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Abstract 
Molecular simulation has emerged as an important sub-field of chemical engineering, due in no 
small part to the leadership of Keith Gubbins. A characteristic of the chemical engineering 
molecular simulation community is the commitment to freely share simulation codes and other 
key software components required to perform a molecular simulation under open-source licenses 
and distribution on public repositories such as GitHub. Here we provide an overview of open-
source molecular modeling software in Chemical Engineering, with focus on the Molecular 
Simulation Design Framework (MoSDeF). MoSDeF is an open-source Python software stack that 
enables facile use of multiple open-source molecular simulation engines, while at the same time 
ensuring maximum reproducibility. 
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Body of Manuscript 

1. Background  
Molecular simulation is a methodology for predicting the collective (in particular, thermodynamic 
and transport) properties of systems from information about how the molecules in the system 
interact with each other. That “information” can be obtained on-the-fly from quantum mechanics 
but, in most molecular simulations, it is encoded in a mathematical function, called a force field, 
that attempts to include all the intermolecular interactions between molecules (electrostatic 
interactions, van der Waals repulsive and attractive interactions) as well as intramolecular 
interactions (e.g., bond stretching, bond angle bending, and torsional interactions). More 
specifically, a force field is a representation of the total potential energy associated with 
interactions of all the atoms in the system (obtained by summing over all the molecules), which 
can be differentiated with respect to the position of an atom to obtain the force exerted on that 
atom. Force fields can be derived from first principles calculations (e.g., quantum chemistry 
calculations) and/or experimental data; thus, generally force fields are semi-empirical. For 
inhomogenous systems (e.g., a fluid adsorbed on a surface or into a pore), the force field includes 
models for how the molecules interact with atoms in the surfaces or with an external field. 
Assuming that the molecular simulation runs long enough to attain equilibrium, and that the system 
is large enough or configured to eliminate unwanted surface effects (through so-called periodic 
boundary conditions), for a given force field, molecular simulation can provide essentially exact 
information about the properties of the system, obtained by averaging over the configurations 
generated in the simulation. Two major types of molecular simulations are routinely performed: 
molecular dynamics (MD), in which Newton’s equations, or a convenient variation thereof, are 
solved for the dynamics of each atom in the system, and Monte Carlo (MC) simulation, in which 
configurations of the system are generated via a Markov chain process that asymptotically are 
distributed according to the appropriate equilibrium ensemble probability (e.g., for systems at 
constant molecule number 𝑁, volume 𝑉, and temperature 𝑇, the Boltzmann distribution, in which 
configurations have probability ∝ 𝑒!"/$!%, where 𝐸 is the energy of the system and 𝑘& is 
Boltzmann’s constant). In either case, the raw output of the simulation is configurations of the 
system (known as a trajectory) that can then be analyzed to compute properties. From an MD 
simulation, the trajectory will consist of positions and velocities for all atoms in the system over 
the course of the simulation; a typical MD simulation will employ a time step of 10!'(s, so that a 
10-100 ns trajectory covers 10) − 10* steps.  For a 100,000-atom simulation (a typical system 
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size with current computational resources), a trajectory file can be of the order of terabytes, so that 
statistical analysis of such files can be thought of as a particular kind of “big data” problem.  
 
Molecular simulation began in the 1950s with simple systems such as hard spheres (MC1 and 
MD2,3) and in the 1960s with the Lennard-Jones fluid (MC4 and MD5). For such monatomic 
systems, the force field is very simple, specifying the interaction energy between spherically 
symmetric molecules.  Beginning in the 1970s, molecular simulation was introduced to the field 
of chemical engineering primarily by Keith Gubbins, the honoree of this Founders issue of AIChE 
Journal. Keith is known and admired internationally and across many disciplines not only for his 
contributions in molecular theory (which have been seminal, such as Gray-Gubbins perturbation 
theory and the statistical associating fluid theory, or SAFT, equation of state) but also for his 
research in molecular simulation. One of the earliest Gubbins simulation papers6 from 1979 has 
been cited almost 1000 times. [As an aside, his postdoctoral trainee co-author on this paper, 
Dominic Tildesley, was for many years a successful academic in the UK before joining Unilever, 
where he established one of the world’s premier industrial molecular modeling groups, eventually 
rising to Vice President of Discovery Platforms; Tildesley also co-authored one of the seminal text 
books on molecular simulation7.] Keith’s influence on the field of chemical engineering in relation 
to molecular simulation can be measured in programming at AIChE Annual Meetings (which in 
the early 1980s had no sessions on molecular simulation in contrast to today when a whole 
programming area – the Computational Molecular Science and Engineering Forum, Area 21 – is 
largely focused on molecular simulation) and in papers presented at Properties and Phase 
Equilibria for Process and Product Design conference series established in 1977 (in which the first 
molecular simulation paper was presented in 1980, and by 2007 more than half the presentations 
involved molecular simulation and/or molecular theory). Since its early days, molecular simulation 
has become a workhorse in science and industry. The promise of being able to predict collective 
properties from molecular interactions, and the attendant insight gained, have made molecular 
simulation (both MD and MC) an ideal and indispensable capability in materials science, biology, 
medicine (specifically, drug discovery) and engineering. There are commercial entities that market 
molecular simulation software (e.g., BIOVIA and Schrödinger). A 2002 international comparative 
study on molecular modeling (of which molecular simulation constitutes a major component) 
documented the widespread use of molecular modeling in industry, including many chemical, 
drug, and personal care product companies8. 
 
The authors of this Perspective article are all beneficiaries of the trail-blazing efforts of Keith 
Gubbins in establishing molecular simulation as an accepted and respected subfield of chemical 
engineering. Today, molecular simulation is taught in most chemical engineering departments in 
the U.S. at the graduate level, and is increasingly available as an elective at the undergraduate level 
or even offered as a first-year seminar to incoming undergraduate students.  It has become one of 
the major focuses of the educational foundation, CAChE (Computer Aids for Chemical 
Engineering Education, cache.org), which established a molecular modeling task force in 1998. 
CACHE runs a highly successful technical conference, Foundations of Molecular Modeling and 
Simulation (fomms.org, held every three years since 2000) that has produced many educational 
resources to enable chemical engineers to teach and utilize molecular simulation in the classroom. 
In 2012, Keith Gubbins was awarded the FOMMS Medal for his numerous and long-standing 
contributions to the molecular simulation community. In addition to prodigious research 
contributions, he has authored seminal textbooks9, including the two-volume definitive treatise on 
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the theory of molecular fluids10,11 that is an essential part of the library of any serious statistical 
mechanician interested in molecular fluids.   
 
2. Development of molecular simulation tools in the chemical engineering community 
Although molecular simulation (MD and MC) transcends disciplinary boundaries as noted above, 
chemical engineers have been particularly active in developing algorithms that compute properties 
of strong interest to the chemical engineering community (ChEC). One example is vapor-liquid 
phase equilibria, which is of enduring interest to the ChEC due to separation processes. Thus, a 
molecular simulation methodology for computing phase equilibrium directly and efficiently, the 
Gibbs ensemble MC (GEMC) algorithm, was  developed in 1987 within the ChEC by 
Panagiotopoulos12. Phase equilibria can involve differences in densities between phases of several 
orders of magnitude; likewise, in chemical manufacturing there can be wide ranges of state 
conditions.  Hence, along with the development of algorithms, the ChEC has also been at the 
forefront of developing force fields that are accurate over wide ranges of state conditions, such as 
the TraPPE family of force fields optimized for vapor-liquid equilibrium (see the extensive 
resources at http://trappe.oit.umn.edu)  and the Gaussian charge polarizable model (GCPM) for 
water13 that correctly predicts water’s phase equilibria, thermodynamic, transport and dielectric 
properties over wide ranges of temperature and pressure. By contrast, much of the molecular 
simulation community in other disciplines is focused on properties at or near ambient conditions 
(including ambient conditions for biological systems).  
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Simulation Codes 
Code Description Originator Website 
HOOMD-blue 
(Hierarchical Object 
Oriented MD) 

First MD code specifically written for high 
performance on GPUs. It has evolved into 
a general-purpose MD and MC particle 
simulation toolkit optimized for execution 
on both GPUs and CPUs. 

Joshua Anderson 
and Glotzer 
group14,15 

https://glotzerlab.engin.umich.edu/hoomd-
blue/index.html 

Cassandra MC code with focus on complex molecular 
systems (e.g., ionic liquids) 

Maginn group16 https://cassandra.nd.edu 

RASPA MC/MD code for simulating adsorption 
and diffusion of molecules in flexible 
nanoporous materials 

Snurr, 
Dubbeldam, 
Calero and Vlugt 
groups17 

https://www.iraspa.org/RASPA/ 

GOMC (GPU-
optimized MC)  

GPU-accelerated general purpose MC Potoff group18 http://gomc.eng.wayne.edu 

MCCCS-Towhee 
MCCCS-MN 

MC for complex chemical systems code 
with a focus on phase and adsorption 
equilibria 

Marcus Martin 
Siepmann group 

http://towhee.sourceforge.net  

Etomica Java-based MC/MD for use in education, 
with modules to demonstrate molecular 
basis for many phenomena 

Kofke group19 http://www.etomica.org/app/modules/ 

Other Utilities 
iRASPA GPU-accelerated visualization package Snurr, 

Dubbeldam, 
Calero and Vlugt 
groups17 

https://www.iraspa.org/index.html 

freud Library for analyzing MD/MC simulation 
trajectories for metrics such as the radial 
distribution function and various order 
parameters 

Glotzer group20 https://freud.readthedocs.io/en/stable/ 
 

signac/signac-flow Framework to manage and scale large 
simulation workflows, facilitating data 
reuse, sharing, and reproducibility. 
 

Glotzer group21 https://signac.io, https://docs.signac.io/en/latest/  

MoSDeF (Molecular 
Simulation Design 
Framework) 

Python-based software package for 
building complex molecular systems, 
applying forcefields, and generating input 
files for various simulation engines 

Cummings and 
McCabe groups22–
24 

https://mosdef.org 

COSMO-SAC 
(COnductor-like 
Screening Model-
Segment Activity 
Coefficient) 
 

Package to predict activity coefficients 
from quantum chemistry calculations for 
use in phase equilibria calculations 
relevant to chemical engineering 
separations 

Sandler, Lin and 
Bell groups25,26 

https://github.com/usnistgov/COSMOSAC 
 

pysimm (python 
simulation interface 
for molecular 
modeling) 

Python package for facilitating building of 
amorphous polymer systems and 
application of force fields 

Colina group27 https://pysimm.org, 
https://github.com/polysimtools/pysimm  

pyprism (python-
based Polymer 
Reference 
Interaction Site 
Model (PRISM)) 
 

Python-based, open-source framework 
for conducting PRISM theory calculations, 
with a user-friendly scripting interface for 
setting up and numerically solving the 
PRISM equations 
 

Jayaraman 
group28,29 

https://pyprism.readthedocs.io/en/latest/ 
 

Notable Open-Source Codes Emerging from other Chemical Engineering Communities 
GNU OCTAVE C++-based open-source high-level 

language, primarily intended for numerical 
computations; compatible with MATLAB 

John W. Eaton https://www.gnu.org/software/octave/  

DWSIM5 Mixed code open-source chemical 
process simulator, compatible with the 

Daniel Medeiros 
 

https://github.com/DanWBR/dwsim5 
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CAPE-OPEN standards for 
interoperability (https://www.colan.org) 
 

 
Table 1. Examples of open-source molecular simulation codes and related supporting utilities 

developed within the chemical engineering molecular modeling community. Website links 
are to home pages of the codes or to code repositories. In addition, several other open-source 
codes emerging from the chemical engineering community are highlighted. 

 
In this regard, the molecular simulation community in chemical engineering is particularly noted 
for sharing methods and capabilities by making software developed within the community freely 
available under open-source licenses, as described in a recent review article30. A recent, more 
general review of open-source molecular modeling software is provided by Pirhadi et al.31 Table 
1 provides examples of open-source molecular simulation tools developed within the ChEC, 
divided into simulation codes and other utilities.   Similar to GEMC, many of these algorithms 
developed are primarily implemented within MC and hence it is not surprising that the bulk of 
open-source simulation engines developed within the ChEC (see Table 1) are for performing MC 
simulations. The need for community-developed simulation engines, whether they are MD or MC, 
stems from the fact that such codes have become increasingly difficult to develop, extend, and 
maintain for a single individual or single research group. This is due not only to an ever growing 
set of features and algorithms, but also due to changes in computing hardware utilized in a research 
environment: we have been through the era of vector architectures (e.g., Cray, Hitachi), parallel 
vector computers (a small number of coupled vector processors, such as Cray YMP), massively 
parallel shared memory computers (MPP, such as the Intel Paragon, in which a large number of 
the same commodity central processor units – CPUs – used  in deskside computers are linked 
together and communicate over a communication network), multicore processors (such as Intel 
Xeon that has gone from 6 cores to more than 50) both stand alone and as part of an MPP, and 
more recently the inclusion of massively multicore graphical processing units (GPUs, which have 
migrated from the gaming industry into scientific computing and data manipulation). A modern 
supercomputer typically consists of nodes, connected via an interconnect (from vendors such as 
Mellanox and Intel)ab, where each node houses multiple commodity multicore CPUs and GPUs. 
This is the dominant architecture of the supercomputers on the top 500 list of the fastest computers 
in the world32, with the top 5 supercomputers having between 1.5 and in excess of 10.5 million 
total computing cores at the time of writing; designing and maintaining simulation codes that 
perform efficiently on these rapidly evolving computer architectures is a significant challenge.  
Beyond community developed simulation engines, we have also seen the rise of other community 
developed utilities to support simulation, e.g., in the form of general analysis packages as well as 
software that makes it easier to accurately and reproducibility initialize configurations, apply force 
fields to molecules, and create input files for a variety of simulation engines.  
 

 
a These interconnects can vary from standardized ethernet connections to more specialized, proprietary high performance interconnects from various 
vendors.  At the time of writing, the current top 500 list includes numerous systems with propriety interconnects such as Mellanox Infiniband (now 
owned by Nvidia), Intel Omni-Path, Cray Aries, and Fujitsu Tofu along with standard ethernet connections ranging from 10G to 100G. 
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For several decades, the open-software movement has been making its presence felt in the 
chemical engineering community. Open-source software offers many advantages over proprietary 
codes. First, they are universally available and do not contain any hidden parameters. This makes 
verification of results published using these codes much more feasible than for proprietary codes. 
Indeed, some scholarly journals have taken the position of considering only manuscripts for 
publication in which molecular modeling calculations were performed using open-source codes or 
source code that is made available to reviewers. Second, open-source codes are available at no 
cost, which means that the codes can be downloaded and used by researchers throughout the world, 
removing barriers for scientific progress. Third, open-source codes typically attract a community 
of users and/or developers, so that bugs are discovered and eliminated quickly, often overnight; in 
the case of proprietary software, bugs are typically only fixed during update cycles, which may be 
months apart, or may even go unnoticed, since the code cannot be inspected by users. The 
downside of open-source software is that, since there is no revenue stream in the usual sense (sale 
of software), the sustainability of an open-source code over decades can be questionable. However, 
codes can reach a level of usage such that the effort to maintain and improve the code is taken on 
by the user community; LAMMPS has arguably reached this position. Also, for some open-source 
codes there is an alternative revenue stream. For example, Red Hat is the biggest contributor and 
supporter of the open-source Linux operating system. It makes money by writing, selling, and 
supporting business-oriented middleware that runs within Linux, as well as selling consulting 
services to companies switching to Linux for their enterprise software. The commercial 
Scienomics MAPS platform for materials and process simulations embeds some of the open-
source MD and MC codes, such as LAMMPS, Cassandra, and MCCCS-Towhee. Enthought, 
Inc. is a software company based in Austin, Texas, that develops and markets scientific and 

 
Figure 1. Typical steps involved in performing a molecular simulation. If all steps are scriptable, the entire process can be encased 
in a loop over hundreds or thousands of chemistry, composition, and/or state conditions combinations to enable screen for 
desirable properties.  Background colors refer to: initialization steps (blue), simulation run time steps (red), and system analysis 
steps (yellow). 
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analytic computing solutions using primarily the Python programming language; its commercial 
activities underwrite the widely used open-source SciPy (Scientific Python) package. 
 
In the remainder of this Perspective, as an example of ChEC open-source software, we focus our 
discussion on the Molecular Simulation Design Framework (MoSDeF), to which all the authors 
are contributors. MoSDeF is a set of Python tools to facilitate the initialization and 
parameterization of systems, with the goal of enabling transparent and reproducible molecular 
simulation workflows that, at the same time, are user-friendly and extensible. 
 

3. Molecular Simulation Design Framework (MoSDeF) 
As shown in Figure 1, performing a molecular simulation, whether MD or MC, requires multiple 
steps: building an initial configuration of the system, selecting and applying a force field, 
generating a syntactically correct input file (or files) for a target simulation engine, equilibration 
(to relax the system from its initial configuration – e.g., a crystal – to a configuration characteristic 
of equilibrium – e.g., liquid), production run to generate a trajectory, and analysis of the trajectory 
(e.g., averaging over the trajectory to compute thermodynamic and/or structural properties, 
perform visualization, etc.). Often reliability and statistics are improved by running multiple 
independent trajectories using the same workflow. Accomplishing these steps in a way that is both 
accurate and reproducible can be a significant challenge.  For example, the application of a force 
field is a frequent source of error in simulations; for a system composed of moderately complex 
molecules (such as an ionic liquid) the force field can have a hundred or more parameters that must 
be provided, offering multiple opportunities for errors (e.g., use of incompatible units, use of 
parameter values from a publication containing a typographical error, incorrect application of 
parameters due to logic errors or because of ambiguous definition of parameter usage, etc.). While 
the use of a community developed, open-source simulation engine may help to reduce the 
likelihood of fundamental errors in algorithms underlying the simulations, such codes cannot 
necessarily prevent users from providing parameters that are inconsistent with the intended usage.  
 
Typically, many of these steps are performed within a given research group by a single graduate 
student, often making use of ad hoc, in-house software, even if open-source simulation engines 
are used. This approach has several shortcomings that can make simulations more prone to error, 
limit the extensibility, and hamper reproducibility. For example, the various tools used to 
accomplish these steps may only be loosely coupled and require manipulation, editing, and/or 
modification of the tools and/or data by the user.  This manipulation may introduce errors and 
make it difficult to reproducibly capture the exact procedures employed.  The need for human 
manipulation may also limit the ability to use such workflows in applications that require 
automation, such as parameter screening studies or within the context of larger workflows (e.g., to 
predict phase equilibrium within a process simulator). The use of in-house software itself, which 
is typically not open-source or freely available, creates numerous roadblocks as well. Someone 
wishing to reproduce a simulation would be required to write their own software to accomplish 
the same tasks. The development of such software may be time consuming and publications often 
do not provide sufficient detail regarding the procedures used to initialize and parameterize 
simulations.  Furthermore, without access to the original source code, it is not possible to ascertain 
the quality of the software; that is, to know whether it has undergone sufficient validation or if 
there are errors and bugs that ultimately impact the accuracy of the reported results.   
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The Molecular Simulation Design Framework (MoSDeF)33 is designed to address these issues of 
automation/efficiency, accuracy, and reproducibility in molecular simulation. MoSDeF is an open-
source Python library built upon the scientific Python software stack with three major components: 
mBuild (for constructing initial configurations of systems) and foyer (for applying force 
fields). The third component, GMSO (General Molecular Simulation Object), is currently under 
development and is designed to be a general, flexible way of encapsulating the information 
required to define a simulation topology in a simulation engine in an agnostic manner.   All of the 
capabilities of MoSDeF are scriptable, thus making the tools inherently reproducible, as well as 
suitable for automated calculations (e.g., screening). MoSDeF is implemented as a set of 
composable/modular tools, where each “subpackage” (i.e., module) is designed such that it can be 
used within MoSDeF, or as a standalone package, allowing MoSDeF to more easily integrate with 
other community efforts. This also allows the framework to be more easily modified, tested, 
extended, and have fewer bugs than a monolithic approach. MoSDeF leverages libraries including 
packmol34, parmed35, openmm36,37, and openbabel38 to maximize compatibility with 
simulation engines. The interoperability and integration of mBuild, foyer, and GMSO 
distinguish MoSDeF from other initialization and simulation management packages that are 
tailored for specific engines (e.g., ambertools39, playmol40) and which may also require 
coordination of workflows across multiple languages (e.g., topotools40), complicating data 
provenance. That is, MoSDeF tools enable the initialization, simulation, and analysis workflows 
of entire scientific studies to be defined in python scripts. Performing a simulation using MoSDeF, 
combined with dissemination of simulation scripts on a service such as Github, enables a molecular 
simulation to be published as a TRUE (transparent, reproducible, usable by others, and extensible) 
simulation41.  
 
MoSDeF has its origins in a decade of National Science Foundation (NSF)-supported collaborative 
research at Vanderbilt University involving researchers from chemical engineering and computer 
science42–44, the latter affiliated with the Institute for Software Integrated Systems (ISIS)45. ISIS is 
a leading academic software engineering research center, and is the originator of the concept of 
model-integrated computing (MIC)46. MIC is a systems engineering approach that focuses on the 
creation of domain specific modeling languages to capture the essential features of the individual 
components of a given process, at the level of abstraction that is appropriate for the end users. Due 
to abstraction, processes are described at a meta level that allows tasks to be coupled together to 
execute scientific or engineering workflows. MIC has been deployed in applications as diverse as 
managing auto assembly lines and processing health records. MIC design principles, domain-
specific modeling languages, and the general philosophy of abstraction have shaped the 
development of MoSDeF. In particular, MoSDeF attempts to be simulation-engine-agnostic, 
treating the concept of a molecular simulation at a meta level, above the specifics of the simulation 
engines. The tools within MoSDeF are designed to fully describe a system: implementation relies 
on writers to instantiate syntactically correct input files for specific engines from this information. 
MoSDeF was initially developed to support several commonly used open-source MD codes 
(LAMMPS47, GROMACS48 and HOOMD-blue49) and has since grown to support open-source MC 
simulation engines, namely Cassandra16 and GOMC18. In the Supplementary Information, we 
provide details on how to install MoSDeF through various hosting systems (anaconda, docker, 
from source using github, etc.) on Apple OSX, Linux, and Windows platforms. Below we 
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describe each of the three key components. Source code, tutorials, documentation, and related 
publications can be accessed from mosdef.org and/or github.com/mosdef-hub/. 
  
 
 
3.1. mBuild 
As shown in Figure 1, the first step in a simulation workflow typically involves defining the 
configuration of the atoms (or more generally, particles) in the system.  The mBuild Python 
library50,51 has been developed to be a general, customizable tool for constructing arbitrarily 
complex system configurations in a programmatic fashion (i.e., scriptable).  Key to the mBuild 
library is its underlying Compound data structure. A Compound is a general “container” that can 
describe effectively anything: an atom, a collection of 
atoms, a molecule, a generic point particle, a 
collection of Compounds, operations on the 
underlying Compounds and/or data, etc. 
Compounds can be duplicated, rotated, translated, 
scaled, etc. to construct a system.  Compounds can 
also contain information regarding connections 
between the atoms, by defining either fixed Bonds 
within a Compound or by adding  Ports that allow 
connections to be made between separate 
Compounds. Ports define both location and 
orientation of a connection; in atomistic systems, the 
number of Ports and their locations are typically 
representative of the underlying chemistry. For 
example, Figure 2 shows Python code that defines a 
CH2 moiety with two C-H Bonds and two Ports.  
In order to create a connection between two 
Compounds, a user simply states which Ports 
should connect and mBuild automatically performs 
translations and reorientations, creating a new 
(composite) Compound (see Klein et al.50 for more 
details). As such, this allows complex systems to be 
built-up from smaller, interchangeable pieces that can 
be connected, through the use of the concept of 
generative modeling.50  This design approach allows 
for declaratively expressing repetitive structures, 
such as polymer chains and planar tilings (as used in 
Figure 2) and also allows significant modifications to system structure/chemistry to be made with 
only minimal changes to the initialization routines.    

 
Figure 2: Python script that uses mBuild to define a class for 
a -CH2- group, create a polymer composed of multiple -CH2- 
groups, and connects copies of this polymer to a surface. 
Note for simplicity, the terminal -CH3 group is not shown. 
Additional mBuild tutorials and example scripts are available 
online at https://github.com/mosdef-hub/mbuild_tutorials.  

mb.recipes.Polymer

mb.recipes.Monolayer

polymer

CH2

AmorphousSilicaSurface

functionalized_surface

import mbuild as mb

from mbuild.lib.atoms import H

from mbuild.recipes import recipes

from mbuild.lib.surfaces import AmorphousSilicaSurface

class CH2(mb.Compound):

def __init__(self):

super(CH2, self).__init__()

carbon = mb.Particle(pos=[0.0, 0.0, 0.0], name='C')

hydrogen0 = mb.Particle(pos=[0.1, 0.0, 0.0], name='H')

hydrogen1 = mb.Particle(pos=[-0.1, 0.0, 0.0], name='H')

self.add([carbon, hydrogen0, hydrogen1])

self.add_bond((carbon, hydrogen0))

self.add_bond((carbon, hydrogen1))

self.add(mb.Port(anchor=self[0], orientation=[0, 1, 0],

separation=0.07), label='up')

self.add(mb.Port(anchor=self[0], orientation=[0, -1, 0],

separation=0.07), label='down')

polymer = recipes.Polymer(monomers=CH2(), n=10)

locations = mb.pattern.Grid2DPattern(n=10, m=10)

functionalized_surface = recipes.Monolayer(AmorphousSilicaSurface(),

polymer, backfill=H(),

pattern=locations,

tile_x=2, tile_y=1,)
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3.2. Foyer 
After a system configuration is initialized, the interactions between all constituents must be defined 
before a system can be simulated (as shown in Figure 1), i.e., the force field must be applied to the 
system.  The Foyer library52 has been developed as a general tool for applying force fields to 
molecular systems (i.e., atom-typing), that provides a standardized approach to defining chemical 
context and atom-typing rules22,53.  In Foyer, the forcefield parameters and the rules that dictate 
parameter usage are stored together in a standardized XML file, separate from the code used to 
evaluate them.  Usage rules are encoded by using a combination of a SMARTS-based annotation 
scheme, which defines the chemical context associated with a given parameter, and overrides 
that define rule precedence. SMARTS is a language designed for describing molecular patterns,54 
thus allowing information about the bonded environment of an atom to be efficiently and clearly 
encoded in a format that is both human and machine readable. For example, the chemical context 
of a terminal methyl group (-CH3) in an alkane can be expressed as [C;X4](C)(H)(H)H. In 

this annotation, [C;X4] indicates that 
the atom of interest is a carbon (C), 
with 4 total bonds (X4) and 
(C)(H)(H)H provides the identity of 
those 4 bonds (1 carbon, 3 hydrogens). 
Figure 3 shows a snippet from the 
Foyer XML forcefield file 
demonstrating how these usage rules 
can be encoded, using select 
parameters from OPLS-AA force field 
(See Klein et al.22 for more details). By 
separating the usage rules and 
parameters from the software used to 

evaluate them, the Foyer library does not need to change if changes are made to a force field file.  
As such, this allows the implementation of novel and “custom” force fields without the need to 
write new software, which simplifies the process of disseminating and evolving forcefields, and 
increases reproducibility of work by making it clear not just what force field was used, but how it 
was applied to the system. A complimentary approach not requiring SMARTS and overrides 
is to make molecule-specific XML files available (e.g., via webpages such as 
http://trappe.oit.umn.edu). 

 
 
3.3. General Molecular Simulation Object (GMSO) 
With a system initialized and parameterized, the information in the system topology must be 
written to a file for a simulation engine. While the information required by different simulation 
engines is, generally speaking, the same, the structure and format of the data file(s) passed to 
simulation engines is typically unique to the engine itself. Generating these files accurately, 
especially for a wide range of unique simulation engines, can be non-trivial.  The current version 
of MoSDeF relies upon the use open-source utilities parmed35 and OpenMM37,55 to store this 
information; these tools along with native MoSDeF code, include parsers to generate syntactically 
correct data files. In this approach, a single simulation topology can be used to generated input 

<ForceField> 
 <AtomTypes> 
 ... 
 <Type name="opls_135" class="CT" element="C" mass="12.01100" \\ 
       def="[C;X4](C)(H)(H)H" desc="alkane CH3" \\    
       doi="10.1021/ja9621760"/> 
 <Type name="opls_148" class="CT" element="C" mass="12.01100" \\ 
       def="[C;X4]([C;%opls_145])(H)(H)H" \\ 
       desc="toluene CH3" overrides="opls_135" \\  
       doi="10.1021/ja9621760"/> 
 <Type name="opls_145" class="CA" element="C" mass="12.01100" \\ 
       def="[C;X3;r6]1[C;X3;r6][C;X3;r6][C;X3;r6][C;X3;r6][C;X3;r6]1" \\ 
       desc="aromatic C in 6-membered ring” \\ 
       overrides="opls_141,opls_142" doi="10.1021/ja9621760"/> 
 ... 
 </AtomTypes> 
</ForceField> 
Figure 3: Foyer snippet illustrating how three Carbon atom types can be 
defined, with rules for precedence and chemical context, in a human- and 
computer-readable format. 
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files for a variety of simulation engines, allowing different engines and methodologies (e.g., MC 
and MD) to be applied to the same system.   While effective, these backend codes do not have 
general support for the breadth of simulation engines and force fields we aim to include. To this 
end, the General Molecular Simulation Object (GMSO) has been under development with the goal 
of becoming the de facto backend data structure of the MoSDeF.  The goal of GMSO is to serve as 
a general container for all of the relevant system information (e.g., the fully parameterized system), 
stored in a simulation engine agnostic way.   GMSO is designed with interoperability and support 
for various functional forms as a first-class feature. For example, GMSO builds upon the idea of 
Foyer XML data file, shown in Fig. 3, but provides further meta data; this includes encoding the 
functional forms of the potentials in the force field (those that can be expressed in computer 
algebraic inputs) using the sympy Python library. GMSO is also structured to make it easier to add 
data file writers, allowing GMSO support to be extended and customized. Because GMSO supports 
user-defined analytic equations for force field components, it future-proofs GMSO for new 
developments in force fields, such as those being pursued by several of the authors.  
 
3.4. Computational Screening and Automation using MoSDeF 
Since all the functions of MoSDeF are scriptable, when combined with a workflow management 
tool such as signac/signac flow21, it is relatively trivial to perform computational screening 
of the properties of systems by looping over chemistries and/or conditions and calculating relevant 
properties from the simulations. The MoSDeF/signac combination has been used to screen the 
impact on nanolubrication properties of end-group chemistry of self-assembled alkylsilane tethers 
on amorphous silica surfaces23, leading to a machine-learning-derived model connecting end-
group cheminformatic descriptors with tribological properties of interest. In another example56, 
the diffusivities of ions in organic solvents were screened for 22 different solvents, revealing a 
pattern in this large data set (ion diffusivity proportional to solvent diffusivity) that was in contrast 
with previous, primarily experimental findings (ion diffusivity proportional to solvent dipole 
moment). The computational screening finding were confirmed in subsequent experimental 
studies utilizing quasi-elastic neutron scattering57 and NMR58. 
 
3.5  Expanding MoSDeF 
As noted earlier, the genesis of MoSDeF was a series of NSF grants to Vanderbilt PIs Cummings, 
McCabe, Iacovella, and Ledezci42–44. A recent collaborative NSF grant59 has funded groups from 
the universities of Michigan (Glotzer and Anderson), Notre Dame (Maginn), Minnesota 
(Siepmann), Delaware (Jayaraman), Houston (Palmer), Wayne State (Potoff), and Boise State 
(Jankowski) universities to work together to expand MoSDeF’s capabilities, including the 
collaborative design and development of the aforementioned GMSO backend. This collaboration is 
resulting in increasing integration with HOOMD-blue, integration with MC codes Cassandra 
and GOMC, and the first principles MD/MC code CP2K; additionally, MoSDeF has been integrated 
more closely with Michigan’s signac workflow management tools. In the case of Cassandra, 
for example, using MoSDeF existing utilities and adding additional capabilities resulting from the 
Vanderbilt/Notre Dame collaboration, the complexity of setting up a simulation has been reduced 
from 9 steps (including 3 requiring user editing of files) to a single python script using MoSDeF; 
this, in turn, has enabled computational screening with Cassandra. Other groups, including 
Houston, Boise State, and Delaware, are focusing on developing modules to implement complex 
workflows and analyses involved in phase equilibrium calculations and construction of intricate 
molecular models. Building the modules around the MoSDEF framework will enable these 
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workflows to be performed in a reproducible fashion with a variety of widely used simulation 
engines.   
 
 
An example of the capabilities enabled by this collaboration is given in the Supplementary 
Information (SI). Inspired by the honoree of this special issue, Keith Gubbins, in the SI we report 
the use of five different simulation codes (the open-source MC codes Cassandra and GOMC, 
the open-source MD codes LAMMPS and GROMACS, and the open -source first principles MD code 
CP2K) to repeat calculations reported by Striolo et al.60 on the adsorption of water into carbon slit 
pores. The latter were groundbreaking simulations for their time and the paper has been cited ~200 
times (Google Scholar). The paper reported adsorption/desorption isotherms, demonstrating the 
hysteresis seen in experiment, as well as density profiles and orientational structure of the adsorbed 
water into carbon slit pores. The Striolo et al. simulations were performed using in-house codes; 
thus, they are almost impossible to reproduce in detail. In the SI, we show that we can reproduce 
the adsorption/desorption isotherms reported by Striolo et al. to within an acceptable degree using 
Cassandra and GOMC; more importantly, we show that by using the MoSDeF tools to create 
the simulations, we can easily test multiple engines, and show we get excellent agreement between 
the two different MC codes. Having used the technique of GEMC in both Cassandra and GOMC, 
we establish the number of water molecules in the pore at a given external pressure. We then 
perform NVT (constant number of molecules, volume and temperature) simulations using multiple 
codes. We find remarkable agreement for the water structure inside the pore between the MC 
engines Cassandra and GOMC and MD engines LAMMPS and GROMACS. The use of MoSDeF 
(mbuild to build the simulation systems and foyer to apply the force fields) is absolutely 
essential to obtaining consistency between these calculations. The first principles MD code CP2K 
with interactions described on-the-fly via Kohn-Sham density functional theory produces similar, 
but not identical, results for water structure, thereby allowing us to identify differences in water-
substrate interactions.  The fact that one can move the simulated system between all of these codes 
fairly effortlessly, thanks to the use of the MoSDeF tools and its meta-level abstraction of the 
concept of molecular simulation, is a very significant step forward for the simulation community. 
Moreover, the SI contains all the instructions needed for the reader to download and run all the 
utilities and codes needed to reproduce the reported calculations exactly, hence qualifying these as 
TRUE simulations.41 

 
3.6  Future Directions and Challenges 
It is clear that the role of modeling and simulation in engineering and scientific research will 
continue to grow as computing power advances and new methods and simulation engines are 
developed. Ironically, the more powerful and capable modeling tools become, the more difficult it 
is to ensure that the results of these simulations can be reproduced by others and that the numerous 
details that go into running the simulations are validated and justified. This can lead to a “crisis in 
confidence” in the accuracy of simulation research. We believe that efforts at developing tools and 
workflows that focus on transparency and accuracy of simulations are therefore essential, and that 
the MoSDeF tools described here are an important step in helping improve the reliability of 
simulations.  
 

MadisonBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at AlChE Journal, published by Wiley on behalf of the American Institute of Chemical Engineers. Copyright restrictions may apply. https://doi.org/10.1002/aic.17206. The content of this document may vary from the final published version.



Given the backgrounds of the authors, the major focus up to this point has been on classical force 
field-driven Monte Carlo and molecular dynamics simulations, although as demonstrated in this 
Perspective, MoSDeF can also be applied to the ab initio code CP2K. In the future, we would like 
to see the scope of MoSDeF expanded to include other ab initio codes, reactive methods and 
analysis tools. MoSDeF has been developed to be very flexible, so it can be adapted to work with 
additional packages as well as future computer architectures and programming structures. A key 
challenge in realizing this vision is resources, both financial and human. We have been fortunate 
to have support from the National Science Foundation to create MoSDeF. Its expansion and long-
term sustainability will require that the research community see the value in MoSDeF and commit 
to supporting it. There are many examples of the research community supporting open source 
simulation packages, but the key is that users find value in the tool and in extending its capabilities. 
We hope we have demonstrated the value of MoSDeF and that other researchers will become 
involved in its maintenance and growth. 
  
 
4. Summary and Conclusions 
In this Perspective article, we have described our efforts at developing the Molecular Simulation 
Design Framework (MoSDeF), a collection of open source tools that not only make the design and 
execution of molecular simulations easier, but they also help enable the simulations to be "TRUE”: 
transparent, reproducible, usable by others, and extensible. The collection of tools enables system 
setup, atom typing, force field assignment, and job management. MoSDeF is designed to be 
compatible with a wide range of simulation engines and force fields. As an example of MoSDeF’s 
capabilities, we undertook the modeling of the sorption and diffusion of water in a carbon slit pore, 
something Keith Gubbins and co-workers did many years ago. We show that we can seamlessly 
integrate five different simulation packages in the study and that consistent results are obtained 
between the different packages. We hope this article stimulates other researchers to not only adopt 
MoSDeF in their work, but to also contribute to its continued expansion and development. 
  
We dedicate this Perspective to our colleague, mentor, and friend, Keith Gubbins. The authors of 
this article wish to express their deep gratitude to Keith for all he has done for our community. We 
wish him many more years of productive science. 
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