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Abstract

The degree to which the hydrologic water balance in a snow-dominated headwater

catchment is affected by annual climate variations is difficult to quantify, primarily

due to uncertainties in measuring precipitation inputs and evapotranspiration

(ET) losses. Over a recent three-year period, the snowpack in California's Sierra

Nevada fluctuated from the lightest in recorded history (2015) to historically heaviest

(2017), with a relatively average year in between (2016). This large dynamic range in

climatic conditions presents a unique opportunity to investigate correlations between

annual water availability and runoff in a snow-dominated catchment. Here, we esti-

mate ET using a water balance approach where the water inputs to the system are

spatially constrained using a combination of remote sensing, physically based model-

ling, and in-situ observations. For all 3 years of this study, the NASA Airborne Snow

Observatory (ASO) combined periodic high-resolution snow depths from airborne

Lidar with snow density estimates from an energy and mass balance model to pro-

duce spatial estimates of snow water equivalent over the Tuolumne headwater

catchment at 50-m resolution. Using observed reservoir inflow at the basin outlet

and the well-quantified snowmelt model results that benefit from periodic ASO snow

depth updates, we estimate annual ET, runoff efficiency (RE), and the associated

uncertainty across these three dissimilar water years. Throughout the study period,

estimated annual ET magnitudes remained steady (222 mm in 2015, 151 mm in

2016, and 299 mm in 2017) relative to the large differences in basin input precipita-

tion (547 mm in 2015, 1,060 mm in 2016, and 2,211 mm in 2017). These values

compare well with independent satellite-derived ET estimates and previously publi-

shed studies in this basin. Results reveal that ET in the Tuolumne does not scale line-

arly with the amount of available water to the basin, and that RE primarily depends

on total annual snowfall proportion of precipitation.
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1 | INTRODUCTION

A major scientific question in mountain hydrology is how decreasing

snowpack and inter annual climate variability will affect runoff ratios and

stream flow. Future climate projections for the Western United States

overwhelmingly agree that future temperatures will continue to rise

(Garfin et al., 2018; May et al., 2018), but future shifts in precipitation

are much more uncertain (Luce et al., 2016; Roderick, Sun, Lim, &

Farquhar, 2014). Regardless of future precipitation trends, global moun-

tain snow cover duration is shortening (Kunkel et al., 2016), and the like-

lihood of extreme climatological events is increasing (Jentsch, Kreyling, &

Beierkuhnlein, 2007; Seager, Naik, & Vogel, 2012).

One way to investigate the effect of future predictions of climate

variability on the water cycle in mountain environments is to disaggre-

gate the hydrologic water balance into its constituent components,

which has been the focus of some recent studies. Berghuijs, Woods,

and Hrachowitz (2014) used a data-driven approach to infer that

basins receiving a higher proportion of annual precipitation as snow

experience higher long-term mean stream flow than those basins that

are more rain-dominated. Godsey, Kirchner, and Tague (2014) exam-

ined measured runoff and snow water equivalent (SWE) across multi-

ple basins in the California Sierra Nevada and found that summer low

flows vary proportionately with annual variations in peak SWE. More

recently, Cooper et al. (2018) took the investigation of low flow sensi-

tivity one step further by including all winter precipitation and poten-

tial evapotranspiration (PET), in addition to SWE, across

110 ungauged basins in the western United States. Their analysis

determined that summer evaporative demand is the dominant con-

tributor affecting low flow sensitivity to climate variability. However,

low flow sensitivity was found to be tempered in catchments with

higher snow proportions of total precipitation, such as is found in the

high alpine.

By constraining one or more of the terms of the water balance

equation with better measurements and monitoring techniques, the

trends in the more poorly understood terms can be estimated with

greater accuracy. This process-driven approach for closing the water

balance has been shown to be useful for assessing energy and mass

balance components that are difficult to measure such as evapotrans-

piration (ET) (Wan et al., 2015; Williams et al., 2012), groundwater

recharge (Henn et al., 2018; Herrmann, Keller, Kunkel, Vereecken, &

Wendland, 2015; Kendy et al., 2003), and runoff efficiency

(RE) (Knowles et al., 2015), the latter of which is defined as the ratio

of basin discharge to precipitation.

Water balance studies assessing basin-wide evaporation and sub-

limation losses in catchments where more than 80% of annual precipi-

tation falls as snow are uncommon but not unprecedented. Leydecker

and Melack (2000) used a complimentary relationship model to esti-

mate aerial ET over various alpine catchments throughout the Sierra

Nevada. They found that ET was typically low throughout the months

of snow cover, and then markedly increased during the late summer

and early autumn of each year with an average of 36% of the water

budget lost to the atmosphere. Kattelmann and Elder (1991) examined

the water balance of the Emerald Lake watershed in the Southern

Sierra Nevada and found that ET ranged from 19 to 30% of the total

water budget in successive years (1986–1987). Henn, Newman, Livneh,

Daly, and Lundquist (2018) also found that in the Tuolumne River Basin,

the mean late season residual – defined as the combination of ET and

groundwater recharge after peak SWE – ranged from 30 to 39% of the

annual water budget for three recent drought years (2013–2015).

Following this recent drought (2012–2015), the California Sierra

Nevada underwent the largest dynamic range of snowpack conditions

over a 3-year period in recorded history (2015–2017). The final year

of the drought (2015) resulted in the lowest April 1 snowpack in over

500 years, according to a tree-ring SWE reconstruction study

(Belmecheri, Babst, Wahl, Stahle, & Trouet, 2016). The following win-

ter of 2016 resulted in a near-average snowpack, with April 1 SWE

totals around 85% of the recorded average. Lastly, the winter of 2017

resulted in the second highest April 1 SWE in recorded history, and

the most reservoir inflow on record for many of the large reservoirs

along the western slopes of the Sierra Nevada. These three climati-

cally dissimilar years provide a backdrop for examining hydrologic

responses across a wide range of conditions.

The primary question this study aims to answer is how are ET and

RE in an alpine/subalpine environment affected by both total water avail-

ability and the snow fraction of precipitation entering the basin? A sec-

ondary question is then to what degree do periodic Lidar snow depths

decrease uncertainty in modelled ET and RE estimates? To investigate

these questions, we simulate the snowpack at an hourly time scale

over the water years 2015–2017. We use a fully distributed physically

based energy and mass balance snow model forced with hourly

gridded meteorological fields derived from weather station measure-

ments in 2015 and 2016, and downscaled atmospheric model fore-

casts in 2017. The snow model is then updated with periodic

distributed NASA Airborne Snow Observatory (ASO) snow depths at

3-m resolution covering the entire basin domain, explicitly resolving

the spatial distribution of SWE and effectively improving the snow

input precipitation estimates over the basin. These updates have been

shown to drastically increase the accuracy and reliability of modelled

SWE throughout the melt season (Hedrick et al., 2018), as the Lidar

depth fields correct for large uncertainties in input snowfall magni-

tudes and simulated melt rates. Combined with some fundamental

assumptions about the hydrologic behaviour of the Tuolumne Basin

over an annual time scale we place the resulting estimates of ET and

RE in the context of the Budyko relationship (Budyko, 1974) to

explain the relationship of RE with annual basin precipitation and

snowfall fraction. The water balance approach detailed here provides

an additional perspective on how a large snow-dominated headwater

catchment responds to climate variability.

2 | STUDY AREA AND MODEL
APPLICATION

This study was performed over the Tuolumne River Basin in the Sierra

Nevada, California (Figure 1). The outlet of the basin is at the base of

O'Shaughnessy Dam (37.947386�N, 119.788497�W), which forms
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Hetch Hetchy Reservoir and provides the main source of drinking

water and hydropower to nearly 3 million residents in the city and

county of San Francisco. The total basin area is 1,187 km2 and eleva-

tions range from 1,150–3,999 m, with over 90% of the basin lying

above 2,000 m, which has been the average approximate rain-snow

transition elevation in the basin since 2013 (Hedrick et al., 2018). Ele-

vations between 2,000 and 2,900 m are mainly composed of snow-

dominated subalpine forests and make up 55% of the total basin area.

The upper 35% of the basin (2,900–3,999 m) is an alpine environment

where the snow distribution is heavily influenced by wind. The Tuol-

umne lithology is composed of mainly intrusive granodiorite bedrock

with soils over much of the basin being less than 1-m deep (Lundquist

et al., 2016). Numerous hydrologic studies have been performed in

the Tuolumne Basin (e.g., Henn, Newman, et al., 2018; Lundquist,

Dettinger, & Cayan, 2005; Raleigh & Small, 2017; Rice, Bales,

Painter, & Dozier, 2011) owing to its significance and status as a vital

“water tower” for downstream inhabitants (Viviroli, Dürr, Messerli,

Meybeck, & Weingartner, 2007).

2.1 | iSnobal and the airborne snow observatory

This study's approach to examine the water balance of the Tuolumne

Basin involves estimating the timing and magnitude of snowmelt and

rainfall entering the hydrologic system using a physically based snow-

melt model. The iSnobal model (Marks, Domingo, Susong, Link, &

Garen, 1999) has been tested extensively across various climate

regimes and has been shown to produce reasonable estimates of

basin-wide snowpack mass over annual timescales (Hedrick

et al., 2018; Kormos et al., 2014; Reba, Marks, Winstral, Link, &

Kumar, 2011; Sohrabi et al., 2019; Winstral, Marks, & Gurney, 2013).

In this application, iSnobal provided daily predictions of various energy

and mass fluxes at 50-m spatial resolution for water years

2015–2017. During water years 2015 and 2016, the model was

forced using hourly weather station measurements from co-operator

sites in and around the basin, interpolated to each model grid cell

(Figure 1). These methods are presented in detail by Havens, Marks,

Kormos, and Hedrick (2017) and Hedrick et al. (2018). However, the

near-record snowfall totals in 2017 buried meteorological instrumen-

tation at multiple sites, and alternatively, downscaled gridded meteo-

rological forecast products from the National Oceanic and

Atmospheric Administration's High-Resolution Rapid Refresh (HRRR;

Benjamin et al., 2016) operational model were used instead as model

forcing inputs. This approach to using atmospheric forecast models as

iSnobal forcing data was developed and described by Havens

et al. (2019).

In addition to the hourly meteorological forcing fields, the model

can also be constrained by spatial observations of the snow depth

state variable whenever these measurements are available. Since

2013, the NASA/Caltech Jet Propulsion Laboratory ASO has per-

formed airborne Lidar and spectrometer surveys throughout each

ablation season to periodically determine the spatial distribution of

snow depth (Painter et al., 2016) across the Tuolumne River Basin.

These Lidar-derived snow depth measurements provide a more realis-

tic snowpack distribution, which in turn improves snow energy and

mass calculations. This improvement ultimately provides more accu-

rate estimates of snowpack thermal state, melt and runoff, which

combined with rainfall is here referred to as surface water input

(SWI). The procedure for updating iSnobal whenever ASO measure-

ments are available is described by Hedrick et al. (2018). The number

of ASO model updates varied each year of this study from 9 flights in

2015, 12 flights in 2016, and 8 flights in 2017.

3 | BACKGROUND AND METHODS

The general water balance of a basin over a specified duration can be

represented as

ΔS=P+ΔG− Q+ETð Þ, ð1Þ

where ΔS is the difference in water stored within the basin between

the beginning and end of the duration (i.e., change in soil moisture),

P is the total precipitation input to the basin as rain and snow, ΔG is

the difference between incoming and outgoing groundwater across

subsurface catchment boundaries, Q is the cumulative basin runoff at

the basin outlet, and ET is the combination of water returned to the

F IGURE 1 Location and relief map of the Tuolumne River Basin
above Hetch Hetchy Reservoir within the U.S. State of California.
Locations of various measurement stations used to force iSnobal in
water year 2015 and 2016 are depicted as yellow circles
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atmosphere by evaporation, snow sublimation, and transpiration by

vegetation. We use Equation (1) to solve for total annual ET by apply-

ing some simplifying assumptions described below.

Owing to the unique lithology of the basin (Lundquist

et al., 2016), we assume that cross-basin subsurface water transfers

are negligible so that

ΔG≈0: ð2Þ

Equation 2 implies that all groundwater within the basin origi-

nated as precipitation within the catchment area. The change in

groundwater and soil storage is also zero if the basin begins and ends

the specified duration at the same wetness state, that is, groundwater

levels, soil moisture contents, and SWE storage are approximately the

same regardless of variations that occurred within the time duration.

We begin the water year on October first each year, when the basin

tends to be at its driest state, and we assume

ΔS≈0: ð3Þ

A portion of ET includes a term ES, which here represents both

evaporation and sublimation from the snowpack. Common methods

to compute ET do not include snow processes, therefore we intro-

duce a new term ETWB, which is the water balance-derived ET with Es

removed. Es is modelled within iSnobal using air temperature and the

latent heats of vaporisation and sublimation (Marks, Kimball, Tingey, &

Link, 1998). Once these atmospheric moisture fluxes from the snow

surface have been disentangled from P, we then define SWI,

referenced in Section 2.1, as any water that strikes the soil as either

rain on bare ground, melt water at the snow-soil interface, or rain that

percolates through the snowpack. Assuming all snow from the previ-

ous year melts before Oct. 1 and that Equations (2) and (3) are

approximately true, then

SWI=P−Es, ð4Þ

Equation (1) can then be simplified such that

ETWB = SWI−Q+ ɛ, ð5Þ

where ETWB is the water balance-derived ET, ɛ is a residual error term

that comprises both measurement uncertainty in P and Q, along with

model uncertainty in P, ES and assumptions regarding ΔS and ΔG.

Next, we will explore each variable of this reduced water balance

Equation (5) independently in the context of this study.

3.1 | Evapotranspiration

Previous work has estimated ET amounts in the Sierra Nevada using

water balance approaches (Henn, Painter, et al., 2018; Kattelmann &

Elder, 1991) and regression relationships between eddy covariance

flux tower measurements and satellite products (Fellows &

Goulden, 2017; Goulden et al., 2012; Roche, Goulden, & Bales, 2018).

These approaches focused on different applications but concluded

that annual ET in the upper elevations of the Sierra Nevada ranged

between 150 and 400 mm, with most of the losses occurring below

tree line. In fact, the regression-based studies estimated ET only as

high as the subalpine environment, since the highest elevation flux

tower site used to determine the relationship is at 2,700 m. Over 60%

of the land area within the Tuolumne Basin is above that elevation

and is heavily snow-dominated, shortening the annual duration when

ET can occur. Following the elevational trends of ET presented in the

literature, the actual total ET in this headwater catchment is likely

towards the lower end of previous estimates due to the lack of vege-

tation in the upper reaches of the basin. This study will estimate ET,

along with uncertainties represented in ɛ, by using measurements of

Q and by constraining P and Es using combined remote sensing and

modelling results.

In addition to the flux tower transects, optical satellite products,

and water balance approximations, satellite retrieval algorithms can be

used as independent validation sources for estimating actual ET. The

MOD16 Global Evapotranspiration Product was first described by

Mu, Heinsch, Zhao, and Running (2007) and based on algorithms from

Cleugh, Leuning, Mu, and Running (2007), with an improved algorithm

described by Mu, Zhao, and Running (2011). MOD16 is derived from

MODIS-derived land cover type, Leaf Area Index, and albedo, and is

used in this study as a comparison data set for estimated ETWB.

MOD16 provides estimates of terrestrial ET every 8 days at 500 m

spatial resolution. MODIS Tile H08V05 was downloaded from the

NASA Land Processes Distributed Active Archive Center for time

period of October 1, 2014 to October 1,2017 (Running, Mu, &

Zhao, 2017). Screening of clouds and aerosols is already included in

the most recent Version 6 products, but we performed further snow

cover masking in a post-processing step using the ASO-updated

iSnobal model product upscaled from 50 to 500 m. We used the

snow-free ASO Lidar returns to further characterize the 500 m

MODIS pixels as containing vegetation or being vegetation-free. This

decision was made because ET is assumed to be negligible over

exposed bed rock, which was determined from snow-free Lidar data

to comprise approximately 60% of the Tuolumne Basin. The resultant

time series of ET losses from the MOD16 algorithm thus contain spa-

tiotemporal gaps in information due to snow cover, highlighting the

limitation of using remote sensing products to derive ET in snow-

dominated basins. Until that time when satellite retrieval algorithms

are able to provide more robust ET estimates over snow, modelling

approaches will remain the most viable means for spatial ET estima-

tion in snow-covered regions.

3.2 | Precipitation

Over all three water years in this study, 29 periodic snapshots of

Lidar-derived snow depths from ASO have been directly inserted into

the iSnobal modelling framework to update the depth state variable in

near-real time. These updates allow iSnobal to more accurately
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simulate the energy and mass balance in each pixel, resulting in more

accurate estimates of SWI (Hedrick et al., 2018). Since SWI is the

result of explicitly solved energy and mass balances, and informed by

high-resolution remote sensing measurements, the hydrologic inputs

in this study are more spatially representative than other coarser

gridded precipitation products. Henn, Newman, et al. (2018) described

the difficulty and uncertainty involved in estimating spatially

distributed precipitation in mountainous terrain using coarse regional-

scale models. Snow accumulates preferentially due to wind and

topography at the hillslope scale (Musselman, Pomeroy, Essery, &

Leroux, 2015; Pomeroy, Gray, & Landine, 1993; Trujillo, Ramírez, &

Elder, 2007, 2009; Winstral et al., 2013), while accumulation at the

basin scale is governed by elevational lapse rates (Feld, Cristea, &

Lundquist, 2013; Grünewald, Bühler, & Lehning, 2014; Kirchner,

F IGURE 2 Comparison of Spatial Modelling for Resources Framework (SMRF) 50 m and Parameter-elevation Regressions on Independent
Slopes Model (PRISM) 4 km cumulative precipitation products over the Tuolumne Basin for water years 2015–2017. Station measurements and
detrended kriging produced the SMRF distributions in 2015 and 2016, while 2017 used the downscaled High-Resolution Rapid Refresh forecast
due to the higher snowfall amounts and lack of high elevation station measurements. SMRF produces daily precipitation estimates throughout
the year, while PRISM is a reanalysis product. Estimates of PPRISM ranged between 13–23% higher than PSMRF
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Bales, Molotch, Flanagan, & Guo, 2014; Lehning, Grünewald, &

Schirmer, 2011) and orographic effects from atmospheric circulation

(Roe & Baker, 2006).

A detrended kriging (DK) technique (Garen, Johnson, &

Hanson, 1994) was used to distribute station measured precipitation

over the 50-m modelling grid for the drought and average years of 2015

and 2016, respectively. The DK distributing procedure is a submodule of

the Spatial Modelling for Resources Framework (SMRF) that was first

introduced by Havens et al. (2017). In 2017, when individual storm totals

exceeded 400 mm and the annual total topped 2,000 mm, many of the

precipitation gauges that had been used in previous years became buried

or were significantly capped so as not to be useful. To mitigate this lack

of in situ forcing data, gridded precipitation was determined for that year

using forecast products from the HRRR model (Benjamin et al., 2016)

and an interpolation scheme described by Havens et al. (2019). Subse-

quently, in all 3 years, regardless of the method used for distributing pre-

cipitation, the distribution of snow depth was then updated with the

Lidar snow depths whenever an ASO survey took place.

The precipitation distribution routine in SMRF is evaluated by

comparing annual cumulative precipitation at 50-m distributed using

the DK distribution method (Garen et al., 1994) for 2015–2016, and

downscaled using gridded interpolation of the HRRR forecast product

for 2017 (Figure 2a,c), to the well-established climate analysis product

Parameter-elevation Regressions on Independent Slopes Model

(PRISM; Daly, Neilson, & Phillips, 1994) (Figure 2d–f). The DK distri-

butions (Figure 2a,b) are derived from station measurements and can

represent both local elevation gradients and large-scale rain shadow

effects.

3.3 | Streamflow

The Tuolumne River flows into Hetch Hetchy Reservoir, which is

managed by the San Francisco Public Utilities Commission. To under-

stand the water balance of the Tuolumne basin, reconstructed full

natural flow (FNF) at the outlet of O'Shaughnessy Dam is used as a

proxy for basin discharge. FNF, also referred to as unimpaired runoff,

is defined to be the natural discharge that would have occurred with-

out the presence of any dams or diversions upon the stream course.

Using daily observed reservoir stage height and measured reservoir

releases over the period of record (1970–present), a mass balance

approach yields the daily FNF into the reservoir. Lundquist et al. (2016)

estimated the uncertainty in the daily reconstructed flows to be on

the order of 10%, which is the uncertainty value assigned here to

basin discharge (Q). Estimates of cumulative FNF since 1970 and the

mean value since 1919 (Figure 3) highlight the large dynamic range of

streamflow magnitudes for the 3 years considered here (2015–2017).

3.4 | Snowpack evaporation and sublimation

The amount of atmospheric moisture lost from the snowpack to the

atmosphere is a nontrivial portion of the overall water balance and

should not be ignored. Evaporation/condensation of liquid water

from/to a surface occurs when the surface's temperature is at or

greater than the freezing point (Ts ≥ 0�C). Conversely, in a snowpack

where Ts ≤ 0�C, ice crystals are able to sublimate into water vapour,

resulting in a loss in snowpack mass, and water vapour can condense

into frozen ice resulting in mass gain. For a melting snowpack, or

Ts = 0�C, the atmospheric moisture flux formulation in iSnobal is a

combination of both sublimation and evaporation, so the magnitude is

determined by the overall contribution of the latent heats of

vaporisation and sublimation. In the process of computing the latent

heat flux term of the snow energy balance, iSnobal iteratively solves

for the evaporative mass flux, ES, which is provided as model output.

The mathematical representation of the set of nonlinear equations

required for computing sublimation and condensation from a snow-

pack is described by Marks and Dozier (1992) and Marks et al. (2008),

and is based on the stability functions found in Brutsaert (1982).

3.5 | Residual (uncertainty term)

The final term of the water balance in Equation (5) is the residual, ɛ,

containing the error terms in this particular formulation of ETWB. The

error can be subdivided into both measurement and model uncer-

tainty, each of which is considered separately.

The measurement uncertainty is the difference in actual condi-

tions and reported values over the 3 years for P and Q. As mentioned

in Section 3.3, a ± 10% uncertainty can be attributed to the

reconstructed measurements of Q. Measuring snowfall in mountain

environments is often very difficult due to high wind speeds during

storms (Rasmussen et al., 2012). Even though the precipitation mea-

surements used in this study are corrected for wind under catch, we

have designated a conservative estimate of uncertainty in total basin-

wide annual P as ±10%. This estimate was essentially assigned as an

uncertainty placeholder to demonstrate how error propagates into

the water balance results and could be higher or lower in reality. Addi-

tionally, no error assessments have yet been conducted on the HRRR

precipitation product used in 2017, so we have assigned the same

10% uncertainty value for that water year.

Sources of model uncertainty stem from three main aspects in

this study. First, error is introduced by the assumptions made in Equa-

tion (2) and Equation (3), because the actual changes in storage and

groundwater fluxes on annual time scales may often be nonzero. A

recent study used small elevation displacements measured by ground-

based Global Positioning System stations to determine annual

changes in subsurface water storage throughout the entire Sierra

Nevada (Enzminger, Small, & Borsa, 2019). Their findings showed that

the subsurface water storage generally decreased during the drought

period of 2011–2016, and that large annual increases in storage was

well-correlated to large precipitation years like 2017. However, we

are not able to make inferences about storage specific to this high ele-

vation snow-dominated basin, since the findings of that study were

averaged over the entire Sierra Nevada and included rain-dominated

lower elevations. If the aquifer was drawn down during the drought
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and recharged in 2016 and 2017, as is shown by Enzminger

et al. (2019) and other studies (e.g., Bales et al., 2018), then ETWB

in those years would be overestimated. We can also look to other

available in situ data to test the applicability of the approximation

made by Equation (3). The total soil water content from a recent

soil moisture dataset (Stern, Anderson, Flint, & Flint, 2018) at two

sites in and just outside the basin showed very little variation from

one water year to the next. Furthermore, each of the three study

years produced some carryover of modelled SWE into the next

water year, though these quantities were quite insubstantial

(as percentages of cumulative P: 0.0016% for 2015, 0.0275% for

2016, and 0.1151% for 2017).

A second source of model uncertainty is the process of distribut-

ing meteorological variables from both point measurements and 3-km

gridded forecast products to the 50-m model grid. Lastly, there are

inherent model errors in the formulation of the nonlinear differential

equations used within iSnobal to estimate sensible and latent heat

fluxes. For a more simplistic approach, this study assumes that all

these model errors are unbiased and normally distributed, for which

these errors would by definition sum to zero when integrated over

the entire year and basin.

Once measurement and model uncertainties have been consid-

ered, a bulk residual value can be estimated by comparing the distribu-

tions of ASO measured snow depths with the iSnobal modelled snow

depths. Previous work has shown that the root-mean square error

(RMSE) between modelled and measured snow depths decreased by a

factor of three when prior ASO updates had occurred earlier in the

season (Figure 6, Hedrick et al., 2018). The trend in RMSE reduction

was similar when the entire set of 29 ASO surveys from 2015–2017

was examined. Therefore, barring uncertainties in the energy balance

formulation in iSnobal, the estimated uncertainty in estimated P, and

subsequently SWI and ES, is decreased threefold from ≈10 to ≈3%

when the ASO updates are used to resolve the snowpack distribution.

4 | RESULTS AND DISCUSSION

Accurate estimates of precipitation, as the lone input term to the

hydrologic system, are essential for closing the water balance of the

Tuolumne. The downscaled HRRR precipitation in 2017 (Figure 2c)

continues to display the northwest to southeast gradient in precipita-

tion present in the DK distributions, but also results in what appear to

be localized artefacts of higher precipitation in the southern portion

of the basin. These artefacts most probably result from the dynamical

downscaling of global climate models and data assimilation routines

used within HRRR. Regardless of the source of precipitation estimate,

the SMRF precipitation (PSMRF) is produced in near-real time as the

water year progresses, in order to provide up-to-date hydrologic con-

ditions to reservoir managers downstream. On the other hand, the

PRISM product (PPRISM) is only available a few months after the con-

clusion of each water year and therefore is not suitable to be used for

real time hydrologic prediction. Within the Tuolumne Basin, PPRISM

was greater than PSMRF in all 3 years, yet the spatial structure of

where precipitation falls is more topographically defined by PSMRF

(Figure 2). Further analysis is needed to determine the absolute accu-

racy of either precipitation product, but this comparison shows that

even in the absence of ASO snow depth measurements the forcing

precipitation used for iSnobal is a reasonable initial step towards accu-

rately simulating the snowpack accumulation.

The ASO snow depth updates throughout the ablation season

then further constrain the amount of SWE in the basin. Since ASO is

not able to quantify rainfall precipitation, there is additional

F IGURE 3 Cumulative estimated
daily full natural flow into Hetch Hetchy
Reservoir showing the relative climatic
variability of 2015–2017 from daily
measurements that began in 1970.
Additionally, from 1919–1970 mean
inflow estimates were kept by hand and
the mean inflow since the dam
construction is shown as the dash-dotted

horizontal line
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uncertainty in the annual water balance that is not reduced by the

snow depth updates to the model. However, over the course of the

ASO campaign (2013–2018) rain has accounted for approximately

only 22% of the total precipitation that has fallen over the Tuolumne

(Hedrick et al., 2018). Therefore, the basin remained significantly

snow-dominated during the historic drought period and the reduction

in snow accumulation and ablation errors using the ASO dataset

accounts for the majority of potential SWI input error.

Prior to the first ASO update to the model, PSMRF results in a

more topographically complex distribution than PPRISM, yet still a more

uniform SWE distribution relative to realistic mountain snowpacks

(Figure 2). At the time of the first update, the resulting snow distribu-

tion is redefined and SWE is altered throughout the basin. When

updates occur after most of the seasonal snow has accumulated, the

spatial structure of the ASO-defined distribution is generally

maintained by iSnobal throughout the rest of the year, yet still benefits

from each subsequent ASO update. For water years 2015 through

2017, iSnobal was run with and without the ASO updates to demon-

strate the basin-averaged impact of redefining the snow distribution

(Figure 4). An accurate depiction of the SWE spatial distribution

allows a more accurate solution to the energy balance model and

results in an improved snowpack simulation.

Basin-averaged end of year cumulative SWI in water years 2015

and 2016 was not sensitive to the redistribution of the snowpack

from the ASO updates (Figure 4), though it is important to note that

the timing of the SWI pulse was advanced by 2–4 weeks during peak

streamflow in 2015. The impact of the ASO updates can be seen in

the basin averaged SWE from 2015, where the updated spatial distri-

bution caused the snowpack to melt out a full 3 weeks earlier than

the modelled SWE without the updates. This is an important result for

water management agencies that rely on exact melt timing for power

generation. The insensitivity of the cumulative iSnobal SWI estimates

to the updates also indicates that model errors are unbiased.

Water year 2017 was a problematic year for hydrologic modelling

in the Tuolumne Basin, primarily due to a lack of precipitation station

data at the upper elevations of the catchment. The downscaled HRRR

distribution approach described in Section 3.2 and Havens et al. (2019)

more accurately captured the large Atmospheric River (AR) events

that occurred in January and February of that year, relative to station

measurements alone, due to buried/capped precipitation sensors. The

first ASO update of 2017 (January 29) decreased SWE by 75 mm

(−9%) in the basin (Figure 4), signifying that HRRR had slightly over-

estimated precipitation mass from the two AR events earlier in

January. However, the second update on March 1 added approxi-

mately 181 mm (+17%) of SWE storage to the basin. This was

because the mass input from the February 7–10 AR event, the same

storm which caused the 2017 Oroville Dam spillway disaster in North-

ern California, was much larger than that predicted by HRRR or cap-

tured by station measurements. Lastly, the June 3 update increased

SWE storage by 82 mm (+11%), likely due to underestimates in mod-

elled albedo melting snow too quickly throughout the month of May.

4.1 | Closing the water balance

The main goal of this study is to determine how ET and RE are

affected by water availability and snow fraction. To achieve this goal,

we can use the water balance of the hydrologic inputs and outputs to

the Tuolumne Basin through three climatically very dissimilar years

(Figure 5). The PSMRF and Q estimates each contain an estimated

F IGURE 4 Basin-averaged products for the Tuolumne Basin (2015–2017). Solid lines represent iSnobal estimated snow water equivalent
(blue), cumulative surface water input (orange), evaporative losses from the snow surface (green), as well as the estimated full natural flow (FNF)
at the outlet at Hetch Hetchy Reservoir (black). Dotted lines show the Airborne Snow Observatory-updated iSnobal results for each variable. The
grey shaded area is the ±10% uncertainty in the FNF estimates (Lundquist et al., 2016)
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±10% error, while the iSnobal SWI and ES estimates were given a

± 3.3% uncertainty following the increased accuracy from the ASO

updates (Hedrick et al., 2018).

In annual iSnobal simulations without snow depth updates, Equa-

tion (4) remains true, and PSMRF = SWI + ES due to the energy and

mass balance nature of the model. To consider the effect of the ASO

updates, we introduce a new mass input term, PASO, that is the sum of

the ASO-updated SWI and ES terms. This pseudo-precipitation term

differs from PSMRF because each update changes the overall SWE

storage in the basin and reduces uncertainty in the annual precipita-

tion estimate due to the reduced uncertainty in the ASO-updated

SWI and ES model products. In 2015 and 2016, the SMRF and ASO

updated precipitation difference (PSMRF − PASO) was only 3 and

−19 mm, respectively, yet was much more substantial at −205 mm in

2017 (Figure 5), highlighting a possible underestimation of input pre-

cipitation from the HRRR forecast model. More years of analysis are

required to determine if the HRRR precipitation in the Tuolumne is

always biased low, or if the cause of the underestimated precipitation

in 2017 was due to the sheer number of large storms that year.

By using the assumptions described in Section 3, we determine

the overall annual evaporative loss terms, ETSMRF and ETASO, by

differencing Q from PSMRF and PASO, respectively. These evaporative

terms contain all loss terms resulting from evaporation/sublimation

from the snow surface, evaporation of water after snowmelt and prior

to reservoir inflow, and plant transpiration throughout the catchment.

Propagating the uncertainty shows that ETSMRF and ETASO are rela-

tively similar in 2015 and 2016 but differ significantly in 2017 since

the ASO updates in 2017 effectively added 205 mm of precipitation

to the basin in the form of additional SWE. Also, the updates resulted

in PASO (2,211 mm) being much closer to PPRISM (2,295 mm) than

PSMRF (2,006 mm) in that year.

We then define ETWB as the ASO-updated water balance-derived

ET with the iSnobal-modelled atmospheric losses from the snow sur-

face removed (ETWB = ETASO − ES). We use this approach for compar-

ison, because most conventional satellite and model products mask

ET estimates when the ground is snow-covered. For the three water

years of this study ETWB ranged from 222 ± 34 mm in 2015 to 151

± 89 mm in 2016 and to 299 ± 196 mm in 2017. Uncertainty

increased in each successive year because precipitation, which

increased each year, is the largest source of uncertainty in this water-

balance approach. Additionally, as mentioned in Section 3.5, the pre-

ceding California drought could have drawn down the aquifer causing

ΔS > 0 mm and thus ETWB to be overestimated in the following years

of increased precipitation input. However, annual ETWB values for

2015–2017 are similar to other previous studies in the region by

Henn, Newman, et al. (2018), Fellows and Goulden (2017), and

Leydecker and Melack (2000). The following section will address the

validation of ETWB using an independent satellite-derived product.

4.2 | Evapotranspiration comparison

The MOD16 Global Product was masked to cells within the Tuolumne

Basin to produce cumulative and 8-day ET (ETMOD) and PET (PETMOD)

F IGURE 5 Cumulative annual hydrologic inputs and outputs for 2015–2017 in the Tuolumne Basin with associated uncertainty bounds. At
the present time, there is no estimate of uncertainty on the ETMOD term from the MOD16 satellite product. Also, annual runoff efficiency is
plotted as a percent on the far right
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totals (Figure 6). Even though this derived satellite product is

corrected for occlusion by snow, cloud, cloud shadow, and bare gro-

und surfaces, the effect of snowpack persistence can be observed in

the data. Since complete melt out occurred much earlier in 2015, the

MOD16 algorithm predicted a much earlier increase in plant transpira-

tion than in 2016 and 2017. Cumulative ETMOD was 157 mm in 2015,

101 mm in 2016, and just 94 mm in 2017 (Figure 6). Cumulative PET-

MOD was 992 mm in the driest year of 2015, 778 mm in the average

year of 2016, and 637 mm in the water surplus year of 2017.

The ETMOD cumulative annual totals were lower than estimates

of ET put forth by previous studies (Fellows & Goulden, 2017; Henn,

Painter, et al., 2018; Kattelmann & Elder, 1991; Leydecker &

Melack, 2000). The MOD16 algorithm masks a pixel whenever snow

is present, so a certain proportion of actual ET was absent since vege-

tation often begins to transpire before complete snow melt out, or

even remain active throughout the winter at lower elevations albeit at

a reduced rate (Trujillo, Molotch, Goulden, Kelly, & Bales, 2012). This

explains the large discrepancy between ETWB and ETMOD in 2017

since the melt season in that year was very prolonged due to the

larger volume of snow that needed to melt. The length of time after

the snowpack became isothermal and the vegetation began transpir-

ing could have been weeks or even months. The fact that the MOD16

ET product and others like it are masked when snow is present likely

introduces a low bias in ET estimates for high alpine basins like the

Tuolumne. On the other hand, accounting for the transpiration losses

during the melt season requires using a water-balance approach with

well-quantified precipitation estimates. We note that the assumption

that annual ΔS ≈ 0 (Equation (3)) affects the determination of ETWB.

By the end of the 2012–2015 drought period, the deep aquifer was

likely drawn down and a portion of the 2017 precipitation could have

been lost to deep subsurface recharge that did not end up coming out

of the basin outlet. Not accounting for this loss could have resulted in

an overestimation in ETWB.

ETMOD, like ETWB, showed much less variability than total water

input (SWI) throughout these 3 years. The low relative variability of

these two independent ET estimates among these three dissimilar

years might suggest that vegetation growth (i.e., transpiration) in this

high elevation basin (above 1,150 m) is less limited by water availabil-

ity. This would be consistent with previous studies that have shown

that forests in the Sierra Nevada become energy-limited above

2,100–2,600 m (Das, Stephenson, Flint, Das, & van Mantgem, 2013;

Tague, Heyn, & Christensen, 2009; Trujillo et al., 2012). Since two-

thirds of the Tuolumne Basin above Hetch Hetchy lies higher than

2,600 m, the catchment is primarily energy-limited and therefore buff-

ered against drastic swings in short term precipitation variability

(<5 years). High elevation annual ET is then possibly balanced by the

inverse relationship between seasonal water availability and growing

season duration. Lower elevation forests in the region (below

2,100–2,600 m) are water-limited, experience less variable growing

season durations from year to year and receive less annual snowfall

precipitation. These are likely contributing factors to higher tree mor-

tality (Bales et al., 2018) and greater decreases in ET during droughts

found at these elevations.

4.3 | Runoff efficiencies

A hydrologic metric of a basin often used by water managers to

describe hydrologic responses to input precipitation is the annual RE,

which is defined as the ratio of basin outflow, or reservoir inflow, to

basin input precipitation. In the 3 years of this study, the RE (as a per-

centage) varied from 53 ± 5% in 2015, 78 ± 7% in 2016, and 82 ± 8%

F IGURE 6 Basin-averaged evapotranspiration (ET) and Potential ET losses estimated by the cloud and snow-cover corrected MOD16 gridded
500 m product for water years 2015–2017 over the Tuolumne Basin. The left y-axis and the blue lines represent cumulative totals over each
year, while the right y-axis and the red lines are the 8-day sumtotals. Cumulative modelled evaporation and sublimation from the snow surface
(ES) and year-end total ETWB are also included for reference
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in 2017 (Figure 5). These values of RE, especially in 2016 and 2017,

are much higher than typical values reported for watersheds in more

continental mountain locations and can be traced to the unique lithol-

ogy of the upper Tuolumne. In fact, extending this water balance

approach to estimate ET and RE in other basins may prove difficult

due to the assumptions made possible by the granitic geologic

makeup of this basin. We attribute the lower RE in 2015 to a combi-

nation of (a) increased contribution to the depleted aquifer storage

from the previous few years of drought, and (b) increased ET during

an extended snow-free season. This assessment is consistent with the

findings of Berghuijs et al. (2014), Cooper et al. (2018), and Godsey

et al. (2014), who showed that increases in rainfall precipitation pro-

portions across historically snow-dominated basins resulted in lower

runoff amounts.

The 2016 average year and 2017 surplus year had similar snow

proportions of precipitation (82 and 84%, respectively) as well as RE,

with 2017 just receiving significantly more precipitation. However,

2015 had a lower snow proportion of precipitation (70%) to coincide

with a much lower RE. Therefore, these results appear to suggest that

RE in the Tuolumne Basin is nonlinearly correlated with total annual

precipitation and the average snow fraction. Additional water years

that were not preceded by historic drought will need to be analysed

to determine exactly how this nonlinear relationship is structured and

if there are multiyear basin lag times responsible for the apparent

changes in RE.

The RE values reported here apply to an entire snow-dominated

basin at an annual time scale. RE values pertinent to water managers

are dynamic through time and space and depend on factors such as

elevation, vegetation, time of year, and even possibly ecological

changes such as forest fire and tree mortality (Biederman et al., 2015).

An assessment of sub-annual changes in RE would require an alter-

nate approach since the water balance assumptions detailed in Sec-

tion 3 do not hold for time periods of less than 1 year.

4.4 | Tuolumne streamflow in the Budyko
hypothesis context

Over the last half century, the Budyko Hypothesis (Budyko, 1974) has

been applied to dozens of studies on hydrologic supply and demand

of water in ostensibly different watersheds. The hypothesis centers

on a functional relationship between average annual P and ET over a

suitably long period of time. The same assumptions of net zero

groundwater storage and aquifer recharge that allow the Budyko

Hypothesis to be valid are applied in this study, only here on an

annual scale. This approach permits an analysis of how each year var-

ies across a single basin relative to the Budyko functional relationship.

Berghuijs et al. (2014) showed that historically snow-dominated

catchments generally have higher runoff efficiencies. Those findings

are further corroborated here by plotting the water balance terms of

2015–2017 in Budyko space (Figure 7). We place each year on the

plot using the PASO and ETWB terms from our water balance, in addi-

tion to the MOD16 ET and PET products. The ETMOD product was

lower than ETWB in all 3 years (Figures 5 and 7). If we assume that

ETWB is the “most accurate” estimate of ET over the three study

years, it follows that this headwater catchment does not closely

F IGURE 7 Representation of the Tuolumne River Basin annual water balance in the context of the Budyko framework. Potential
evapotranspiration (ET) estimates were derived by the MOD16 global ET product (500 m nominal resolution). Two methods of estimating ET are
shown: (a) MOD16 global ET (diamonds) and (b) the residual of the water balance with uncertainty included (circles), formulated as the difference
between iSnobal surface water input and Hetch Hetchy reservoir inflow
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follow the Budyko functional relationship. Thus, the RE of the Tuol-

umne Basin (RE = 1 − ET/P), as a function of the Dryness Index

(PET/P), does not decrease as drastically as predicted by the Budyko

hypothesis. The conceptual explanation of this relationship is that the

accumulated snowpack acts as a natural surface reservoir that delivers

water to the hydrologic system when plant uptake is at its highest

level. With future climate scenarios predicting lower snowfall frac-

tions across most mountain watersheds, any previously derived func-

tional relationships between RE and precipitation will be significantly

altered.

5 | CONCLUSIONS

This study used a combination of remote sensing and physically

based modelling within a snow-dominated basin to examine

responses of the hydrologic loss terms of the water balance over

varying climatic conditions. Over three markedly dissimilar water

years, the residual term in the water balance equation, here rep-

resenting ET, was determined by accurately accounting for the

magnitude and timing of precipitation inputs to the basin. The

major conclusions are as follows:

1 Remote sensing-improved estimates of basin precipitation input, in

this case represented by modelled daily SWI and ES, permit a more

accurate estimate of the water balance residual than meteorologi-

cal station data or atmospheric forecast products alone. Under the

assumption that subsurface storage flux from year to year is mini-

mal and that the residual value is primarily comprised of evapora-

tive losses to the atmosphere, this subsequently results in a more

accurate estimate of ET. If those storage fluxes are positive, as

would be the case during aquifer recharge after a drought, then

estimates of ET from a water balance perspective would be

overestimated.

2 The water balance ET and the satellite-derived ET product varied

much less than the input precipitation (PASO) into the basin over

these three years (2015–2017). Even though the 2012–2015

drought likely changed the overall balance of ET, storage flux, and

aquifer recharge in the basin, the evaporative losses remained rela-

tively constant regardless of total water availability. However, this

conclusion excludes the effects of the preceding drought on the

assumption of zero annual subsurface storage flux. Once future

additional years of ASO and iSnobal become available, a lengthier

examination of drought effects on the water balance will be made

possible.

3 Basin-averaged annual ET estimates over the three years from the

MOD16 satellite-derived product were lower than the existing lit-

erature. This satellite product is hampered by snow cover duration,

so that estimates of ET are reduced in large snow years when plant

transpiration is non-negligible throughout the extended snowmelt

period.

4 The annual RE of a watershed is not a static descriptive parameter.

Rather, this work shows that RE increases with the total amount of

input precipitation. However, RE in the Tuolumne is affected by

the snow fraction of precipitation, as shown by the Budyko analy-

sis. This finding implies that water managers will need to continu-

ally consider storm temperature and precipitation phase

throughout the year to maintain an idea of how much water will be

entering downstream reservoirs. Finally, with future annual temper-

atures in high mountain basins only expected to rise, we should

generally expect decreases in annual RE in coming years.
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