of vowels with the consonant
‘Ma’. The ‘ˆo’ sound is inherent to the solo consonant in the top le�. Other vowel sounds are formed by
ataching other diacri�cs to it.

Fig. 3 (a) Bangla consonant conjuncts compared with the La�n script. (b) A few consonant conjuncts in the
Bangla script along with their component solo constants.

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

1.3 Scripts with Similar Proper�es
Bangla is an eastern Indo-Aryan language spoken in many parts of the Indian subcon�nent. Lots of
other scripts in this region share similar atributes with the Bangla wri�ng system. Some widely used
scripts like Devanagari (for the Hindi language) and Gurmukhi (for the Punjabi language) share close
resemblance with Bangla. Hindi and Punjabi are the fourth and tenth most spoken first languages in
the world. Many other Indo-Aryan scripts like Gujara�, Kannada, Malayalam, Oriya, Tamil, Telugu, etc.
also have similar structural proper�es with Bangla. All of these scripts have a common root of the
Brahmi script (which is no longer used). A few handwri�ng samples of such similar scripts are shown
in Fig 4. The atributes these other scripts share with Bangla makes it highly likely any recogni�on
system developed for one of them should strongly influence development of, if not be exactly
applicable, to others.

Fig. 4 Handwri�ng samples of Bangla, Devanagari and Gurmukhi scripts.

1.4 Difficul�es with Recogni�on of Indic Scripts
Many Indic scripts like Bangla have a large number of unique symbols compared to, for example, the
La�n script. This is primarily because of the vowel diacri�cs and consonant conjuncts. Diacri�cs can
appear anywhere rela�ve to the consonant and there are no defini�ve rules for predic�ng the
consonants’ shape or loca�on from the conjuncts. A conjunct can also have its own vowel diacri�c.
There can be up-to 5 different components inside such a structure. It is almost impossible to separate
these building block components from the combined structure, and these are beter treated as
unique symbols for machine learning. Therefore, the number of uniquely shaped glyphs needed to be
included in machine learning for these scripts is o�en more than 2000. Tools like Deep Learning
depend on having hundreds of labeled data samples for each class. Such a large dataset is imprac�cal
to form just for a single script. This is the primary reason why we have not seen any no�ceable
progress in offline recogni�on for scripts like Bangla.

Furthermore, most Indic scripts are connected scripts by nature. Unlike scripts like La�n, these cannot
be writen in a way where characters in a word do not touch each other. This makes any kind of
segmenta�on-based approach very complicated. Along with that, many characters and symbols look
very similar to each other. In addi�on to inter-writer varia�ons, many of these scripts have several
wri�ng styles which completely change the appearance of many characters and conjuncts. All these
together make offline recogni�on very difficult for Abugida and similar scripts, and most of these
have seen litle to no progress.

1.5 Korean/Hangul Wri�ng System
In order to demonstrate how our proposed character spo�ng with autonomous tagging approach
can easily be morphed to apply to different kinds of scripts, we chose Korean since it is another
challenging script that has a very different structure than Bangla. This script is known as
Hangul/Hangeul in South Korea and Chosŏn’gŭl in North Korea. This is the official script of Korea and
a co-official wri�ng system in the Yanbian Korean Autonomous Prefecture and Changbai Korean

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

Autonomous County in Jilin Province, China. Some parts of Indonesia and Taiwan also use this script.
Korean is an alphabe�c script with 28 basic characters or Jamos. These are arranged into syllables by
combining up-to 6 characters. This syllabic arrangement happens in two dimensions, i.e. they can
combine both horizontally and ver�cally, which is one of the most dis�nguishing features of Hangul.
However, unlike Bangla, the shapes of the original characters do not change based on the character
sequencing process. This par�cular property makes Korean an easier script to process with the
proposed character spo�ng method than Bangla. Furthermore, Hangul characters are writen
separately and are not inherently connected like Bangla or cursive La�n, although like in most scripts
when handwriten the characters touch.

The Korean alphabet and a handwri�ng sample are shown in Fig 5. The Hangul syllable is composed
of three cons�tuent parts: lead consonant, vowel, post-consonant. The top le� is the first consonant.
If the vowel is a ver�cal symbol it would appear on the upper right of the syllable, a horizontal vowel
would appear below the lead consonant, and a compound vowel would appear in both geometric
places. The post-consonant (if the syllable includes one) follows at the botom. Consonant posi�ons
may contain single or paired consonants.

(a) Korean alphabet and composite symbols

(b) Korean handwri�ng sample

Fig. 5 (a) 24 basic characters and 16 compound characters in the Korean/Hangul alphabet. The green colored
ones are used for K-Net training and the orange-colored ones are recognized by their vowel components. (b)
sample handwri�ng.

2 Literature Review
2.1 Overview: It’s an Unsolved Problem
Despite of lots of interest and ac�vi�es, offline recogni�on is s�ll considered to be an unsolved
problem today. While popular scripts like La�n received significant aten�on and progress, most
others like the Abugida scripts have seen close to none. For example, even though Bangla is one of
the most widely used scripts in the world, the offline recogni�on progress is based primarily on
scatered solu�ons which work only under specific terms and condi�ons. No one has ever reported a
framework for Bangla offline handwri�ng that works in a broad range of contexts. The situa�on is
similar for many other scripts. The following subsec�ons discusses the fundamental approaches of
offline recogni�on along with some of the most successful techniques and notable achievements for
different scripts. We focus the literature review mostly on the Indic originated scripts and Korean as a
background for our proposed approach. It should be noted that, in most cases, the works we present
are not directly comparable with each other since they vary in number of target classes, nature of the
script in concern, the amount and quality of data used and many other differen�al factors.

2.2 Segmenta�on-Based Approaches
Segmenta�on-based approaches usually go through a two stage process: first segmen�ng individual
characters from a word image and then applying a classifier to recognize each isolated character. The

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

process of character segmenta�on can be very difficult to achieve cleanly. This is true for almost
every script, especially ones in which the characters are connected like Bangla, cursive La�n and
Arabic.

Although segmenta�on-based approaches are usually script dependent, many of the techniques used
in Indic wri�ng systems can be useful for others since they share many common core atributes.
O�en a key trait, a horizontal line that runs on top of the characters to connect them in a word
(known as Matra, Shirorekha, etc.) is u�lized to segment characters from a word. Malakar et al. used
a fuzzy membership-based Matra segmenta�on followed by a rule-based lower zone separa�on to
segment unconstrained handwriten Bangla text and obtained a F-score of 91.12% [5]. Mitra et al.
exploited the fact that a successful iden�fica�on and removal of the Matra separates most character
components from a Bangla word [6]. Kohli and Kumar used a Segmenta�on Facilitate Feature (SFF) to
find junc�on pixel in handwriten Devanagari text and obtained around 90% accuracy character
segmenta�on accuracy [7]. Mahto et al. used horizontal and ver�cal projec�on features to segment
Gurmukhi characters and obtained an accuracy of 91.4% on their word dataset [8]. Javia et al.
proposed a Faster RCNN object detec�on model to segment handwriten Gujara� text [9]. Other Indic
scripts like Malayalam, Tamil, Telugu are coherently isolated scripts, but s�ll some aten�on is
required to address the occasional overlaps while handwriten. In theory, these kind of frameworks
can also be expanded to segment consonant conjuncts, but it is o�en avoided due to the level of
complexity, and the compounds are treated as unique objects which is more convenient for most
cases. There are only a few works (such as [10, 11]) which atempt to segment the fused consonants.

Another approach of doing OHR is N-gram modeling, which is used to aid recogni�on by segmen�ng
words into N adjacent characters, with N usually being 2 (bigrams) or 3 (trigrams). This capitalizes on
handwri�ng being sta�s�cally more similar when people write a set of characters than how they
write individual characters, since the neighboring characters influence the wri�ng process. This
approach is very useful for the scripts with fewer characters like the La�n script, where with 52
character symbols there can be 52 × 52 bigram paterns, of which many are seldom or never used in
common text. Things are much more difficult for scripts like Bangla where there are more than a
thousand different symbols (due to the consonant conjuncts and diacri�cs), and the conjuncts are
already bigrams, trigrams or quadrigrams [12]. This makes the model synthesizing process extremely
complicated and imprac�cal.

In theory, character segmenta�on with an isolated character recogni�on process can be merged into
a full transcrip�on unit. Usually different Convolu�onal Neural Network (CNN) architectures are most
widely used for classifying isolated characters. For Bangla, Ghosh et al. achieved a 96.46% accuracy in
recognizing 231 character classes (171 compound, 50 basic and 10 numerals) from CMATERdb [13]
using a MobileNet architecture [14]. Mishra et al. reported a 99.72% accuracy on the Devanagari
Handwriten Character Dataset with 46 different character classes using a ResNet architecture [15].
Mahto et al. presented a CNN architecture and obtained 98.5% classifica�on accuracy with 35
character classes with the Gurmukhi script [16]. Rani et al. achieved about 90% accuracy with 188
Kannada character classes using a VGG19 network [17]. Similar works can be found for other Indic
scripts, like Tamil [18], Telugu [19], Malayalam [20], etc. Chauhan et al. proposed a CNN architecture,
called HCR-Net which works on mul�ple scripts like Bangla, Punjabi, Hindi, Telugu, Marathi, etc. [21].
A common patern we observed from this survey is the recogni�on accuracy goes lower as more
classes are added, especially when the conjunct characters are also included. All these approaches
can be used for unconstrained handwri�ng recogni�on if followed by a character segmenta�on
process although the overall performance will be dependent on the losses of each stages.

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

Like many Indic scripts, Korean is also an inherently isolated wri�ng system; the syllables and the
characters do not touch each other (except accidentally). Therefore offline recogni�on can be
achieved just with an isolated character recognizer. Park et al. compared fi�een character
normaliza�ons, five feature extrac�on and four classifica�on methods and evaluated their
performance on two public handwriten Hangul datasets, SERI and PE92. They obtained 93.71% and
85.99% syllable recogni�on peak accuracy respec�vely [22]. Kim and Xie used deep learning based
modeling on the SERI95a and the PE92 datasets and achieved 95.96% and 92.92% recogni�on
accuracy respec�vely [23]. The highest reported accuracy (97.76% on SERI and 97.90% on PE92) was
presented by Dziubliuk et al. using a mul�dimensional sequence learning architecture [24]. In fact,
isolated symbol recogni�on using deep learning for any script is now considered to be a solved
problem if enough data is available. This is because of the “near-human performance” demonstrated
with the MNIST dataset (handwriten La�n digits) by many researchers in the last decade, although
this has only 10 classes.

2.3 Segmenta�on-Free Approaches
Segmenta�on-free approaches atempt to recognize a whole unit (usually a word) rather than going
for segmen�ng into smaller chunks. For Indic scripts, the most common trend is to train on whole
word images of some frequently used words, hence the process has a vocabulary restric�on.
Pramanik and Bag experimented with several different neural networks and achieved a 98.86%
accuracy with a ResNet50 architecture for the task of Bangla city names recogni�on [25]. Sharma et
al. used a CNN with ADAM and Stochas�c Gradient Descent (SGD) op�mizers for recognizing Gujara�
city names [26]. Similar works are presented for other Indic scripts like Devanagari [27], Malayalam
[28], Marathi [29], etc. Usually the performance of whole word recogni�on decreases with the
increasing number of words to iden�fy. Therefore, a generic word recogni�on without vocabulary
restric�on using these approaches is imprac�cal. One such atempt was made by Adak et al. They
obtained a WRA close to 90% with a closed set of words, but the performance dropped to around
70% when they tried to apply the same framework for unconstrained Bangla [30].

In general, the Long Short-Term Memory (LSTM) or HMM are considered to be the one of best tools
for unconstrained offline recogni�on. However, most successful works using such architectures can
be found for purely alphabe�c scripts like La�n, French or Arabic. For complicated scripts like Bangla,
these architectures are s�ll restricted to problems like recogni�on of whole word, online handwri�ng,
offline but machine printed text, or isolated characters. One reason is because the LSTM or HMM
networks depend on character modeling and finding the characters from a word image. This o�en
generates a stream of characters which includes many false detec�ons and duplicates of similar
characters which are usually decoded with a grammar or language-based model. Most of the Indic
scripts do not have a strong model ready to be used. Another big problem comes from the fact that
an LSTM network sweeps the space horizontally, which can not tackle the different character-
character combina�ons which come frequently for scripts like Bangla or Korean. When characters or
other symbols share ver�cal spaces, the whole combina�on has to be treated as one character if it is
to be modeled with an LSTM or HMM-based architecture. This again leads to the problem of having a
very big number of classes to be modeled and thereby the dataset requirements grow while the
recogni�on speed and performance falls. Therefore, although theore�cally sound, no notable offline
transcrip�on works have yet been reported for these complex scripts.

Another recently introduced segmenta�on-free approach is based on character spo�ng, which uses
an object detec�on network to locate and iden�fy each character element in a word image, which is
assembled into a transcrip�on. When we introduced this approach in [1], we obtained a CRA of
91.1% on Bangla. Details of this idea can be found in Sec�on 3. Mondal et al. applied this approach to

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

the La�n script using a YOLOv3 object detec�on network obtaining over 90% CRA [31]. This approach
is not restricted by vocabulary; therefore it offers a truly unconstrained form of recogni�on. The
problem is, the training for character spo�ng depends on character level loca�on metadata, which
makes the dataset prepara�on process extremely cumbersome. In this paper, we atempt to fix this
problem by adding an autonomous tagging layer on top of the character spo�ng approach and make
the process of developing an unconstrained offline handwri�ng recognizer very convenient for any
alphabe�c script. We demonstrate this and compare with our former results in [1], and show how it
can easily be applied to other alphabe�c scripts using Korean as an example.

3 Offline Recogni�on using Character Spo�ng
As we discussed in Sec�on 2, offline handwri�ng recogni�on is s�ll considered to be an unsolved
problem. There are par�al solu�ons and scatered works for many scripts, but no unified method has
ever been demonstrated which can work on any alphabe�c script. Our primary ambi�on while
designing an offline recognizer is to address this issue. We introduced an approach which we call
“Character Spo�ng” in [1] which uses an object detec�on network to spot different character
elements in a word image. Here we expand our original research to build a complete segmenta�on-
free offline recognizer which can work for poten�ally any alphabe�c script. This is a very easy and
intui�ve approach that neither depends on prototype words, nor is it restricted to a limited
vocabulary. Back in [1], we demonstrated this idea on a por�on of the Bangla script which included all
the basic characters and only a few high frequency conjuncts. Here, not only we do expand the
framework to include prac�cally the en�re Bangla script, we also transform and test this approach
with the Korean Hangul script, which has a dras�cally different structure than Bangla. One of the
biggest botlenecks of our ini�al approach was labeling the dataset, because the network was
dependent on accurate character loca�ons which requires a massive amount of manual labor and
�me to prepare. Here we introduce a complete autonomous system that removes the need for
manual data tagging. We call this “Autonomous Tagging” that makes the development process using
our framework very easy and approachable for any alphabe�c script. The following subsec�ons
present the details of all the steps, showing how we achieved a complete unconstrained offline
handwri�ng recogni�on system for Bangla, how we transformed this system to recognize the Hangul
script and how this framework can be easily adapted for any alphabe�c script using autonomous
tagging and character spo�ng.

3.1 The Basic Idea of Character Spo�ng
The basic idea of our character spo�ng offline recogni�on method is first to iden�fy and locate
individual character elements in a word image and then to use the loca�on informa�on to combine
the characters to produce a transcrip�on [1]. This concept is explained in Fig 6 with the La�n script.
For the example word “Good”, the object detec�on network atempts to find the leters from “A/a”
through “Z/z” in the word. This process is not sequen�al; the character spo�ng algorithm runs for all
possible characters simultaneously. A�er it finds all the matches, we use the classes of the characters
found (one “G”, two “o”s and one “d” in this example) and their rela�ve loca�on informa�on (like the
“G” is detected to the le� of an “o”) to obtain a transcrip�on of the word.

This simple idea is strong enough to be implemented for any alphabe�c script with few adjustments
as we will demonstrate in the following subsec�ons. Character spo�ng is, in a sense, analogous to
word spo�ng algorithms, but is much more powerful since it is not restricted by word prototypes
and thus poten�ally covers an en�re script.

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

Fig. 6 Basic concept of the presented offline character spo�ng recogni�on method. An object detec�on
network atempts to find character matches in the word and the transcrip�on is formed with the detected
character classes and their rela�ve loca�on informa�on.

3.1.1 Implementation for the Bangla Script
As discussed in Sec�on 1.4, because of the diacri�cs and conjuncts the Bangla script can effec�vely
have more than 2000 different classes on which the object detec�on network needs to be trained.
Almost all Indic scripts have this atribute. This is a problem since for training we require hundreds of
samples for each possible class. To address this issue, we prepared two networks, one for the
characters and one for the smaller symbols (like diacri�cs) which appear around the other characters
keeping the base shape unchanged [1]. We call these Character Network (C-Net) and the Diacri�c
Network (D-Net) respec�vely. The lists of symbols that each of these networks are trained to detect
are shown in Table 1. On each word image, both of these object detec�on networks are applied
sequen�ally. The C-Net first locates and iden�fies the characters from the list, and a�erwards D-Net
does the same with the diacri�cs. Therefore, even if we trained C-Net and D-Net from the same
compound characters (a basic/conjunct character with a diacri�c) from repeatedly showing the same
part in different context, the C-Net only spots the characters and D-Net only the diacri�cs when
tested on unseen words. This process is schema�zed in Fig 7.

Once we obtain the detected classes from C-Net and D-Net along with their loca�on informa�on, a
transcrip�on is formed as shown in Fig 8. This two-network-approach breaks the 2000 class problem
into two smaller chunks, analogous to 20 × 100, and thereby the dataset requirement becomes much
more manageable. This is applicable to any Abugida script, since they all share similar atributes.
Another strong point of this approach is the individual networks are trained not only to spot the
target characters, but also to ignore the surrounding characters/diacri�cs. This patern of training
makes the character spo�ng approach robust and insensi�ve to ground truth posi�on tagging
accuracy (demonstrated in Sec�on 4.1) and allows an autonomous method of tagging to be
implemented to avoid intensive manual labor during dataset prepara�on (demonstrated in Sec�on
4.2).

In our previous work in [1], we included 19 high frequency conjuncts from the Boise State essay script
dataset in training C-Net. The Bangla script has several hundred conjunct classes. In order to make a
more comprehensive offline recogni�on framework, we analyzed a large volume of writen
documents and defined a character set which covers over 99% of the en�re Bangla script. These were
added to the Boise State dataset through a set of conjunct specific words. Details are presented in
Sec�on 5.1.2. This approach reduced the class size by roughly 30% and made the whole process of
dataset prepara�on as well as training much more convenient without sacrificing coverage of the
Bangla script. The conjunct column in Table 1 presents the reduced conjunct list. The black colored

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

ones were previously used in [1] and the blue colored ones are added and used with the original
dataset for our current recogni�on framework.

Fig. 7 C-Net and D-Net work on the same image, but are trained to detect different symbol classes [1].

Fig. 8 Detected symbols from C-Net and D-Net are merged to form a transcrip�on [1].

Table 1 Class distribu�on for C-Net and D-Net training. The black colored characters are from the essay scripts
from the Boise State dataset used in [1]. The blue colored ones are from the newly added conjunct word
documents of this dataset.

3.1.2 Implementation for the Korean Script
To develop a Korean OHR system, we used the same framework as for Bangla, but with different
strategies based on the unique atributes of the Korean script. As we described in Sec�on 1.5, the
Korean script does not have any diacri�cs, but has syllables where the 28 Jamos leters are arranged
in a two-dimensional structure. This results in more than 2000 different possible combina�onal
arrangements, like Bangla, and therefore faces the same the problems. The Jamos are writen
separately and are not inherently connected like Bangla as can be seen from Fig 5(b). Also, the Jamos
do not change their shapes based on posi�on or neighbors like many Bangla characters. Therefore,
rather than trying to recognize a Korean syllable as a whole, we tuned our object detec�on network
to locate and iden�fy the Jamos inside the syllable. Since the number of Jamos are much fewer than

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

the number of possible syllabic combina�ons, our offline recogni�on process can be achieved using a
much smaller dataset and shorter training than the tradi�onal approaches. Therefore, while the basic
idea remains the same as with the Bangla script, the execu�on was adapted to beter treat the
atributes of the Korean script.

Because there are no diacri�cs in Hangul, we prepared a single network we call the Korean Network
(KNet), to recognize 33 Korean character classes. These are the green characters from Fig 5(a), which
includes the 14 consonants, 10 vowels, 5 tense consonants and the first 4 complex vowels. The last 7
complex vowels (shown in orange) are recognized by their vowel components. The rest of the
architecture and tools are iden�cal as for Bangla. The recogni�on process is the same regardless of
how many Jamos are in the target syllable. Fig 9 shows an example syllable which is made of 4 Jamos.
Rather than trying to recognize the syllable as a whole, the K-Net spots those 4 Jamos, then from
those detec�ons we re-construct the syllable. In this way, our object detec�on network only has to
master spo�ng those 33 classes, rather than being trained to recognize more than 2000 possible
syllable classes, and the segmenta�on process is avoided.

Fig. 9 The Korean offline recogni�on process. This example shows a syllable made of 4 Jamos. Instead of
recognizing the whole syllable, the K-Net only spots the Jamos. The compound syllable is constructed from the
detected classes and their corresponding loca�ons.

3.1.3 Implementation for any Alphabetic Script
This idea of character spo�ng is very flexible to the nature of the script. All the Abugida scripts (with
vowel diacri�cs) or scripts with similar atributes can share the same framework used for Bangla by
spo�ng characters and diacri�cs with two detec�on networks. Pure alphabe�c scripts like La�n,
Arabic and Korean can be implemented using just a single detec�on network trained on their
alphabets. Wri�ng from right to le� (like Arabic, Syriac), top to botom (Kulitan, Nushu) or 2D Korean
does not change the design core, just the order the spoted characters are compiled. Therefore any
alphabe�c or alphasyllabary script (which uses a limited list of symbols) can poten�ally be
implemented using this proposed approach with few adjustments.

3.2 Underlying Framework
The hierarchical architecture of this offline handwri�ng recogni�on framework is presented in Fig 10.
The core of this framework is an object detec�on network which is trained to detect the characters or
symbols. A�erwards, the detec�on results are compiled to form a transcrip�on which requires script
specific implementa�on. At the end, one can include op�onal post processing, like a spell checker, to
further improve the result.

The object detec�on network is developed from a pre-trained neural architecture using transfer
learning. Then it is trained using an annotated dataset. The dataset annota�on can be obtained from
a collec�on of handwriten documents for a script subjected to our proposed autonomous tagging
process. The green boxes in Fig 10 signify the por�ons of this framework which are script
independent, and the blue boxes highlight where some script specific treatments are needed.

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

Fig. 10 Hierarchical building block of the offline Handwri�ng Recogni�on Framework. Green indicates the
sec�ons which are script-independent and blue indicates where some script specific aten�on is required.

3.2.1 The Object Detection Network
We used the Faster RCNN object detec�on network we presented in [1]. Although it is
computa�onally expensive to train, applica�ons like handwri�ng recogni�on o�en benefit more from
faster recogni�on than a quickly trained network. Using Faster R-CNN in our framework is a choice,
not a necessity. Any other similar object detec�on networks (e.g. Mondal et al. used YOLOv3 for La�n
[31]) can also be used for with our approach to obtain similar performance.

Deep Learning is notorious for being slow to train. This issue can be mi�gated by transfer learning,
where the neural weights of an already trained network are retrained for another problem. Not only
does it make the process of network training much faster, in most cases it ends up producing a beter
design as a whole. In our designs, we used VGG-16 [32] pre-trained with the ImageNet dataset [33].
VGG-16 is a widely used neural network. It is sufficiently large to handle the large number of classes
in Bangla, and not so large that it would be considered an overkill. The choice of this par�cular
network is not crucial for our design and poten�ally many other pre-trained networks like VGG-32 or
RESNET could have been used to obtain similar results.

For our requirements, the series VGG-16 architecture was remodeled into a DAG (Direct Acyclic
Graph) structure to implement a Faster R-CNN network, shown in Fig 11. The bounding boxes around
poten�al objects in an image are handled with the Region Proposal Network (RPN) within the Faster
R-CNN. A region proposal layer has two inputs – the classifica�on scores produced by the RPN
classifica�on branch and the bounding box deltas produced by the RPN regression branch. A RoI
(Region of Interest) max pooling network is used to output fixed size feature maps for all rectangular
ROI within the input feature map in a Faster R-CNN architecture. In our design, the features extracted
from the ReLU5 3 (Rec�fied Linear Unit) layer was processed by a RoI pooling layer with 7 × 7 feature
map output size replacing the last max pooling layer from the original VGG-16 architecture. This is the
same approach we presented in [1] and all the networks (C-Net, D-Net and K-Net) were formed with
this architecture.

C-Net, D-Net and K-Net were all trained iden�cally except for the difference in number of classes. We
used the Stochas�c Gradient Descent with Momentum (SGDM) for op�miza�on with a momentum of
0.9. The learning rate was set to 0.001 and we ran all the experiments for 10 epochs. During this
process, a nega�ve training was defined with an overlap range with Intersec�on over Union (IoU)
which is:

𝐼𝐼𝐼𝐼𝐼𝐼 =
𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

𝑜𝑜𝑜𝑜,
𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴 ∩ 𝐵𝐵)
𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴 ∪ 𝐵𝐵)

 (1)

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

where A and B are bounding boxes of the region proposal and values from the ground truth file.
Cases with an overlap ra�o of 0.6 or lower were used for nega�ve training. We used 64 region
proposals to randomly sample from each training image. All these training parameters are kept
iden�cal for all the experiments as it was in our previous work in [1].

Fig. 11 Layer graph of C-Net, D-Net and K-Net, transforma�on of VGG-16 to a Faster R-CNN [1]

3.2.2 Compilation of Detected Results into a Transcription
As the networks (C-Net, D-Net or K-Net) detect the classes and loca�ons of the characters and
diacri�cs present in a word, the informa�on is compiled into a transcrip�on or plain text
representa�on of the word image. To achieve this, we stepped through a series of processing steps
similar to what we did in [1]. An example schema�c of this compila�on process is shown in Fig 12.

All detec�ons are returned with a confidence value. Detec�ons with confidence below 70% for all the
networks are considered unreliable and are discarded in the compila�on phase. Many of the returned
detec�ons spa�ally overlap with each other. Some overlaps were expected such as a C-Net and D-Net
overlap when there is a character/conjunct with a diacri�c. Overlaps from a single network indicate
mul�ple characters in one place. This phenomenon is expected for both Bangla and Korean (and most
other scripts), because many characters/elements visually look like extensions of other
characters/elements, and Bangla conjuncts o�en look like individual characters merged together. An
analogous example is the visual rela�on between La�n ‘c’, ‘e’ and ‘o’. A sample of C-Net detec�on
overlaps is demonstrated in Fig 13. We keep the largest bounding box, discarding the smaller
detected bounding boxes that it encapsulates or overlaps with regardless of their confidence score.
The overlap is computed using Eq. (1).

At this stage we implemented some script specific treatments for Bangla in order to put the
transcrip�on in proper order and mi�gate some obvious detec�on errors. The default ordering for
Bangla is obtained from sor�ng the xmin values of the detected bounding boxes. For the following
cases, we u�lized some proper�es of the script and altered this default scheme:

1. With Unicode, diacri�cs are always encoded a�er their base characters. Visually diacri�cs can
appear before or a�er and in many different orienta�on (like above, below, around, etc.).
With this observa�on, whenever detec�on from C-Net and D-Net overlapped (Eq. (1)), the C-
Net results were ordered first. One excep�on to this rule is for the class ‘ ’ (Bangla conjunct
‘ref’). This is actually a conjunct that behaves more like a diacri�c (keeps the base character
unchanged). Therefore we processed this class with the D-Net. With Unicode the character
associated with ‘ ’ actually appears before the associated character. Hence, for this character
the D-Net results are placed prior to the C-Net ones.

2. Vowels cannot have a diacri�c, therefore D-Net results that overlap with a vowel are
removed.

3. There can never be two consecu�ve diacri�cs in Bangla. If the compiled detec�on appears in
that way, either there is a missing consonant between them or at least one of them is a false
detec�on. For overlapped or �ghtly spaced detec�on, the diacri�c with lower confidence is
removed.

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

All these accommoda�ons described above are different than a spell checker. A spell checker reduces
the scope of transcrip�on to a fixed vocabulary. These are mostly script-specific atributes and s�ll
allow an open vocabulary. Therefore, any non-dic�onary words (e.g. names, unorthodox spellings)
will not be affected with our approach. Most Abugida scripts share similar proper�es; therefore
similar rules can be implemented for other scripts too.

This step was not done for Korean, since we used Korean only to demonstrate the script-flexible
nature of our character spo�ng recogni�on framework. The recogni�on performance of Korean or
any other script can also be improved using a similar sequence of processing.

Fig. 12 An example case of post processing compila�on steps for Bangla: (a) Original detec�ons, (b) Elimina�ng
detec�ons below threshold, (c) Priori�zing detec�on overlaps, (d) Re-ordering the characters and diacri�cs.

Fig. 13 Sample of the detec�on overlap issue. Green boxes are the proper detec�on and the all other
colored boxes are detected look-alike sub-characters.

4 Autonomous Tagging
The primary weakness of our original character spo�ng approach [1] comes from its dependency on
character level tagging of the dataset. We provided coordinates of a �ght fit rectangular bounding
box around each character. This was required for the character spo�ng to work, but to process data
with such a detailed level of annota�on requires an immense amount of manual effort and �me.
Furthermore, this process is also very error prone, and once an error happens its almost impossible
to find and fix that. This sort of problem is quite common, and in many cases data processing is
considered to be the biggest botleneck of machine learning. Here we solve this problem for our
framework by introducing a process we call “Autonomous Tagging”. This automates the process of
drawing bounding boxes around each character on a handwriten word image. This is not a character
segmenta�on method, and cannot be used with an isolated character recognizer. Rather autonomous
tagging es�mates the approximate loca�on of a character in a word, and this only works because our
character spo�ng algorithm is not too sensi�ve about the accuracy of the loca�on of a character. Like

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

character spo�ng, the autonomous tagging process is also flexible and can be used for any
alphabe�c wri�ng system. Here we demonstrated two approaches on the Bangla and the Korean
scripts. Before proceeding with describing this framework, we study the detec�on performance of
our networks with various level of imprecise bounding box annota�ons.

4.1 Sensi�vity to Tag Precision
Most datasets with ground truth tags are concerned with ge�ng the �ghtest and most accurate
bounding boxes for each script element and connec�ng a label to it. As a first study we change the
boundaries of the precise manual ground truth tags or bounding boxes to observe how cri�cal the
precision is to the recogni�on method. Each character from the Boise State dataset was labeled using
a rectangular box. As shown in Fig 14, we increased (or decreased) the width of these bounding boxes
by an amount of -10%, 10%, 20%, 30% and 40% (equally from both side) while keeping the height at
the ini�al level (which is generally the word height).

The impact of changing bounding box widths on the recogni�on performance is presented in Table 2.
Fig 15 shows a plot of all these performance parameters versus the tag varia�on. The system does
not work well when the boundaries are shrunk, since in many cases the defining atributes of the
component get cut off from the edges. When box size is extended, the performance degrada�on is
rela�vely small. Our objec�ve with this experiment was to have a qualita�ve idea about the impact
on detec�on performance if the characters are not �ghtly tagged and presented with fragments of
the adjacent characters. We used this observa�on as a founda�onal idea in our autonomous tagging
approach.

Fig. 14 Bounding box widths were varied from the green box indica�ng the accurate loca�on to -10%, +10%,
+20% and +30% as shown by boxes of oranges and yellows.

Table 2 Detec�on Performance with Tag Width Varia�on

Change in
Width

C-Net D-Net Transcrip�on
mAP F1 mAP F1 CRA WRA

-10% 85.06 91.2 88.69 92.41 91.9 80.94
Accurate

(0%) 91.41 95.08 92.77 95.38 93.61 86.8
10% 91.13 95.02 92.32 94.59 93.24 86.14
20% 90.04 94.35 92.06 94.38 93.07 85.9
30% 89.39 93.85 90.73 93.73 92.71 84.72
40% 87.44 90.08 89.04 90.42 92.39 82.28

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

Fig. 15 Plots of detec�on performance with tag precision.

4.2 Autonomous Tagging Process
The autonomous tagging process first es�mates the loca�ons of the characters inside a word and
then extends the boundaries, so that even allowing for variabili�es in handwri�ng, the target
character is most likely to be somewhere inside that extended bounding box. This is possible since we
already observed that extending bounding boxes of ground truth tags does not considerably impact
the detec�on performance.

4.2.1 Implementation for Bangla
The ini�al loca�on es�mates for the characters and diacri�cs for handwriten Bangla words are
approximated from the rela�ve character widths in a machine printed version of the ground truth
text. The process is explained with an example in Fig 16 for a three-character word. Here, W indicates
the total width of the word composed by the three characters (including diacri�cs) with widths of X, Y
and Z. The subscripts H, P and E represent the handwriten, printed and es�mated character widths
respec�vely. The widths of the printed characters (including diacri�cs) are measured from the
machine generated font, from which they are propor�onally imposed on the handwriten word with
a width extension factor of η. All es�mated widths are extended by η/2% on both sides except for the
first and last characters of a word, which are extended by η/2% only on the interior edge. For the
printed font we used ‘Akaash’ which we empirically found is one of the many fonts which has a nice
match with typical handwriten shape propor�ons. Addi�onally most of the �me people include a
larger space before punctua�on in handwri�ng than appears in machine print, therefore, we inserted
one blank space before each punctua�on mark to obtain a beter es�mate. For Bangla, we used η
values of 20%, 30% and 40% to obtain 3 es�mated loca�on for each character and used all of them to
train the CNet and D-Net. These η values are chosen reflec�ng our results in the tag sensi�vity
experiment described in Sec�on 4.1.

Fig 17 shows a schema�c workflow of how autonomous tagging works with the character spo�ng
framework. This example shows the es�mated boundaries around the Bangla character ‘ ’. The object
detec�on network is trained to locate the same character with a given boundary, but the boundary
actually contains most of the target character and some extra parts around it. These parts can be a
diacri�c, or can be strokes from the prior or next character or diacri�c. Furthermore, these extra
undesired elements can be anywhere (le�, right, top or botom) and will not have a fixed patern.
This phenomenon over the itera�ons of neural training prepares the network to treat anything
different from the target character as arbitrary and not important for the decision. A cost of training
an object detec�on network in this format is the fact that the network does not learn to precisely
locate the character. Therefore, the network can confidently predict the class, but only vaguely

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

predict an area within which the character is located as shown in Fig 18. However, this is not a
problem for handwri�ng recogni�on, since we only need the rela�ve posi�ons of character elements
with respect to the others.

The difference in performance from autonomous tagging versus precise labelling actually comes from
the eccentric property of human handwri�ng. No mater how good the ini�al es�mate is or how
robust the network performs with width tampering, there will be some cases where the autonomous
tagging misses the target character/diacri�c completely or a major structural part of it. A similar
situa�on can also happen from manual labeling since that process is very error-prone. In both cases,
this issue can be solved by increasing the volume of the dataset. With more data, the ra�o of proper
labeling to mislabels gets higher and the network gets enough good samples to be effec�vely trained.
Preparing larger quan��es of data is significantly more convenient with an autonomous tagging
framework than using manual annota�on.

Fig. 16 Example of autonomous tagging for a three character Bangla word. Based on the character widths
obtained from the machine printed text (∗P), the widths of the characters and associated diacri�cs in the
handwri�ng are es�mated (∗E).

Fig. 17 Illustra�on of how autonomous tagging works. Each character is boxed with variable widths for training.
The posi�on of the learned character is shown in the test words.

Fig. 18 Detec�on from the networks trained with manual (le�) vs. autonomous tagging (right).

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

4.2.2 Implementation for Korean
For Korean we used a much simpler approach for the ini�al character size and posi�on es�ma�on.
The basic characters in a Korean syllable usually appear in a well-defined grid of a limited number of
shapes. We obtained a list from the Unicode founda�on of how every Unicode Hangul syllable was
composed of its parts. The height (or width) was then divided into 1, 2 or 3 zones and that distance
appor�oned to those symbols with some addi�onal buffer size. This resulted in the 8 different grid
structures of Hangul syllables shown in Fig 19. If there are two Jamos over the ver�cal (horizontal)
span of the syllable, like in Fig 19 (a) through (e), the ini�al zone height (width) es�mate for each
Jamo is set to 50% of the whole syllable height (width). This base es�mate of 50% is used, even if the
specific Jamos do not have the same height (width). For cases where there are three Jamos, like in Fig
19 (f), (g) and (h), the ini�al height es�mate is set to 33%. In other words, the ini�al es�mated
loca�on of a Jamo is obtained by equally dividing the space (horizontally and/or ver�cally) based on
the original structure of the compound syllable as shown by the grid shapes under each compound in
Fig 19.

We increased the ini�al es�mates to ensure the target Jamo is inside the labeled bounding box, just
like we did for the autonomous tagging of Bangla characters. We only increased the es�mated widths
for the Bangla characters, where with Korean we increased both the es�mated widths and heights
because of its 2D wri�ng style. The ini�al size es�mate of 50% was increased to 60%, 70% and 75%,
and the ini�al size es�mate of 33% was increased to 40%, 45% and 50%. Therefore, we generated
three different es�mates for every Korean compound syllable image and all of these were used for
training the K-Net. Machine printed fonts could have been used for Korean the same way we did for
Bangla to account for when the Jamos do not have equal heights or widths, but this approach is
simpler and works well.

Fig. 19 Ini�al es�mated bounding boxes of the Jamos from a compound Korean syllable. Widths and heights are
divided into 2 or 3 zones based on to which geometric structure from (a) to (h) it belongs. Data samples are
obtained from the Handwriten Korean/Hangul PE92 dataset [34]

5 Datasets used for the Experiments
For our first experiments with character spo�ng in [1], we used the essay scripts from the Boise State
Bangla Handwri�ng dataset [2]. Since then, we expanded this dataset in different ways in order to
achieve a more comprehensive training for Bangla. Here along with this extended dataset, we also
used three other Bangla datasets to test our network more thoroughly. For Korean, we used one of
the most famous datasets, PE92 [34], for both training and tes�ng. Details of these datasets are
described in the following subsec�ons.

5.1 The Boise State Bangla Handwri�ng dataset
The Boise State Bangla Handwri�ng dataset was first introduced by us in [2]. Our primary mo�va�on
for this dataset was to make it comprehensive, versa�le and open-to-all to provide a resource for the
whole Bangla offline recogni�on community. The dataset can be accessed at

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

https://doi.org/10.18122/saipl/1/boisestate. Currently, this dataset contains three
types of content: isolated character, essays and conjunct words. We used the later two for this work.

5.1.1 Essay script documents
This part of the dataset contains handwri�ng samples of an essay, which is carefully scripted to
contain all Bangla basic characters (except ‘ ’, which rarely appears in its basic form), all possible
vowel diacri�cs and 32 high frequency conjuncts. These are the characters shown in black in Table 1.
The essay contains a total of 104 words or 364 characters. The words used are mostly common and
frequently used Bangla words. At this moment, this collec�on contains 253 copies of this essay, a
sample of which is shown in Fig. 20 (a). These are writen by writers of different ages and professions.
Each of these documents is stored in two versions: one acquired with a flat-bed scanner at 300 dpi
and one digi�zed with a cellphone camera. All these document pages are manually tagged with
associated ground truth of bounding boxes that encapsulate the characters, words and lines from
each page. The coordinate informa�on [xmin, ymin, height and width] is stored along with the ground
truth character, word and line labels in a separate metadata file. To keep access simple, we stored the
metadata in plain text (*.txt) files. We used this essay script for both our neural training and tes�ng.
The character level ground truth tag data was crucial for us to benchmark the performance of
autonomous tagging as described in Sec�on 4.2.1.

Fig. 20 Samples from the Boise State Bangla Handwri�ng dataset [2]. (a) Sample essay data and (b) sample
conjunct words data with tag overlay of a por�on and corresponding recorded metadata.

5.1.2 Conjunct word documents
This part of the Boise State dataset is a page of 106 words containing 128 conjuncts from the Bangla
script. These conjuncts are shown in the conjunct column of Table 1. The conjuncts were selected by
surveying Bangla literature from books, web sites and magazines. Our study shows that the essay
script together with the conjunct word document from the Boise State dataset cover 99.7% of the
complete Bangla script. The remaining conjuncts which are not included in the dataset are extremely
rare. Along with the conjuncts, this page also contains some basic characters and diacri�cs. There are
70 samples from 70 writers for this document. Each sample is tagged at the character level just like
the essay scripts. Fig. 20 (b) shows a sample conjunct word page and a sample por�on with its
corresponding ground truth metadata. We used these conjunct word documents both for training
and tes�ng our neural networks.

https://doi.org/10.18122/saipl/1/boisestate
KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

More details about this dataset, such as acquisi�on process, demographic distribu�on, preprocessing
and formats used can be found in [35]. Although we used three other datasets in our experiments for
tes�ng, only this Boise State dataset ensures a robust coverage of the Bangla script and hence we
only train our character spo�ng framework with this dataset.

5.2 External Bangla Datasets
One of the best ways to test the strength and robustness of a recogni�on system is to test with a
dataset which is completely different than the one used for training. With this aim we used three
other datasets for tes�ng. These datasets are significantly different from the na�ve Boise State Bangla
Handwri�ng dataset as they are:

1. Collected with different acquisi�on processes, such as different scanner, se�ngs, pre-
processing, paper type, etc.

2. Different in context. They all contain many different words or composi�ons which our system
had never seen during training.

3. Writen by an en�rely different set of writers with different demographic distribu�on.
Therefore a test with these datasets can ensure our offline recogni�on framework does not
have any bias to a par�cular type of demographic.

4. Developed in Kolkata, India. Our Boise State dataset is made of contribu�ons from people all
from Bangladesh. Although the script is the same, there are differences in handwri�ng
between these two countries. This might not be instantly apparent to most people, but could
be substan�al in machine learning.

5. One dataset does not contain handwriten documents. It is a collec�on of historic printed
documents - for a rigorous stress-test to our networks.

A sample from each of them is shown in Fig 21 and the details are presented in the following
sec�ons.

5.2.1 CMATERdb 1.1.1
The CMATERdb 1.1.1 is one of the oldest and most used datasets for offline Bangla handwri�ng
research. This contains 100 pages of unconstrained handwriten documents scanned and stored in
24-bit BMP format. Although, there are no transcrip�ons publicly available for this dataset, the
CMATER group provided us with segmented word coordinates for a few of these documents.

5.2.2 Indic Word Dataset
The Indic Word Dataset is a rela�vely new dataset compared to CMATERdb 1.1.1. This dataset
contains segmented Bangla word images, not pages. This also comes with a transcrip�on for each
word. Instead of standard Unicode they used La�n counter-forms for Bangla characters, which we
converted before using this dataset. This contains 17,091 handwriten word samples with 1,736
unique words. The words are collected from 60 handwriten document images by writers of various
professions. We tested our system with the test set from this dataset which contains 3,856 words.

5.2.3 REID2019
The REID2019 dataset is not an offline handwri�ng dataset, rather it is a set of scanned historical
printed documents used in a conference contest. We used this to test our system’s strength. Historical
documents suffer from tears and are worn, which results in many different distor�ons. Addi�onally,
the text content used here is mostly archaic, containing many words rarely used today. Since our
approach does not work on any specific word list, this shows how it handles archaic vocabulary. This
dataset comes with the metadata necessary to enable us to seamlessly test our networks.

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

Fig. 21 Samples from (a) the CMATERdb 1.1.1 [36,13] (b) the Indic Word Dataset [37] and (c) the REID2019 [38]
Early Indian Printed Documents dataset.

5.3 Handwriten Korean/Hangul Dataset PE92
For Korean we used the handwriten Korean/Hangul PE92 dataset [34], which is one of the most
popular open Korean handwri�ng datasets. It contains images of 2350 classes of syllables (not Jamos)
and about 100 instances of each class. The ground truth is available at the syllable level, but not at
the basic character or Jamo level. We used both manual and autonomous tagging on a small subset
of this dataset for training K-Net. Fig 19 shows a few samples that we used from this dataset.

6 Results and Analysis
6.1 Boise State Bangla Handwri�ng Dataset
For our primary experiment with character spo�ng and autonomous tagging, we used all 253 essay
script documents (both camera-acquired and scanned versions) and 70 conjunct word documents
from the Boise State dataset. Word images are extracted from the ground truth informa�on and each
image was resized to 600 pixels at its smallest dimension (usually heights) before training. This
translates to a total of 60,157 words from which a 90% - 10% training and tes�ng split of the data was
made. Words were evenly distributed from the camera-acquired and scanned essay scripts as well as
the conjunct word documents. The recogni�on performance is evaluated with individual mAP and F1
score of C-Net and D-Net as well as Precision, Recall, mAP, F1 score, WRA and CRA of the
transcrip�on. We also used an 80% - 20% training and tes�ng combina�on (similarly evenly
distributed) to obtain a 5-fold cross valida�on result on WRA and CRA.

Table 3 shows all the results of these experiments. The first row presents our earlier results with the
character spo�ng approach [1] for comparison with our current framework. This experiment was
based on only 150 camera-acquired essay script documents from the Boise State dataset and did not
contain all the conjuncts. The tagging was done manually. We used a 1:3 data augmenta�on for
training, and also used a spell checker a�er the compila�on stage. Details of this experiment can be
found in [1].

The second row of Table 3 shows our current experiment with the whole essay script and conjunct
word document dataset where the networks are trained with the precise tag loca�on of the
characters. Although the fundamental approach of character spo�ng is the same in our former
experiment, our current setup is based on a much larger training and tes�ng set which also includes
the conjunct data. Therefore it covers almost the en�re Bangla script unlike the former one which
was only based on the basic characters/conjuncts and a few high frequency conjuncts. We did not use
any spell checker like our ini�al experiment, in order to emphasize the raw impact of character
spo�ng approach. We also did not use any data augmenta�on because, in a way the camera-
acquired and scanned sources for the same training data is giving us a 1:2 natural form of data
augmenta�on. With the added amount of data from our first experiment, the recogni�on

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

performance was high despite having a larger number of added conjunct classes for the object
detec�on network. In fact, this surpasses the current state-of-art-results for unconstrained Bangla
offline recogni�on. Since we obtained these results without any spell, grammar check or seman�c
based correc�on, this has a lot of room for further improvement with careful script-specific
postprocessing.

In order to measure the loca�on accuracy with character spo�ng, we also measured the Intersec�on
over Union or IoU as defined in Eq. (1) with this experiment with precise tagging. We found the
average IoU for CNet and D-Net to be 0.53 and 0.47 respec�vely. Values of IoU around 0.5 are usually
considered poor, but in our approach this is expected since we are forcing the networks to be trained
with addi�onal diacri�c (for CNet) and character (for D-Net) components around the target
component as explained in Sec�on 3.1.1. In fact, the C-Net/D-Net detec�ons (orange box) were
actually more precise than the auto generated loca�on tags we used for training (blue box) when
compared to the actual loca�on of the diacri�c (green box) as shown in Fig 22. The blue box in this
figure contains both a character ‘ ’ and a diacri�c ‘ ’ used for both C-Net and D-Net training.
Therefore, with this sequen�al character spo�ng strategy the IoU scores are expected to be low.
However, our aim with character spo�ng is not to get a precise loca�on since the compila�on
en�rely depends on the rela�ve loca�ons of characters or diacri�cs.

The last row in Table 3 shows the results we obtained from the same experimental setup as the
second row, but using autonomous tagging instead of precise manual labels. The training used 3
copies of each character data with varying es�mated width, η = 20%, 30% and 40% (described in
Sec�on 4.2.1). Expectedly, the scores went down a litle from what we achieved using precise tags,
but the overall process with autonomous tagging is significantly more convenient. To put this into
some perspec�ve, the Boise State dataset contains 323 pages of handwriten Bangla documents with
approximately 104 words or 364 characters per page. In order to character tag all of these, it took
roughly 600 hours of work, equivalent to a full-�me job for almost 4 months - all for just one script.
This �me es�mate includes using tools to facilitate the process and excludes the �me required for the
tool development or data acquisi�on. Furthermore, it is a fa�guing process to do the tagging
manually. Many different kinds of errors like incorrect labeling, duplicate labeling, missing annota�on,
incorrect annota�on size and posi�oning can happen, which are extremely difficult to spot and fix
later. Autonomous tagging, while not relying on precisely perfect annota�on, avoids not only this
fa�guing process of manual labelling, but also the human errors come along with it. This allows the
expansion of the character spo�ng technique to a new script through on easier, more convenient
and much more approachable process. Figure 23 shows the convenience vs performance of the
autonomous tagging approach compared to using precision tagging in order to highlight why this
small loss in performance is overly jus�fied.

Table 3 Recogni�on performance obtained from the character spo�ng and autonomous tagging approaches
with the Boise State Bangla Handwri�ng dataset. The first row presents our previous achievement with this
dataset which uses the same core approach with precision tagging but with a smaller number of detec�on
classes and a smaller train-test set.

Character Spo�ng
Approach

C-Net D-Net Transcrip�on 5-fold
Cross Valida�on

mAP F1 mAP F1 Precision Recall mAP F1 CRA WRA CRA WRA

Reported in [1] [1] 87.13 89.61 90.34 93.17 88.25 89.42 88.42 89.96 91.09 78.48 -

Precision Tagging 91.41 95.08 92.77 95.38 88.25 91.24 90.32 92.65 94.8 87.74 94.37 86.18

Autonomous Tagging 89.96 92.35 91.25 93.76 - - - - 91.12 80.16 - -

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

Fig. 22 Demonstra�on of why IoU with sequen�al character spo�ng approach is low. Green shows the exact
loca�on of the target diacri�c. Blue shows the loca�on used for sequen�al C-Net/D-Net training which includes
the associated consonant with the diacri�c. The orange box shows that the D-Net detec�on is closer to the
accurate loca�on than the loca�on used for training.

Fig. 23 Comparison of performance and convenience of character spo�ng approach with precise tagging and
autonomous tagging, as observed from the Boise State dataset.

6.2 External Bangla Datasets
To test our framework with external Bangla datasets, we used the networks trained with precision
and autonomous tagging from the Boise State dataset and tested on the following:

• CMATERdb 1.1.1:We used the first 25 pages of this dataset with the word coordinates
provided by the CMATER group.

• Indic Word Dataset: We used the test set of this dataset which contains 3,856 word images.
• REID2019: The evalua�on set from this dataset (contains 56 pages) were used for tes�ng.

Table 4 shows the CRA and WRA obtained from the transcrip�on results. Although the scores are
lower than when tested with the Boise State dataset (Table 3), it does not deviate much and the total
in each case is s�ll a respectable result for datasets not used in training or development. There is no
transcrip�on level work reported using the CMATERdb 1.1.1 dataset. The best reported work for the
Indic Word Dataset is presented by Mukherjee et al. [37]. They obtained a WRA of 88.19% using a
fused LSTM network using a whole word recogni�on method (explained in Sec�on 2.3) and thereby
restricted recogni�on to only the words available in their dataset. In contrast, our WRA of 78.21%
(and 74% with autotag) on this dataset is using a recogni�on process that is not limited to a fixed set
of words. The difference in performance with autonomous tagging from manual precise tagging is
consistently low by about 10 - 12%, but again the autonomous tagging method pays off in terms of
convenience and ease to add more data.

Surprisingly, the best performance we obtained out of these three datasets is with the REID2019
dataset, which is not handwriten, rather machine printed historical documents. This dataset was
used for a compe��on on recogni�on of early Indian printed documents at the Interna�onal
Conference on Document Analysis and Recogni�on (ICDAR) in 2017 and 2019. All the OCR results
submited to this compe��on were below 80%, while we obtained a CRA of 92.64% and 90.43% with
precision and auto-tagging respec�vely in spite of the fact that our recogni�on framework has never
seen any machine printed text or other image distor�on during training. Overall, the outcome of this
experiment strongly suggests that our presented framework is robust enough to be used for
unconstrained handwri�ng recogni�on in real life applica�ons.

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

Table 4 Recogni�on performance using character spo�ng and autonomous tagging with external Bangla
datasets.

Dataset Used
Precise Tagging Auto Tagging Reported

CRA WRA CRA WRA Max WRA
CMATERdb 1.1.1 [36, 13] 92.36% 82.27% 87.78% 76.64% N. A.
Indic Words Dataset [37] 89.97% 78.21% 86.12% 74.00% 88.19% [37]

REID2019 [38] 92.64% 81.96% 90.43% 79.10% < 80% [38]
Boise State Dataset 94.80% 87.74% 91.12% 80.16% 87.74%

6.3 Korean PE92 Dataset
The Korean recogni�on performance is measured as Jamo Recogni�on Accuracy or JRA (equivalent to
CRA) and compound Syllable Recogni�on Accuracy or SRA (equivalent to WRA). For training, we used
a frac�on of the PE92 training set consis�ng 130 classes of syllables (each class contains 80 to 88
instances) chosen in a manner that every target Jamo shown in Fig 5 (a) appears rela�vely evenly.
A�er being trained with autonomously tagged data from this training set, we tested the K-Net
performance on the complete PE92 test set which has 2350 classes. We also manually tagged a small
por�on of the training set (10 samples each from 130 syllable classes) and used that with the same
test set to compare the performance. Although the amount of training data used is not equal in these
two experiments, the amount of �me and effort needed to arrange these was comparable.

The result from recognizing when K-Net was trained with auto and manually tagged characters is
presented in Table 5, along with two other best scores achieved for this same dataset. For Bangla, we
used the same amount of precision tagged and autonomously tagged data and have seen the trained
network with precision tagging performs beter. However, for Korean we used roughly eight �mes
more autonomously tagged data than precisely tagged data. This mismatch in training data is created
to demonstrate what can be achieved within a similar �meframe and/or man-power resource
situa�on with these two approaches. As seen, larger quan�ty of auto-tag data can outperform a
smaller amount of precise-tag trained data, and ge�ng more auto-tagged data is almost effortless
where manual-tagging �me grows linearly with the amount of data. While [22,23,24] are able to
achieve higher recogni�on rates, they devoted considerably more �me to tune their systems for this
script and dataset. They also limit their results to 2350 syllable classes, while our approach can
operate on any poten�al combina�on of the basic Jamos. They used the en�re dataset and we only
used a frac�on of the PE92 dataset for training. Furthermore, unlike Bangla, we did not implement
any post processing compila�on fixes to assure that the detected combina�on of Jamos is permissible
in the script. Even though vowel posi�on was used in the tag genera�on process, it was not applied to
the detec�on results. Such post processing steps would very likely improve the recogni�on
performance. From the outcome of this experiment, it can clearly be conjectured that our methodical
approach has the poten�al to achieve a high performing offline recogni�on rate with small amount of
resources like �me, human-labor and the amount of data.

Table 5 Korean Recogni�on Results on PE92 Dataset.

Researchers Methods JRA SRA
Park et al. [22] MQDF N. A. 85.99%
Kim et al. [23] DCNN N. A. 92.92%
Dziubliuk et al. [24] Sequence Learning N. A. 97.90%

Character
Spo�ng

Autonomous Tagging 93.16% 85.52%
Precision Tagging 84.68% 78.77%

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

7 Conclusion
We introduced the process of character spo�ng for unconstrained offline handwri�ng recogni�on for
Bangla in [1]. Here, first and foremost we upgraded our Bangla recogni�on with more data and
produced a network that can detect all the cri�cal conjuncts of the Bangla script. This produced a fast
and high performing offline Bangla recogni�on framework which works for over 99% of the script
without being restricted to any par�cular set of words. We also omited the spell correc�on unit from
our original experiment in order to allow more irregular words like names of people or places. This
approach is tested robustly with three external Bangla datasets. This is the most successful work
reported for unconstrained Bangla (the only other being our previous atempt [1]).

Character spo�ng is a robust and flexible approach. It is not associated with any specific atribute of
a script, and therefore can work for any alphabe�c script. Since, most Abugida scripts have close
resemblance with Bangla, it is expected the same method will also work for those. Mondal et al. built
on our work in [1] to use a similar approach for the La�n script [31] without autotagging. Here we
atempted to strengthen our claim of versa�lity of the character spo�ng approach with the
Korean/Hangul script; a script which is very different from Bangla. We aimed to show how it is to
transform of our framework to this script using a small frac�on of the PE92 training set. The results
we got are already comparable to the state-of-the-art results reported for this dataset, even without
applying any simple structure checks.

The biggest botleneck of the character spo�ng approach is its core dependency on character level
tagging. This requirement makes the development process very complex and �me consuming. Data
tagging not only takes a lot of �me and effort, it is also a very frustra�ng task to do. Therefore, even if
it is almost assured that the framework will work with any alphabe�c script, expanding our approach
for other scripts is not very prac�cal with the requirement of precise tag training. To fix this, we
presented the approach of autonomous tagging, leveraging the fact that our detec�on networks do
not rely heavily on the precise loca�on of a character as long as we can define a bounding box that
contains the whole target character. Here, we demonstrated two approaches for autonomous
tagging: a sophis�cated one for Bangla which es�mates the bounding boxes based on the propor�ons
from a computer generated font, and a basic one for Korean which just splits the 2D space in equal
heights and/or widths based on the target composi�on. The autonomous tagging is also flexible and
can work for any alphabe�c script. Furthermore, this exposes the strength and flexibility of our
character spo�ng approach in whole new way. There are two main ways for advancing this research
further: to op�mize the system for beter performance and to expand it for other scripts.

We believe, the combina�on of character spo�ng and autonomous tagging is truly transforma�onal
for offline handwri�ng recogni�on. It offers a simple and straigh�orward workflow skipping the
delicate and complex processing schemes which were the staples of prac�ce for years. It also offers
an open pla�orm which can accommodate many different tools and strategies seamlessly. This
technique works great even with a very small amount of data, which is usually not the case with most
deep learning approaches. For a new script, our approach only requires a collec�on of handwriten
pages and their transcrip�on. Datasets like this are already available for many scripts like La�n,
Arabic, Devanagari, Gurmukhi and Gujara�. When they are not, the process of gathering images of
handwriten pages and typing out their content is a small effort compared to other approaches in
prac�ce today. Mixed script could be recognized by applying mul�ple networks to the document. The
problem of handwri�ng recogni�on has existed for more than half a century and we believe, our
presented approach here brings this ancient problem very close to a unified and prac�cal solu�on.

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

Acknowledgements
The authors are extremely grateful to all the volunteers who contributed to the Boise State
Handwri�ng Dataset project. We would also like to thank the Center for Microprocessor Applica�on
for Training Educa�on and Research (CMATER) group, Dr. Pradeep Kumar, Department of Computer
Science & Engineering, Indian Ins�tute of Technology Roorkee, India. Thanks also to Mr. Steven Kim,
Department of Computer Science, Boise State University, Boise, Idaho, USA who helped us with
Korean. Last, we would like to acknowledge the high-performance compu�ng support of the R2
Compute Cluster provided by Boise State University’s Research Compu�ng Department.

References
1. Nishatul Majid and Elisa H Barney Smith. Segmenta�on-free Bangla offline handwri�ng recogni�on using

sequen�al detec�on of characters and diacri�cs with a Faster R-CNN. In 2019 Interna�onal Conference on
Document Analysis and Recogni�on (ICDAR), pages 228–233. IEEE, 2019.

2. Nishatul Majid and Elisa H. Barney Smith. Boise State Bangla Handwri�ng Dataset.
https://doi.org/10.18122/saipl/1/boisestate , 2018.

3. Ethnologue, Languages of the World, (25th ed., 2022). Bengali.
https://www.ethnologue.com/language/ben . Online; accessed 24 May 2022.

4. WorldAtlas. The World’s Most Popular Wri�ng Scripts. https://www.worldatlas.com/articles/the-
world-s-most-popular-writing-scripts.html . Online; accessed 24 May 2022.

5. Samir Malakar, Ram Sarkar, Subhadip Basu, Mahantapas Kundu, and Mita Nasipuri. An image database of
handwriten Bangla words with automa�c benchmarking facili�es for character segmenta�on algorithms.
Neural Compu�ng and Applica�ons, 33(1):449–468, 2021.

6. Poojarini Mitra, Kaustav Bhatacharjee, Anirban Das, Sayan Kumar Dey, Deepjyo� Chakraborty, Aritra
Ghosal, and Shadab Akhtar. Character segmenta�on for handwriten Bangla words using image processing.
American Journal of Electronics & Communica�on, 1(3):8–11, 2021.

7. Monika Kohli and Sa�sh Kumar. Segmenta�on of handwriten words into characters. Mul�media Tools and
Applica�ons, 80(14):22121–22133, 2021.

8. MK Mahto, K Bha�a, and RK Sharma. Robust offline Gurmukhi handwriten character recogni�on using
mul�layer histogram oriented gradient features. Int J Comput Sci Eng, 6(6):915–925, 2018.

9. Riya P Javia, Mukesh M Goswami, and Suman K Mitra. Character segmenta�on from handwriten Gujara�
isolated words using deep learning. In 18th India Council Interna�onal Conference (INDICON), pages 1–6.
IEEE, 2021.

10. Deepika Gupta and Soumen Bag. Holis�c versus segmenta�on-based recogni�on of handwriten
Devanagari conjunct characters: a CNN-based experimental study. Neural Compu�ng and Applica�ons,
pages 1–17, 2022.

11. Megha Parikh and Apurva Desai. Segmenta�on of frequently used handwriten Gujara� conjunc�ve
alphabet. In 2019 5th Interna�onal Conference on Compu�ng, Communica�on, Control And Automa�on
(ICCUBEA), pages 1–6. IEEE, 2019.

12. Bidyut B Chaudhuri and Abhisek Kundu. Proceedings of the Interna�on Conference on Fron�er in
Handwri�ng Recogni�on (ICFHR), 2008.

13. CMATERdb: The patern recogni�on database repository. http://code.google.com/p/cmaterdb , March
2018.

14. Tapotosh Ghosh, Min-Ha-Zul Abedin, Hasan Al Banna, Nasirul Mumenin, and Mohammad Abu Yousuf.
Performance analysis of state of the art convolu�onal neural network architectures in Bangla handwriten
character recogni�on. Patern Recogni�on and Image Analysis, 31(1):60–71, 2021.

15. Mayank Mishra, Tanupriya Choudhury, and Tanmay Sarkar. Devanagari handwriten character recogni�on.
In 2021 IEEE India Council Interna�onal Subsec�ons Conference (INDISCON), pages 1–6. IEEE, 2021.

16. Manoj Kumar Mahto, Karamjit Bha�a, and Rajendra Kumar Sharma. Deep learning based models for offline
Gurmukhi handwriten character and numeral recogni�on. ELCVIA Electronic Leters on Computer Vision
and Image Analysis, 20(2), 2021.

https://doi.org/10.18122/saipl/1/boisestate
https://www.ethnologue.com/language/ben
https://www.worldatlas.com/articles/the-world-s-most-popular-writing-scripts.html
https://www.worldatlas.com/articles/the-world-s-most-popular-writing-scripts.html
http://code.google.com/p/cmaterdb
KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

17. N Shobha Rani, AC Subramani, Akshay Kumar, and BR Pushpa. Deep learning network architecture based
Kannada handwriten character recogni�on. In 2020 Second Interna�onal Conference on Inven�ve
Research in Compu�ng Applica�ons (ICIRCA), pages 213–220. IEEE, 2020.

18. C Vinotheni, S Lakshmana Pandian, and G Lakshmi. Modified convolu�onal neural network of Tamil
character recogni�on. In Advances in Distributed Compu�ng and Machine Learning, pages 469–480.
Springer, 2021.

19. Vijaya Krishna Sonthi, S Nagarajan, and N Krishnaraj. An intelligent Telugu handwriten character
recogni�on using mul�-objec�ve mayfly op�miza�on with deep learning based DenseNet model.
Transac�ons on Asian and Low-Resource Language Informa�on Processing, 2022.

20. Bineesh Jose and KP Pushpalatha. Intelligent handwriten character recogni�on for Malayalam scripts using
deep learning approach. In IOP Conference Series: Materials Science and Engineering, volume 1085, page
012022. IOP Publishing, 2021.

21. Vinod Kumar Chauhan, Sukhdeep Singh, and Anuj Sharma. HCR-Net: A deep learning based script
independent handwriten character recogni�on network. arXiv preprint arXiv:2108.06663, 2021.

22. Gyu-Ro Park, In-Jung Kim, and Cheng-Lin Liu. An evalua�on of sta�s�cal methods in handwriten Hangul
recogni�on. Interna�onal Journal on Document Analysis and Recogni�on (IJDAR), 16(3):273–283, 2013.

23. In-Jung Kim and Xiaohui Xie. Handwriten Hangul recogni�on using deep convolu�onal neural networks.
Interna�onal Journal on Document Analysis and Recogni�on (IJDAR), 18(1):1–13, 2015.

24. Valerii Dziubliuk, Mykhailo Zlotnyk, and Oleksandr Viatchaninov. Sequence learning model for syllables
recogni�on arranged in two dimensions. In Interna�onal Conference on Document Analysis and
Recogni�on, pages 100–111. Springer, 2021.

25. Rahul Pramanik and Soumen Bag. Handwriten Bangla city name word recogni�on using CNN-based
transfer learning and fcn. Neural Compu�ng and Applica�ons, 33(15):9329–9341, 2021.

26. Sandhya Sharma, Sheifali Gupta, Deepali Gupta, Sapna Juneja, Gaurav Singal, Gaurav Dhiman, and Sandeep
Kau�sh. Recogni�on of Gurmukhi handwriten city names using deep learning and cloud compu�ng.
Scien�fic Programming, 2022.

27. Kar�k Duta, Praveen Krishnan, Minesh Mathew, and CV Jawahar. Offline handwri�ng recogni�on on
Devanagari using a new benchmark dataset. In 2018 13th IAPR Interna�onal Workshop on Document
Analysis Systems (DAS), pages 25–30. IEEE, 2018.

28. PJ Jino, Kannan Balakrishnan, and Ujjwal Bhatacharya. Offline handwriten Malayalam word recogni�on
using a deep architecture. In So� Compu�ng for Problem Solving, pages 913–925. Springer, 2019.

29. Dipmala Salunke, Pooja Sabne, Hitesh Saini, Vivekanand Shivanagi, and Pradnya Jadhav. Handwriten
Devanagari word recogni�on using customized convolu�on neural network. In 2021 Interna�onal
Conference on Compu�ng, Communica�on and Green Engineering (CCGE), pages 1–5. IEEE, 2021.

30. Chandranath Adak, Bidyut B Chaudhuri, and Michael Blumenstein. Offline cursive Bengali word recogni�on
using CNNs with a recurrent model. In 15th Interna�onal Conference on Fron�ers in Handwri�ng
Recogni�on (ICFHR), pages 429–434. IEEE, 2016.

31. Rik�m Mondal, Samir Malakar, Elisa H Barney Smith, and Ram Sarkar. Handwriten English word recogni�on
using a deep learning based object detec�on architecture. Mul�media Tools and Applica�ons, pages 1–26,
2021.

32. Karen Simonyan and Andrew Zisserman. Very deep convolu�onal networks for large-scale image
recogni�on. arXiv preprint arXiv:1409.1556, 2014.

33. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and patern recogni�on, pages 248–255. IEEE,
2009.

34. Handwriten Hangul Datasets: PE92, SERI95, and HanDB. https://github.com/callee2006/HangulDB,
1992.

35. Nishatul Majid and Elisa H Barney Smith. Introducing the Boise State Bangla Handwri�ng dataset and an
efficient offline recognizer of isolated Bangla characters. In 16th Interna�onal Conference on Fron�ers in
Handwri�ng Recogni�on (ICFHR), pages 380–385. IEEE, 2018.

36. Ram Sarkar, Nibaran Das, Subhadip Basu, Mahantapas Kundu, Mita Nasipuri, and Dipak Kumar Basu.
CMATERdb1: a database of unconstrained handwriten Bangla and Bangla–English mixed script document
image. Interna�onal Journal on Document Analysis and Recogni�on (IJDAR), 15(1):71–83, Feb 2011.

https://github.com/callee2006/HangulDB
KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

37. Subham Mukherjee, Pradeep Kumar, and Partha Pra�m Roy. Fusion of spa�o-temporal informa�on for Indic
word recogni�on combining online and offline text data. ACM Transac�ons on Asian and Low-Resource
Language Informa�on Processing (TALLIP), 19(2):1–24, 2019.

38. Chris�an Clausner, Apostolos Antonacopoulos, Tom Derrick, and Stefan Pletschacher. ICDAR2019
compe��on on recogni�on of early Indian printed documents– REID2019. In 2019 Interna�onal Conference
on Document Analysis and Recogni�on (ICDAR), pages 1527–1532. IEEE, 2019.

KimberlyHolling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal on Document Analysis and Recognition (IJDAR), published by Springer. Copyright restrictions may apply. https://doi.org/10.1007/s10032-022-00410-x

	Character Spotting and Autonomous Tagging: Offline Handwriting Recognition for Bangla, Korean and Other Alphabetic Scripts
	Character Spotting and Autonomous Tagging: Offline Handwriting Recognition for Bangla, Korean and other Alphabetic Scripts
	1 Introduction
	1.1 Offline Recognition
	1.2 Bangla Writing System
	1.3 Scripts with Similar Properties
	1.4 Difficulties with Recognition of Indic Scripts
	1.5 Korean/Hangul Writing System

	2 Literature Review
	2.1 Overview: It’s an Unsolved Problem
	2.2 Segmentation-Based Approaches
	2.3 Segmentation-Free Approaches

	3 Offline Recognition using Character Spotting
	3.1 The Basic Idea of Character Spotting
	3.1.1 Implementation for the Bangla Script
	3.1.2 Implementation for the Korean Script
	3.1.3 Implementation for any Alphabetic Script

	3.2 Underlying Framework
	3.2.1 The Object Detection Network
	3.2.2 Compilation of Detected Results into a Transcription

	4 Autonomous Tagging
	4.1 Sensitivity to Tag Precision
	4.2 Autonomous Tagging Process
	4.2.1 Implementation for Bangla
	4.2.2 Implementation for Korean

	5 Datasets used for the Experiments
	5.1 The Boise State Bangla Handwriting dataset
	5.1.1 Essay script documents
	5.1.2 Conjunct word documents

	5.2 External Bangla Datasets
	5.2.1 CMATERdb 1.1.1
	5.2.2 Indic Word Dataset
	5.2.3 REID2019

	5.3 Handwritten Korean/Hangul Dataset PE92

	6 Results and Analysis
	6.1 Boise State Bangla Handwriting Dataset
	6.2 External Bangla Datasets
	6.3 Korean PE92 Dataset

	7 Conclusion
	Acknowledgements
	References

