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A Deep Unsupervised Feature Learning Spiking
Neural Network with Binarized Classification

Layers for the EMNIST Classification
Ruthvik Vaila, Student Member, IEEE, John Chiasson, Fellow, IEEE, and Vishal Saxena, Senior Member, IEEE

Abstract—End user AI is trained on large server farms with
data collected from the users. With ever increasing demand for
IoT devices, there is a need for deep learning approaches that can
be implemented at the edge in an energy efficient manner. In this
work we approach this using spiking neural networks. The unsu-
pervised learning technique of spike timing dependent plasticity
(STDP) and binary activations are used to extract features from
spiking input data. Gradient descent (backpropagation) is used
only on the output layer to perform training for classification.
The accuracies obtained for the balanced EMNIST data set
compare favorably with other approaches. The effect of stochastic
gradient descent (SGD) approximation on learning capabilities
of our network are also explored.

Index Terms—STDP, Spiking Networks, Surrogate Gradients,
EMNIST, Binary Activations, Reduced Multiplications.

I. INTRODUCTION

THE deep learning community has shifted its attention
towards energy efficiency. Proposals for energy-efficient

artificial neural network primarily fall into two categories:
hardware and algorithm based approaches. Hardware based
approaches [1] [2] [3] tend to propose new/hybrid computing
architectures or tend to trade off precision with classification
accuracy whereas algorithm based approaches tend to simplify
the network synapses and activations to avoid expensive multi-
plication operations. Algorithmic approaches like Binary Neu-
ral Networks (BNNs) with binary weights and activations have
been proposed and were shown to achieve the state-of-the-art
classification accuracy with MNIST [4] and CIFAR-10 [5]
datasets. Another approach towards energy-efficient machine
learning is bio-inspired and this type of networks are called
Spiking Neural Networks (SNNs). In this work our focus is
on bio-inspired algorithmic approaches. Biological neurons
communicate with each other by transmitting spikes which are
70mV voltage pulses while artificial neural networks (ANNs)
communicate with each other using floating point real-valued
activations. There are two popular theories pertaining to how
the information is encoded in the spiking input image: rate
coding and latency coding. Rate coding stipulates that the
information transfer from the input image to the next (hidden)
layer is embedded in the rate of spikes coming out of the input
neurons. In this work, latency coding is used and it refers to the
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information in the image being encoded in the relative spike
times [6] [7]. According to latency coding, earlier spikes (in
time) carry more information than later (in time) spikes [6].
The synapses (weights) between spiking neurons are modified
according to spike timing dependent plasticity (STDP), where
the synapse is strengthened if an input neuron aides the output
neuron in spiking (spikes before the output neuron spikes)
while the synapse is weakened if an input neuron does not
aide the output neurons in spiking (spikes after the output
neuron spikes) [8]. As STDP is an unsupervised learning rule,
SNNs can be trained layer by layer. The synapses (weights) in
ANNs are modified using gradient descent (backpropagation)
to reduce the loss which is defined by an appropriate cost
function on the last (output) layer [9]. More specifically,
gradient descent is used to update the weights of the network
to an acceptable local minimum of the cost function on the
output layer [10]. In ANNs input data is fed forward through
the network and then the gradient of the cost function is
computed layer by layer by going backwards to update the
weights in each layer. That is, the weights cannot be updated
immediately as one feed forwards the input data giving rise to
the update locking problem [11]. This makes backpropagation
a global update rule unlike STDP which is a local update
rule [12]. Further, backpropagation uses the same weights for
the forward as well as the backward steps, which is referred
to as the weight transport problem [13] [14] [15]. Random
backpropagation (feedback alignment) was shown to mitigate
this problem [16]. A neuromorphic variant of the feedback
alignment (random backpropagation) was proposed in [17] and
was shown to achieve an accuracy of approximately 98% on
the MNIST dataset. Panda et al. [18] reported a reduction
in energy consumption by a factor of 25 for CIFAR-10 and
reduction by a factor of 2 for the IMAGENET dataset [19]
by combining existing techniques in deep learning with rate
encoded spiking networks. Other works such as [20] [21]
[22] [23] approximate backpropagation with rate coding and
have achieved approximately 98% accuracy on the MNIST
dataset. Apart from training spiking networks directly either
with supervised or unsupervised methods, alternative methods
that convert an existing ANNs to SNNs using transfer learning
were introduced in [24]. Masquelier et al. have shown that
the neurons in coincidence detection mode have less than
10 ms to produce a response and only their earliest spike(s)
are processed for rapid object classification. In this case the
time to process the inputs is so short that it is highly unlikely
to use feedback connections to impact decision making. It was
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also shown that neuronal recordings in the Inferior Temporal
Cortex over small time durations (≈ 12 ms) represent object
categories in a linearly separable manner via a Support Vector
Machine (SVM) [25]. The authors in [26] [27] [28] [29]
[30] proposed various algorithms to learn the exact spike
times for SNNs with latency (temporal) coding using gradient
descent (backpropagation) on an output cost function. In those
approaches, activations in ANNs are replaced with spike times
and the loss is obtained by calculating the time difference
between the desired output spike times and the actual output
neuron spike times. In latency (temporal) coding minimizing a
spike time is conceptually similar to maximizing the activation
of a target neuron. In the mammalian brain, individual neurons
only have ≈ 10 ms to produce a response [25]. This rapid
object categorization motivated us to decouple the supervised
training of output classification layers from the unsupervised
training of the low-level feature extraction layer. The current
literature on spiking networks reports a lower accuracy on
classification tasks [31]. However, standard ANNs employing
SGD are energy inefficient as they require high precision
computations. Energy-efficiency (low power consumption) and
state-of-the-art classification accuracy are both important goals
for an object classification system.

A primary contribution of this work is to combine spiking
feature extraction (based on the latency encoded first spike)
with approximate SGD and binary activations to achieve
near state-of-the-art classification accuracy on EMNIST and
MNIST datasets. We also demonstrate that the unsupervised
feature extraction showed robustness to input noise in terms
of the final classification accuracy. Such noisy inputs arise in
several practical scenarios such as the silicon retina sensors
and readout circuits [32]. The proposed SNN architecture
reduces the number of multiplication operations between 3-
4 orders of magnitude and thus facilitates low-power realiza-
tion on neuromorphic architectures employing either digital
asynchronous or analog in-memory computing [33] [34] [35].
Finally we also introduce the software tool SPYKEFLOW,
developed by the authors for latency encoded SNNs.

II. NETWORK DESCRIPTION

Our network is shown in Figure 1. The extraction layers of
this network are similar to that of [36] [37].

Fig. 1. Proposed SNN architecture. Here, layers L1 − L3 are the feature
extraction layers and layer L3− L5 are the feature classification layers.

A. Input Encoding

Following [36] [37], Kσ1,σ2
is a Difference of Gaussian

(DoG) filter with σ1 = 1, σ2 = 2 for the ON-center and σ1 =
2, σ2 = 1 for the OFF-center, given by

Kσ1,σ2(i, j) =
1

2πσ2
1

e
−
i2 + j2

2σ2
1 − 1

2πσ2
2

e
−
i2 + j2

2σ2
2 for − 3 ≤ i, j ≤ 3

0, otherwise

(1)

Plots of ON and OFF center filters are shown in Figure 2.
The input image is convolved with these ON and OFF centered
filters, resulting in two “images” which are then converted to
their corresponding ON and OFF spiking image.

Γσ1,σ2(u, v) =

j=3∑
j=−3

i=3∑
i=−3

Iin(u+ i, v + j)Kσ1,σ2(i, j)

for 0 ≤ u ≤ 26, 0 ≤ v ≤ 26.

(2)

At each location (u, v) of the output image Γσ1,σ2(u, v), a
unit spike s(u,v) is produced if and only if Γσ1,σ2(u, v) exceeds
a threshold i.e.,

Γσ1,σ2
(u, v) > γDoG (3)

where γDoG = 50 was arbitrarily chosen [38]. The spike times
are encoded relative to the start time depending on magnitude
of the membrane potentials and the relation is given by

τ(u,v) =
1

Γσ1,σ2(u, v)
in milliseconds.

Fig. 2. ON and OFF center DoG filters. Color code indicates the filter values.

The spike signal s(u,v)(t), is latency (temporally) encoded
[6] by delaying it by an amount inversely proportional to
Γσ1,σ2(u, v) as shown in Figure 3. That is, the greater the
value of Γσ1,σ2

(u, v), the sooner the neurons spikes and vice
versa. Equivalently, the value of Γσ1,σ2

(u, v) is encoded in the
value τ(u,v). Note that a neuron at location (u, v) can generate
at most one spike. Silicon retina sensors such as eDVS [32],
ATIS [39] directly provide spiking images. Such images have
been used in the SNN literature [40] [41].

B. Convolution Layers and STDP

We denote a spike at time t emanating from the (u, v)
neuron of a spiking image by SL1(t, k, u, v), where k = 0 (ON
center) or k = 1 (OFF center) and (0, 0) ≤ (u, v) ≤ (27, 27).
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Fig. 3. Spike signal. Left: Spike signal from the input image with no time
delay. Right: Spike signal from the input image with a delay of τ milliseconds.

Layer L2 (Conv1) consists of 30 (feature) maps with each
map having its own convolution kernel given by

WC1(w, k, i, j) ∈ R30×2×5×5 for w = 0, 1, 2, ..., 29

The instantaneous “membrane potential” of the (u, v) neuron
of a feature map w (w = 0, 1, 2, ..., 29) in layer L2 (Conv1)
at time t is given by

VL2(t, w, u, v) =
t∑

τ=0

(
1∑
k=0

4∑
i=0

4∑
i=0

SL1(τ, k, u+ i, v + j)WC1(w, k, i, j)

)
for 0 ≤ (u, v) ≤ 22

(4)

If at time t the membrane potential of a neuron in a feature
map w at location (u, v) crosses a set threshold value

VL2(t, w, u, v) > γL2 = 15

then the neuron at (w, u, v) produces a spike at time t.
At any time t, all of the potentials VL2(t, w, u, v) for

(0, 0) ≤ (u, v) ≤ (22, 22) and w = 0, 1, 2, ..., 29 are computed
in parallel. Neurons in different locations within a map and in
different maps may have spiked. In particular, at the location
(u, v), there can be multiple spikes (up to 30) produced by
30 different neuron belonging to 30 different maps. The idea
here is to have different maps learn different features so that all
the important features in the input image can be captured. To
enforce this condition, lateral inhibition and STDP competition
are used [36].

1) Lateral Inhibition: To explain lateral inhibition, suppose
at the location (u, v) there were potentials VL2(t, w, u, v) in
different maps (w goes from 0 to 29) at time t that exceeded
the threshold γL2. Then the neuron in a map with the highest
potential VL2(t, w, u, v) at (u, v) inhibits the neurons in all
other maps at the location (u, v) from spiking for the current
image (even if the potentials in other maps exceeded the
threshold). Figure 4 (left) shows the accumulated spikes (from
an MNIST image of “5”) for 12 time steps from all 30 maps
of Layer L2 at each location (u, v) without lateral inhibition.
For example, at location (19,14) in Figure 4 (left) the color
code is yellow indicating in excess of 20 spikes, i.e., more
than 20 of the maps produced a spike at that location.

Figure 4 (center) shows the accumulation of spikes from
all 30 maps for 12 time steps, but now with lateral inhibition
imposed. Note that at each location there is at most one spike
indicated by the color code. Also, as explained next, only a
few of these spikes will actually result in the update of any
of the 30 kernels (weights) in layer L2.

2) STDP Competition: After lateral inhibition we consider
each of the maps in layer L2 that had one or more neurons
with their membrane potential V exceeding γ. Let these maps
be wk1, wk2, ..., wkm where1 0 ≤ k1 < k2 < · · · < km ≤ 29.
Then in each map wki, we locate the neuron in that map that
has the maximum membrane potential value. Let

(uk1, vk1), (uk2, vk2), ..., (ukm, vkm) (5)

be the location of these maximum potential neurons in each
map. Then neuron (uki, vki) inhibits all other neurons in its
map wki from spiking for the remainder of the time steps
of the current spiking image. Further, these m neurons can
inhibit each other depending on their relative location as we
explain next. Suppose neuron (uki, vki) of map wki has the
highest potential of the m neurons in Equation (5). Then, in an
11 × 11 area centered around (uki, vki), this neuron inhibits
all the neurons of all the other maps in the same 11 × 11
area. Next, suppose neuron (ukj , vkj) of map wkj has the
second highest potential of the remaining m−1 neurons. If the
location (ukj , vkj) of this neuron was within the 11× 11 area
centered on neuron (uki, vki) of map wki, then it is inhibited.
Otherwise, this neuron at (ukj , vkj) inhibits all the neurons of
all the other maps in a 11×11 area centered on it. This process
is continued for the remaining m − 2 neurons. In summary,
there can be no more than one neuron that spikes in the same
11 × 11 area across all the maps.2 The right side of Figure
4 shows the spike accumulation for the final winner neuron
for 12 time steps across 30 maps after both lateral inhibition
and STDP competition have been imposed. It also shows that
there is at most one winner neuron from all the maps in any
11 × 11 area. For this particular input image (the digit 5),
these five winning neurons are from maps 14, 16, 19, 21, and
23 at locations (19, 4), (3,10), (17, 15), (9,12) and (3,19),
respectively and will result in weight updates for these 5 map
kernels. Lateral inhibition STDP competition resulted in an
average of only 5.8 spikes per image from the 30× 22× 22
neurons in L2 during training with EMNIST dataset. Figure
5 shows the evolution of the randomly initialized weights for
all 30 maps after training is performed with 6000 images.

3) Spike Feature Vectors : After (unsupervised) training
of the weights (synapses) in the L2 layer, these weights are
fixed. Spike feature vectors are created by passing spiking
input images through layer L2 (Conv1) with lateral inhibition
enforced and without STDP competition as there is no training
involved. The spikes coming out of the L2 layer are then
pooled in the L3 layer without lateral inhibition. The pooling
is done on an area of 2× 2 neurons in L2 with a stride of 2.
Specifically, in each 2×2 area of L2 which contains 4 neurons,
the spike of the neuron with the maximum membrane potential
VL2, assuming it exceeds the threshold γL2, is then the spike
of the corresponding neuron of the L3 (pooling) layer (i.e.,
thresholding on maxpooling). For the EMNIST dataset each
input image results in a spike tensor of shape τ×30×11×11.
We set τ to be 12 and these tensors were summed across their

1The other maps did not have any neurons whose membrane potential
crossed the threshold and therefore could not spike.

2The use of the number 11 for the 11× 11 inhibition area of neurons was
suggested by Dr. Kheradpisheh [38].
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Fig. 4. Left: EMNIST digit ”5” input. Accumulation of spikes from all 30 maps and 12 time steps in L2 layer without lateral inhibition. Center: Accumulation
of spikes from all 30 maps and all 12 time steps in L2 with lateral inhibition. Right: Accumulation of spikes across all maps and 12 time steps with both
lateral inhibition and STDP competition imposed for a single image. X, Y denote the location of neuron in a map and Z denotes the map number. Note that
these five winner neuron spikes suppress all the other neurons that crossed the threshold.
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Fig. 5. Evolution of learned feature maps in the first convolution layer. Red and Green indicate ON and OFF center synapses respectively.

first axis (i.e, along the time axis). The resulting tensors in
R30×11×11 were flattened.3

Once a neuron in layer L3 spikes, it is not allowed to
spike again during the rest of the time steps for the current
image. This results in the spike feature vectors being binary
valued (i.e., vectors of zeros and ones). In our experiments
an average of 125 spikes/image emerge out of L3 from the
30×11×11 = 3630 neurons and an average of 300 spikes/im-
age emerge out of L4 from the 30×23×23 = 15870 neurons
for the EMNIST dataset. As the activations of L4 are binary
(non differentiable), in order to perform backpropagation from
layer L5 back to layer L3, a surrogate gradient is used (see
Section IV).

4) Weight Initialization : The weights of the L2 layer are
initialized from the normal distribution N (0.8, 0.04). The
weights of layers L4 & L5 layers are initialized from the
normal distribution N (0, 0.01), but truncated to restrict them
between ±0.02. A softmax activation is used for the classifi-
cation layer L5 with its inputs converted to integers using the
floor function. A look-up table containing predefined values
of the exponential function ex can be used to calculate soft-
max activation in a hardware implementation. The activation
functions employed in layer L4 (denoted by σ in Figure 1)
are discussed below (see Section IV).

C. Spike Timing Dependent Plasticity (STDP)

Spike timing dependent plasticity defines how a synapse
(weight) between an input (pre-synaptic) neuron and an output
(post-synaptic) neuron is modulated (updated). In its simplest

3If more convolution layers are desired, spike tensors collected in L3 layer
can be used for unsupervised training of any subsequent convolutional layers.
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Fig. 6. Spikes per map per label in L3 (Pool 1). Highlighted (in black) are
the classes that resulted in most number of spikes in a particular feature map.
Feature learned by the corresponding map is shown in the inset.

form [36], STDP strengthens the synapse (weight) between
an input and output neuron if the input neuron aids the
output neuron in overcoming the membrane threshold (i.e.,
it spikes); otherwise the synapses are weakened. With tout
and tin denoting the spike time of the output (post-synaptic)
and the input (pre-synaptic) neuron, respectively, the STDP
learning rule used here is given by

∆wi =

{
−a−wi(1− wi), if tout − tin < 0

+a+wi(1− wi), if tout − tin ≥ 0

wi ← wi + ∆wi.

(6)

Learning in spiking networks refers to the change ∆wi in the
(synaptic) weight. The learning rate parameters a+ and a− are
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initialized with relatively lower values i.e., (0.004, 0.003) [36]
[37] and are typically increased as the learning progresses. In
our experiments we doubled the learning rate for every 1500
input images. As there are neither labels nor a cost function
involved in the process of STDP, it is an unsupervised learning
algorithm. That is, the weights can be updated during the feed
forward step in SNNs. In contrast, ANNs update their weights
during the error feed back. So, STDP does not suffer from the
update locking restriction [11]. Synapses in feature extraction
section of the network in Figure 1 were updated at the end of
every time step.

III. BACKPROPAGATION IN THE L3-L5 LAYERS

Stochastic gradient descent (SGD) via backpropagation is
the primary choice for state-of-the-art classification, regres-
sion, and generative learning [42]. A cost function is assigned
to the last layer of the network and the synapses are updated
to minimize the cost. In our network, backpropagation is used
only in the classification layers (L3-L4-L5) of the network
with a single hidden layer L4. Let δl, al(= σ(zl)), bl,W l, zl(=
wlzl−1 + bl) denote the error vector, the activation vector, the
bias vector, the weights and the net input to the activation
function for the lth layer, respectively [43]. σ is the activation
function. With C denoting the output cost, the backpropagation
equations are:

δL = ∇aC � σ′(zL) (7)

where δL denotes the error vector on the last layer and the
error vector for the hidden layers is given by

δl = ((W l+1)T δl+1)� σ′(zl) (8)

Updates to biases and weights of layer l are calculated with

∂C

∂bl
= δl (9)

∂C

∂W l
= δla(l−1)T (10)

C denotes the cost in the final layer. We used a softmax
activation with a cross entropy cost function for the last layer
so that equation (7) becomes

δL = −(y − aL), (11)

where aL and y are softmax activation of the output layer and
the one hot label vector, respectively. For the remainder of this
article, we refer to gradients obtained using Equations (7)-(11)
as true gradients with σ(z) a Rectified Linear Unit (ReLU)
activation function.

IV. BINARY ACTIVATIONS AND SURROGATE GRADIENTS

In order to significantly reduce the number of high precision
multiplications, the activations of the L4 layer are restricted
to be binary. That is, if the net input to a neuron is greater
than zero the output is one, otherwise the output is zero.
Consequentially this activation function is not differentiable
(i.e., the gradient doesn’t exist). Here, we provide two different
possible functions that we have used to replace the true
gradient, i.e., to be its surrogate [44].

A. Surrogate Gradient 1

The activation function of a neuron in layer L4 is defined
as

al = σ(zl) ,


0, z < 0

z, 0 ≤ z < τ ≤ 1

τ, z ≥ τ.
(12)

Figure 7 plots this ReLU activation function that saturates at
τ (τ ≤ 1).

-0.05 -0.03 0.00 0.03 0.05 0.08 0.10 τ 0.15 0.17 0.20
zl

0.0000.0000.000

0.025

0.050

0.075

0.100

0.1250.1250.1250.125

al
=
σ(
zl
)

τ=0.125

Fig. 7. Activation function al = σ(zl) for neurons in layer L4.

Since we require the activation to be binary its definition is
modified to be (d·e denotes the ceiling function)

al = dσ(zl)e ,

{
1, z ≥ 0

0, z < 0
(13)

As this binarized activation (13) is non-differentiable we define
its surrogate gradient as

σ′(zl) ,

{
1, 0 ≤ z < τ ≤ 1

0, otherwise.
(14)

which is the derivative of the function in Equation 12.

-0.05 -0.03 0.00 0.03 0.05 0.08 0.10 τ 0.15 0.17 0.20
zl

000

11111

000

d dz
σ(
zl
)

τ=0.125

Fig. 8. Surrogate gradient of activation function defined in equation (12).

Simulations were performed by setting τ to
0.25, 0.125, 0.05 and we found that 0.125 maximizes
the validation accuracy. Since error backpropagation is not
feasible with equation (13), we take derivative of σ(z) using
equation (14). In SNN convention, we denote an activation
value of 1 as spike and an activation value of 0 as no spike.

ScoutBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at IEEE Transactions on Emerging Topics in Computational Intelligence, published by IEEE. Copyright restrictions may apply. https://doi.org/10.1109/TETCI.2020.3035164.



6

B. Surrogate Gradient 2

We also considered a second activation given by

al = σ(zl) ,

{
1, z ≥ 0

0, z < 0
(15)

and define its surrogate gradient as

σ′(zl) ,

{
1, z ≥ 0

0, z < 0
(16)

Note that σ′(z) = σ(z) and is binary so that al = σ′(zl) in
the hidden layer. Equation (8) then becomes

δl = ((W l+1)T δl+1)� al (17)

where al determines if a neuron spikes in the lth layer. Hence
al determines if a neuron in the lth layer is to receive error
information from the l + 1 layer. Substituting Equation (17)
in Equation (10) results in

∂C

∂W l
=
(
(wl+1)T δl+1 � al

)
a(l−1)T (18)

We see that a neuron in l− 1 layer gets to update its synapse
with a neuron in lth layer if both neurons have spiked, i.e.,
for ∂C/∂W l

pq to be a non-zero both alp and al−1q have to be
non-zero.

V. MNIST

Our interest here is the EMNIST dataset. However, as the
MNIST handwritten digits dataset is a popular benchmark,
we briefly present our results using this dataset [4]. The
MNIST digits were passed through the network in Figure 1
and encoded into spike vectors as (described in Section II-B3).
Note that the extracted features are binary valued. Table I
shows that surrogate gradient 1 yields a test accuracy 0.74%
higher or 74 more correct classifications compared to surrogate
gradient 2 with 10, 000 test images. Figure 9 shows the
classification accuracy per class using the surrogate gradient 1.
For results reported in Table I, dropout mechanism (50%) was
used in hidden layer for regularization, number of neurons in
layer L4 were set to 900, mini-batch size was set to 5 and η
for the actual and true gradients was set to 0.0125 and 0.01,
respectively. These results were obtained by averaging over
five experiments with the classification layers of the network
in Figure 1 trained for 30 epochs. For classification accuracies
reported using the true gradient a quadratic cost function with a
ReLU activation function for layers L4, L5 was used. Whereas
for accuracies reported using the surrogate gradients a cross-
entropy cost function with softmax approximation (see Section
II-B4) for layer L5 and binary activation function for layers
L3, L4 was employed.

TABLE I
MNIST RESULTS. TRUE GRADIENT REFERS TO EQUATIONS (7)-(11).

Gradient Type Mean Test Acc. Max. Test Acc.
True Gradient 98.58% 98.66%

Surrogate Gradient 1 98.49% 98.54%
Surrogate Gradient 2 97.75% 97.77%
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Fig. 9. Classification accuracy per class with surrogate gradient 1.

VI. EMNIST

EMNIST dataset has 47 classes containing handwritten
upper & lower case letters of the English alphabet in addition
to the digits. This dataset is divided into 102, 648 training
images, 10, 151 validation images, and 18, 800 test images
[45]. Mini-batch size was set to 5 and a dropout of 50% was
used in the hidden layer (L4). The number of neurons in layer
L4 was 1500. Number of epochs was set to 35 and the all
experiments were averaged over 5 trials.

A. Why Use First Spike Based Feature Extraction?

In this section, binary valued features vectors (i.e., vector
with 0s and 1s) were collected in the layer L3 as described
in Section II-B3. Classification was performed using an ANN
with binary activation for the hidden layer L4 neurons and
an approximated softmax output explained in Section II-B4.
The synapses of L2 layer (Conv1) were fixed with random
weights and the binary spike features collected in layer L3
were classified using surrogate gradient 1 resulting in 80.43%
maximum test accuracy. Similarly, binary spike features col-
lected from layer L3 with unsupervised trained weights in
layer L2 (Conv2) were classified using surrogate gradient 1
resulting in a maximum test accuracy of 85.6%, ≈ 972 more
correct classifications when compared to random weights in
L2. Results averaged over five trials are provided in Table II.
Figures 11 and 12 show the confusion matrices for the network
with random synapses in L2 and STDP trained synapses in L2
respectively. When the layer L2 was trained with STDP, Figure
12 shows that there is frequent misclassification between the
classes {f} and {F}, the classes {0} and {O}, the classes {q}
and {9}, the classes {1}, {I} and {L}, the classes{S} and {5},
and the classes {2} and {Z}. Misclassifications for this case
are explainable in the sense that one might expect humans
to make such errors. For example, in the lower left corner
of Figure 10, the network predicted a lower case “f”, while
the label was an upper case “F”. In contrast, when layer L2
was not trained, Figure 11 shows that the network frequently
misclassified the classes {H} and {0}, the classes {E} and
{1}, the classes {A} and {1}, the classes {Z} and {7}, and
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the classes {h} and {L}. One would not expect humans to
make such mistakes.

TABLE II
EMNIST ACCURACY WITH RANDOM AND TRAINED L2 LAYER.

Gradient Type Mean Test Acc. Max Test Acc. L2 Synapses
Surrogate Gradient 1 80.21% 80.43% Random
Surrogate Gradient 1 85.35% 85.60% STDP trained
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Fig. 11. Confusion matrix of predictions with the EMNIST dataset when
random weights were used in layer L2.
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Fig. 12. Confusion matrix of predictions with the EMNIST dataset when the
synapses in layer L2 were learned in an unsupervised fashion using STDP.

We performed experiments to study the classification ac-
curacy in the presence of noise in the spiking input images
(layer L1). To explain, suppose a particular image resulted in
100 spikes in L1. Then by introduction of 10% noise, we imply
that 5 of the randomly chosen neurons that spiked were set
to zero, while 5 randomly chosen non-spiking neurons were
forced to spike. Figure 13 shows the result of this input noise
on the final classification accuracy. As shown in Figure 13,
the network can withstand ≈ 40% this input noise before the

classification accuracy decreases to that of the case where the
L2 layer synapses were randomly set.
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Fig. 13. Effect of input noise on the final classification accuracy.

B. Effect of Gradient Approximation on Classification

Table III shows that the true gradients results in higher
classification accuracy and surrogate gradient 1 outperforms
surrogate gradient 2 by 1.0% (i.e., 188 more correct classifi-
cations with 18800 test images).

C. Conditioning on Upper Case, Lower Case, and Digits
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Fig. 14. Classification accuracy per class with surrogate gradient 1.

Figure 14 shows the accuracy per class when surrogate
gradient 1 is used for classification. With handwritten data,
even a human classifier may not be able to tell the difference
between, for example, the upper case letter “O” and the digit
“0”. To study this we also ran the classifier conditioned on
(given that) the image under test was an upper case letter, a
lower case letter or a digit. No retraining was performed for
this section. Table III shows dramatic increase in accuracy
under this conditioning. The accuracy per class using this
conditioning is given in Figure 15. It is seen that the classes I,
L, g, q have the least recognition rate, but still well above their
accuracies previously seen in Figure 14 where conditioning
was not used. In more detail we found that about 13% of the
letters “q” were misclassified as the letter ”g”, about 4% of
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P:Q ,L:a P:I ,L:1 P:W ,L:f P:n ,L:h P:g ,L:9 P:I ,L:J P:R ,L:F P:F ,L:f P:C ,L:e P:b ,L:6 P:L ,L:h P:a ,L:A P:f ,L:F P:2 ,L:Z P:Z ,L:2 P:3 ,L:gP:M ,L:4P:0 ,L:O P:S ,L:2 P:1 ,L:I

P:Z ,L:2 P:1 ,L:L P:B ,L:8P:Q ,L:8 P:P ,L:F P:a ,L:e P:L ,L:1 P:f ,L:F P:r ,L:V P:r ,L:J P:0 ,L:OP:U ,L:V P:g ,L:9 P:I ,L:L P:b ,L:6 P:9 ,L:P P:U ,L:I P:O ,L:0 P:q ,L:g P:Z ,L:2

P:L ,L:1 P:F ,L:f P:T ,L:t P:1 ,L:L P:0 ,L:O P:f ,L:F P:2 ,L:ZP:U ,L:V P:F ,L:f P:9 ,L:4 P:q ,L:9 P:2 ,L:Z P:F ,L:f P:9 ,L:g P:E ,L:C P:I ,L:1 P:2 ,L:d P:H ,L:AP:0 ,L:O P:8 ,L:g

Fig. 10. Frequently misclassified classes in the EMNIST dataset. P and L denote predicted class and actual label, respectively.

TABLE III
EMNIST RESULTS. TRUE GRADIENT REFERS TO EQUATIONS (7)-(11).

Gradient Type Mean Test Acc. Max. Test Acc. Conditioned Max. Test Acc. η Activation
True Gradient 85.47% 85.7 % 94.49 % 0.05 ReLU

Surrogate Gradient 1 85.35 % 85.60 % 94.1 % 0.02 Binary
Surrogate Gradient 2 84.24 % 84.47 % 93.72 % 0.02 Binary
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Fig. 15. Classification accuracy per class of EMNIST dataset with surrogate
gradient 1 after the proposed conditioning.

letters “q” were misclassified as the letter “a”, while about
83% of letters ”q” were correctly classified. About 20% of
letters “g” were misclassified as the letter “q” while about
73% of letters “g” were correctly classified. Similarly, we
found that about 27% of letters of upper case “I” (eye) were
misclassified as the upper case letter “L” while 68% of upper
case “I” were correctly classified. As a final observation about
20% of upper case letters “L” were misclassified as an upper
case “I” (eye) while about 78% of upper case letters “L” were
correctly classified. Figure 16 shows the confusion matrix for
the conditioned case.

D. Computational Advantage of Binary Activations

In the feedforward paths L1 through L4 the matrix-vector
multiplication operations can altogether be avoided in a hard-
ware implementation as all these layers have binary acti-
vations. For example, executing the multiplication of a set
of (floating point) weights times a set of spikes (binary
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Fig. 16. Confusion matrix of predictions with EMNIST dataset when the
inputs are conditioned on Upper Case, Lower Case and Digits.

activations) is simply


w11 w12 w13

w21 w22 w23

w31 w32 w33

...
wn1 wn2 wn3

×
 0

1
1

 =


w12

w22

w32

...
wn2

+


w13

w23

w33

...
wn3

 .

(19)
That is, multiplication is replaced by addition. This technique
avoids the need for dedicated multiplier hardware and allows
the feasibility of in-memory computing [34] [35]

Another advantage is found in backpropagation computa-
tions. Specifically, as the surrogate gradient σ′(zl) is binary,
the error vector δl for the hidden layer can be obtained without
having to compute majority of the row-column multiplications
in

δl = ((W l+1)T δl+1)� σ′(zl).
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For example
(

w11 w12 w13

w21 w22 w23

)
︸ ︷︷ ︸

(wl+1)T

×

 1
2.5
3.1


︸ ︷︷ ︸
δl+1

�
(

0
1

)
︸ ︷︷ ︸
σ′(zl)

=

(
0

w21 + 2.5w22 + 3.1w23

)
.

(20)

That is, in equation (20) the row-column multiplications of
the first row are avoided as the result will zero out due to
the element-wise (Hadamard product) vector multiplication.
All the weight updates, ∂C/∂W l can be obtained without
explicitly calculating vector outer product δla(l−1)T as the
activations of L3 and L4 layers are binarized. For example a

b
c


︸ ︷︷ ︸

δl

×
(

0 1 0
)︸ ︷︷ ︸

a(l−1)T

=

 0 a 0
0 b 0
0 c 0

 . (21)

That is, the matrix on the right side of Equation (21) is found
by simply transcribing δl into its columns as specified by
a(l−1)T .E. Number of High-Precision Multiplications

The majority of computations in a DNN are high-precision
multiplications of the weights with the activations during
both the forward inference as well as the backpropagation
of the error. Energy consumption of the network is hardware
architecture dependent, but in order to provide an estimate
for the energy savings in our SNN, we compare the number
of high precision multiplications between a DNN and our
SNN [46]. It requires m × n × p high precision multipli-
cations in order to multiply an m × n matrix by an n × p
matrix in a fully connected network. Convolution (in valid
mode) of an I × I image with an F × F filter requires
(I − F + 1) × (I − F + 1) × F × F multiplications. As
we employ temporally encoded spikes with binary activations
used in the classification layer, the forward path can be
implemented without any multiplications (See Equation (19)
and Equation (21)). Further, orders of magnitude less number
of multiplications are required for backpropagation as we
explain next. Table IV below compares the number of high-
precision multiplications required for a DNN with our SNN-
based approach. In a neuromorphic system the input spikes are
typically provided by a silicon retina (eDVS [32]). Thus we
assume that the images are available in spike form. We begin
by estimating the number of multiplications in the L4 layer
for our SNN. Figure 17 shows the average number of neurons
in the L4 layer (1500 total neurons) for each epoch that have a
non-zero activation. The number of multiplications required to
calculate the error in layer L4 according to Equation (20) is as
follows: In the earliest epochs, the number of multiplications
during the training is approximately 1.45 × 109 which is
computed as

20500 m-batches× 5
images
m-batch

× 47 classes× 300 non-zero activations.

(22)

In the latter epochs, the number of non-zero activations
decreases to 100 making the number of multiplications approx-
imately 20500×5×47×100 = 4.5×108. Summing over the
35 epochs results in approximately 1.87×1010 multiplications.

To compute the number of multiplications in the L2 layer
of our SNN, note that during the unsupervised training of
L2 (Conv1), lateral inhibition and STDP competition results
in sparse neuronal activity in that there are only 5.8 weight
updates (winner spikes) per spiking input image (see Section
II-B2). L2 was trained (unsupervised) on 6000 spiking input
images . The number of multiplications required is approxi-
mately 5.22× 107 computed as

5.8 avg updates× 2× 5× 5× 30 L2 synapses× 6000 images. (23)

Due to the binary activations used in L4, layer L5 of our
network can be implemented in a custom hardware without
any multiplications. Based on this quantitative analysis our
approach makes a suitable candidate for low power imple-
mentation as it uses ≈ 3 − 4 orders of magnitude less
multiplications compared to a standard DNN.
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cti
vit

y
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Fig. 17. Number of neurons with non-zero activations in layer L4 as the
training in classification sections of the network in Figure 1 progresses.

VII. SPYKEFLOW

The authors did consider the PYNN simulator with NEU-
RON [47] [48]. However these tools are designed for neuro-
scientists where the neuron models are much more complex
than needed in our case. The software tool NENGO [49],
developed for bio-inspired machine learning, uses a more
complex neuronal model than required here. Motivated by
the simple spiking models in Kheradpisheh et al.’s work [36],
we developed customized software tools. Following [36] our
package supports instantaneous (non leaky integrate and fire)
neurons, latency encoding, and inhibition mechanisms to be
able to simply extract meaningful features from the input
images. The feature extraction in our SNNs is performed in an
unsupervised manner using STDP, which requires monitoring
the weight updates (synapse changes) in the spiking network.
Our software provides the capability to monitor spike activity,
weight evolution (updates), feature extraction (spikes per map
per label), synapse convergence. This software tool was used
in our other work [40] [41]. Similar to our work, Mozafari
et al released the software tool SPYKETORCH in [50], which
is based on the PYTORCH deep learning tool. Our software
is named SPYKEFLOW4 and primarily uses NUMPY to do
the calculations of lateral inhibition, STDP updates, neuron
spike accumulation, etc. However, we also use TENSORFLOW
for computationally intensive calculations such as convolution

4https://github.com/ruthvik92/SpykeFlow
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TABLE IV
COMPARISON OF MULTIPLICATIONS FOR A DNN AND THE SNN IN FIGURE 1

Architecture L2 L4 L5 Total
Forward Updates Forward Updates Forward Updates

DNN 1.42 × 1012 1.42 × 1012 1.954 × 1013 1.96 × 1013 2.53 × 1011 2.53 × 1011 ≈ 4.25 × 1013

Proposed SNN 0 5.22 × 107 0 1.87 × 1010 0 0 ≈ 1.87 × 1010

and pooling. Therefore, the users will have the ability to use
a GPU, if one is available. Detailed instructions to use the
software are provided in [51].

VIII. CONCLUSIONS

A comparison of our work with recent publications that
employ the EMNIST dataset is provided in Table V. Rate
encoded spiking networks require hundreds of time-steps of
simulation for a single input image resulting in very high spike
counts. Whereas, latency encoded inputs to an SNN equipped
with first spike based feature extraction results in very few
spikes thus requiring fewer synapse updates implying lower
power consumption. In this work, neurons were essentially

TABLE V
COMPARISON OF EMNIST CLASSIFICATION RESULTS.

Learning method Neuron model Input Encoding Max. Test Acc.
Supervised DNN [52] ReLU - 90.59 %
Supervised SNN [53] LIF Rate 85.57 %
Unsupervised SNN

+
Supervised DNN

(This work)

Summation
(Instantaneous)

+
Binary

Latency 85.60 %

used as coincidence detectors with latency encoded input
spikes and first spike based feature extraction to transform
the inputs to spike feature vectors that contain robust object
category information as observed in biology [25]. This spike
features were then classified using the proposed backpropa-
gation with surrogate gradients to demonstrate up to 85.60%
accuracy with the EMNIST dataset. This was achieved by
employing backpropagation only in the classification layers of
the network as the classification layers are decoupled from
the feature extraction layers. The accuracy achieved here is
quite comparable to the 85.57% accuracy reported in [53]
which used rate encoded (Poisson) input spikes in a network
with one hidden layer comprised of 800 neurons and with
backpropagation performed in all the layers. Furthermore,
[53] uses complex Leaky integrate-and-fire (LIF) neurons
as opposed to our simple instantaneous summation neurons
that act as coincidence detectors. Using a conventional deep
convolution network, Shawon et al [52] report an accuracy of
90.59% on the balanced EMNIST (refer to survey paper [54]).
The deep network in [52] consisted of 6 convolution layers,
a hidden layer with 64 neurons followed by a classification
layer. Though our accuracy is lower than DNNs, we have
proposed an energy-efficient solution using bio-inspired unsu-
pervised techniques. This energy efficiency can be realized by
implementing the proposed architecture using a Neuromorphic
ASIC or FPGA.

As shown in Table III we also demonstrated an accuracy of
94.49% when the classifier was given the information that an
input image was either a letter (upper or lower case) or a digit.
As discussed in the paper, this conditioning was considered

due to the indistinguishability of few samples between some
of the classes (e.g., {0} and {O} in Figure 10).

The computational advantages (i.e., high precision multipli-
cations reduced by 3-4 orders of magnitude) of using binary
activations with respect to a custom hardware implementation
[55] [34] [35] [56] of SNNs were also discussed. We also
demonstrated the robustness of the classification accuracy
when noisy spikes are present in the input spiking image. All
the simulations were performed using a custom software tool
SPYKEFLOW [51] developed by the authors.
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