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A B S T R A C T

Video cameras are common at volcano observatories, but their utility is often limited during periods of crisis due
to the large data volume from continuous acquisition and time requirements for manual analysis. For cameras to
serve as effective monitoring tools, video frames must be synthesized into relevant time series signals and further
analyzed to classify and characterize observable activity. In this study, we use computer vision and machine
learning algorithms to identify periods of volcanic activity and quantify plume rise velocities from video obser-
vations. Data were collected at Villarrica Volcano, Chile from two visible band cameras located ~17 km from the
vent that recorded at 0.1 and 30 frames per second between February and April 2015. Over these two months,
Villarrica exhibited a diverse range of eruptive activity, including a paroxysmal eruption on 3 March. Prior to and
after the eruption, activity included nighttime incandescence, dark and light emissions, inactivity, and periods of
cloud cover. We quantify the color and spatial extent of plume emissions using a blob detection algorithm, whose
outputs are fed into a trained artificial neural network that categorizes the observable activity into five classes.
Activity shifts from primarily nighttime incandescence to ash emissions following the 3 March paroxysm, which
likely relates to the reemergence of the buried lava lake. Time periods exhibiting plume emissions are further
analyzed using a row and column projection algorithm that identifies plume onsets and calculates apparent plume
horizontal and vertical rise velocities. Plume onsets are episodic, occurring with an average period of ~50 s and
suggests a puffing style of degassing, which is commonly observed at Villarrica. However, the lack of clear
acoustic transients in the accompanying infrasound record suggests puffing may be controlled by atmospheric
effects rather than a degassing regime at the vent. Methods presented here offer a generalized toolset for volcano
monitors to classify and track emission statistics at a variety of volcanoes to better monitor periods of unrest and
ultimately forecast major eruptions.

1. Introduction

Volcano monitoring requires synthesis and analysis of a diverse range
of continuously recorded geophysical data. Seismometers have been and
remain the primary component of long-term volcano monitoring (Sparks
et al., 2012; Titos et al., 2018) but are often complemented by infrasonic
microphones (Johnson and Ripepe, 2011; Fee et al., 2013) and web
cameras (Falsaperla and Spampinato, 2003; Patrick et al., 2010; Pallister
et al., 2019). A major advantage in joint seismo-acoustic time series
analysis is the ability to quantify multiple aspects of eruption dynamics
including source location (Petersen andMcNutt, 2007; Arrowsmith et al.,
2010; Richardson et al., 2014), energy partitioning (Johnson and Aster,
2005; Palacios et al., 2016), and plumbing structure (Battaglia et al.,

2019). When available, the activity responsible for the seismo-acoustic
signals is assessed through direct observation of video records. For
example, manual inspection of video frames related seismic and acoustic
source mechanisms to large bubble bursts at Mount Erebus, Antarctica
(Gerst et al., 2008; Jones et al., 2008), a seething lava lake at Villarrica,
Chile (Palma et al., 2008), explosions at Karymsky, Russia (Johnson,
2007), and rockfalls into the Kilauea crater, Hawaii (Orr et al., 2013).
Though video data provide insights into eruptive behavior, manually
navigating these data to identify and monitor activity is time intensive
and often impractical.

For continuous camera surveillance to serve monitoring agencies,
video must be distilled into concise time varying features that characterize
volcanic activity (Dürig et al., 2018). Within the last 15 years, focused
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computer vision algorithms have synthesized infrared (IR), visual band,
and ultraviolet (UV) imagery to describe eruption characteristics. For
example, plume shape, volume, apparent temperature, and other
morphological parameters were extracted from IR imagery using a novel
puff detection algorithm at Sromboli, Italy (Gaudin et al., 2017) as well as
fractal analysis at Stromboli, Italy; Fuego, Guatemala; and Sakurajima,
Japan (Tournigand et al., 2018). Similarly, visual band imagery has been
synthesized using several analytical techniques. Particle tracking routines
have elucidated dome uplift at Santiaguito, Guatemala (Johnson et al.,
2008), plume velocities at Holuhraun, Iceland (Witt et al., 2018), and drag
zones within volcanic jets at Stromboli, Italy (Taddeucci et al., 2015),
while edge detection algorithms have characterized plume volume at
Mount Erebus, Antarctica (Witsil and Johnson, 2018) and pulsating vents
at Kilauea, Hawaii (Witt et al., 2018). While these studies quantified vol-
canic behavior, their scientific focus was retrospective, occurring after
eruptive episodes. Real time analysis of volcanic eruptions is possible using
software suites, which provide critical constraints on plume height, ascent
velocity, bulk volume, and aperture (Valade et al., 2014; Dürig et al.,
2018). However, input parameters must be precisely tuned before char-
acterizing the observed style of activity. If activity shifts and the software is
unable to track the new behavior, the ability for monitoring agencies to
identify periods of unrest will diminish.

The scope of this paper is directed toward monitoring agencies who
need generalized computer vision algorithms to quantify a variety of
emissions and identify periods of volcanic unrest. Our analyses focus on
data collected in 2015 at Villarrica Volcano, Chile and include the ac-
tivity prior to and after the major 3 March paroxysm. We apply two
computer vision algorithms to these data to quantify and classify the
diverse range of observable activity. Onsets of venting and associated
plume rise rates are extracted via a row and column projection method
while a blob detection algorithm extracts statistics on the emission color
and spatial extent. Plume statistics reflect the intensity and type of
observable emissions and can distinguish fivemodes of activity particular
to Villarrica in early 2015. Instances of dark emissions, light emissions,
nocturnal glow, cloud cover, and inactivity are autonomously identified
using a supervised artificial neural network (ANN). Results from the
ANN, along with the features extracted from the two computer vision
algorithms, relate to eruption processes and track the observable shifts in
behavior surrounding the 3 March paroxysm. Together, the computer
vision and machine learning algorithms comprise a novel workflow that
may be applied to other volcanic systems and thus provide additional
tools for volcano monitors.

1.1. Villarrica background and data

Villarrica hosts a long-lived basaltic andesite lava lake (Palma et al.,
2008) that experiences major paroxysmal eruptions every ~20 years
(Van Daele et al., 2014). In between major eruptions, activity is domi-
nated by mild strombolian style eruptions and lava flows confined to the
crater floor (Palma et al., 2008). Activity just prior to the 3 March 2015
paroxysm included an increase in CO2 gas concentrations (Aiuppa et al.,
2017), more violent strombolian eruptions (Romero et al., 2018) and a
rising lava lake (Johnson et al., 2018). The paroxysm initiated with
increased strombolian activity that culminated in an hour long 1.5 km
high lava fountain, which partially melted the summit glacier causing
lahars to descend several drainages (Johnson and Palma, 2015). After-
wards and continuing until late March, lava from the eruption tempo-
rarily buried the lava lake (Romero et al., 2018). The diverse volcanic
behavior manifested as a range of observed activity including nighttime
incandescence and daytime emissions of varying color and intensity,
which relate to ambient lighting as well as variations in ash concentra-
tions and gas species. The focus of this study is quantifying and classi-
fying the observable activity above the crater rim as recorded by two
different optical camera setups (Fig. 1).

Video data come from two cameras that recorded the activity prior to
and after the 3 March 2015 paroxysm. The data are diverse both in terms

of the variety of recorded activity and instrument specifications. Prior to
3 March, the webcam-style image data come from the privately operated
Villarrica Volcano Observation Project (POVI), which monitors summit
activity primarily through archival summit observations (reported by
local guides) and optical cameras (www.povi.cl). POVI image data are
time lapse (ten second interval) and come from a Samsung SCB-2000 web
camera equipped with a 240 mm zoom lens (35 mm equivalent) and
situated 15 km from the summit (Fig. 1). During low light conditions, the
camera automatically switches to a black and white near infrared (NIR)
mode. Camera field of view at the target distance of 15 km was 1088 by
843 m corresponding to a horizontal and vertical pixel resolution of 0.6
m per pixel. Following the eruption on 3 March and continuing
throughout April, we operated a video camera (30 frames per second) to
complement the low frame rate POVI time lapse installation. This camera
was a P300ZX 5–50 mm HD surveillance camera with visible and NIR
sensitivity in low light conditions and recorded 17 km from the summit.
The field of viewwas 2112 by 1188mwith a horizontal and vertical pixel
resolution of 0.91 m per pixel. Summary camera information is provided
in Table 1. While the surveillance camera operated at a frame rate
capable of extracting velocities from a rising plume (section 3), the less
frequently sampled web camera data contain important information on
eruptive dynamics including plume area and color and, significantly, was
operational in the lead-up to the paroxysm. Plume statistics extracted
from the web camera are used in a machine learning routine to auton-
omously classify the observed activity (section 2).

2. Classifying activity in webcam footage

Autonomous classification through machine learning (ML) algo-
rithms provide a general framework to map input data into discrete
categories and is well suited for a variety of geophysical datasets. The
majority of volcanological ML research focuses on identifying seismic
modes of activity including long period events, tremor, explosions, and
hybrid events (Masotti et al., 2008; Curilem et al., 2009; Langer et al.,
2009; Malfante et al., 2018; Titos et al., 2018). ML classification of

Fig. 1. Cameras used in this study and example frames from those cameras.
Field of view (FOV) at Villarrica’s crater rim is given for BSU and POVI operated
cameras. Example images from both cameras show activity from the same time
period (�10 s).
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volcano infrasound is less common, though acoustic data from Mt Etna,
Italy have been used to locate active vents (Cannata et al., 2011) and
have been paired with seismic observations to differentiate eruptive ac-
tivity (Hajian et al., 2019). Volcano video data, though commonly
recorded and capable of constraining various modes of activity, has not
previously been used in a ML context. In the following sections, we
outline a supervised ML workflow that inputs raw video and outputs a
discrete class for each frame.

2.1. Data labeling, pre-processing, and feature extraction

We autonomously classify video data by first defining five classes that
are commonly observed at Villarrica. Three classes are associated with
volcanic activity and include nocturnal glow, light emissions, and dark
emissions. Nocturnal glow is defined as the incandescent glow observed
above Villarrica’s summit at night, while dark and light emissions
correspond to the color of material rising above the crater rim (Fig. 2).
Classes associated with inactivity include cloud cover, when the region
above the rim is obstructed by clouds, and inactivity, where no
discernible emission is present during cloudless conditions. Seasonal
variations in the atmosphere are expected over this time period and may
affect brightness levels in the recorded video. However, these fluctua-
tions should not influence classification by the supervised ML algorithm
so long as classes are identified throughout the two-month study period.
As such, classes are manually assigned to 2001 randomly selected frames
spanning the entire dataset. Inactivity makes up 67% of the total labeled
data (1343 frames) while nocturnal glow, dark emissions, light emis-
sions, and cloud cover make up 12%, 9%, 3%, and 9%, respectively.

The three classes associated with volcano activity are influenced by
eruptive behavior and extrinsic conditions including the ambient lighting
and weather conditions above the rim. Activity can fluctuate in intensity
and also shift between classes. For example, light emissions can shift
between opaque and semi-transparent and, in some cases, transition to
dark emissions over second time scales. Such shifts are likely unrelated to
ambient lighting or atmospheric conditions but rather relate to changes
in gas composition, ash concentration, or eruptive source mechanisms.
Because we are motivated by a volcano monitoring perspective, where
tracking changes in behavior is important, we consider it pertinent to
classify these modes of activity.

Supervised ML algorithms use features extracted from labeled data to
make predictions. Although pixel values from the red, green, and blue
(RGB) color channels can be used as inputs, algorithm performance
generally improves by reducing image noise and focusing on regions
associated with activity. All preprocessing and feature extraction meth-
odologies are accomplished via the freely available R package imagefx
(Witsil, 2019). First, raw images are cropped to a pixel area that
encompass the region associated with activity, which is directly above
the vent (Fig. 3 panel b). To enhance color variance associated with

volcanic emissions, the best fit planes are subtracted from the red, green,
and blue (RGB) color channels; this removes the DC offset and any color
gradients from light sources outside the frame (e.g. sun and moon).
Emission colors then range from dark (negative) to bright (positive),
where daytime activity varies from bright to dark and nocturnal emis-
sions are generally characterized by a bright glow above the crater rim,
which fluctuates in intensity and is occasionally overprinted by small
bright transients corresponding to the ejection of incandescent ballistics.
We normalize bright and dark color regions by taking the absolute value
of each RGB channel, which emphasize regions whose color contrast
from the mean.

The dominant color contrasting region is identified using a Lap-
lacian of the Gaussian (LoG) blob detection algorithm (e.g. Lindeberg,
1993). The Gaussian filter for the POVI time lapse imagery uses a
standard deviation of 20 pixels (~10 m), which acts as a low-pass filter
(Fig. 3 panel c). This spatial dimension matches the smallest observ-
able extent of emission activity. The five-pixel Laplacian then converts
the filtered image to source (positive) and sink (negative) regions
(Fig. 3 panel d) that is then binarized into to black (zero) and white
(one) values (Fig. 3 panel e). White blob regions are associated with
high color contrasting regions in the original image. While several
blobs may exist in one LoG processed image, we identify the blob
associated with the highest pixel value in the Gaussian filtered image.
The results from the blob detection processing are used to find the
color values and index locations that make up the predominant blob
within each RGB channel.

Blob regions for each time lapse image are quantified by their color,
spatial distribution, and temporal evolution (Fig. 4). The color statistics
extracted include the sum, mean, standard deviation, skewness, and
kurtosis of the blob pixel values in each of the RGB channels. Spatial
statistics record information on the blob shape and distribution and
include the blob area as well as the pixel coordinate’s mean, standard
deviation, skewness, and kurtosis in the horizontal and vertical direction.
The temporal evolution of these statistics is important, and its charac-
teristics are exploited by applying a low pass (LP) filter in the time
domain. A five-minute running average is applied to emphasize eruptive
modes such as minute-duration nocturnal glow or continuous degassing
activity that is commonly observed at Villarrica (Palma et al., 2008).
Additionally, we take the time derivative of the five-minute averaged
statistics to highlight more punctuated emissions, including puffing ac-
tivity and discrete explosions. Supplementary Table 1 summarizes 126
independent statistics extracted from time lapse imagery for the three
different color channels.

Unnecessary statistics do not add to ML predictive capabilities and
inhibit the performance of ML algorithms by slowing the run time,
overfitting the data, and masking the true variables capable of class
identification (Gheyas and Smith, 2010). This curse of dimensionality
motivates the active research area of feature selection (e.g. Curilem et al.,

Table 1
Overview of camera specifications.

Camera operator Dates Dist. to crater (km) Focal length with lens (mm) Sensor & size FPS Resolution at rim (m/pix) Angular FOV (deg)

POVI 4 Feb – 1 April, 2015 15 240 CCD 1/3” 1/10 0.6 1.3
BSU 3 Mar – 1 April, 2015 17 50 CMOS ⅕” 30 0.9 6.3

Fig. 2. Examples of the five classes of activity assigned at Villarrica. Dark emission and light emission examples were taken from different days but from the same hour
and with similar lighting.
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2009). Therefore, we use a two step process to select a subset of the 126
statistics that are both uncorrelated and also capable of separating the
raw data into the five classes. First, statistics that are more than 90%
correlated with another statistic are considered redundant and removed
from the feature space. Second, we apply the nonparametric
Kolmogorov-Smirnov (KS) test over the remaining statistics to compare
the five class distributions to the total distribution. The KS test gives the
probability that the empirical cumulative distribution function (ECDF)
from one class comes from the total distribution (i.e. the ECDF from
summing all five classes). Any feature where all five classes have >95%

probability of coming from the total distribution are discarded from the
feature space (Fig. 5). The correlation analysis and KS test reduces the
feature space from 126 to 108 dimensions (see Supplementary Table 1
column 2).

2.2. Artificial neural network

Artificial neural networks (ANN) provide a generalized framework to
categorize complex signals by emulating the neural connections in ani-
mal brains (Van Gerven and Bohte, 2018). In an ANN, one or more values

Fig. 3. Overview of image processing. (a) Grayscale original image of nocturnal glow on 27 February 2015. Dashed lines indicate cropped region and red region is
result of blob detection algorithm described in the text. (b) Cropped original image. (c) Detrended and gaussian smoothed (σ¼ 20 pixels) processed image. Red dot
indicates the maximum pixel value of this image. (d) Laplacian of the image from panel c. (e) Binarized image of panel d. The blob region is calculated using a
connected component algorithm that finds all connected source pixels. This example demonstrates the LoG blob detection algorithm applied to a grayscale image.

Fig. 4. Blob RGB color and spatial distributions during examples of dark emissions, light emissions, clouds, and inactivity. Blob column and row sums are plotted
outside of the top and right margins of the cropped area indicated by the dashed rectangles. Blob RGB histograms are indicated in panel insets. Distribution statistics
are calculated for each video frame (stacked gray rectangles).
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enter a neuron where they are each weighted, summed, and then input
into an activation function whose output can serve as input into another
neuron. Outputs from the jth neuron (yj) are determined by a set of input
units (uiÞ by:

yj ¼ f
�X

Θij ui þ bj
�

where,Θij is the matrix of neural weights connecting the ith unit to the jth
neuron, bj is jth neuron’s bias, and f is the activation function (Falsaperla
et al., 1996).

A common ANN framework is the multilayer perceptron (MLP) model
(Murphy, 2012), which has been used to classify seismic signals at Mt.
Vesuvius, Italy (Scarpetta et al., 2005), Villarrica, Chile (Curilem et al.,
2009), Soufriere Hills, Monserrat (Langer et al., 2003), and Stromboli,
Italy (Falsaperla et al., 1996). MLPs comprise an input layer of feature
data, an output layer where the classification is predicted, and one or
more hidden layers (HL) in between (Fig. 6). Each HL comprises one bias
node and several additional nodes whose values come from the previous
node’s activation function. Data are fed-forward through the HLs before
reaching the output layer, which has the same number of nodes as classes
and whose values indicate the ANN’s prediction of which class the input
data belong to.

The ANN’s performance depends on the weights at each HL and is
assessed by comparing the output prediction to the labeled data through
a cost function. Cost is backpropagated through the ANN (Rumelhart
et al., 1985) to calculate the cost function’s gradients. A gradient descent
routine then updates each weight to minimize cost and thus best classify
the input feature data. This learning phase is typically conducted over a
subset of the labeled data known as the training set. The ANN’s perfor-
mance also depends on architectural parameters (Curilem et al., 2009)
including the number of HLs, number of HL nodes, the regularization
term in the cost function, and the optimization routine’s learning rate.

These parameters must be optimized using a subset of the labeled data
that is separate from the training set known as the cross validation (CV)
set. The architectural parameters associated with the lowest cost in the
CV set are used in the final ANN algorithm whose overall performance is
reported using a final subset of the labeled data known as the test set.

The ANN used to classify the webcam images has an input layer
consisting of the 108 features that are scaled by subtracting the mean and
dividing by the standard deviation. Feature scaling is important when
feature values vary widely and helps optimization algorithms, like
gradient descent, converge. The ANN uses a sigmoid activation function
f ðzÞ ¼ 1=ð1þe�zÞ for all layers and a multiclass log loss cost function
with regularization parameter λ (Mitchell, 1997). The use of the sigmoid
function, as opposed to a softmax function, in the output layer accounts
for the possibility that the five classes are not mutually exclusive, and
additional classes of activity may exist. This is important if a new style of
eruption occurred that was not initially accounted for in the labeled data.

Our goal is to classify webcam footage from Villarrica by training an
ANN. The entire learning phase uses a training dataset composing 60% of
our labeled data with a gradient descent optimization algorithm running
5000 iterations and with learning rate α. After optimizing the HL
weights, we use a CV set composing 20% of the labeled data to optimize
the ANN architecture.

We test five HLs between 1 and 5, six HL nodes between 108 and 158,
11 regularization values (λ) between 0 and 10, and five learning rates (α)
between 0.001 and 10 and in doing so, test 1650 ANN architectures. The
optimum architecture comprises 1 HL, 108 HL nodes, α ¼ 0:03, and λ ¼
0 and produces a CV cost of 0.380. Because 602 of the 1650 architectures
produced similarly low CV costs (less than 1) we conclude that the
models performance depends more on the feature inputs and weights
rather than the hyperparameters in the ANN’s architecture.

2.3. Classification accuracy and application to continuous footage

Frames in the test set are synthesized into the 108 characteristic
features and fed-forward through the trained ANN. The sigmoid activa-
tion function at the output layer calculates the probabilities that the

Fig. 5. Class distributions from two example blob features. (a) The total dis-
tribution (purple) and each class distribution (remaining colors) of the 4th blob
statistic, which corresponds to the mean color values of the blob in the red
channel. (b) The empirical cumulative distribution function (ECDF) of (a). Note
the separation of each class from the total distribution. (c, d) Histogram and
ECDF distributions from the 122nd statistic, which corresponds to kurtosis of
the red channel blob’s vertical distribution after time differencing and LP
filtering. The lack of separation in the ECDF means that this feature failed the KS
test and was not used in the ANN.

Fig. 6. Example multilayer perceptron (MLP) model of a multi-classification
artificial neural network (ANN). The ANN inputs M feature data units and a
bias unit (white circle), which together make up the first layer of the ANN. In the
case of the POVI webcam data, M ¼ 108 and comes from the selected features
from the blob statistics (see section 2.1). Each feature is weighted by the com-
ponents in matrix Θ whose superscripts indicate the current layer within the
ANN. Weighted features are summed and passed to D activation functions whose
outputs then serve as new features that are weighted by additional Θ matrices.
Herein we use an ANN with D ¼ 108 sigmoid activation functions. A hypothesis
is made in the output layer, which, in this case, are the probabilities that the
webcam feature data belong to one of the five classes. The entire ANN is fully
connected (white arrows) though several connections are highlighted to
demonstrate how the Θ weights are applied (bold black arrows).
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current frame belongs to a particular class and the class associated with
the highest probability is identified. In doing so, the ANN classifies the
test set data into five categories with an overall accuracy of 93%. We
further scrutinize the performance of the ANN using a confusion matrix,
where properly predicted classes are reported along the diagonal
(Table 2).

Nocturnal glow is the most common form of volcanic activity in the
labeled dataset and is classified by the ANN with high precision (96%)
and recall (96%). Conversely, instances of light emissions make up the
minority of labeled data and only 11 examples are included in the test set.
As such, the high precision (100%) in this class might not accurately
reflect the ANN’s performance. Of all the data, cloud identification is
least accurate (62% recall and 70% precision) and is most often confused
with periods of inactivity. We suggest that cloud identification is most
problematic because of their variable shapes, colors, and locations rela-
tive to Villarrica’s crater rim. Cloud cover during sunrise and sunset may
have reddish tones due to increased light scattering. Few instances of
sunrise and sunset cloud cover exist in the labeled data meaning that the
training data for this class may be inadequate. Additionally, most plumes
during the study period were blown from right to left (i.e. west to east)
according to the predominant seasonal wind direction (Kalthoff et al.,
2002). The ANN may assign too high a weight to the spatial features
corresponding to this wind regime. After 23 March, when the predomi-
nant wind direction changed, plumes moving from left to right are more
likely to be misclassified. To increase the ANN’s performance, training
data must include labels for all classes occurring over all daily and sea-
sonal atmospheric regimes.

Continuous image data is fed-forward through the trained ANN to
classify the entire two-month long webcam dataset. A full day of
continuous webcam footage, which is roughly 8000 images at a size of
1.5 GB, is reduced into a single time series summarizing the progression
of activity. For example, classified webcam data from 18 February 2015
includes nocturnal glow, dark emissions, cloud cover, and inactivity,
which are confirmed during scrutiny of the raw frames (Fig. 7). Between
hours 16 and 20, image classification fluctuates between dark emissions,
clouds, and inactivity with relatively low associated probabilities for
each class. The raw frames during this time (panels e and f) show activity
that is hard to identify and exemplifies the ANN’s reliance on definitive
examples of each class to make predictions with high probabilities.

Two months of webcam data (roughly 90 GB) are synthesized into a
stacked time series (aka filled area plot) and show variations in observ-
able activity leading up to, and following, the 3 March 2015 paroxysm
(Fig. 8). Frommid-February and continuing until March, volcano activity
was dominated by inactivity during the day that transitioned to nocturnal
glow, which increased in the six days prior to the 3 March paroxysm. In
the hour lead-up to, and during, the paroxysm itself, the ANN classified
both the increasing strombolian activity and firefountaining phases as
nocturnal glow. Though the styles of strombolian and firefountaining
activity are different during this period, they were not differentiated as
distinct classes because there was too little data to include them in the
ANN training phase.

Immediately following the paroxysm, the volcano remained pre-
dominately inactive until 13 March when light-colored emissions were

observed above the rim during the daylight hours (Fig. 8). These emis-
sions transitioned from light to dark after 18 March. During this period,
there was an absence of high amplitude infrasound (Le Pichon et al.,
2010; Romero et al., 2018) indicating a departure from Villarrica’s
normal, open-vent lava lake activity, which produces intense infrasound.
The abrupt shift in emission color from light to dark likely relates to
remobilized ash ejected from the collapse of lava shelves, which had
sealed the crater in the wake of the 3 March eruption. On the night of 24
March, nocturnal glow reappeared and coincides with the reemergence
of both recorded volcano infrasound and the previously buried lava lake
(Romero et al., 2018).

3. Characterizing plume growth velocities from video

Volcanic plumes comprise the ejected ballistics, ash, and gas as well
as ambient air entrained by the eruption column. Plume sizes and growth
rates can vary over several orders of magnitude depending on vent ge-
ometry, magma flux, magma rheology, and atmospheric conditions.
Constraining these parameters with quantitative in-situ observations
have significant implications for modeling ash dispersal and forecasting
plume-related hazards (e.g. Clarke et al., 2002). In particular, plume exit
velocity affects the amount of atmospheric entrainment (Andrews and
Gardner, 2009), impacts maximum column height (Caplan-Auerbach
et al., 2010), and relates to mass eruption rate (Ripepe et al., 2013).
Additionally, at low exit velocities pyroclastic density currents can occur
when insufficient air is entrained to produce a buoyant plume (Neri and
Dobran, 1994). Horizontal winds also affect plume development; if
horizontal wind speeds exceed vertical exit velocities, maximum plume
height decreases, and the ash dispersal pattern is asymmetric (Graf et al.,
1999; Bursik, 2001; Ripepe et al., 2013). Thus, for monitoring purposes,
it is important to track both vertical and horizontal velocities of an
expanding plume. Though inferences may be made through seismic
(McNutt and Nishimura, 2008; Prejean and Brodsky, 2011; Londono and
Galvis Arenas, 2018) and infrasound (Caplan-Auerbach et al., 2010;
Ripepe et al., 2013; Delle Donne et al., 2016) signal analysis, they rely on
theoretical or empirical relationships with attendant assumptions. More
robust measurements can be provided by quantitative measurements of
video imagery.

Various IR, UV, and visible light (VL) image datasets permit the
measurement of plume and gas exit velocities. Although manual analysis
of images was effective in characterizing degassing at Aso, Japan (Morita,
2019), Vulcanian explosions at both Soufriere Hills, Montserrat (For-
menti et al., 2003) and Sakurajima, Japan (Johnson and Miller, 2014),
and Strombolian eruptions at Stromboli, Italy (Taddeucci et al., 2015),
automated tracking of ejecta by computer vision algorithms generalizes
the procedure, reduces analysis time, and extends the use of video data as
a monitoring tool. Image processing techniques including erosion and
dilation (Bombrun et al., 2018), contouring (Donne and Ripepe, 2012;
Ripepe et al., 2013), optical flow analysis (Tournigand et al., 2017; Gliß
et al., 2018), and fractal analysis (Tournigand et al., 2018) have all been
used to track emission velocities in IR and UV spectrums. Other studies
have processed VL using edge detection and particle image velocimetry
to track firefountaining ejecta at Kilauea, Hawaii (Witt andWalter, 2017)

Table 2
Confusion matrix from the trained ANN applied to the test set. Off-diagonal values (N ¼ 27) correspond to inaccurately classified data. Properly classified data on the
diagonal (N ¼ 372) correspond to 93% of all data. Precision and recall values are given in italics for each class.

Overall accuracy 93% Predicted

recallInactivity N. Glow D. Emissions L. Emissions Clouds

Actual Inactivity 258 0 2 0 5 97
N. Glow 1 52 0 0 1 96
D. Emissions 0 0 32 0 3 91
L. Emissions 1 0 1 9 0 82
Clouds 9 2 2 0 21 62
precision 96 96 86 100 70
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and Holuhraun, Iceland (Witt et al., 2018), as well as dome uplift at
Santiaguito, Guatemala (Johnson et al., 2008). Additionally, thresh-
olding and stacking of VL image frames has been used to track large
ballistics at Aso, Japan (Tsunematsu et al., 2019). Because VL image
acquisition of eruptions is an inexpensive technology and particularly
prevalent at many volcano observatories (Scollo et al., 2014), we intro-
duce some effective tools to both identify plume emissions as well as
track the associated horizontal and vertical velocities of a growing plume
using Villarrica surveillance camera footage.

3.1. Plume timing and rise velocity (PTRV) algorithm

To distill the large volume of surveillance footage at Villarrica into
meaningful time series, still frames were first decimated to 1 Hz, con-
verted to grayscale, and cropped to a region centered above the vent.
Cropped frames are then preprocessed by subtracting the mean color
value and detrending the image by removing the best fit plane. These
corrections remove effects due to changes in lighting conditions and light
gradients, respectively. Plume features are then highlighted using a row
and column projection method (e.g. Pang and Liu, 2001). When a plume
is present against a clear (non-cloudy) background, summation of pixel
color values along both the rows or columns produce vectors, which
emphasize the vertical and horizontal extents of the plume. Successive
image row and column sum vectors may then be concatenated into a
matrix where columns correspond to time and rows indicate either the

column or row sums and are referred to as image series row projections
(ISRP) or column projections (ISCP) (e.g., Fig. 9). Similar analyses were
performed on successive thermal images at Stromboli, Italy where
instead of row summation, the maximum values in each row were
retained and plotted (Gaudin et al., 2017). Similar to these thermal rise
history diagrams, ISRCPs are visual representations of time varying
horizontal and vertical plume features and are an effective way to syn-
thesize hours of video data into one image.

Discrete, or transient, plume emissions are manifested as sloping
lineaments (streaks) in the ISRCP records (Fig. 9). In the case where the
vent is horizontally centered in the image field of view, a rising volcanic
plume first appears in the middle of the ISCP and corresponds to the
timing of the plume’s emergence above the crater rim. When horizontal
winds are present, the plumemay be carried either left or right producing
streaks in the ISCP with a negative or positive slope (Fig. 9 panel d). In
the case where the vent is aligned with the bottom of the cropped image,
emergent plumes in the ISRP will be begin in the lower rows and rise with
a positive slope, which is proportional to the vertical rise velocity (Fig. 9
panel e).

Processing standard HD video (1920 � 1080 pixel resolution) with
ISRP and ISCP reduces its size by three orders of magnitude while
maintaining important plume characteristics. Processed video data can
then be plotted in time series format, where plume activity is easily
discernible and may be quantitatively compared with other datasets. For
example, an ISCP spanning 13-h on 22 March shows continuous puffing

Fig. 7. ANN predictions of activity on 18 February 2015. (a–h) Example video frames from throughout the day. Dashed rectangles indicate the cropped region
analyzed. (i) The time series indicate classifications (y axis) for each time step over the 24-h period. Points are color-coded according to the probability of each class
given by the ANN. Note, unlike a softmax function, the probabilities from a sigmoid activation function in multi-class classification do not necessarily add to 1.
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Fig. 8. Chronology of classified activity prior to, and after, the 3 March paroxysm. Predictions from the ANN are indicated for hourly averages. Classifications with less
than 80% certainty are labeled as uncertain.
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activity until 11:10, followed by a discrete plume emission at 12:20, and
then inactivity until puffing resumes at ~13:30 (Fig. 10).

Streaks in the ISRCPs embody the plume’s apparent vertical rise ve-
locities and projected horizontal advection speed. Analysis of ISRCPs can
parameterize plume instances and provide important constraints on
eruption occurrence and dynamics. Velocities may be extracted from the

streak curvature in the ISRCP records, similar to a tau-p analysis in
seismic reflection (Turner, 1990). For linear streaks, which are common
at Villarrica, a simple slant shift and stack is used to estimate plume
velocities; streaks stack in phase after applying the appropriate velocity
correction. A proper velocity-corrected ISRP or ISCP matrix will have
streaks that appear vertical (panel b in Fig. 11). The summed value of
these velocity corrected matrices is referred to here as a plume timing
and rise velocity (PTRV) vector, which is calculated independently for
both ISCP and ISRP.

The onset of a discrete plume in video records is associated with a
sudden change in color level (e.g. bright sky is replaced by dark plume)
and these changes can be highlighted in the time domain by applying a
running standard deviation operator. For proper velocity-corrected ISCP
and ISRP matrices, the PTRV vector will have both high absolute am-
plitudes and high standard deviations (compare the PTRVs in panel b
with panels a and c in Fig. 11). Velocity corrections, corresponding to
both vertical plume rise and horizontal advection, are thus found by
maximizing standard deviation of the PTRV time series. PTRV vectors
may also be used to identify the timing of discrete plume emissions. In the
case of ISRP, a sudden change in PTRV marks the emergence of material
above the vent, which contrasts with the surrounding atmosphere. Events
can be picked based upon whether the PTRV amplitude peaks exceed a
certain threshold value (e.g., panel f in Fig. 11).

Horizontal and vertical velocities are tracked by finding the velocity
corrections for ISCP and ISRP matrices separately. Absolute plume ve-
locities are then calculated as the square root of the individual squared
components Vabs ¼ sqrt

�
V2
horz þ V2

vert

�
. It is important to note that these

velocities extracted from integrated ISRCP of a single camera is a pro-

Fig. 9. Visualization of ISCP and ISRP. (a–c) Select still image frames from BSU surveillance footage with row and column sums plotted to the right and below the
respective images. Dashed lines indicate the mean value. (d) Column and (e) row sums of ~350 video frames plotted with color corresponding to summed pixel
intensity. Vertical lines indicate timing of the image frames in (a–c).

Fig. 10. ISCP for 13-h (local time) of video data from 21 March 2015. Streaks
correspond to discrete plume emissions. Colors are scaled every hour.
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jected velocity that is perpendicular to the camera’s field of view. Mul-
tiple cameras located at distinct vantage points could theoretically be
integrated to infer a three-dimensional direction of plume growth. Pro-
jected plume direction, defined as an angle from vertical, is calculated
from the velocity components as φ ¼ atan2ðVhors; VvertÞ.

3.2. Characterizing Villarrica puffing with PTRV

The BSU surveillance camera recorded continuously after 3 March
2015 and is particularly useful for tracking and quantifying plume ac-
tivity after Villarrica’s paroxysm. We have applied the PTRV algorithm to
nine days in March during which there was minimal cloud cover and
episodic occurrences of ash venting. Plume directions and velocities are
binned and plotted as rose diagrams for each day (Fig. 12). Strong winds
are evident in both measured speeds and in the rose diagram histograms
where plume directions are sub-horizontal (March 15–18). A significant
change in the wind field from westerlies to easterlies is noticeable
starting on 23 March. Wind field quantification through image plume
analysis can thus serve as an effective anemometer at the summit of a
remote volcano.

The daily number of plume emissions varied between tens to over 600
and indicate a puffing mode of degassing (Palma et al., 2008). Volcanic
puffing is generally defined as the discrete, but periodic, emission of
volcanic gas or ash over second-long time scales (Harris and Ripepe,
2007; Gaudin et al., 2017), though some studies further stipulate an
accompanying acoustic transient from an over pressurized system (Landi
et al., 2011; Tamburello et al., 2012). Puffing is both a common and an
efficient degassing process (Tamburello et al., 2012) and commonly
observed at open vent systems including Yasur, Vanuatu (Bani et al.,

2013; Spina et al., 2016), Stromboli, Italy (Ripepe et al., 2009), and
Villarrica, Chile (Mather et al., 2004). At Stromboli, Italy the 2007
eruption was preceded by steadily increasing puffing activity, high-
lighting the need to track and monitor this style of degassing (Ripepe
et al., 2009). Though puffing events recorded at Villarrica in March 2015
were observed during periods of low amplitude tremor (coming from the
vent direction) (Johnson and Palma, 2015; Johnson et al., 2018), there is
no indication that the discrete puffing detected in ISRCP records is
correlated with infrasound transients (Fig. 13). We thus suggest that
puffing at Villarrica can result from near continuous degassing from the
lava lake (tens to hundreds of meters below the crater rim), whose
emissions then separate into packets due to horizontal wind effects and
vortex shedding.

Vortex shedding occurs when fluid flows past an obstruction and is
separated into vortices. It is characterized by the dimensionless Strouhal
number St ¼ fL=U, where f is the vortex shedding frequency, U is the
flow velocity, and L is the characteristic length over which the fluid
flows. For flows with Strouhal numbers greater than 10�4 and less than 1,
oscillations are characterized by the buildup and release of discrete
vortices (Sobey, 1982). We estimate Strouhal numbers for a crater rim
radius of L ¼ ~150 m and use horizontal wind velocities and plume
emission frequencies calculated from the PTRV algorithm that were on
average 6.2 m/s and 0.02 Hz, respectively. For 51 periods of puffing
identified during 9 days in March St ¼ 0.5 � 0.3 indicating a regime
where periodic vortex shedding is likely to occur. This suggests that the
commonly observed puffing activity at Villarrica may result from atmo-
spheric controls, as opposed to periodic degassing from the lava lake
surface.

Fig. 11. Overview of plume timing and rise velocity (PTRV) algorithm. (a–c) Example ISCP records corrected over a range of velocities and column summed into PTRV
vectors, which are plotted outside the bottom margins. (d) Matrix of PTRV vectors with vector amplitudes plotted as colors. Example vectors from (a–c) are indicated
by dark gray lines. (e) Result from applying a running standard deviation to (d). (f) The maximum value from every column in (e). Peaks (teal circles) indicate the
timing of plume activity and are found automatically via a find peaks algorithm (see section 3.1) and mapped back to (e) as gray circles. (g) The original ISCP record
with plume instances indicated by teal circles and velocities indicated by gray lines.
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4. A generalized video processing workflow

In the previous sections, we outlined methods to classify and char-
acterize a variety of activity at Villarrica Volcano occurring in 2015. We
propose these methods can be used conjointly, i.e., classified video

frames from the ML algorithm can be used to constrain time periods of
sustained emissions, which may then be analyzed with the PTRV algo-
rithm to quantify individual plume emission events. We suggest this
generalized workflow of classifying and characterizing periods of activity
can be applied to video image data recorded at other volcanoes. In this

Fig. 12. Plume speeds and directions calculated from PTRV analysis. (a) Rose diagram distribution of plume directions and speeds superimposed on an example
grayscale image frame from 23 March 2015. (b–j) Plume growth statistics for nine days in March. Number of events are indicated. Note PTRV analysis is not conducted
on 19 March as few plume instances were observed.
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section, we demonstrate the versatility of several processing steps and
highlight the modular components within the workflow.

Our classification routine comprises eight steps (Fig. 14), all of which
are applicable to a variety of camera deployments with potentially
different sensitivities (IR, UV, VL), image acquisition rates, and resolu-
tions. Although other volcano datasets may be trained with greater or
fewer classes than those used at Villarrica, activity at any volcano can be
labeled according to the analyst’s needs. General steps include pre-
processing the raw images (i.e., removing the mean and best fit plane
within the FOV of interest). High contrast regions with similar color
characteristics may then be detected with the LoG blob detection algo-
rithm, which requires adjustment of only a single input parameter, the
sigma in the Gaussian LP filter. To demonstrate the value of the blob
detection algorithm we have applied it to a range of volcano image
datasets, with variable emission colors, shapes, and sizes. Diverse ex-
amples from Mount Erebus, Antarctica; Sakurajima, Japan; Santiaguito,
Guatemala; and Old Faithful Geyser, Yellowstone were all recorded with
different camera instrumentation, FOV, and distances to the vent, yet
their emissions are well captured after adjusting the sigma value
(Fig. 15). Time scales of eruptive activity, which affect feature quantifi-
cation, are also different for the various case studies. In the case of Vil-
larrica, the time domain filters highlight the minute-long nocturnal glow
activity and the more discrete puffing events, respectively. However, at
other volcanoes these filters may have to be adjusted. Feature space
reduction may also be particular to individual case studies. In order to
avoid redundant features, we remove features that are highly correlated
with a somewhat subjective threshold. Finally, parameterization of the
ANN is limited to its architecture, whose optimization is described in
section 2.2.

The PTRV algorithm can also be applied to a variety of volcano video
data so long as the images were acquired at sufficient frame rates to track
emissions without aliasing. Long-duration ISRCP records can be used to
distill large volumes of video data into a single figure that indicates
variations in activity over time. From these data the streak curvature may
be used to indicate both plume emission timing and exit speeds. For

example, we analyze 14-h of time lapse images from Sakurajima Volcano,
Japan, recorded with a GoPro camera located ~4 km from the vent and
acquiring images at 10 s intervals. Despite the differences in instru-
mentation and volcanic activity compared to Villarrica, Sakurajima
plume timing and velocities are also well quantified (Fig. 16).

The computer vision workflow presented here provides useful classi-
fication and quantification of eruption history, however it is meant to be
modular and features from other computer vision algorithmsmay be easily
incorporated depending upon objectives. To give a few examples, plume
areas calculated from the LoG blob detection algorithm may be calibrated
according to viewing angle and wind direction (e.g. Scollo et al., 2014) and
geometric assumptions may be applied to retrieve plume volumes. The
ANN we use to classify raw video may be replaced by other ML algorithms
used in volcanological studies including support vector machines (Masotti
et al., 2008; Langer et al., 2009; Cannata et al., 2011; Curilem et al., 2014),
decision trees (Hibert et al., 2017; Hajian et al., 2019), k means (Anzieta
et al., 2019), and k nearest neighbors (Orozco-Alzate et al., 2019).
Regardless of ML algorithm implementation, a well-chosen feature space is
the most important predictor of classification success (Malfante et al.,
2018; Hajian et al., 2019). Continuous video acquisition at volcanoes is
increasingly common. Versatility and modularity are key to providing

Fig. 13. Example (a) ISCP and (b) ISRP puffing from 21 March, hour 19 plotted
with corresponding infrasound recorded ~4 km from the vent. Gray lines
correspond to infrasound bandpass filtered between 1 and 10 Hz while bold blue
lines show a five second running average applied to the absolute valued infra-
sound amplitudes. Infrasound has been time shifted ~10 s to align with the
video data.

Fig. 14. Workflow of the volcano video classification (pink boxes) and char-
acterization of emissions associated with the PTRV algorithm (blue boxes).

Fig. 15. Eruptions from (a) Mount Erebus, Antarctica, (b) Sakurajima, Japan,
(c) Santiaguito, Guatemala, and (d) Old Faithful, Yellowstone and application of
LoG blob detection algorithm. Dashed rectangles indicate the manually cropped
region for which signals were analyzed.
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video distillation tools that are of value to monitoring agencies and sci-
entific studies.

5. Conclusion

Despite the prevalence of volcano web cameras and other long-term
camera installations at volcano observatories, video imagery has only
recently been used as a quantitative tool. We apply computer vision and
machine learning algorithms to two months of visible band video data
collected at Villarrica, Chile to further the scientific merit of long-term
video monitoring at volcanoes. The diverse activity surrounding the 3
March paroxysm is classified by an artificial neural network (ANN) that
identifies time periods of cloud cover, light emissions, dark emissions,
nocturnal glow and inactivity. We are limited by potential subclasses
within each mode of activity as well as relatively few instances of cloud
cover and light emissions in the training data but nonetheless find the
ANN performs with an overall accuracy of 93%. Time periods identified
as having plume emissions are further analyzed using a computer vision
algorithm (PTRV) that tracks emission timing and growth dynamics from
a buoyantly rising plume. Both classification and characterization algo-
rithms compose a generalized and modular workflow that can be modi-
fied and applied to other volcanoes with long term camera deployments.
Looking forward, researchers should not only continue to develop
generalized computer vision and machine learning algorithms but also
integrate seismic, acoustic, and other multiparametric data to better
constrain eruption dynamics and ultimately improve monitoring and
forecasting abilities.
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