
Boise State University Boise State University

ScholarWorks ScholarWorks

Materials Science and Engineering Faculty
Publications and Presentations

Micron School for Materials Science and
Engineering

3-2021

Open-Source Molecular Modeling Software in Chemical Open-Source Molecular Modeling Software in Chemical

Engineering Focusing on the Molecular Simulation Design Engineering Focusing on the Molecular Simulation Design

Framework Framework

Eric Jankowski
Boise State University

Publication Information Publication Information
Cummings, Peter T.; McCabe, Clare; Iacovella, Christopher R.; Ledeczi, Akos; Jankowski, Eric; Jayaraman,
Arthi; . . . and Crawford, Brad. (2021). "Open-Source Molecular Modeling Software in Chemical Engineering
Focusing on the Molecular Simulation Design Framework". AlChE Journal, 67(3), e17206. https://doi.org/
10.1002/aic.17206

This is the peer reviewed version of the following article:
Cummings, P.T., McCabe, C., Iacovella, C.R., Ledeczi, A., Jankowski, E., Jayaraman, A., . . . & Crawford, B. (2021).
Open-source molecular modeling software in chemical engineering focusing on the molecular simulation design
framework. AlChE Journal, 67(3), e17206.,
which has been published in final form at https://doi.org/10.1002/aic.17206. This article may be used for non-
commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This
article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission
from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or
modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding,
framing or otherwise making available the article or pages thereof by third parties from platforms, services and
websites other than Wiley Online Library must be prohibited.

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/mse_facpubs
https://scholarworks.boisestate.edu/mse_facpubs
https://scholarworks.boisestate.edu/mse
https://scholarworks.boisestate.edu/mse
https://doi.org/10.1002/aic.17206
https://doi.org/10.1002/aic.17206
https://doi.org/10.1002/aic.17206

Open-Source Molecular Modeling Software in Chemical Engineering
Focusing on the Molecular Simulation Design Framework

Authors:
Peter T. Cummings1, Clare McCabe1,2, Christopher R. Iacovella1, Akos Ledeczi3, Eric Jankowski4,
Arthi Jayaraman5, Jeremy C. Palmer6, Edward J. Maginn7, Sharon C. Glotzer8, Joshua A.
Anderson8, J. Ilja Siepmann9,10, Jeffrey Potoff11, Raymond A. Matsumoto1, Justin B. Gilmer12,
Ryan S. DeFever7, Ramanish Singh9,10, Brad Crawford11

Affiliations
1. Department of Chemical and Biomolecular Engineering and Multiscale Modeling and

Simulation Center, Vanderbilt University, Nashville, TN
2. Department of Chemistry, Vanderbilt University, Nashville, TN
3. Department of Electrical Engineering and Computer Science and Institute for Software

Integrated Systems, Vanderbilt University, Nashville, TN
4. Micron School of Materials Science and Engineering, Boise State University, Boise, ID
5. Departments of Chemical and Biomolecular Engineering and of Materials Science and

Engineering, University of Delaware, Newark, DE
6. Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX
7. Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre

Dame, IN
8. Departments of Chemical Engineering, of Materials Science, and of Physics, University of

Michigan, Ann Arbor, MI
9. Department of Chemistry and Chemical Theory Center, University of Minnesota
10. Department of Chemical Engineering and Materials Science, University of Minnesota, MN
11. Department of Chemical Engineering and Materials Science, Wayne State University, Detroit,

MI
12. Interdisciplinary Graduate Program in Materials Science and Multiscale Modeling and

Simulation Center, Vanderbilt University, Nashville, TN

Abstract
Molecular simulation has emerged as an important sub-field of chemical engineering, due in no
small part to the leadership of Keith Gubbins. A characteristic of the chemical engineering
molecular simulation community is the commitment to freely share simulation codes and other
key software components required to perform a molecular simulation under open-source licenses
and distribution on public repositories such as GitHub. Here we provide an overview of open-
source molecular modeling software in Chemical Engineering, with focus on the Molecular
Simulation Design Framework (MoSDeF). MoSDeF is an open-source Python software stack that
enables facile use of multiple open-source molecular simulation engines, while at the same time
ensuring maximum reproducibility.

TOC graphic

MadisonBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at AlChE Journal, published by Wiley on behalf of the American Institute of Chemical Engineers. Copyright restrictions may apply. https://doi.org/10.1002/aic.17206. The content of this document may vary from the final published version.

Body of Manuscript

1. Background
Molecular simulation is a methodology for predicting the collective (in particular, thermodynamic
and transport) properties of systems from information about how the molecules in the system
interact with each other. That “information” can be obtained on-the-fly from quantum mechanics
but, in most molecular simulations, it is encoded in a mathematical function, called a force field,
that attempts to include all the intermolecular interactions between molecules (electrostatic
interactions, van der Waals repulsive and attractive interactions) as well as intramolecular
interactions (e.g., bond stretching, bond angle bending, and torsional interactions). More
specifically, a force field is a representation of the total potential energy associated with
interactions of all the atoms in the system (obtained by summing over all the molecules), which
can be differentiated with respect to the position of an atom to obtain the force exerted on that
atom. Force fields can be derived from first principles calculations (e.g., quantum chemistry
calculations) and/or experimental data; thus, generally force fields are semi-empirical. For
inhomogenous systems (e.g., a fluid adsorbed on a surface or into a pore), the force field includes
models for how the molecules interact with atoms in the surfaces or with an external field.
Assuming that the molecular simulation runs long enough to attain equilibrium, and that the system
is large enough or configured to eliminate unwanted surface effects (through so-called periodic
boundary conditions), for a given force field, molecular simulation can provide essentially exact
information about the properties of the system, obtained by averaging over the configurations
generated in the simulation. Two major types of molecular simulations are routinely performed:
molecular dynamics (MD), in which Newton’s equations, or a convenient variation thereof, are
solved for the dynamics of each atom in the system, and Monte Carlo (MC) simulation, in which
configurations of the system are generated via a Markov chain process that asymptotically are
distributed according to the appropriate equilibrium ensemble probability (e.g., for systems at
constant molecule number 𝑁, volume 𝑉, and temperature 𝑇, the Boltzmann distribution, in which
configurations have probability ∝ 𝑒!"/$!%, where 𝐸 is the energy of the system and 𝑘& is
Boltzmann’s constant). In either case, the raw output of the simulation is configurations of the
system (known as a trajectory) that can then be analyzed to compute properties. From an MD
simulation, the trajectory will consist of positions and velocities for all atoms in the system over
the course of the simulation; a typical MD simulation will employ a time step of 10!'(s, so that a
10-100 ns trajectory covers 10) − 10* steps. For a 100,000-atom simulation (a typical system

MadisonBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at AlChE Journal, published by Wiley on behalf of the American Institute of Chemical Engineers. Copyright restrictions may apply. https://doi.org/10.1002/aic.17206. The content of this document may vary from the final published version.

size with current computational resources), a trajectory file can be of the order of terabytes, so that
statistical analysis of such files can be thought of as a particular kind of “big data” problem.

Molecular simulation began in the 1950s with simple systems such as hard spheres (MC1 and
MD2,3) and in the 1960s with the Lennard-Jones fluid (MC4 and MD5). For such monatomic
systems, the force field is very simple, specifying the interaction energy between spherically
symmetric molecules. Beginning in the 1970s, molecular simulation was introduced to the field
of chemical engineering primarily by Keith Gubbins, the honoree of this Founders issue of AIChE
Journal. Keith is known and admired internationally and across many disciplines not only for his
contributions in molecular theory (which have been seminal, such as Gray-Gubbins perturbation
theory and the statistical associating fluid theory, or SAFT, equation of state) but also for his
research in molecular simulation. One of the earliest Gubbins simulation papers6 from 1979 has
been cited almost 1000 times. [As an aside, his postdoctoral trainee co-author on this paper,
Dominic Tildesley, was for many years a successful academic in the UK before joining Unilever,
where he established one of the world’s premier industrial molecular modeling groups, eventually
rising to Vice President of Discovery Platforms; Tildesley also co-authored one of the seminal text
books on molecular simulation7.] Keith’s influence on the field of chemical engineering in relation
to molecular simulation can be measured in programming at AIChE Annual Meetings (which in
the early 1980s had no sessions on molecular simulation in contrast to today when a whole
programming area – the Computational Molecular Science and Engineering Forum, Area 21 – is
largely focused on molecular simulation) and in papers presented at Properties and Phase
Equilibria for Process and Product Design conference series established in 1977 (in which the first
molecular simulation paper was presented in 1980, and by 2007 more than half the presentations
involved molecular simulation and/or molecular theory). Since its early days, molecular simulation
has become a workhorse in science and industry. The promise of being able to predict collective
properties from molecular interactions, and the attendant insight gained, have made molecular
simulation (both MD and MC) an ideal and indispensable capability in materials science, biology,
medicine (specifically, drug discovery) and engineering. There are commercial entities that market
molecular simulation software (e.g., BIOVIA and Schrödinger). A 2002 international comparative
study on molecular modeling (of which molecular simulation constitutes a major component)
documented the widespread use of molecular modeling in industry, including many chemical,
drug, and personal care product companies8.

The authors of this Perspective article are all beneficiaries of the trail-blazing efforts of Keith
Gubbins in establishing molecular simulation as an accepted and respected subfield of chemical
engineering. Today, molecular simulation is taught in most chemical engineering departments in
the U.S. at the graduate level, and is increasingly available as an elective at the undergraduate level
or even offered as a first-year seminar to incoming undergraduate students. It has become one of
the major focuses of the educational foundation, CAChE (Computer Aids for Chemical
Engineering Education, cache.org), which established a molecular modeling task force in 1998.
CACHE runs a highly successful technical conference, Foundations of Molecular Modeling and
Simulation (fomms.org, held every three years since 2000) that has produced many educational
resources to enable chemical engineers to teach and utilize molecular simulation in the classroom.
In 2012, Keith Gubbins was awarded the FOMMS Medal for his numerous and long-standing
contributions to the molecular simulation community. In addition to prodigious research
contributions, he has authored seminal textbooks9, including the two-volume definitive treatise on

MadisonBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at AlChE Journal, published by Wiley on behalf of the American Institute of Chemical Engineers. Copyright restrictions may apply. https://doi.org/10.1002/aic.17206. The content of this document may vary from the final published version.

the theory of molecular fluids10,11 that is an essential part of the library of any serious statistical
mechanician interested in molecular fluids.

2. Development of molecular simulation tools in the chemical engineering community
Although molecular simulation (MD and MC) transcends disciplinary boundaries as noted above,
chemical engineers have been particularly active in developing algorithms that compute properties
of strong interest to the chemical engineering community (ChEC). One example is vapor-liquid
phase equilibria, which is of enduring interest to the ChEC due to separation processes. Thus, a
molecular simulation methodology for computing phase equilibrium directly and efficiently, the
Gibbs ensemble MC (GEMC) algorithm, was developed in 1987 within the ChEC by
Panagiotopoulos12. Phase equilibria can involve differences in densities between phases of several
orders of magnitude; likewise, in chemical manufacturing there can be wide ranges of state
conditions. Hence, along with the development of algorithms, the ChEC has also been at the
forefront of developing force fields that are accurate over wide ranges of state conditions, such as
the TraPPE family of force fields optimized for vapor-liquid equilibrium (see the extensive
resources at http://trappe.oit.umn.edu) and the Gaussian charge polarizable model (GCPM) for
water13 that correctly predicts water’s phase equilibria, thermodynamic, transport and dielectric
properties over wide ranges of temperature and pressure. By contrast, much of the molecular
simulation community in other disciplines is focused on properties at or near ambient conditions
(including ambient conditions for biological systems).

MadisonBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at AlChE Journal, published by Wiley on behalf of the American Institute of Chemical Engineers. Copyright restrictions may apply. https://doi.org/10.1002/aic.17206. The content of this document may vary from the final published version.

Simulation Codes
Code Description Originator Website
HOOMD-blue
(Hierarchical Object
Oriented MD)

First MD code specifically written for high
performance on GPUs. It has evolved into
a general-purpose MD and MC particle
simulation toolkit optimized for execution
on both GPUs and CPUs.

Joshua Anderson
and Glotzer
group14,15

https://glotzerlab.engin.umich.edu/hoomd-
blue/index.html

Cassandra MC code with focus on complex molecular
systems (e.g., ionic liquids)

Maginn group16 https://cassandra.nd.edu

RASPA MC/MD code for simulating adsorption
and diffusion of molecules in flexible
nanoporous materials

Snurr,
Dubbeldam,
Calero and Vlugt
groups17

https://www.iraspa.org/RASPA/

GOMC (GPU-
optimized MC)

GPU-accelerated general purpose MC Potoff group18 http://gomc.eng.wayne.edu

MCCCS-Towhee
MCCCS-MN

MC for complex chemical systems code
with a focus on phase and adsorption
equilibria

Marcus Martin
Siepmann group

http://towhee.sourceforge.net

Etomica Java-based MC/MD for use in education,
with modules to demonstrate molecular
basis for many phenomena

Kofke group19 http://www.etomica.org/app/modules/

Other Utilities
iRASPA GPU-accelerated visualization package Snurr,

Dubbeldam,
Calero and Vlugt
groups17

https://www.iraspa.org/index.html

freud Library for analyzing MD/MC simulation
trajectories for metrics such as the radial
distribution function and various order
parameters

Glotzer group20 https://freud.readthedocs.io/en/stable/

signac/signac-flow Framework to manage and scale large
simulation workflows, facilitating data
reuse, sharing, and reproducibility.

Glotzer group21 https://signac.io, https://docs.signac.io/en/latest/

MoSDeF (Molecular
Simulation Design
Framework)

Python-based software package for
building complex molecular systems,
applying forcefields, and generating input
files for various simulation engines

Cummings and
McCabe groups22–
24

https://mosdef.org

COSMO-SAC
(COnductor-like
Screening Model-
Segment Activity
Coefficient)

Package to predict activity coefficients
from quantum chemistry calculations for
use in phase equilibria calculations
relevant to chemical engineering
separations

Sandler, Lin and
Bell groups25,26

https://github.com/usnistgov/COSMOSAC

pysimm (python
simulation interface
for molecular
modeling)

Python package for facilitating building of
amorphous polymer systems and
application of force fields

Colina group27 https://pysimm.org,
https://github.com/polysimtools/pysimm

pyprism (python-
based Polymer
Reference
Interaction Site
Model (PRISM))

Python-based, open-source framework
for conducting PRISM theory calculations,
with a user-friendly scripting interface for
setting up and numerically solving the
PRISM equations

Jayaraman
group28,29

https://pyprism.readthedocs.io/en/latest/

Notable Open-Source Codes Emerging from other Chemical Engineering Communities
GNU OCTAVE C++-based open-source high-level

language, primarily intended for numerical
computations; compatible with MATLAB

John W. Eaton https://www.gnu.org/software/octave/

DWSIM5 Mixed code open-source chemical
process simulator, compatible with the

Daniel Medeiros

https://github.com/DanWBR/dwsim5

MadisonBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at AlChE Journal, published by Wiley on behalf of the American Institute of Chemical Engineers. Copyright restrictions may apply. https://doi.org/10.1002/aic.17206. The content of this document may vary from the final published version.

CAPE-OPEN standards for
interoperability (https://www.colan.org)

Table 1. Examples of open-source molecular simulation codes and related supporting utilities

developed within the chemical engineering molecular modeling community. Website links
are to home pages of the codes or to code repositories. In addition, several other open-source
codes emerging from the chemical engineering community are highlighted.

In this regard, the molecular simulation community in chemical engineering is particularly noted
for sharing methods and capabilities by making software developed within the community freely
available under open-source licenses, as described in a recent review article30. A recent, more
general review of open-source molecular modeling software is provided by Pirhadi et al.31 Table
1 provides examples of open-source molecular simulation tools developed within the ChEC,
divided into simulation codes and other utilities. Similar to GEMC, many of these algorithms
developed are primarily implemented within MC and hence it is not surprising that the bulk of
open-source simulation engines developed within the ChEC (see Table 1) are for performing MC
simulations. The need for community-developed simulation engines, whether they are MD or MC,
stems from the fact that such codes have become increasingly difficult to develop, extend, and
maintain for a single individual or single research group. This is due not only to an ever growing
set of features and algorithms, but also due to changes in computing hardware utilized in a research
environment: we have been through the era of vector architectures (e.g., Cray, Hitachi), parallel
vector computers (a small number of coupled vector processors, such as Cray YMP), massively
parallel shared memory computers (MPP, such as the Intel Paragon, in which a large number of
the same commodity central processor units – CPUs – used in deskside computers are linked
together and communicate over a communication network), multicore processors (such as Intel
Xeon that has gone from 6 cores to more than 50) both stand alone and as part of an MPP, and
more recently the inclusion of massively multicore graphical processing units (GPUs, which have
migrated from the gaming industry into scientific computing and data manipulation). A modern
supercomputer typically consists of nodes, connected via an interconnect (from vendors such as
Mellanox and Intel)ab, where each node houses multiple commodity multicore CPUs and GPUs.
This is the dominant architecture of the supercomputers on the top 500 list of the fastest computers
in the world32, with the top 5 supercomputers having between 1.5 and in excess of 10.5 million
total computing cores at the time of writing; designing and maintaining simulation codes that
perform efficiently on these rapidly evolving computer architectures is a significant challenge.
Beyond community developed simulation engines, we have also seen the rise of other community
developed utilities to support simulation, e.g., in the form of general analysis packages as well as
software that makes it easier to accurately and reproducibility initialize configurations, apply force
fields to molecules, and create input files for a variety of simulation engines.

a These interconnects can vary from standardized ethernet connections to more specialized, proprietary high performance interconnects from various
vendors. At the time of writing, the current top 500 list includes numerous systems with propriety interconnects such as Mellanox Infiniband (now
owned by Nvidia), Intel Omni-Path, Cray Aries, and Fujitsu Tofu along with standard ethernet connections ranging from 10G to 100G.

MadisonBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at AlChE Journal, published by Wiley on behalf of the American Institute of Chemical Engineers. Copyright restrictions may apply. https://doi.org/10.1002/aic.17206. The content of this document may vary from the final published version.

For several decades, the open-software movement has been making its presence felt in the
chemical engineering community. Open-source software offers many advantages over proprietary
codes. First, they are universally available and do not contain any hidden parameters. This makes
verification of results published using these codes much more feasible than for proprietary codes.
Indeed, some scholarly journals have taken the position of considering only manuscripts for
publication in which molecular modeling calculations were performed using open-source codes or
source code that is made available to reviewers. Second, open-source codes are available at no
cost, which means that the codes can be downloaded and used by researchers throughout the world,
removing barriers for scientific progress. Third, open-source codes typically attract a community
of users and/or developers, so that bugs are discovered and eliminated quickly, often overnight; in
the case of proprietary software, bugs are typically only fixed during update cycles, which may be
months apart, or may even go unnoticed, since the code cannot be inspected by users. The
downside of open-source software is that, since there is no revenue stream in the usual sense (sale
of software), the sustainability of an open-source code over decades can be questionable. However,
codes can reach a level of usage such that the effort to maintain and improve the code is taken on
by the user community; LAMMPS has arguably reached this position. Also, for some open-source
codes there is an alternative revenue stream. For example, Red Hat is the biggest contributor and
supporter of the open-source Linux operating system. It makes money by writing, selling, and
supporting business-oriented middleware that runs within Linux, as well as selling consulting
services to companies switching to Linux for their enterprise software. The commercial
Scienomics MAPS platform for materials and process simulations embeds some of the open-
source MD and MC codes, such as LAMMPS, Cassandra, and MCCCS-Towhee. Enthought,
Inc. is a software company based in Austin, Texas, that develops and markets scientific and

Figure 1. Typical steps involved in performing a molecular simulation. If all steps are scriptable, the entire process can be encased
in a loop over hundreds or thousands of chemistry, composition, and/or state conditions combinations to enable screen for
desirable properties. Background colors refer to: initialization steps (blue), simulation run time steps (red), and system analysis
steps (yellow).

MadisonBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at AlChE Journal, published by Wiley on behalf of the American Institute of Chemical Engineers. Copyright restrictions may apply. https://doi.org/10.1002/aic.17206. The content of this document may vary from the final published version.

analytic computing solutions using primarily the Python programming language; its commercial
activities underwrite the widely used open-source SciPy (Scientific Python) package.

In the remainder of this Perspective, as an example of ChEC open-source software, we focus our
discussion on the Molecular Simulation Design Framework (MoSDeF), to which all the authors
are contributors. MoSDeF is a set of Python tools to facilitate the initialization and
parameterization of systems, with the goal of enabling transparent and reproducible molecular
simulation workflows that, at the same time, are user-friendly and extensible.

3. Molecular Simulation Design Framework (MoSDeF)
As shown in Figure 1, performing a molecular simulation, whether MD or MC, requires multiple
steps: building an initial configuration of the system, selecting and applying a force field,
generating a syntactically correct input file (or files) for a target simulation engine, equilibration
(to relax the system from its initial configuration – e.g., a crystal – to a configuration characteristic
of equilibrium – e.g., liquid), production run to generate a trajectory, and analysis of the trajectory
(e.g., averaging over the trajectory to compute thermodynamic and/or structural properties,
perform visualization, etc.). Often reliability and statistics are improved by running multiple
independent trajectories using the same workflow. Accomplishing these steps in a way that is both
accurate and reproducible can be a significant challenge. For example, the application of a force
field is a frequent source of error in simulations; for a system composed of moderately complex
molecules (such as an ionic liquid) the force field can have a hundred or more parameters that must
be provided, offering multiple opportunities for errors (e.g., use of incompatible units, use of
parameter values from a publication containing a typographical error, incorrect application of
parameters due to logic errors or because of ambiguous definition of parameter usage, etc.). While
the use of a community developed, open-source simulation engine may help to reduce the
likelihood of fundamental errors in algorithms underlying the simulations, such codes cannot
necessarily prevent users from providing parameters that are inconsistent with the intended usage.

Typically, many of these steps are performed within a given research group by a single graduate
student, often making use of ad hoc, in-house software, even if open-source simulation engines
are used. This approach has several shortcomings that can make simulations more prone to error,
limit the extensibility, and hamper reproducibility. For example, the various tools used to
accomplish these steps may only be loosely coupled and require manipulation, editing, and/or
modification of the tools and/or data by the user. This manipulation may introduce errors and
make it difficult to reproducibly capture the exact procedures employed. The need for human
manipulation may also limit the ability to use such workflows in applications that require
automation, such as parameter screening studies or within the context of larger workflows (e.g., to
predict phase equilibrium within a process simulator). The use of in-house software itself, which
is typically not open-source or freely available, creates numerous roadblocks as well. Someone
wishing to reproduce a simulation would be required to write their own software to accomplish
the same tasks. The development of such software may be time consuming and publications often
do not provide sufficient detail regarding the procedures used to initialize and parameterize
simulations. Furthermore, without access to the original source code, it is not possible to ascertain
the quality of the software; that is, to know whether it has undergone sufficient validation or if
there are errors and bugs that ultimately impact the accuracy of the reported results.

MadisonBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at AlChE Journal, published by Wiley on behalf of the American Institute of Chemical Engineers. Copyright restrictions may apply. https://doi.org/10.1002/aic.17206. The content of this document may vary from the final published version.

The Molecular Simulation Design Framework (MoSDeF)33 is designed to address these issues of
automation/efficiency, accuracy, and reproducibility in molecular simulation. MoSDeF is an open-
source Python library built upon the scientific Python software stack with three major components:
mBuild (for constructing initial configurations of systems) and foyer (for applying force
fields). The third component, GMSO (General Molecular Simulation Object), is currently under
development and is designed to be a general, flexible way of encapsulating the information
required to define a simulation topology in a simulation engine in an agnostic manner. All of the
capabilities of MoSDeF are scriptable, thus making the tools inherently reproducible, as well as
suitable for automated calculations (e.g., screening). MoSDeF is implemented as a set of
composable/modular tools, where each “subpackage” (i.e., module) is designed such that it can be
used within MoSDeF, or as a standalone package, allowing MoSDeF to more easily integrate with
other community efforts. This also allows the framework to be more easily modified, tested,
extended, and have fewer bugs than a monolithic approach. MoSDeF leverages libraries including
packmol34, parmed35, openmm36,37, and openbabel38 to maximize compatibility with
simulation engines. The interoperability and integration of mBuild, foyer, and GMSO
distinguish MoSDeF from other initialization and simulation management packages that are
tailored for specific engines (e.g., ambertools39, playmol40) and which may also require
coordination of workflows across multiple languages (e.g., topotools40), complicating data
provenance. That is, MoSDeF tools enable the initialization, simulation, and analysis workflows
of entire scientific studies to be defined in python scripts. Performing a simulation using MoSDeF,
combined with dissemination of simulation scripts on a service such as Github, enables a molecular
simulation to be published as a TRUE (transparent, reproducible, usable by others, and extensible)
simulation41.

MoSDeF has its origins in a decade of National Science Foundation (NSF)-supported collaborative
research at Vanderbilt University involving researchers from chemical engineering and computer
science42–44, the latter affiliated with the Institute for Software Integrated Systems (ISIS)45. ISIS is
a leading academic software engineering research center, and is the originator of the concept of
model-integrated computing (MIC)46. MIC is a systems engineering approach that focuses on the
creation of domain specific modeling languages to capture the essential features of the individual
components of a given process, at the level of abstraction that is appropriate for the end users. Due
to abstraction, processes are described at a meta level that allows tasks to be coupled together to
execute scientific or engineering workflows. MIC has been deployed in applications as diverse as
managing auto assembly lines and processing health records. MIC design principles, domain-
specific modeling languages, and the general philosophy of abstraction have shaped the
development of MoSDeF. In particular, MoSDeF attempts to be simulation-engine-agnostic,
treating the concept of a molecular simulation at a meta level, above the specifics of the simulation
engines. The tools within MoSDeF are designed to fully describe a system: implementation relies
on writers to instantiate syntactically correct input files for specific engines from this information.
MoSDeF was initially developed to support several commonly used open-source MD codes
(LAMMPS47, GROMACS48 and HOOMD-blue49) and has since grown to support open-source MC
simulation engines, namely Cassandra16 and GOMC18. In the Supplementary Information, we
provide details on how to install MoSDeF through various hosting systems (anaconda, docker,
from source using github, etc.) on Apple OSX, Linux, and Windows platforms. Below we

MadisonBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at AlChE Journal, published by Wiley on behalf of the American Institute of Chemical Engineers. Copyright restrictions may apply. https://doi.org/10.1002/aic.17206. The content of this document may vary from the final published version.

describe each of the three key components. Source code, tutorials, documentation, and related
publications can be accessed from mosdef.org and/or github.com/mosdef-hub/.

3.1. mBuild
As shown in Figure 1, the first step in a simulation workflow typically involves defining the
configuration of the atoms (or more generally, particles) in the system. The mBuild Python
library50,51 has been developed to be a general, customizable tool for constructing arbitrarily
complex system configurations in a programmatic fashion (i.e., scriptable). Key to the mBuild
library is its underlying Compound data structure. A Compound is a general “container” that can
describe effectively anything: an atom, a collection of
atoms, a molecule, a generic point particle, a
collection of Compounds, operations on the
underlying Compounds and/or data, etc.
Compounds can be duplicated, rotated, translated,
scaled, etc. to construct a system. Compounds can
also contain information regarding connections
between the atoms, by defining either fixed Bonds
within a Compound or by adding Ports that allow
connections to be made between separate
Compounds. Ports define both location and
orientation of a connection; in atomistic systems, the
number of Ports and their locations are typically
representative of the underlying chemistry. For
example, Figure 2 shows Python code that defines a
CH2 moiety with two C-H Bonds and two Ports.
In order to create a connection between two
Compounds, a user simply states which Ports
should connect and mBuild automatically performs
translations and reorientations, creating a new
(composite) Compound (see Klein et al.50 for more
details). As such, this allows complex systems to be
built-up from smaller, interchangeable pieces that can
be connected, through the use of the concept of
generative modeling.50 This design approach allows
for declaratively expressing repetitive structures,
such as polymer chains and planar tilings (as used in
Figure 2) and also allows significant modifications to system structure/chemistry to be made with
only minimal changes to the initialization routines.

Figure 2: Python script that uses mBuild to define a class for
a -CH2- group, create a polymer composed of multiple -CH2-
groups, and connects copies of this polymer to a surface.
Note for simplicity, the terminal -CH3 group is not shown.
Additional mBuild tutorials and example scripts are available
online at https://github.com/mosdef-hub/mbuild_tutorials.

mb.recipes.Polymer

mb.recipes.Monolayer

polymer

CH2

AmorphousSilicaSurface

functionalized_surface

import mbuild as mb

from mbuild.lib.atoms import H

from mbuild.recipes import recipes

from mbuild.lib.surfaces import AmorphousSilicaSurface

class CH2(mb.Compound):

def __init__(self):

super(CH2, self).__init__()

carbon = mb.Particle(pos=[0.0, 0.0, 0.0], name='C')

hydrogen0 = mb.Particle(pos=[0.1, 0.0, 0.0], name='H')

hydrogen1 = mb.Particle(pos=[-0.1, 0.0, 0.0], name='H')

self.add([carbon, hydrogen0, hydrogen1])

self.add_bond((carbon, hydrogen0))

self.add_bond((carbon, hydrogen1))

self.add(mb.Port(anchor=self[0], orientation=[0, 1, 0],

separation=0.07), label='up')

self.add(mb.Port(anchor=self[0], orientation=[0, -1, 0],

separation=0.07), label='down')

polymer = recipes.Polymer(monomers=CH2(), n=10)

locations = mb.pattern.Grid2DPattern(n=10, m=10)

functionalized_surface = recipes.Monolayer(AmorphousSilicaSurface(),

polymer, backfill=H(),

pattern=locations,

tile_x=2, tile_y=1,)

MadisonBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at AlChE Journal, published by Wiley on behalf of the American Institute of Chemical Engineers. Copyright restrictions may apply. https://doi.org/10.1002/aic.17206. The content of this document may vary from the final published version.

3.2. Foyer
After a system configuration is initialized, the interactions between all constituents must be defined
before a system can be simulated (as shown in Figure 1), i.e., the force field must be applied to the
system. The Foyer library52 has been developed as a general tool for applying force fields to
molecular systems (i.e., atom-typing), that provides a standardized approach to defining chemical
context and atom-typing rules22,53. In Foyer, the forcefield parameters and the rules that dictate
parameter usage are stored together in a standardized XML file, separate from the code used to
evaluate them. Usage rules are encoded by using a combination of a SMARTS-based annotation
scheme, which defines the chemical context associated with a given parameter, and overrides
that define rule precedence. SMARTS is a language designed for describing molecular patterns,54
thus allowing information about the bonded environment of an atom to be efficiently and clearly
encoded in a format that is both human and machine readable. For example, the chemical context
of a terminal methyl group (-CH3) in an alkane can be expressed as [C;X4](C)(H)(H)H. In

this annotation, [C;X4] indicates that
the atom of interest is a carbon (C),
with 4 total bonds (X4) and
(C)(H)(H)H provides the identity of
those 4 bonds (1 carbon, 3 hydrogens).
Figure 3 shows a snippet from the
Foyer XML forcefield file
demonstrating how these usage rules
can be encoded, using select
parameters from OPLS-AA force field
(See Klein et al.22 for more details). By
separating the usage rules and
parameters from the software used to

evaluate them, the Foyer library does not need to change if changes are made to a force field file.
As such, this allows the implementation of novel and “custom” force fields without the need to
write new software, which simplifies the process of disseminating and evolving forcefields, and
increases reproducibility of work by making it clear not just what force field was used, but how it
was applied to the system. A complimentary approach not requiring SMARTS and overrides
is to make molecule-specific XML files available (e.g., via webpages such as
http://trappe.oit.umn.edu).

3.3. General Molecular Simulation Object (GMSO)
With a system initialized and parameterized, the information in the system topology must be
written to a file for a simulation engine. While the information required by different simulation
engines is, generally speaking, the same, the structure and format of the data file(s) passed to
simulation engines is typically unique to the engine itself. Generating these files accurately,
especially for a wide range of unique simulation engines, can be non-trivial. The current version
of MoSDeF relies upon the use open-source utilities parmed35 and OpenMM37,55 to store this
information; these tools along with native MoSDeF code, include parsers to generate syntactically
correct data files. In this approach, a single simulation topology can be used to generated input

<ForceField>
 <AtomTypes>
 ...
 <Type name="opls_135" class="CT" element="C" mass="12.01100" \\
 def="[C;X4](C)(H)(H)H" desc="alkane CH3" \\
 doi="10.1021/ja9621760"/>
 <Type name="opls_148" class="CT" element="C" mass="12.01100" \\
 def="[C;X4]([C;%opls_145])(H)(H)H" \\
 desc="toluene CH3" overrides="opls_135" \\
 doi="10.1021/ja9621760"/>
 <Type name="opls_145" class="CA" element="C" mass="12.01100" \\
 def="[C;X3;r6]1[C;X3;r6][C;X3;r6][C;X3;r6][C;X3;r6][C;X3;r6]1" \\
 desc="aromatic C in 6-membered ring” \\
 overrides="opls_141,opls_142" doi="10.1021/ja9621760"/>
 ...
 </AtomTypes>
</ForceField>
Figure 3: Foyer snippet illustrating how three Carbon atom types can be
defined, with rules for precedence and chemical context, in a human- and
computer-readable format.

MadisonBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at AlChE Journal, published by Wiley on behalf of the American Institute of Chemical Engineers. Copyright restrictions may apply. https://doi.org/10.1002/aic.17206. The content of this document may vary from the final published version.

files for a variety of simulation engines, allowing different engines and methodologies (e.g., MC
and MD) to be applied to the same system. While effective, these backend codes do not have
general support for the breadth of simulation engines and force fields we aim to include. To this
end, the General Molecular Simulation Object (GMSO) has been under development with the goal
of becoming the de facto backend data structure of the MoSDeF. The goal of GMSO is to serve as
a general container for all of the relevant system information (e.g., the fully parameterized system),
stored in a simulation engine agnostic way. GMSO is designed with interoperability and support
for various functional forms as a first-class feature. For example, GMSO builds upon the idea of
Foyer XML data file, shown in Fig. 3, but provides further meta data; this includes encoding the
functional forms of the potentials in the force field (those that can be expressed in computer
algebraic inputs) using the sympy Python library. GMSO is also structured to make it easier to add
data file writers, allowing GMSO support to be extended and customized. Because GMSO supports
user-defined analytic equations for force field components, it future-proofs GMSO for new
developments in force fields, such as those being pursued by several of the authors.

3.4. Computational Screening and Automation using MoSDeF
Since all the functions of MoSDeF are scriptable, when combined with a workflow management
tool such as signac/signac flow21, it is relatively trivial to perform computational screening
of the properties of systems by looping over chemistries and/or conditions and calculating relevant
properties from the simulations. The MoSDeF/signac combination has been used to screen the
impact on nanolubrication properties of end-group chemistry of self-assembled alkylsilane tethers
on amorphous silica surfaces23, leading to a machine-learning-derived model connecting end-
group cheminformatic descriptors with tribological properties of interest. In another example56,
the diffusivities of ions in organic solvents were screened for 22 different solvents, revealing a
pattern in this large data set (ion diffusivity proportional to solvent diffusivity) that was in contrast
with previous, primarily experimental findings (ion diffusivity proportional to solvent dipole
moment). The computational screening finding were confirmed in subsequent experimental
studies utilizing quasi-elastic neutron scattering57 and NMR58.

3.5 Expanding MoSDeF
As noted earlier, the genesis of MoSDeF was a series of NSF grants to Vanderbilt PIs Cummings,
McCabe, Iacovella, and Ledezci42–44. A recent collaborative NSF grant59 has funded groups from
the universities of Michigan (Glotzer and Anderson), Notre Dame (Maginn), Minnesota
(Siepmann), Delaware (Jayaraman), Houston (Palmer), Wayne State (Potoff), and Boise State
(Jankowski) universities to work together to expand MoSDeF’s capabilities, including the
collaborative design and development of the aforementioned GMSO backend. This collaboration is
resulting in increasing integration with HOOMD-blue, integration with MC codes Cassandra
and GOMC, and the first principles MD/MC code CP2K; additionally, MoSDeF has been integrated
more closely with Michigan’s signac workflow management tools. In the case of Cassandra,
for example, using MoSDeF existing utilities and adding additional capabilities resulting from the
Vanderbilt/Notre Dame collaboration, the complexity of setting up a simulation has been reduced
from 9 steps (including 3 requiring user editing of files) to a single python script using MoSDeF;
this, in turn, has enabled computational screening with Cassandra. Other groups, including
Houston, Boise State, and Delaware, are focusing on developing modules to implement complex
workflows and analyses involved in phase equilibrium calculations and construction of intricate
molecular models. Building the modules around the MoSDEF framework will enable these

MadisonBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at AlChE Journal, published by Wiley on behalf of the American Institute of Chemical Engineers. Copyright restrictions may apply. https://doi.org/10.1002/aic.17206. The content of this document may vary from the final published version.

workflows to be performed in a reproducible fashion with a variety of widely used simulation
engines.

An example of the capabilities enabled by this collaboration is given in the Supplementary
Information (SI). Inspired by the honoree of this special issue, Keith Gubbins, in the SI we report
the use of five different simulation codes (the open-source MC codes Cassandra and GOMC,
the open-source MD codes LAMMPS and GROMACS, and the open -source first principles MD code
CP2K) to repeat calculations reported by Striolo et al.60 on the adsorption of water into carbon slit
pores. The latter were groundbreaking simulations for their time and the paper has been cited ~200
times (Google Scholar). The paper reported adsorption/desorption isotherms, demonstrating the
hysteresis seen in experiment, as well as density profiles and orientational structure of the adsorbed
water into carbon slit pores. The Striolo et al. simulations were performed using in-house codes;
thus, they are almost impossible to reproduce in detail. In the SI, we show that we can reproduce
the adsorption/desorption isotherms reported by Striolo et al. to within an acceptable degree using
Cassandra and GOMC; more importantly, we show that by using the MoSDeF tools to create
the simulations, we can easily test multiple engines, and show we get excellent agreement between
the two different MC codes. Having used the technique of GEMC in both Cassandra and GOMC,
we establish the number of water molecules in the pore at a given external pressure. We then
perform NVT (constant number of molecules, volume and temperature) simulations using multiple
codes. We find remarkable agreement for the water structure inside the pore between the MC
engines Cassandra and GOMC and MD engines LAMMPS and GROMACS. The use of MoSDeF
(mbuild to build the simulation systems and foyer to apply the force fields) is absolutely
essential to obtaining consistency between these calculations. The first principles MD code CP2K
with interactions described on-the-fly via Kohn-Sham density functional theory produces similar,
but not identical, results for water structure, thereby allowing us to identify differences in water-
substrate interactions. The fact that one can move the simulated system between all of these codes
fairly effortlessly, thanks to the use of the MoSDeF tools and its meta-level abstraction of the
concept of molecular simulation, is a very significant step forward for the simulation community.
Moreover, the SI contains all the instructions needed for the reader to download and run all the
utilities and codes needed to reproduce the reported calculations exactly, hence qualifying these as
TRUE simulations.41

3.6 Future Directions and Challenges
It is clear that the role of modeling and simulation in engineering and scientific research will
continue to grow as computing power advances and new methods and simulation engines are
developed. Ironically, the more powerful and capable modeling tools become, the more difficult it
is to ensure that the results of these simulations can be reproduced by others and that the numerous
details that go into running the simulations are validated and justified. This can lead to a “crisis in
confidence” in the accuracy of simulation research. We believe that efforts at developing tools and
workflows that focus on transparency and accuracy of simulations are therefore essential, and that
the MoSDeF tools described here are an important step in helping improve the reliability of
simulations.

MadisonBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at AlChE Journal, published by Wiley on behalf of the American Institute of Chemical Engineers. Copyright restrictions may apply. https://doi.org/10.1002/aic.17206. The content of this document may vary from the final published version.

Given the backgrounds of the authors, the major focus up to this point has been on classical force
field-driven Monte Carlo and molecular dynamics simulations, although as demonstrated in this
Perspective, MoSDeF can also be applied to the ab initio code CP2K. In the future, we would like
to see the scope of MoSDeF expanded to include other ab initio codes, reactive methods and
analysis tools. MoSDeF has been developed to be very flexible, so it can be adapted to work with
additional packages as well as future computer architectures and programming structures. A key
challenge in realizing this vision is resources, both financial and human. We have been fortunate
to have support from the National Science Foundation to create MoSDeF. Its expansion and long-
term sustainability will require that the research community see the value in MoSDeF and commit
to supporting it. There are many examples of the research community supporting open source
simulation packages, but the key is that users find value in the tool and in extending its capabilities.
We hope we have demonstrated the value of MoSDeF and that other researchers will become
involved in its maintenance and growth.

4. Summary and Conclusions
In this Perspective article, we have described our efforts at developing the Molecular Simulation
Design Framework (MoSDeF), a collection of open source tools that not only make the design and
execution of molecular simulations easier, but they also help enable the simulations to be "TRUE”:
transparent, reproducible, usable by others, and extensible. The collection of tools enables system
setup, atom typing, force field assignment, and job management. MoSDeF is designed to be
compatible with a wide range of simulation engines and force fields. As an example of MoSDeF’s
capabilities, we undertook the modeling of the sorption and diffusion of water in a carbon slit pore,
something Keith Gubbins and co-workers did many years ago. We show that we can seamlessly
integrate five different simulation packages in the study and that consistent results are obtained
between the different packages. We hope this article stimulates other researchers to not only adopt
MoSDeF in their work, but to also contribute to its continued expansion and development.

We dedicate this Perspective to our colleague, mentor, and friend, Keith Gubbins. The authors of
this article wish to express their deep gratitude to Keith for all he has done for our community. We
wish him many more years of productive science.

Acknowledgements
The preparation of this Perspective article has been supported by a National Science Foundation
grants OAC-1835874 to Vanderbilt University, OAC-1835612 to the University of Michigan,
OAC-1835630 to the University of Notre Dame, OAC-1835067 to the University of Minnesota,
OAC-1835613 to the University of Delaware, OAC-1835593 to Boise State University, OAC-
1835713 to Wayne State University, and OAC-1835560 to the University of Houston.

MadisonBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at AlChE Journal, published by Wiley on behalf of the American Institute of Chemical Engineers. Copyright restrictions may apply. https://doi.org/10.1002/aic.17206. The content of this document may vary from the final published version.

Literature Cited

1. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of State

Calculations by Fast Computing Machines. J Chem Phys. 1953;21(6):1087-1092.
doi:10.1063/1.1699114

2. Alder BJ, Wainwright TE. Phase transition for a hard sphere system. J Chem Phys.
1957;27(5):1208-1209. doi:10.1063/1.1743957

3. Alder BJ, Wainwright TE. Studies in Molecular Dynamics. I. General Method. J Chem Phys.
1959;31(2):459-466. doi:10.1063/1.1730376

4. Wood WW, Parker FR. Monte Carlo Equation of State of Molecules Interacting with the
Lennard-Jones Potential. I. A Supercritical Isotherm at about Twice the Critical
Temperature. J Chem Phys. 1957;27(3):720-733. doi:10.1063/1.1743822

5. Rahman A. Correlations in the Motion of Atoms in Liquid Argon. Phys Rev.
1964;136(2A):A405-A411. doi:10.1103/PhysRev.136.A405

6. Nicolas JJ, Gubbins KE, Streett WB, Tildesley DJ. Equation of state for the lennard-jones
fluid. Mol Phys. 1979;37(5):1429-1454. doi:10.1080/00268977900101051

7. Allen MP, Tildesley DJ. Computer Simulation of Liquids. Vol 1. Second. Oxford University
Press; 2017. doi:10.1093/oso/9780198803195.001.0001

8. Westmoreland PR, Kollman PA, Chaka AM, et al. Applying Molecular and Materials
Modeling. Dordrecht: Springer Netherlands; 2002. doi:10.1007/978-94-017-0765-7

9. Reed TMK, Gubbins KE. Applied Statistical Mechanics: Thermodynamic and Transport
Properties of Fluids. McGraw-Hill; 1973.
https://books.google.com/books?id=w_tQAAAAMAAJ.

10. Gray CG, Gubbins KE, Joslin CG. Theory of Molecular Fluids: I: Fundamentals. OUP Oxford;
1984. https://books.google.com/books?id=3mz2RcnnMGwC.

11. Gray CG, Gubbins KE, Joslin CG. Theory of Molecular Fluids: Volume 2: Applications. OUP
Oxford; 2011. https://books.google.com/books?id=4xr8jwEACAAJ.

12. Panagiotopoulos AZ. Direct determination of phase coexistence properties of fluids by
monte carlo simulation in a new ensemble. Mol Phys. 1987;61(4):813-826.
doi:10.1080/00268978700101491

13. Paricaud P, Předota M, Chialvo AA, Cummings PT. From dimer to condensed phases at
extreme conditions: Accurate predictions of the properties of water by a Gaussian charge
polarizable model. J Chem Phys. 2005;122(24):244511. doi:10.1063/1.1940033

14. Anderson JA, Lorenz CD, Travesset A. General purpose molecular dynamics simulations
fully implemented on graphics processing units. J Comput Phys. 2008;227(10):5342-5359.
doi:10.1016/j.jcp.2008.01.047

15. Glaser J, Nguyen TD, Anderson JA, et al. Strong scaling of general-purpose molecular
dynamics simulations on GPUs. Comput Phys Commun. 2015;192:97-107.
doi:10.1016/j.cpc.2015.02.028

16. Shah JK, Marin-Rimoldi E, Mullen RG, et al. Cassandra: An open source Monte Carlo
package for molecular simulation. J Comput Chem. 2017;38(19):1727-1739.
doi:10.1002/jcc.24807

17. Dubbeldam D, Calero S, Ellis DE, Snurr RQ. RASPA: molecular simulation software for

MadisonBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at AlChE Journal, published by Wiley on behalf of the American Institute of Chemical Engineers. Copyright restrictions may apply. https://doi.org/10.1002/aic.17206. The content of this document may vary from the final published version.

adsorption and diffusion in flexible nanoporous materials. Mol Simul. 2016;42(2):81-101.
doi:10.1080/08927022.2015.1010082

18. Nejahi Y, Soroush Barhaghi M, Mick J, et al. GOMC: GPU Optimized Monte Carlo for the
simulation of phase equilibria and physical properties of complex fluids. SoftwareX.
2019;9:20-27. doi:10.1016/j.softx.2018.11.005

19. Schultz AJ, Kofke DA. Etomica : An object-oriented framework for molecular simulation. J
Comput Chem. 2015;36(8):573-583. doi:10.1002/jcc.23823

20. Ramasubramani V, Dice BD, Harper ES, Spellings MP, Anderson JA, Glotzer SC. freud: A
software suite for high throughput analysis of particle simulation data. Comput Phys
Commun. 2020;254:107275. doi:10.1016/j.cpc.2020.107275

21. Adorf CS, Dodd PM, Ramasubramani V, Glotzer SC. Simple data and workflow management
with the signac framework. Comput Mater Sci. 2018;146:220-229.
doi:10.1016/j.commatsci.2018.01.035

22. Klein C, Summers AZ, Thompson MW, et al. Formalizing atom-typing and the dissemination
of force fields with foyer. Comput Mater Sci. 2019;167(May):215-227.
doi:10.1016/j.commatsci.2019.05.026

23. Summers AZ, Gilmer JB, Iacovella CR, Cummings PT, McCabe C. MoSDeF, a Python
Framework Enabling Large-Scale Computational Screening of Soft Matter: Application to
Chemistry-Property Relationships in Lubricating Monolayer Films. J Chem Theory Comput.
2020;16(3):1779-1793. doi:10.1021/acs.jctc.9b01183

24. Thompson MW, Gilmer JB, Matsumoto RA, et al. Towards molecular simulations that are
transparent, reproducible, usable by others, and extensible (TRUE)*. Mol Phys.
2020;0(0):e1742938. doi:10.1080/00268976.2020.1742938

25. Lin ST, Sandler SI. A priori phase equilibrium prediction from a segment contribution
solvation model. Ind Eng Chem Res. 2002;41(5):899-913. doi:10.1021/ie001047w

26. Bell IH, Mickoleit E, Hsieh CM, et al. A Benchmark Open-Source Implementation of
COSMO-SAC. J Chem Theory Comput. 2020;16(4):2635-2646.
doi:10.1021/acs.jctc.9b01016

27. Fortunato ME, Colina CM. pysimm : A python package for simulation of molecular systems.
SoftwareX. 2017;6:7-12. doi:10.1016/j.softx.2016.12.002

28. Martin TB, Gartner TE, Jones RL, Snyder CR, Jayaraman A. pyPRISM: A Computational Tool
for Liquid-State Theory Calculations of Macromolecular Materials. Macromolecules.
2018;51(8):2906-2922. doi:10.1021/acs.macromol.8b00011

29. Schweizer KS, Curro JG. Integral-equation theory of the structure of polymer melts. Phys
Rev Lett. 1987;58(3):246-249. doi:10.1103/PhysRevLett.58.246

30. Cummings PT, Gilmer JB. Open-source molecular modeling software in chemical
engineering. Curr Opin Chem Eng. 2019;23:99-105. doi:10.1016/j.coche.2019.03.008

31. Pirhadi S, Sunseri J, Koes DR. Open source molecular modeling. J Mol Graph Model.
2016;69:127-143. doi:10.1016/j.jmgm.2016.07.008

32. The TOP500 project. https://top500.org.
33. Molecular Simulation Design Framework (MoSDeF) Homepage. https://mosdef.org.
34. Martínez L, Andrade R, Birgin EG, Martínez JM. PACKMOL: a package for building initial

configurations for molecular dynamics simulations. J Comput Chem. 2009;30(13):2157-
2164. doi:10.1002/jcc.21224

MadisonBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at AlChE Journal, published by Wiley on behalf of the American Institute of Chemical Engineers. Copyright restrictions may apply. https://doi.org/10.1002/aic.17206. The content of this document may vary from the final published version.

35. ParmEd — ParmEd documentation. http://parmed.github.io/ParmEd/html/index.html.
Published February 18, 2018. Accessed April 18, 2018.

36. Eastman P, Swails J, Chodera JD, et al. OpenMM 7: Rapid development of high
performance algorithms for molecular dynamics. Gentleman R, ed. PLOS Comput Biol.
2017;13(7):e1005659. doi:10.1371/journal.pcbi.1005659

37. Eastman P, Pande VS. OpenMM: A Hardware Independent Framework for Molecular
Simulations. Comput Sci Eng. 2015;12(4):34-39. doi:10.1109/MCSE.2010.27

38. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel:
An open chemical toolbox. J Cheminform. 2011;3(1):33. doi:10.1186/1758-2946-3-33

39. Case DA, Belfon K, Ben-Shalom IY, et al. AMBER 2020. AMBER 2020 Reference Manual.
40. Abreu CRA. Playmol. https://github.com/atoms-ufrj/playmol. Published 2018.
41. Thompson MW, Gilmer JB, Matsumoto RA, et al. Towards molecular simulations that are

transparent, reproducible, usable by others, and extensible (TRUE). Mol Phys.
2020;0(0):e1742938. doi:10.1080/00268976.2020.1742938

42. NSF Award # CBET-1028374 Collaborative Research: CDI-Type II: Cyber-Enabled Design of
Functional Nanomaterials.
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1028374.

43. NSF Award # ACI-1047828 - SI2-SSI: Development of an Integrated Molecular Design
Environment for Lubrication Systems (iMoDELS) (PI: Cummings).
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1047828.

44. NSF Award # ACI-1535150 - SI2-SSE: Development of a Software Framework for
Formalizing Forcefield Atom-Typing for Molecular Simulation (PI: Iacovella).
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1535150.

45. Institute for Software Integrated Systems. https://www.isis.vanderbilt.edu/. Accessed
November 24, 2019.

46. Sztipanovits J, Karsai G. Model-integrated computing. Computer (Long Beach Calif).
1997;30(4):110-111.

47. Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J Comput Phys.
1995;117(1):1-19. doi:10.1006/jcph.1995.1039

48. Abraham MJ, Murtola T, Schulz R, et al. Gromacs: High performance molecular simulations
through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19-
25. doi:10.1016/j.softx.2015.06.001

49. Anderson JA, Glaser J, Glotzer SC. HOOMD-blue: A Python package for high-performance
molecular dynamics and hard particle Monte Carlo simulations. Comput Mater Sci.
2020;173:109363. doi:10.1016/j.commatsci.2019.109363

50. Klein C, Sallai J, Jones TJ, Iacovella CR, McCabe C, Cummings PT. A Hierarchical, Component
Based Approach to Screening Properties of Soft Matter. In: Snurr RQ, Adjiman CS, Kofke
DA, eds. Foundations of Molecular Modeling and Simulation. Molecular Modeling and
Simulation (Applications and Perspectives). Springer, Singapore; 2016:79-92.
doi:10.1007/978-981-10-1128-3_5

51. mBuild Github repository. https://github.com/mosdef-hub/mbuild. Accessed August 17,
2018.

52. Foyer Github repository. https://github.com/mosdef-hub/foyer. Accessed August 10,
2020.

MadisonBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at AlChE Journal, published by Wiley on behalf of the American Institute of Chemical Engineers. Copyright restrictions may apply. https://doi.org/10.1002/aic.17206. The content of this document may vary from the final published version.

53. Iacovella CR, Sallai J, Klein C, Ma T. Idea Paper : Development of a Software Framework for
Formalizing Forcefield Atom-Typing for Molecular Simulation. In: 4th Workshop on
Sustainable Software for Science: Practice and Experiences (WSSSPE4). ; 2016.

54. Daylight Theory: SMARTS - A Language for Describing Molecular Patterns.
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html. Published August 16,
2017. Accessed April 18, 2018.

55. SimTK: OpenMM: Project Home. https://simtk.org/projects/openmm. Published February
18, 2018. Accessed April 18, 2018.

56. Thompson MW, Matsumoto R, Sacci RL, Sanders NC, Cummings PT. Scalable Screening of
Soft Matter: A Case Study of Mixtures of Ionic Liquids and Organic Solvents. J Phys Chem
B. 2019;123(6):1340-1347. doi:10.1021/acs.jpcb.8b11527

57. Osti NC, Matsumoto RA, Thompson MW, Cummings PT, Tyagi M, Mamontov E.
Microscopic Dynamics in an Ionic Liquid Augmented with Organic Solvents. J Phys Chem C.
2019;123(32):19354-19361. doi:10.1021/acs.jpcc.9b05119

58. Cui J, Kobayashi T, Sacci RL, Matsumoto RA, Cummings PT, Pruski M. Diffusivity and
Structure of Room Temperature Ionic Liquid in Various Organic Solvents. J Phys Chem B.
2020:submitted for publication.

59. NSF Award # OAC-1835874 Collaborative Research: NSCI Framework: Software for Building
a Community-Based Molecular Modeling Capability Around the Molecular Simulation
Design Framework (MoSDeF).
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1835874.

60. Striolo A, Chialvo AA, Cummings PT, Gubbins KE. Water adsorption in carbon-slit
nanopores. Langmuir. 2003;19(20):8583-8591. doi:10.1021/la0347354

MadisonBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at AlChE Journal, published by Wiley on behalf of the American Institute of Chemical Engineers. Copyright restrictions may apply. https://doi.org/10.1002/aic.17206. The content of this document may vary from the final published version.

	Open-Source Molecular Modeling Software in Chemical Engineering Focusing on the Molecular Simulation Design Framework
	Publication Information

	Microsoft Word - AIChEJ-Perspective_Revised_V2-final-1.docx

