
Boise State University Boise State University 

ScholarWorks ScholarWorks 

Geosciences Faculty Publications and 
Presentations Department of Geosciences 

11-1-2019 

Exploring the Law of Detrital Zircon: LA-ICP-MS and CA-TIMS Exploring the Law of Detrital Zircon: LA-ICP-MS and CA-TIMS 

Geochronology of Jurassic Forearc Strata, Cook Inlet, Alaska, USA Geochronology of Jurassic Forearc Strata, Cook Inlet, Alaska, USA 

Trystan M. Herriott 
Alaska Division of Geological & Geophysical Surveys 

James L. Crowley 
Boise State University 

Mark D. Schmitz 
Boise State University 

Marwan A. Wartes 
Alaska Division of Geological & Geophysical Surveys 

Robert J. Gillis 
Alaska Division of Geological & Geophysical Surveys 

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/geo_facpubs
https://scholarworks.boisestate.edu/geo_facpubs
https://scholarworks.boisestate.edu/geosciences


1044 www.gsapubs.org | Volume 47 | Number 11 | GEOLOGY | Geological Society of America

Manuscript received 21 March 2019 
Revised manuscript received 29 July 2019 

Manuscript accepted 8 August 2019

https://doi.org/10.1130/G46312.1

© 2019 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license.

CITATION: Herriott, T.M., et al., 2019, Exploring the law of detrital zircon: LA-ICP-MS and CA-TIMS geochronology of Jurassic forearc strata, Cook Inlet, 
Alaska, USA: Geology, v. 47, p. 1044–1048, https://doi.org/10.1130/G46312.1

Exploring the law of detrital zircon: LA-ICP-MS and 
CA-TIMS geochronology of Jurassic forearc strata, 
Cook Inlet, Alaska, USA
Trystan M. Herriott1, James L. Crowley2, Mark D. Schmitz2, Marwan A. Wartes1, and Robert J. Gillis1

1 Alaska Division of Geological & Geophysical Surveys, Fairbanks, Alaska 99709, USA
2 Department of Geosciences, Boise State University, Boise, Idaho 83725, USA

ABSTRACT
Uranium-lead (U-Pb) geochronology studies commonly employ the law of detrital zircon: A sedimentary rock cannot be older than its 

youngest zircon. This premise permits maximum depositional ages (MDAs) to be applied in chronostratigraphy, but geochronologic dates 
are complicated by uncertainty. We conducted laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) and chemical 
abrasion–thermal ionization mass spectrometry (CA-TIMS) of detrital zircon in forearc strata of southern Alaska (USA) to assess the accu-
racy of several MDA approaches. Six samples from Middle–Upper Jurassic units are generally replete with youthful zircon and underwent 
three rounds of analysis: (1) LA-ICP-MS of ∼115 grains, with one date per zircon; (2) LA-ICP-MS of the ∼15 youngest grains identified in 
round 1, acquiring two additional dates per zircon; and (3) CA-TIMS of the ∼5 youngest grains identified by LA-ICP-MS. The youngest 
single-grain LA-ICP-MS dates are all younger than—and rarely overlap at 2σ uncertainty with—the CA-TIMS MDAs. The youngest kernel 
density estimation modes are typically several million years older than the CA-TIMS MDAs. Weighted means of round 1 dates that define 
the youngest statistical populations yield the best coincidence with CA-TIMS MDAs. CA-TIMS dating of the youngest zircon identified by 
LA-ICP-MS is indispensable for critical MDA applications, eliminating laser-induced matrix effects, mitigating and evaluating Pb loss, and 
resolving complexities of interpreting lower-precision, normally distributed LA-ICP-MS dates. Finally, numerous CA-TIMS MDAs in this 
study are younger than Bathonian(?)–Callovian and Oxfordian faunal correlations suggest, highlighting the need for additional radioisotopic 
constraints—including CA-TIMS MDAs—for the Middle–Late Jurassic geologic time scale.

INTRODUCTION
Detrital zircon (DZ) U-Pb geochronology is a staple of modern strati-

graphic research that proliferated with increasingly widespread use of laser 
ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) 
(e.g., Gehrels, 2014). Rapid data acquisition renders LA-ICP-MS well 
suited for the DZ analyses that are extensively used in provenance work 
and maximum depositional age (MDA) assessments (e.g., Schaltegger 
et al., 2015). This study examined MDAs, which are based on a logical 
premise that Gehrels (2014) referred to as the law of DZ: A sedimentary 
rock cannot be older than the youngest zircon crystal it contains (Houston 
and Murphy, 1965).

The validity of a DZ MDA is always complicated by uncertainty, 
including analytical, systematic, and geologic sources. Laboratory-re-
ported confidence intervals, however, principally reflect analytical pre-
cision and reproducibility of standard materials, and repeat measure-
ments do not mitigate sample-specific systematic uncertainty (Schoene, 
2014). Inter-element fractionation during laser ablation requires frequent 
within-session analyses of reference zircon and is a significant source of 
systematic uncertainty in LA-ICP-MS geochronology (e.g., Schaltegger 
et al., 2015). Well-characterized zircon yield LA-ICP-MS dates that typi-
cally coincide with associated chemical abrasion–thermal ionization mass 
spectrometry (CA-TIMS) dates, but systematic offsets, likely reflecting 
matrix effects, are observed (Schoene, 2014). In fact, LA-ICP-MS dates 

of relatively young (i.e., Mesozoic–Cenozoic) zircon are prone to incor-
porating fractionation-associated matrix effects, imparting too-young 
biases of as much as ∼5% (Allen and Campbell, 2012). Mesozoic–Ce-
nozoic strata are common in basin analysis, and MDAs that are younger 
than existing stratal age constraints may have considerable implications 
(e.g., Surpless et al., 2006).

Lead loss is largely unconstrained by single LA-ICP-MS analyses 
of Mesozoic–Cenozoic zircon (Spencer et al., 2016) but is often cited to 
account for DZ dates that are ostensibly too young. Additionally, the im-
pact of material properties on ablation behavior—the above-noted matrix 
effects—and the statistical nature of overlapping dates within youthful 
(i.e., near stratal age) DZ populations are rarely discussed (Coutts et al., 
2019). Fortunately, total uncertainty can be reduced with complementary 
CA-TIMS geochronology, which mitigates and assesses Pb loss for Meso-
zoic–Cenozoic zircon, is not subject to laser-induced matrix effects, and 
yields dates commonly ∼50× more precise than LA-ICP-MS. Recent DZ 
studies have combined LA-ICP-MS and CA-TIMS to determine MDAs 
(e.g., Wainman et al., 2018), but experiments that explicitly explore the law 
of DZ and compare dates and MDAs from these two methods are lacking.

Within this context, we conducted LA-ICP-MS and CA-TIMS geo-
chronology of DZ in Jurassic forearc strata of southern Alaska (United 
States). An oceanic island arc provenance for the sampled sandstones, 
which have large proportions of youthful zircon, renders these strata an 
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 excellent case for evaluating best practices for establishing MDAs. En-
hanced LA-ICP-MS analytical protocols are aimed to improving accuracy. 
The youngest DZ LA-ICP-MS dates are complemented by CA-TIMS 
dates from the same crystals. We compare the LA-ICP-MS and CA-
TIMS dates and age constraints, provide recommendations in light of 
these new data, and briefly discuss their potential to refine the Jurassic 
geologic time scale.

GEOLOGIC SETTING
Cook Inlet forearc basin (Fig. 1) hosts an ∼18-km-thick Mesozoic–

Cenozoic stratigraphic record (e.g., LePain et al., 2013). The Jurassic 
manifestation of this long-lived basin was coupled with the Talkeetna 
arc, which migrated northward in the paleo–Pacific Ocean above a north-
dipping subduction zone (e.g., Clift et al., 2005). The Talkeetna arc’s 
forearc stratigraphy comprises the Middle Jurassic Tuxedni Group and 
Chinitna Formation and the Upper Jurassic Naknek Formation (e.g., 
LePain et al., 2013; Fig. 1). Accretionary tectonics ultimately extin-
guished Talkeetna arc magmatism in the Late Jurassic (e.g., Clift et al., 
2005), although the exact geometry and timing of terrane amalgama-
tion and final collision with North America is debated (e.g., Stevens 
Goddard et al., 2018).

The Jurassic forearc stratigraphy is well exposed between Iniskin and 
Tuxedni Bays of the lower Cook Inlet (Detterman and Hartsock, 1966; 
Fig. 1). In this area, the Chinitna Formation comprises an ∼700-m-thick 
succession of principally shallow-marine strata of the Tonnie Siltstone 
and Paveloff Siltstone Members (Herriott et al., 2016; Herriott and Wart-
es, 2017; Fig. 1). The overlying Naknek Formation in the area is an 

∼1500-m-thick interval of shallow- and deep-marine strata of the Chisik
 Conglomerate, lower sandstone (informal), Snug Harbor Siltstone, and 
Pomeroy Arkose members (Herriott et al., 2017; Fig. 1).

Detterman and Westermann (1992) summarized the largely ammonite-
based Jurassic biostratigraphy of southern Alaska, reporting that the 
Chinitna Formation is Callovian; Chisik, lower sandstone, and Snug 
Harbor are Oxfordian; and Pomeroy is Kimmeridgian (Fig. 1). How-
ever, faunal assemblages noted by Detterman and Westermann (1992) 
also suggest that lowermost Tonnie may be latest Bathonian, and Pome-
roy is potentially as old as Oxfordian. The Chisik is not fossiliferous, 
but stratigraphic and biostratigraphic relations indicate that this unit is 
probably Oxfordian, and may be associated with Callovian–Oxfordian 
transition climate change (Herriott et al., 2017). Recent DZ LA-ICP-MS 
studies in southern Alaska yielded Chinitna and Naknek constraints that 
are notably younger than biostratigraphic correlations suggest (Finzel 
and Ridgway, 2017; Reid et al., 2018; Stevens Goddard et al., 2018; 
Herriott et al., 2019).

METHODS
We sampled sandstone beds from the base of each member in the 

Chinitna and Naknek Formations, bracketing ∼1400 m of stratigraphy 
that extends across the Middle–Late Jurassic boundary. All samples were 
prepared and analyzed at Boise State University’s Isotope Geology Labo-
ratory (Boise, Idaho, USA) (see the GSA Data Repository1).

Experimental Design
We conducted three rounds of U-Pb geochronology: (1) LA-ICP-MS 

of ∼115 zircon grains per sample, with one date per grain; (2) two addi-
tional LA-ICP-MS dates per zircon for the ∼15 youngest grains per sample 
identified in round 1; and (3) CA-TIMS of the ∼5 youngest grains (labeled 
z1–z5) per sample based on sorting LA-ICP-MS multiple-analysis results 
by weighted mean (WM) date where n = 3 and probability of fit (PoF) is 
>0.05. Round 3 zircons were plucked from their mounts and broken into 
fragments; selected fragments were chemically abraded and analyzed by 
CA-TIMS (Mattinson, 2005).

Maximum Depositional Constraints
We assessed round 1 youthful DZ via three approaches: (1) youngest 

single grain (YSG; Dickinson and Gehrels, 2009); (2) youngest mode 
of the kernel density estimation (KDE) (YMKDE; cf. YPP of Dickinson 
and Gehrels, 2009); and (3) youngest statistical population with a mean 
square weighted deviation of ∼1.00 (YSP; Coutts et al., 2019). Round 2 
data enabled a fourth LA-ICP-MS-based determination: youngest single 
grain with multiple analyses (YSGMA; WM, n = 3 [rounds 1 + 2], PoF 
>0.05; e.g., Spencer et al., 2014). WMs of the youngest CA-TIMS dates 
that overlap at 2σ uncertainty and have PoF >0.05 provide round 3 maxi-
mum constraints.

RESULTS
Round 1 yielded nearly entirely Jurassic dates, with KDEs reveal-

ing unimodal date distributions (Fig. 2). Dates from round 1 single 
analyses and rounds 1 + 2 WMs for zircon crystals z1–z5 per sample 
are younger than their associated (i.e., same zircon) round 3 CA-TIMS 
dates, although ∼60% of the date pairs overlap at 2σ (Fig. 2). All CA-
TIMS dates are concordant. Follow-up CA-TIMS of an archived grain 
fragment from each of three critically young DZ reproduced results 
within 2σ for each pair (Fig. 2). Average per-sample U values are low 

1GSA Data Repository item 2019365, sample descriptions, cathodolumines-
cence images of zircon, U-Pb geochronology methods, and data tables and plots, 
is available online at http://www.geosociety.org/datarepository/2019/, or on request 
from editing@geosociety.org.
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(USA). (B) Geologic map of study area (after Herriott et al., 2019), 
including sample locations. (C) Explanation of map units, including 
Jurassic forearc stratigraphy. Stage–rock unit associations are from 
Detterman and Westermann (1992); stage boundary dates are from 
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(77–112 ppm), and U versus date plots indicate no correlation or subtly 
increasing U toward older dates. Maximum depositional dates (MDDs) 
and MDAs are discussed below, adapting the date-versus-age distinction 
noted by Schoene (2014).

DISCUSSION AND CONCLUSIONS
CA-TIMS dates establish the MDAs of this study. All single-

grain MDDs (YSG and YSGMA) are younger than corresponding 
CA-TIMS MDAs and rarely overlap at 2σ (Fig. 3). YMKDE MDDs 
are ∼1–4.5 m.y. older than the CA-TIMS MDAs, whereas YSP MDDs 
commonly overlap at 2σ with the CA-TIMS MDAs (Fig. 3). Mitigat-
ing laser-induced matrix effects and evaluating the distribution of dates 
within youthful DZ populations are keys to determining accurate LA-
ICP-MS–based MDAs.

Matrix effects–related uncertainty principally reflects varying degrees 
of radiation damage among unknowns and references, rendering variable 
ablation rates and concomitantly variable inter-element fractionation (e.g., 
Sliwinski et al., 2017). These effects are potentially more problematic 
for young zircon with low U (and Th) values that are dated relative to 
older references and/or references with higher U (and Th) content (Allen 
and Campbell, 2012). Thermal histories and other matrix factors further 
complicate these relations (Marillo-Sialer et al., 2016), but structural ho-
mogenization by thermal annealing reduces ablation rate variability and 
mitigates this systematic uncertainty (e.g., Allen and Campbell, 2012; 
Sliwinski et al., 2017; see also Mattinson, 2005).

We addressed uncertainty due to matrix effects by thermally annealing 
zircon prior to LA-ICP-MS and carefully selecting secondary references. 
Comparisons of our LA-ICP-MS dates with published DZ LA-ICP-MS 
dates from Jurassic strata of southern Alaska are hampered by stratigraph-
ic, biostratigraphic, and analytical complexities. However, we collected 
samples 09BG010-14.5A (this study) and 09BG010-14.5C (Herriott et al., 
2019) from the same bed, and KDEs of these LA-ICP-MS results indicate 
a modest systematic offset (−2.2% at mode for 09BG010-14.5C; Fig. 2) 
that may reflect matrix effects.

Establishing accurate MDAs also requires consideration of how dense-
ly distributed DZ dates impact interpretations. YSG and YSGMA MDDs 
of this study, if regarded as MDAs, would impart a too-young bias on 
chronostratigraphic interpretations. Two factors, which are not mutu-
ally exclusive, likely account for this bias: (1) selectively sampling the 
low-probability tail of a normal distribution of data resulting from ran-
dom statistical fluctuations during an analytical session, and (2) Pb loss. 

Figure 2. Kernel density estimations (KDEs; left) and ranked date 
plots (center) for round 1 U-Pb dates. Full-sample KDEs are nor-
malized, and yellow KDE (Tonnie Siltstone Member, Alaska, USA) 
graphically presents the extraction of the youngest statistical popu-
lation (YSP) from the complete date distribution; YSP weighted mean 
dates for each sample are also depicted as horizontal yellow bars at 
center and right. Plots at right include zircons that were analyzed in 
all three rounds of geochronology (designated with “z” labels [“a” and 
“b” identify round 3 multiple analyses]), with round 1 (black squares); 
round 2 (black dots); rounds 1 + 2 (blue dots; weighted mean date of 
black square and black dots); and round 3 (orange bars). Note the 
persistent residual young bias in rounds 1 + 2 weighted mean dates, 
and the overall convergence of z1–z5 progressions toward older 
round 3 dates. Weighted mean dates include propagated standard 
calibration uncertainty (laser ablation data) and tracer calibration 
uncertainty (thermal ionization data) (see the Data Repository [see 
footnote 1]). See Figure 1 for an explanation of stratigraphic units. 
Asterisk (Chisik Conglomerate Member, z7) indicates not plotted. 
MDATIMS—maximum depositional age determined with thermal ion-
ization mass spectrometry; MSWD—mean square weighted deviation; 
PoF—probability of fit; YMKDE—youngest kernel density estimation 
mode; YSG—youngest single grain; YSGMA—youngest single grain 
with multiple analyses.
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Round 2 experiments, with multiple laser ablation spots placed on the 
same youngest grains, aimed to distinguish these two factors. YSGMA 
determinations are older than the YSG results (Fig. 3), indicating a low-
probability tail bias for the YSGs. However, a consistent residual young 
bias—attributable to Pb loss—remains in the YSGMA MDDs relative to 
the CA-TIMS MDAs (Fig. 2).

Older components of closely clustered DZ dates present additional 
challenges. The YMKDE MDDs are older than the CA-TIMS MDAs 
because the full probability distribution incorporates a range of truly 
older dates (PoF = 0.00 for WMs of all dates per sample). The YSP 
approach selects the youngest subset of dates with scatter that can be 
explained by the uncertainties, extracting a normally distributed sub-
sample from the youngest tail of the distribution (e.g., Fig. 2, Tonnie 
Siltstone Member). YSP MDDs are our preferred LA-ICP-MS con-
straints due to their explicit tie to the aforementioned statistical fluc-
tuations during analysis, high n, and best overall coincidence with the 
CA-TIMS MDAs.

Spencer et al. (2016) and Coutts et al. (2019) also noted that the 
(normal) distribution of dates within youthful DZ populations can un-
dermine the accuracy of LA-ICP-MS MDAs, with single-grain assess-
ments prone to underestimating stratal age. Nevertheless, Spencer et al. 
(2016) favored single-grain, multiple-analysis MDAs (e.g., YSGMA) for 
in situ techniques, understandably citing the inability to determine with 
certainty that multi-grain detrital population samples (e.g., YSP) record 
truly cogenetic crystallization of zircon. Geologic context should always 
be considered, but the YSP MDDs of our study do not presume a narrowly 
defined genesis for the selected zircon; rather, we simply assert that these 
subsamples reflect coeval zircon crystallization as resolved by LA-ICP-
MS. Our results—benchmarked by CA-TIMS—suggest that conducting 
statistical assessments of peaks, clusters, and/or tails of DZ LA-ICP-
MS date distributions will consistently render more reliable results than 
potentially problematic single-grain determinations. CA-TIMS of the 
youngest DZ in a sample circumvents the need to favor either single- or 
multi-grain MDAs for LA-ICP-MS.

We recommend that DZ MDA studies of Mesozoic–Cenozoic strata 
include thermally annealing zircon prior to analysis and employ the YSP 
method, although alternative WM approaches (e.g., YC2σ of Dickinson 
and Gehrels, 2009) may be suitable for lower n youthful population 
samples. Focusing on the single youngest LA-ICP-MS date in a densely 
sampled DZ population is not well suited to characterizing the age of 
that population, although multiple LA-ICP-MS analyses on the same 
youthful grain(s) would improve results. CA-TIMS of the youngest 

grains should be conducted for critical applications, including chro-
nostratigraphy. The most robust MDAs are derived from equivalent 
CA-TIMS dates from multiple grains; ideally, multiple fragments per 
grain would be dated to test intra-grain reproducibility and minimize 
geochronologic uncertainty.

Our recommendations aim to diminish or eliminate too-young bi-
ases in DZ MDAs. However, there will be cases where MDAs truly 
are younger than previous constraints suggest. In this study, the  Tonnie 
MDA indicates that uppermost Bathonian(?)–Callovian strata are not 
older than 159.57 ± 0.11 Ma, which is ∼4 m.y. younger than even the 
Callovian–Oxfordian boundary (Fig. 1). Furthermore, the base of the 
Naknek Formation yielded a 157.33 ± 0.11 Ma MDA, coinciding with 
the Oxfordian–Kimmeridgian boundary (Fig. 1), yet the entire Oxfordian 
stratigraphy overlies the sampled stratum. These relations may reveal dis-
crepancies with faunal correlations or time-scale calibration. Currently, 
the Middle–Late Jurassic time scale has few radioisotopic constraints 
(Gradstein et al., 2012) and would benefit from additional CA-TIMS 
dates. Further time-scale refinements could consider CA-TIMS MDAs 
for fossiliferous strata along Jurassic convergent margins.
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